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ABSTRACT OF THE DISSERTATION

Essays on Semiparametric Ridge-Type Shrinkage Estimation, Model Averaging and
Nonparametric Panel Data Model Estimation

by

Huansha Wang

Doctor of Philosophy, Graduate Program in Economics
University of California, Riverside, June 2014

Professor Aman Ullah, Chairperson

This dissertation is composed with 4 essays. They explore modelling uncertainty following

two major directions. The former 2 contains topics on ordinary and general ridge-type

shrinkage estimation developed from model averaging and kernel density estimation. The

third one critically reviews recent literature in the areas of model averaging and model

selection both parametrically and nonparametrically and proposes topics for future work.

The last one focuses on nonparametric panel data estimation with random effects. In

chapter 2, ordinary ridge-type shrinkage estimation is extensively studied, where a class

of well-behaved ordinary ridge-type semiparametric estimators is proposed. Monte Carlo

simulations, theoretical derivations, as well as empirical out-of-sample forecasts are all in-

vestigated to prove their usefulness in reducing mean squared errors, i.e. risks. Chapter

3 develops the works in Chapter 2 to the general ridge regressions. By connecting general

ridge regression with kernel density estimation, an asymptotically optimal semiparametric

ridge-type estimator is built. By connecting general ridge regression with model averaging, a
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class of model averaging ridge-type estimators are obtained. These estimators are observed

to have different improvements upon the feasible general ridge estimators when model un-

certainties, i.e., the error variances are different. To encourage better understanding on

model averaging and model selection, Chapter 4 gives a comprehensive literature review

and analysis on these topics from a frequentist’s point of view. Parametric and nonpara-

metric procedures in the recent developments are explored. Chapter 5 starts investigating

panel data estimation by introducing nonparametrics in the picture. The proposed two-

stage estimator shows good behaviors in Monte Carlo simulation. In addition, illustrative

empirical examples in health economics and environmental economics are also introduced.
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Chapter 1

Introduction

The study of data analysis is mainly composed of two major parts: selecting

a model and making inferences from this selected. In the first stage, various models are

considered to provide a closer insight to the real world despite all kinds of disturbances occur

along the way. We could either impletement the nonparametric estimation and forecasting

in the picture, where no specific functional format between the regressor and the regressand

is assumed, thus leaving the model with a closer approximation to the real world. This leads

to the popularity in the use of nonparametric models in recent years. Various topics have

been explored by econometricians to bring more “efficiency”, i.e. smaller mean squared

errors (MSE) in modelling. Especially, with large datasets, such as the panel datasets,

nonparaemetric estimation procedures are widely adopted.

On the other hand, for a series of models with specific/unspecific functional as-

sumptions, a search of model can be carried out. Bearing this aim, model selection (choosing

one model and define that as the “best”) and model averaging (averaging across several mod-
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els, i.e. submodels, to get an aggregated final model with weighs assigned to each candidate

submodel) are brought up on the table to provide us a chance to look through the noises

and see the signal. It is true that “when the noise level is very low relative to the signal,

there is little difficulty identifying the best model and, accordingly model selection does a

very good job”(Yang, 2001), yet as noises level becomes higher or when in fact it’s hard to

tell the noise from the signal, model averaging is considered a better choice.

Bearing this in mind, this dissertation covers several interesting essays on (i) semi-

parametric ordinary and general Ridge-type shirinkage estimation, along with their empir-

ical applications in forecasting excess stock returns, etc.; (ii) a review of model averaging,

model selection in pamametric and nonparametric frameworks, mainly from the view of

a frequentist, with proposals of future developments and extensions in the line; (iii) non-

parametric two-stage panel data model estimation with random effects where less MSE is

achieved. On the one hand, these works contribute to the asymptotic theories and method-

ologies related to the topics and brings insprirations for future directions. On the other

hand, the applications in this dissertaion covers areas such as financial economics, health

economics, and enviromental economics, where the author proposes procedures to utilize

the theories developed and brings interesting real world insights from new angles.

In the real world, what we face are lots of noises and the difficulty of telling them

from the truth. Thus, with these uncertainties, most economists agree that model averaging

could be more efficient and effective at explaining and forecasting in empirical works com-

pared to model selection and other frameworks. Focusing on investigating the gains from

model averaging, in Chapter 2, a class of easy-to-implement semiparametric ordinary ridge
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estimators of regression coefficients is introduced. Their properties are investigated and

simulation results are provided to investigate their behaviors when the error variances are

small and relatively large, respectively. The semiparametric estimators outperform the Ho-

erl, Kennard and Baldwin (1975) estimator in the sense that they give less risk (total mean

squared error). In addition to this, a new method that minimizes the unbiased estimator

of the MSE of the the regressand is also introduced, along with its theoretical derivations.

Both Monte Carlo simulation and empirical application are also presented to demenstrate

the usefulness of this method. Not surprisingly yet interestingly, this new criterion proposed

works in a similar way compared with the Mallows criterion (Mallows, (1973)).

To extend the above work, Chapter 3 introduces general ridge regression with

Mallows model averaging (GRRA) and Jackknife model averaging (GRRJ). Moreover, an

asymptotic optimal semiparametric ridge estimation (AOSP) is also proposed. More specif-

ically, we propose a new semi-parametric estimator of regression coefficients, which is in the

form of a feasible generalized ridge estimator by Hoerl and Kennard (1970b) but with differ-

ent biasing factors. We prove that the generalized ridge estimator is algebraically identical

to the model average estimator. Further, the biasing factors that determine the proper-

ties of both the generalized ridge and semi-parametric estimators are directly linked to the

weights used in model averaging. These are interesting results for the interpretations and

applications of both semi-parametric and ridge estimators. Furthermore, we demonstrate

that these estimators based on model averaging weights can have properties superior to the

well-known feasible generalized ridge estimator in a large region of the parameter space.

The GRRA/GRRJ and the AOSP estimators outperform each other given different model
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uncertainties that are controlled by the error variances. Monte Carlo simulations and two

empirical examples are presented to demonstrate the usefulness of the new methods and

which to choose given different model uncertainties.

In view of all the existing literature in the areas of model averaging and model se-

lection, Chapter 4 presents a guidance for economists who are interested in the fundamental

theories and most recent developments in this realm, mainly from a frequentist’s point of

view. While there is an extensive literature on the parametric case we provide the recently

developed results in the context of nonparametric models. However, in applications, the

estimation and inference are often conducted under the selected model without considering

the uncertainty from the selection process. This often leads to inefficiency in results and

misleading confidence intervals. An alternative to model selection is the model averaging

where the estimated model is the weighted sum of all the sub models. This reduces the

model uncertainty. In recent years, there has been a significant interest in the model av-

eraging and some important developments have taken place in this area. We present the

results for both the parametric and nonparametric cases. Some possible future topics of

research are also indicated.

Compared with model averaging, nonparametric estimation itself relaxes modelling

assumptions from the setup of the model and thus brings more freedom to economists.

Especially, the advancement of technology has brought more possible means to obtain and

store data; thus, the use of big data, such as panel datasets, has become one of the top

trends in econometrics. Chapter 5 introduces a new two step estimation procedure in

the nonparametric regression function where the errors follow a general error variance-
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covariance matrix. By incorporating the information from the error variance-covariance

matrix, efficient estimators of the nonparametric regression function (conditional mean) and

its derivative are developed. The results for a special case of the nonparametric panel data

regression with random effects are then presented. For this case Monte Carlo simulation

results are performed to examine the finite sample performance of our proposed estimators.

The results show that our proposed estimators outperform the local linear least squares

estimator and many other existing estimators in the sense of smaller mean squared errors

(risk). The asymptotic properties of the proposed estimator are established. Two real

data applications on the relationship between health expenditure and education, as well

as the environmental Kuznets curve, are also performed to illustrate the usefulness of this

procedure.

Chapter 6 provides the concluding remarks for this thesis. And the appendix

demonstrates the mathematical derivations in more detail.
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Chapter 2

A Class of Semiparametric

Ordinary Ridge Estimators of

Regression Coefficients∗

2.1 Introduction

In the ordinary least squares (OLS) estimation, if the prediction vectors from

X, where X = (x1, x2, ...) are not orthogonal, there is a high probability that the OLS

estimators may be unsatisfactory. In particular, the estimated coefficients tend to be ab-

normally large in absolute value and sometimes have the wrong sign. To fix this problem,

the ridge estimation was introduced by Hoerl (1962) and Hoerl and Kennard (1970). By

∗The text of this chapter, in part or in full, is a reprint of the material as is appears in H, Wang. (2013)

Journal of Quantitative Economics 11(12): 15-27.
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adding an extra increment to the original X ′X, the ridge estimation circumvents the non-

orthogonality problem. Compared to the methods of principal components, computation of

2p regressions, some subset of all regressions using fractional factorials, a branch and bound

technique, ridge estimation “gives an insight into the structure of the factor space and the

sensitivity of the results to the particular set of data at hand” (Hoerl and Kennard (1970)).

In addition, most multiple regression models suffer multicollinearity to some degree. Thus,

under these circumstances, introducing the ridge regression could gain, in the sense that

the ridge estimators will outperform the OLS estimator and alleviate the multicollinearity

problem.

As one can expect, the choice of the increment to X ′X is significant in the im-

plementation of the ridge estimation. In the ordinary ridge estimation, we usually use kI,

where the I being the identity matrix, to denote it. Many different choices of the biasing

parameter k have been proposed in the literature, such as Hoerl, Kennard and Baldwin

(1975), see Vinod and Ullah (1981).

In this chapter, a class of semiparametric ordinary ridge estimators is proposed.

Starting from kernel density estimator of the regressors, these estimators bear more in-

formation than the OLS estimator and both simulation and empirical application results

in the following content show the usefulness of these easy-to-implement estimators. The

properties of these estimators are also investigated. The rest of this paper is arranged as

follows. Section 2 introduces the class of ordinary semiparametric (OSP) estimators. Sec-

tion 3 develops the approximate and exact unbiased mean squared errors (MSE) of the

OSP estimators, and proposed the choices of window-width by minimizing them. Section
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4 provides some simulation results comparing this class of OSP estimators with the OLS

estimator and the estimator proposed by Hoerl, Kennard and Baldwin (1975). Section 5

gives the results for one empirical application. The last section concludes.

2.2 Semiparametric Estimator of Regression Coefficients

Consider a population multiple regression model

y = x1β1 + · · ·+ xqβq + u (2.1)

= x′β + u

where y is a scalar dependent variable, x = [x1, ..., xq]
′ is a vector of q regressors, β is

an unknown vector of regression coefficients, and u is a disturbance with Eu = 0 and

V (u) = σ2.

If we minimize Eu2 = E(y − x′β)2 with respect to β, we obtain

β = [Exx′]−1Exy (2.2)

where Exx′ is a q × q moment matrix of q variables with the j-th diagonal element and

j, j′-th off diagonal elements, respectively, given by

Ex2
j =

∫
xj

x2
jf(xj)dxj , j = 1, ..., q, (2.3)

Exjxj′ =

∫
xj

∫
xj′

xjxj′f(xj , xj′)dxjdxj′ , j 6= j′ = 1, ..., q.

Suppose we have the sample observations {yi, xi1, ..., xiq}, i = 1, ..., n. Then the

population averages in (2.3) can be estimated by their sample averages as

Êx2
j =

1

n

n∑
i=1

x2
ij , Êxjxj′ =

1

n

n∑
i=1

xijxij′ . (2.4)
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The result Êxjy =
∑n

i=1 xijyi/n follows similarly.

Therefore we get†

β̂ = (Êxx′)−1Êxy (2.5)

= (X ′X)−1X ′Y

where X is an n × q matrix of observations on q variables, Y is an n × 1 vector of n

observations and β̂ is the well known ordinary least squares (OLS) estimator.

Now we consider the estimation of Ex2
j and Exjxj′ by using a smooth nonpara-

metric kernel density estimation instead of empirical distribution function. In this case,

Ẽx2
j =

∫
xj

x2
j f̃(xj)dxj (2.6)

=
1

nh

n∑
i=1

∫
xj

x2
jk(

xij − xj
h

)dxj

=
1

n

n∑
i=1

∫
Ψij

(x2
ij + h2Ψ2

ij − 2xijhΨij)k(Ψij)dΨij

=
1

n

n∑
i=1

x2
ij + h2µ2

where f̃(xj) = 1
nh

∑n
i=1 k(

xij−xj
h ) is a kernel density estimator, Ψij =

xij−xj
h is a transformed

variable, µ2 =
∫
v2k(v)dv > 0 is the second moment of kernel function, k(Ψij) is a symmetric

second order kernel, and h is window-width. For implementation, kernel is chosen as normal

or Epanechnikov quadratic function, see Pagan and Ullah (1999).

†With the intercept, the expression for the β̂q−1 for the (q−1) estimators could be defined as (X ′q−1Xq−1+

nh2µ2I − X̄q−1X̄
′
q−1)−1(X ′q−1Y − X̄q−1Ȳ

′) where X̄q−1 = (X̄2, ..., X̄q); and β̂1 = Ȳ − X̄q−1β̂q−1.
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Similarly, it can easily be shown that

Ẽ(xjxj′) =

∫
xj

∫
xj′

xjxj′ f̃(xj , xj′)dxjdxj′ (2.7)

=
1

nh2

n∑
i=1

∫
xj

∫
xj′

xjxj′k(
xij − xj

h
)k(

xij′ − xj′
h

)dxjdxj′

=
1

n

n∑
i=1

∫
Ψij

∫
Ψij′

(xij − hΨij)(xij′ − hΨij′)k(Ψij)k(Ψij′)dΨijdΨij′

=
1

n

n∑
i=1

xijxij′ ,

and

Ẽ(xjy) =
1

n

n∑
i=1

xijyi (2.8)

where we have used product kernels without any loss of generality and Ψij′ =
xij′−xj′

h .Also,

Ẽ(xj) = 1
n

∑n
i=1 xij =

−
xj .

Thus, using (2.6) to (2.8) in (2.2), a new semiparametric estimator of β can be

introduced as

β̃(h) = (Ẽxx′)−1Ẽxy (2.9)

= (X ′X + nh2µ2I)−1X ′Y

= (X ′X +D)−1X ′Y

where D = nh2µ2I is a diagonal matrix. We refer this estimator as the ordinary semipara-

metric (OSP) estimator.

We note that both OLS and OSP estimators are obtained by first considering

the population regression (2.1), in which the regression coefficient vector depends on the

population moments of vector x and scalar variable y, and then estimating these moments
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by two different methods with the help of sample data. These are the estimators of the

regression coefficients in the sample linear regression model

Y = Xβ + U (2.10)

where the sample is drawn from the population linear regression model (2.1), and U is an

n× 1 vector of random errors with EU = 0 and EUU ′ = σ2In.

The class of ordinary ridge estimator due to Hoerl and Kennard (1970a) is defined

as

β̂(k) = (X ′X + kI)−1X ′Y (2.11)

where k is an unknown parameter. An operational ordinary ridge estimator, from Hoerl,

Kennard and Baldwin (1975) is defined with k = qs2/β̂′β̂ and s2 = (Y−Xβ̂)′(Y−Xβ̂)
n−q . We

refer this estimator as the HKB estimator in the following content.

2.3 Unbiased Estimation of MSE and Optimal Window-width

Choice

In this section, the choices of window-width h are considered. These are based

on the minimization of the approximate total MSE, risk, and the unbiased estimator of

the exact MSE of β̃(h) = E[(β̃(h) − β)′(β̃(h) − β)]. Also we determine the choice of h

based on the minimization of the total MSE of the predictor of y, which is MSE(µ̃(h)) =

E[(β̃(h)− β)′X ′X(β̃(h)− β)], where µ̃(h) = Xβ̃(h).

11



2.3.1 An Approximate Estimator of the MSE of β̃(h)

Theorem 1. Under the conditions A1-A6 in the appendix, with A ≡ nµ2(X ′X)−1,

approximate MSE (AMSE) of β̃(h) is

AMSE(β̃(h)) = σ2tr(X ′X)−1 − 2h2σ2 trA
2

nµ2
+ h4[2β′A2β + 3σ2 trA

3

nµ2
].

Proof : See the Appendix.

Remark 1: By minimizing the AMSE with respect to h2, the first order condition

gives the optimal choice of h2 as

h2 =
σ2trA2

2nµ2β′A2β + 3σ2trA3
. (2.12)

From the AMSE, we could observe that AMSE − MSE(β̂) = −2h2σ2 trA2

nµ2
+

h4(2β′A2β + 3σ2trA3), thus, as long as 0 ≤ h2 ≤ 2σ2trA2

2nµ2β′A2β+3σ2trA3 , β̌(h) will outperform

the OLS estimator in the sense that it generates smaller mean squared error. We refer this

estimator as the AOSP estimator.

Also, we consider an approximation of h2 in (2.12) as

h2
1 =

σ2trA2

2nµ2β′A2β
, (2.13)

and thus, this β̌(h1) is referred as AOSP1.

2.3.2 An Exact Unbiased Estimator of the MSE of β̃(h)

Theorem 2. Under the same conditions as in Theorem 1, the exact unbiased

estimator of MSE of β̃(h) is given by

M̂SE(β̃(h) = s2tr(XD2X ′) + (nh2µ2)2[β̂′D2β̂ − s2trD2(X ′X)−1]

12



where D = (X ′X + nµ2h
2I)−1.

Proof : See the Appendix.

2.3.3 An Exact Unbiased Estimator of the MSE of µ̃(h)

Theorem 3. Under the same conditions as in Theorem 1, the exact unbiased

estimator of MSE of µ̃(h) is given by

M̂SE(µ̃(h) = s2tr(XD′X ′)2 + (nh2µ2)2[β̂′D′X ′XDβ̂ − s2trD′X ′XD(X ′X)−1]

where D = (X ′X + nµ2h
2I)−1.

Proof : See the Appendix.

Remark 2: The expression for the exact unbiased estimator of the MSE of β̃(h)

and µ̃(h) are nonlinear; thus in implementation, there’s no closed form solution for the

optimal window-width h; we will use the constraint optimization function built in R version

2.13.1. to approximate the optimal h. We refer these two estimators of β̃(h) from the two h′s

as the exact ordinary semiparametric (EOSP) estimator and an alternative exact ordinary

semiparametric (EOSP1) estimators, respectively.

Another asymptotic optimal semiparametric under Mallows criterion is also con-

sidered in the simulation (see Hansen (2007) for reference on the Mallows criterion), where

the optimal h2 is obtained through minimize (Y − Xβ̃(h))′(Y − Xβ̃(h)) + 2s2tr[(X ′X +

nh2µ2I)−1X ′]. We refer this estimator as the Mallows ordinary semiparametric (MOSP)

estimator.
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2.4 Simulation

Our Monte Carlo experiments are based on two DGP’s.

DGP1: yi =
∑q

j=1 θjxij + ei, xij are iid N(0, 1). The errors ei are uncorrelated

with x′s so it is set to be iid N(0, 1) and N(0, 25) respectively. This model is from Hansen

(2007) with the values of θj considered here as 0.7071j−3/2. Further, sample sizes taken are

n = 50, q = 11 and n = 150, q = 16.

DGP2: In DGP 2, parameters and function are set as in DGP 1, but x2i is set to

be the sum of x3i to x50i plus an error which follows N(0, 1) so that this DGP incorporates

near-perfect collinearity.

Under both DGP 1 and DGP 2, 1000 simulations are done. Further, normal kernel

is selected, K(φ) = (2π)−1/2 exp[−1
2φ

2], and thus µ2 = 1.Performance of the estimators is

evaluated in terms of total MSE (risk), E(β̂−β)′(β̂−β), where β̂ is an estimator. Simulation

results are reported in Table 2.1.

From Table 2.1, we could observe that under different DGP settings, all classes of

ordinary ridge estimators beat the OLS estimator. Compare column 4 with column 6 for

example, as error variance increases, more gains are obtained through the usage of the semi-

parametric ordinary ridge estimators, especially MOSP and EOSP/EOSP1 estimators since

much smaller risks are obtained. And another interesting, yet not surprising phenomenon

we observe, is that the MOSP and EOSP1 generate very similar risks under different DGP’s.

This is due to the fact that both criteria are unbiased estimators of the MSE of µ̃(h).
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2.5 An Empirical Application

2.5.1 Forecasting Excess Stock Returns

The data is the same as in Campbell and Thompson (2008). In the monthly data

from January 1950 to December 2005 the total sample size is equal to 672. The dependent

variable Y is the excess stock returns, which is defined as the difference between the monthly

stock returns and the risk-free rate. We consider 12 regressors, default yield spread, treasury

bill rate, new equity expansion, term spread, dividend price ratio, earnings price ratio, long

term yield, book-to-market ratio, inflation, return on equity, lagged dependent variable,

smoothed earnings price ratio. The independent variables are ordered in according to their

correlation with the dependent variable.

The in-sample estimation periods T1 are set to be 144, 180, 216, and 336 respec-

tively. We define the out-of-sample R2 as

R2 = 1−
∑T−1

t=T1(Yt+1 − Ŷt+1)2∑T−1
t=T1(Yt+1 − Ȳt+1)2

where Ŷt+1, Ȳt+1 are the one-period-ahead prediction and historical average, respectively,

using the sample of size T1.

2.5.2 Forecasting Results

The out-of-sample R2 are reported in Table 2.2.

From Campbell and Thompson (2008), we know that when no restriction is put

on the sign coefficients and return forecasts, the OLS estimator will generate forecasts

that cannot beat the historical average. But considering the positivity restriction they
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tend to show that the restricted OLS estimators beat the historical average. However,

with the ordinary ridge estimators and no constraints imposed on the signs, we could still

generate forecasts beating the historical average for most of the cases. This may be due

to the fact that the ordinary ridge estimators are restricted to be bounded, which makes

them stable. The reason to use the ridge estimator is that, compared to Campbell and

Thompson (2008), where only one independent variable is considered in each structure to

forecast the equity premium, in this application, more than one explanatory variables are

included, multicollinearity, if not perfect, exists and needs to be taken care of. Especially,

the behaviors of EOSP1 and MOSP are also identical, which coincides with the simulation

results and their forecasts outperform all other estimators.

2.6 Concluding Remarks

In this article, a class of semiparametric ordinary ridge estimators is proposed.

Through the kernel density estimation, we are able to derive the estimator and obtain the

estimator of regression coefficients in the ridge form. The properties of the estimators have

also been investigated. Easy to implement, this class of estimators outperforms both the

OLS estimator and the ordinary ridge estimator proposed by Hoerl, Kennard and Baldwin

(1975) in both simulation and empirical applications. Also, one of the semiparametric

estimator proposed, the EOSP1 estimator, generates almost the same result as the Mallows

ordinary ridge estimator, due to the fact that both estimators are obtained through the

minimization of unbiased estimators of MSE of the predictor of y, µ(h). This is an interesting

result and we expect to see more applications of our estimator in the future research.
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Table 2.1: Risk for Each Estimator

DGP Estimators σ = 1 σ = 5

n = 50 n = 150 n = 50 n = 150

1 OLS 0.0282 0.0074 0.6443 0.1923
HKB 0.0191 0.0064 0.2000 0.0684
AOSP 0.0237 0.0067 0.4982 0.1448
AOSP1 0.0198 0.0064 0.2619 0.0786
EOSP 0.0202 0.0065 0.1167 0.0439
EOSP1 0.0193 0.0065 0.0912 0.0412
MOSP 0.0193 0.0065 0.0912 0.0411

2 OLS 0.0279 0.0078 0.6289 0.1918
HKB 0.0189 0.0069 0.1906 0.0660
AOSP 0.0234 0.0072 0.4856 0.1455
AOSP1 0.0193 0.0070 0.2406 0.0764
EOSP 0.0195 0.0071 0.1069 0.0421
EOSP1 0.0186 0.0071 0.0905 0.0393
MOSP 0.0186 0.0071 0.0904 0.0393

Table 2.2: Out-of-Sample R2

Estimator T1 = 144 T1 = 180 T1 = 200 T1 = 216

OLS -0.0625 -0.0123 -0.0340 -0.0479
HKB 0.0021 0.0532 0.0351 0.0190

AOSP1 -0.0475 0.0051 -0.0153 -0.0322
EOSP1 0.0485 0.0664 0.0071 -0.0325
MOSP 0.0485 0.0664 0.0071 -0.0325
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Chapter 3

A Semiparametric Generalized

Ridge Estimator and Link with

Model Averaging∗

3.1 Introduction

Ordinary least squares (OLS) is a widely used estimator for the coefficients of

a linear regression model in econometrics and statistics (Schmidt (1976); Greene (2011)).

It is shown here that the OLS estimator can also be obtained by estimating population

moments (variances and covariances) of the economic variables involved in the regression

by using empirical densities of their data sets. Further, we propose a new estimator of

∗This chapter is a joint work with Dr. Aman Ullah, Dr. Alan K. Wan, Dr. Xinyu Zhang and Dr.

Guohua Zou.
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the regression coefficients by estimating population moments based on smooth kernel non-

parametric density estimation. This proposed estimator, in contrast to the OLS estimator,

is robust to multicollinearity, and we refer to this as the semi-parametric (SP) estimator

of the regression coefficients. Although there are differences, this SP estimator turns out

to be in the form of a generalized ridge regression (GRR) estimator developed by Hoerl

and Kennard (1970b). Ridge regression (RR) (Hoerl and Kennard (1970a, b)) is a common

shrinkage technique in linear regression when the covariates are highly collinear, and among

the various ridge techniques, the GRR estimator is arguably the one that has attracted the

most attention. The GRR estimator allows the biasing factor, which controls the amount

of ridging, to be different for each coefficient; when the biasing factors are the same for

all coefficients, the GRR estimator reduces to the ordinary RR estimator. However, since

the biasing factors are unknown, the GRR estimator is not feasible. This is not the case

for the SP estimator which is based on the information contained in the kernel density

estimation of regressors, and hence the biasing factors are calculated using the data-based

window-widths of regressors. Thus, the SP estimator, in contrast to the GRR estimator,

is a feasible estimator. This SP estimator is compared with Hoerl and Kennard’s (1970b)

feasible GRR (FGRR) estimator based on the first step of a data-based iterative procedure

for estimating the biasing factors. We note from Hemmerle and Carey (1983) that the

FGRR estimator is more efficient than the estimator based on the closed form solution of

Hoerl and Kennard’s iterative method. For more details of GRR estimators, see Vinod and

Ullah (1981) and Vinod, Ullah and Kadiyala (1981).

Yet another independently developed technique closely related to shrinkage esti-
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mation is model averaging, which is an alternative to model selection. While the process

of model selection is an attempt to find a single best model for a given purpose, model

averaging compromises across the competing models, and by so doing includes the un-

certainty associated with the individual models in the estimation of parameter precision.

Bayesian model averaging (BMA) has long been a popular statistical technique. In recent

years, frequentist model averaging (FMA) has also been garnering interest. A major part

of this literature is concerned with ways of weighting models. For BMA, models are usually

weighted by their posterior model probabilities, whereas FMA weights can be based on

scores of information criteria (e.g. Buckland, Burnham and Augustin (1997); Claeskens,

Croux and van Kerckhoven (2006); Zhang and Liang (2011); Zhang, Wan and Zhou (2012)).

Other FMA strategies that have been developed include adaptive regression by mixing by

Yang (2001), Mallows model averaging (MMA) by Hansen (2007, 2008) (see also Wan,

Zhang and Zou (2010)), optimal mean square error averaging by Liang, Zou, Wan and

Zhang (2011), and Jackknife model averaging (JMA) by Hansen and Racine (2012) (see

also Zhang, Wan and Zou (2013)). As well, Hjort and Claeskens (2003) introduced a local

misspecification framework for studying the asymptotic properties of FMA estimators.

Given these two independent, but parallel, developments of research in ridge type

shrinkage estimators and FMA estimators, the objective of this paper is to explore a link

between them. An initial attempt in establishing this connection was made by Leamer

and Chamberlain (1976), where a relationship between the ridge estimator and a model

average estimator (which they called “search estimator”) was noted. However, we emphasize

that the ridge and model averaging estimators of Leamer and Chamberlain (1976) are
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respectively different from the ridge and model averaging estimators in our paper. More

importantly, our results permit an exact connection between model averaging weights and

ridge biasing factors, whereas their results do not. In addition, we propose a new SP ridge

estimator and investigate its properties. The biasing factors of the SP estimator are also

linked to the FMA weights. On the basis of these relationships, the selection of biasing

factors in the GRR and SP estimators may be converted to the selection of weights in the

FMA estimator. Our finding also implies that if the goal is to optimally mix the competing

models based on a chosen criterion, e.g., Hansen’s (2007) Mallows criterion, then there is

always a GRR estimator that matches the performance of the resultant FMA estimator.

We demonstrate via a Monte Carlo study that the GRR estimators with biasing factors

derived from the weights used for Hansen’s (2007) MMA and Hansen and Racine’s (2012)

JMA estimators perform well, in terms of risk, in a large region of parameter space.

This chapter is organized as follows. In Section 2, we present the SP and GRR

estimators of the regression coefficients. In Section 3, we derive the exact algebraic re-

lationship between the biasing factors of the SP and GRR estimators and the weights in

the FMA estimator. Section 4 presents asymptotically optimal procedures for choosing

window-widths. Section 5 reports the results of a Monte Carlo study comparing the risks of

the SP and FGRR estimators with biasing factors based on weights of the MMA and JMA

estimators. Section 6 provides two empirical applications of the SP and GRR estimators

using the equity premium data in Campbell and Thompson (2008) and the wage data from

Wooldridge (2003). Section 7 offers some concluding remarks.
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3.2 Semiparametric Estimator of Regression Coefficients

Let us consider a population multiple regression model

y = x1β1 + · · ·+ xqβq + u (3.1)

= x′β + u,

where y is a scalar dependent variable, x = (x1, ..., xq)
′ is a vector of q regressors, β is

an unknown vector of regression coefficients, and u is a disturbance with Eu = 0 and

V (u) = σ2.

If we minimize Eu2 = E(y − x′β)2 with respect to β, we obtain

β = (Exx′)−1Exy, (3.2)

where Exx′ is a q × q moment matrix of q variables with the j-th diagonal element and

(j, j′)-th off diagonal elements given by

Ex2
j =

∫
xj

x2
jf(xj)dxj , j = 1, ..., q, (3.3)

and Exjxj′ =

∫
xj

∫
xj′

xjxj′f(xj , xj′)dxjdxj′ , j 6= j′ = 1, ..., q,

respectively.

Suppose we have the sample observations {yi, xi1, ..., xiq}, i = 1, ..., n. Then the

population averages in (3.3) can be estimated by their sample averages

Êx2
j =

1

n

n∑
i=1

x2
ij , and Êxjxj′ =

1

n

n∑
i=1

xijxij′ . (3.4)

22



It is straightforward to note that

Êx2
j =

∫
xj

x2
j f̂(xj)dxj =

∫
xj

x2
jdF̂ (xj) (3.5)

=
1

n

n∑
i=1

x2
ij

by using the empirical distribution of F̂ (·). The results for Êxjxj′ in (3.4) and Êxjy =∑n
i=1 xijyi/n follow similarly.

Using (3.4) and (3.5) in (3.2), we obtain, for all j and j′,

β̂ = (Êxx′)−1Êxy (3.6)

= (X ′X)−1X ′Y,

where X is an n × q matrix of observations on q variables, Y is an n × 1 vector of n

observations and β̂ is the well-known ordinary least squares (OLS) estimator.

Now we consider the estimation of Ex2
j and Exjxj′ by a smooth nonparametric

kernel density instead of the empirical distribution function. This results in

Ẽx2
j =

∫
xj

x2
j f̃(xj)dxj (3.7)

=
1

nhj

n∑
i=1

∫
xj

x2
jk(

xij − xj
hj

)dxj

=
1

n

n∑
i=1

∫
Ψij

(xij − hjΨij)
2k(Ψij)dΨij

=
1

n

n∑
i=1

∫
Ψij

(x2
ij + h2

jΨ
2
ij − 2xijhjΨij)k(Ψij)dΨij

=
1

n

n∑
i=1

x2
ij + h2

jµ2,

where f̃(xj) = 1
nhj

∑n
i=1 k(

xij−xj
hj

) is a kernel density estimator, Ψij =
xij−xj
hj

is a trans-

formed variable, µ2 =
∫
v2k(v)dv > 0 is the second moment of kernel function, k(Ψij) is
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a symmetric second order kernel, and hj is window-width. For implementation, hj can be

selected by biased cross-validation based on the Normal or Epanechnikov kernel as in Scott

and Terrell (1987). For more details, see Pagan and Ullah (1999).

Similarly, it can be shown easily that

Ẽ(xjxj′) =

∫
xj

∫
xj′

xjxj′ f̃(xj , xj′)dxjdxj′ (3.8)

=
1

nhjhj′

n∑
i=1

∫
xj

∫
xj′

xjxj′k(
xij − xj
hj

,
xij′ − xj′

hj′
)dxjdxj′

=
1

nhjhj′

n∑
i=1

∫
xj

∫
xj′

xjxj′k(
xij − xj
hj

)k(
xij′ − xj′

hj′
)dxjdxj′

=
1

n

n∑
i=1

∫
Ψij

∫
Ψij′

(xij − hjΨij)(xij′ − hj′Ψij′)k(Ψij)k(Ψij′)dΨijdΨij′

=
1

n

n∑
i=1

xijxij′

and

Ẽ(xjy) =
1

n

n∑
i=1

xijyi, (3.9)

where the product kernels have been used without loss of generality and Ψij′ =
xij′−xj′
hj′

.

Also, Ẽ(xj) = 1
n

∑n
i=1 xij =

−
xj .

Thus, by using (3.7) to (3.9) in (3.2), we obtain the following new estimator of β:

β̃ = (Ẽxx′)−1Ẽxy (3.10)

= (X ′X +D)−1X ′Y,

where D = diag(d1, ..., dq) is a diagonal matrix with dj = nh2
jµ2 as its j-th element (j =

1, ..., q). We refer to β̃ as the SP estimator.

The estimators in (3.7) and (3.8) are based on kernel density estimation assuming

that the continuous regressors have support in the entire Euclidean space. In this paper,
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we assume that all regressors satisfy this property. However, when the regressors have a

bounded support, it is well-known that the kernel density estimator is asymptotically biased

and one should use bias adjusted kernels instead; see Li and Racine (2007) and Darolles, Fan,

Florens and Renault (2011). When the variables are discrete, the estimator in (3.8) remains

the same, but the estimator of Ex2
j can be written as

∑
i
x2
i p(xi) =

∑
i

∑
j
x2
i I(xj = xi)/n =∑

i
x2
i /n, where I(xj = xi) = 1 if xj = xi and 0 otherwise. In this case, the estimator

in (3.10) reduces to the OLS estimator. On the other hand, when the regressor matrix

contains a mixture of discrete and continuous regressors, the estimator again has the form

of (3.10), except that the matrix D is re-defined with its diagonal elements corresponding

to the discrete variables set to zero. This can be explained by noting, for example, when

x1 is continuous and x2 is discrete, that the estimator of

E(x1x2) = Ex2 [x2E(x1|x2)]

=
∑
i

∫
x1

K((xi1 − x1)/h1)dx1E[(x2I(xi2 = x2)/p(x2)]/nh1

=
∑
i

∑
j

xi1xj2I(xi2 = xj2)/n

=
∑
i

xi1xi2/n.

Note that both the OLS and SP estimators are based on the population regression

(3.1), where the regression coefficient vector depends on the population moments of the

vector x and the scalar variable y. These moments are then estimated using sample data by

two different methods. This leads to estimators of the regression coefficients in the sample

linear regression model

Y = Xβ + U, (3.11)
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where the sample is drawn from the population linear regression model (3.1), and U is an

n × 1 vector of random errors with EU = 0 and EUU ′ = σ2In. By standard eigenvalue

decomposition, we can write X ′X = GΛG′, where G is an orthogonal matrix and Λ =

diag(λ1, λ2, ..., λq).

From Hoerl and Kennard (1970a, b), the GRR estimator of β is

β̂(K) = (X ′X +GKG′)−1X ′Y, (3.12)

where K = diag(k1, k2, ..., kq) is a diagonal matrix with kj ≥ 0, j = 1, ..., q. The k′js are the

biasing factors controlling the amount of ridging in β̂(K). When k1 = k2 = · · · = kq = k,

β̂(K) is commonly called the ordinary ridge regression estimator. We note that the SP

estimator in (3.10) is in the form of the GRR estimator but these two estimators are not

exactly the same . However, one may define an alternative SP-type estimator by equating

the diagonal matrix D to the diagonal of the matrix GKG′. Thus, the elements of D can

be determined from the biasing factors of the GRR estimator. Of course, if K = kI, then

D = K and the SP estimator is identical to the GRR estimator.

Define Z = XG and α = G′β. Then Z ′Z = Λ and model (3.11) may be reparam-

eterized as

Y = Zα+ U. (3.13)

Correspondingly, the GRR estimator of α is

α̂(K) = (Z ′Z +K)−1Z ′Y = (Λ +K)−1Z ′Y = BZ ′Y, (3.14)

where B = (Λ +K)−1 is a diagonal matrix. It is straightforward to show that

α̂(K) = G′β̂(K). (3.15)
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Hence

E(α̂(K)− α)′(α̂(K)− α) = E(β̂(K)− β)′(β̂(K)− β). (3.16)

That is, the trace of the MSE matrix (or equivalently, the risk under squared

error loss) of the GRR estimator of α is the same as that of β, and the matrix K that

minimizes the risk of α̂(K) also minimizes that of β̂(K). It is well-known that the GRR

estimator in (3.12) can be derived by minimizing u′u with respect to β subject to the

restriction that β′GKG′β is bounded. Similarly, the SP estimator in (3.10), derived from

using smooth kernel density estimators of moments, also results from minimizing u′u with

respect to β subject to a bounded restriction of β′Dβ. Note that both the GRR and SP

estimators are robust to multicollinearity, a property not shared by the OLS estimator

derived using empirical density estimation of moments. In Sections 4 and 5 we will show

that the proposed SP and GRR estimators have superior performance to the OLS estimator

in risk under squared error loss sense.

3.3 Connection between SP and Ridge Estimators and Model

Averaging

To examine the connection between the SP and GRR estimators and model aver-

aging, let us consider an averaging scheme across the sub-models

Y = Zsαs + U, s = 1, 2, ..., S, (3.17)

where Zs is a sub-matrix containing qs ≤ q columns of Z, and αs is the corresponding

coefficient vector.
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Least squares estimation of the models in (3.17) yields the OLS estimators

α̂s = (Z ′sZs)
−1Z ′sY. (3.18)

Let us write αs = Asα, where As = (Iqs : 0qs×(q−qs)) (or its column permutation)

is a qs × q selection matrix. Conformably, we write Zs = ZA′s.

The model averaging (MA) estimator of α,

α̂(w) =

S∑
s=1

wsA
′
sα̂s, (3.19)

where w = (w1, w2, ..., wS)′ is the weight vector with ws ≥ 0 and
∑S

s=1ws = 1, is formed

by a weighted combination of coefficient estimators across the S sub-models.

We can equivalently write α̂(w) in (3.19) as

α̂(w) =

S∑
s=1

wsA
′
s(AsZ

′ZA′s)
−1AsZ

′Y (3.20)

= CZ ′Y,

where

C =
S∑
s=1

[wsA
′
s(AsZ

′ZA′s)
−1As] (3.21)

=


w∗1λ

−1
1 · · · 0

...
. . .

...

0 · · · w∗qλ
−1
q


and

w∗j =
S∑
s=1

wsI(j ∈ Ψs), (3.22)

with I(·) being an indicator function that takes on 1 if j ∈ Ψs and 0 otherwise, and Ψs being

a set comprising the column indices of Z included in the s-th sub-model. For example, if
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the regressor matrix of the s-th sub-model comprises the first, second and fourth columns of

Z, then Ψs = {1, 2, 4}. In view of the relationship between w∗j and ws, we can write (3.20)

as

α̂(w∗) = CZ ′Y = α̂(w) (3.23)

where w∗ = (w∗1, ..., w
∗
q)
′.

Comparing equations (3.14) and (3.20), we notice an algebraic similarity between

the GRR estimator α̂(K) = BZ ′Y and the MA estimator α̂(w∗) = CZ ′Y. Clearly, α̂(K) =

α̂(w∗) if B = C, or more explicitly,

w∗1λ
−1
1 = (λ1 + k1)−1 (3.24)

...

...

w∗qλ
−1
q = (λq + kq)

−1.

This is the essence of the algebraic equivalence between the GRR and MA estima-

tors. Note that λ′s depend on the data, and w∗′s can be determined by the MA weights w′s

derived under a given criterion. Subsequently, the biasing factors k′s of the GRR estimator

in (3.12) can be obtained from (3.24).

As a simple illustration, suppose that q = 2 in model (3.11) and the data obser-

vations are such that λ1 = 1 and λ2 = 1.5. In this case, the model average is a combination

of S = 3 candidate models including the full model. The two sub-models contain the first

and second regressors respectively, while the full model contains both regressors. Now,

suppose that the weights assigned to the three models are ŵ1 = 0.5, ŵ2 = 0.2 and ŵ3 = 0.3
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respectively. By (3.22), we have

ŵ∗1 =
3∑
s=1

ŵsI(1 ∈ Ψs) = ŵ1 + ŵ3 = 0.8 and

ŵ∗2 =

3∑
s=1

ŵsI(2 ∈ Ψs) = ŵ2 + ŵ3 = 0.5.

Then

k̂1 = ŵ∗−1
1 λ1 − λ1 = 0.25 and

k̂2 = ŵ∗−1
2 λ2 − λ2 = 1.5.

Equation (3.24) also shows that when k1 = k2 = · · · = kq = 0 such that the GRR

estimator reduces to the OLS estimator, the MA estimator reduces to the OLS estimator

in the full model. It should be mentioned that although (3.22) allows unique w∗j to be

determined from the given values of w′js, the converse need not to be true. Thus, while one

can obtain unique GRR biasing parameters from the MA weights using (3.24), the reverse

derivation of unique MA weights from the GRR biasing parameters is not always feasible.

Note that the connection between model averaging and ridge estimators has been

established on the basis of the orthogonal model. If we apply model averaging to the original

regressors X directly, we cannot write the resulting model averaging estimator as a GRR

estimator (see (3.12)), especially since X ′X + GKG′ is not a diagonal matrix. It is only

through orthogonalization that the GRR estimator (3.14) and model averaging estimator

(3.20) have a common structure, i.e., a diagonal matrix multiplied by Z ′Y . Due to the

convenience it offers, orthogonalization is commonly used in the ridge literature (see Vinod

and Ullah (1981)). It has also been used in recent model averaging studies (e.g., Magnus,

Powell and Prufer (2010) and Magnus, Wan and Zhang (2011)).
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It is also instructive to note that if model averaging is applied to the original re-

gressors, no direct connection can be established for the SP estimator in (3.12) and the

model averaging estimator since X ′X + D is not a diagonal matrix. Additionally, the

estimator for the orthogonal model is α̃ = (Λ + GDG′)−1Z ′y, for which no algebraic rela-

tionship with the model averaging estimator is apparent. However, if we write model (3.1)

as y = x′GG′β + u = z′α + u, with z′ = x′G and α = G′β, then by using the technique of

moments based on kernel density estimation with respect to (3.7) and (3.8), we can obtain

α̂ = (Z ′Z + Dz)
−1Z ′y = (Λ + Dz)

−1Z ′y, where Dz is identical to D in (3.10) except that

hj , the window-width for the j-th variable xj , is replaced by the window-width hjz used

for the density estimation of the j-th variable zj . Thus, there is a direct linkage between

the SP estimator applied to the transformed population model and the model averaging

estimator. However, β̃(Dz) = G′
−1
α̂ = (X ′X + GDzG

′)−1X ′y, which is identical to the

GRR estimator except for the replacement of Dz by K, is not the same as the SP estimator

(X ′X + D)−1X ′y unless X ′X + D = X ′X + GDzG
′, i.e., they are identical only when

D = GDzG
′. Our simulation results show that these two different looking estimators yield

some very similar risk performance. Furthermore, as D and K are diagonal matrices, the

optimal choice of K will uniquely determine the optimal choice of Dz; in other words, kj

uniquely determines hj .
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3.4 Asymptotically Optimal Selection of Window-Width in

β̃

3.4.1 Unbiased Estimator of Exact Risk of SP Estimator and Prediction

From (3.10) and (3.11),

β̃ − β = (X ′X +D)−1(X ′u−Dβ), (3.25)

which yields

(β̃−β)′(β̃−β) = β′D(X ′X+D)−2Dβ+u′X(X ′X+D)−2X ′u−2β′D(X ′X+D)−2Dβ. (3.26)

Therefore, by taking expectations on both sides of (3.26), we can write

R(h) = R(β̃) = β′A1β + σ2trA2, (3.27)

where A1 = D(X ′X +D)−2D, A2 = (X ′X +D)−2X ′X and h = (h2
1, ..., h

2
q)
′.

Now, note that an unbiased estimator of β′A1β is

β̂A1β̂ − σ̂2tr(A1(X ′X)−1), (3.28)

where σ̂2 = (Y −Xβ̂)′(Y −Xβ̂)/(n− q) is an unbiased estimator of σ2. Thus, an unbiased

estimator of R(h) is

R̂(h) = β̂′A1β̂ + σ̂2tr(A2 −A1(X ′X)−1). (3.29)

This expression can be used to find an optimal h. However we note that

tr(A2 −A1(X ′X)−1) = 2tr((X ′X +D)−1)− tr((X ′X)−1). (3.30)
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Therefore, it can be verified that,

R̂(h) = β̂′A1β̂ + 2σ̂2tr((X ′X +D)−1) (3.31)

= (β̃ − β̂)′(β̃ − β̂) + 2σ̂2tr((X ′X +D)−1)

is an unbiased estimator of R(h) up to a constant tr((X ′X)−1) which does not depend on

h. Thus the optimization of h based on (3.31) is the same as that obtained from (3.29).

Similarly it can be shown that an unbiased estimator of the predictive risk of

µ̃ = Xβ̃, E((β̃ − β)′X ′X(β̃ − β)) = E((µ̃− µ)′(µ̃− µ)) = R1(h), is

R̃1(h) = β̂′A3β̂ + σ̂2tr(A4 −A3(X ′X)−1) (3.32)

where A3 = D(X ′X + D)−1X ′X(X ′X + D)−1D and A4 = ((X ′X + D)−1X ′X)2. Further,

the minimization of R̃1(h) with respect to h is the same as the minimization of Mallows

criterion

(µ̃− Y )′(µ̃− Y ) + 2σ̂2tr((X ′X +D)−1X ′X),

which is an unbiased estimator of R1(h) given by R̃1(h) up to a constant.

In the following subsections we show that h obtained by minimizing R̂(h) or R̃1(h)

is asymptotically optimal. Further, we refer β̃(h) based on R̂(h) as AOSP, and based on

R̃1(h) as AOSP1.

3.4.1.1 Asymptotically Optimal h Using R̃1(h) (Mallows Criterion)

Let P (h) = X(X ′X +D)−1X ′. Then from Section 3.4.1:

µ̃(h) = Xβ̃ = P (h)Y, (3.33)
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the squared error loss function as L(h) = (µ̃(h)−µ)′(µ̃(h)−µ) and the corresponding risk as

R1(h) = E(L(h)). We consider the choice of h by a minimization of the following Mallows

criterion (R̃1(h) in (3.32)):

R̃1(h) = (µ̃(h)− Y )′(µ̃(h)− Y ) + 2σ̂2tr(P (h)). (3.34)

When minimizing R̃1(h), we restrict h to the set H ∈ Rq. Thus, the selected h is

ĥ = argminh∈HR̃1(h). (3.35)

Let ξ = infh∈H R1(h).

µ′µ = O(n), X ′U = Op(n
1/2) and n−1X ′X → Φ, (3.36)

where Φ is a positive definite matrix, and

ξ →∞, ξ−2µ′µ = o(1). (3.37)

By using conditions (3.33)-(3.34), and the proof steps of Theorem 2.2 of Zhang,

Wan and Zou (2013), we obtain the following asymptotic optimality property:

L(ĥ)

infh∈H L(h)
→p 1. (3.38)

Proof of (3.38). See the Appendix.

3.4.1.2 Asymptotic Optimal h Using R̃(h)

We restrict h in a set H ∈ Rq. So the selected h is

h̃ = arg min
h∈H

R̂(h).
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Let L̃(h) = (β̃(h) − β)′(β̃(h) − β) be the squared loss function and ξ̃ = infh∈H R(h), and

h̄ = max(h). We assume the following conditions

h̄→ 0, X ′U = Op(n
1/2) and n−1X ′X → φ where φ is a positive definite matrix, (3.39)

n1/2ξ̃ →∞. (3.40)

By using the conditions (3.39)-(3.40), we can obtain the following asymptotic

optimality

L̃(h̃)

infh∈H L̃(h)
→p 1. (3.41)

Proof of (3.41). See the Appendix.

From (3.41), the proof of (3.42) in Zhang, Zou, Liang and Carroll (2014), and an

additional condition that (L̃(h̃)− ξn)ξ−1
n is uniformly integrable, we further have

R(h̃)

infh∈H R(h)
→p 1. (3.42)

3.5 A Monte Carlo Study

The purpose of this section is to demonstrate via a Monte Carlo study the finite

sample properties of GRR estimators with biasing factors obtained based on model weights

of the Mallows MA (MMA) and Jackknife MA (JMA) estimators. As mentioned previously,

these MA estimators were proposed by Hansen (2007) and Hansen and Racine (2012). We

denote the corresponding GRR estimators as GRRM and GRRJ estimators respectively.
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The weights of the MMA estimator are obtained by minimizing the quadratic

form (Y −Zα̂(w))′(Y −Zα̂(w)) + 2σ̂2tr(ZCZ ′), where σ̂2 = (Y −Zα̂f )′(Y −Zα̂f )/(n− q)

and α̂f is the OLS estimator of α in the full model. On the other hand, the weights of

the JMA estimator are determined by minimizing the leave-one-out least squares cross-

validation function CVn(w) = (Y − ĝ(w))′(Y − ĝ(w))/n, where ĝ(w) =
∑S

s=1wsĝs, with

ĝs = (ĝ1s, ..., ĝns)
′, ĝis = xs′i (Xs′

−iX
s
−i)
−1Xs′

−iY−i, and Xs
−i and Y−i being respectively the

matricesXs (the regressor matrix of the s-th submodel) and Y with the i-th element deleted.

Following Hansen (2007), we assume that the candidate models in the model average are

nested.

Our interest is focused on the risk performance under squared error loss of es-

timators in terms of the β space in the original model. For purposes of comparisons,

we also evaluate the risks of the OLS estimator, the FGRR estimator α̂j , where α̂j =

σ̂2/α̂2
j,f with α̂j,f being the j-th element of α̂f , the asymptotically optimal GRR (AO-

GRR) estimator, with k′js obtained by directly minimizing the Mallows criterion (Y −

Zα̂(K))′(Y − Zα̂(K)) + 2σ̂2tr(ZBZ ′) as a function of K, and the asymptotically optimal

SP (AOSP1) estimator, with window-widths obtained by minimizing the Mallows criterion

(Section 3.4.1.1) (Y − Zα̂(D))′(Y − Zα̂(D)) + 2σ̂2tr(ZB1Z
′) as a function of D, where

α̂(D) = (Λ +G′DG)−1Z ′Y = B1Z
′Y is the SP estimator and B1 = (Λ +G′DG)−1. When

implementing the GRRM, AOGRR, AOSP and AOSP1 estimators, we made use of a con-

strained optimization routine available in R.version. 2.13.1. We used k′s from the FGRR

method as the initial values for computing the AOGRR estimator. In Section 3.4.1 we have

shown that the optimization under the Mallows criterion is equivalent to the optimization
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with respect to unbiased estimator of the predictive risk of β̃(h). Therefore, in our simula-

tion, we also consider the AOSP estimator in Section 3.4.1.2 based on the optimization of

risk of β̃(h).

Our Monte Carlo experiments are based on following data generating processes

(DGP’s):

DGP1: yi =
∑q

j=1 θjxij + ei, i = 1, · · ·n, with xij being iid N(0, 1), ei being

iid N(0, 1) and N(0, 25) and are uncorrelated with x′s. The same DGP was considered

by Hansen (2007) in his Monte Carlo study. We let θj = 0.7071j−3/2, and consider the

following pairs of (n, q) = (50, 11) and (150, 16). To facilitate interpretation of the SP

estimates, without loss of generality, we assume the DGP contains no intercept.

DGP2: The set-up is the same as DGP1, except xi2 is taken to be the sum of

xi3, · · · , xi50 plus an N(0, 1) distributed error term. The regressors are thus nearly perfectly

correlated.

Our analysis is based on 100 replications. We adopt the Gaussian kernel with

K(φ) = (2π)−1/2 exp[−1
2φ

2], resulting in µ2 = 1. Following Scott and Terrell (1987), we

compute the window-widths of the SP estimator based on biased cross-validation, and the

window-widths for the AOSP1 and AOSP based on Mallows criterion(R̃1(h)) and R̂(h)

respectively, see Section 3.4. We have also considered such other window-widths as the

naive and AIC cross-validation window-widths, but the biased cross-validation windown-

widths generally delivered the best results in risk sense.

The simulation results reported in Table 3.1 show that although the SP, AOSP1

and AOSP estimators behave well when the error variance is small, the GRRM and GRRJ
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are clearly the preferred estimators when the error variance is large, and often by a large

margin. This finding is consistent with our intuition that the large variance associated with

the true model makes it difficult to identify the best model, thus making model averaging,

which shields against choosing a bad model, a more viable strategy. It is also apparent

from Table 3.1 that FGRR and AOGRR estimators yield similar risk performance. This

is perhaps attributable to the fact that the biasing factors chosen for the FGRR estimator

are optimal in risk sense. See Vinod , Ullah, and Kadiyala (1981, p.363) and Hoerl and

Kennard (1970b, p.63). Further, we observe that values of AOSP are smaller compared

to AOSP1. This may be due to h used in the AOSP1 estimator is based on minimizing

predictive risk (R̃1(h)) instead of estimator’s risk (R̃(h)). By comparing DGP 1 and DGP

2, we notice that when the error variance is large, all estimators in DGP 2 deliver larger

risk deductions compared to DGP 1.

3.6 Empirical Applications

This section considers two empirical applications of the proposed methods. The

first application uses the methods as forecasting devices for excess stock returns while the

second considers wage forecasts.

3.6.1 Forecasting Excess Stock Returns

The data for this example are taken from Campbell and Thompson (2008). The

same data set was also used by Jin, Su and Ullah (2012) and Lu and Su (2012) in their

studies. This dataset contains n = 672 monthly observations between January 1950 and
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December 2005 of Y , the monthly excess stock returns of S&P 500 Index, defined as the

difference between the monthly stock returns and the risk-free rate. In addition, data

observations over the same period are also provided for the following twelve regressors

variables, ordered by the magnitude of their correlations with Y, as: default yield spread,

treasury bill rate, new equity expansion, term spread, dividend price ratio, earnings price

ratio, long term yield, book-to-market ratio, inflation, return on equity, the one-period lag

of excess returns and smoothed earnings price ratio. We order these 12 regressors by the

magnitude of their correlations with Y . Our model average thus contains the following 13

nested models: {1}, {1, x1}, {1, x1, x2}..., {1, x1, x2, ..., x12}.

Our estimation is based on n1 = 144, 180, 216, 336 and 456 observations and we

use the remaining n2 = n− n1 observations for out-of-sample forecast evaluation purpose.

We measure forecast accuracy based on the out-of-sample R2 defined as follows:

R2 = 1−
∑n−1

t=n1
(Yt+1 − Ŷt+1)2∑n−1

t=n1
(Yt+1 − Ȳt+1)2

,

where Ŷp is the prediction of Yp based on a given forecast method and Ȳ is the average of Y

across the sample of the n1 observations used for estimating the model. The out-of-sample

R2 is thus negative (positive) when the forecast method yields a larger (smaller) sum of

squared forecast errors than does Ȳ . Table 3.2 reports the out-of-sample R2 based on the

six estimators considered in Section 5 and the selected n1 values. The results show that

except when n1 = 180, the OLS forecasts are inferior to forecasts based on the historical

average. This is consistent with the findings of Welch and Goyal (2008) for this data set,

that the historical mean gives better forecasts when no restrictions are imposed In all but

one case, the FGRR, AOGRR and AOSP1 estimators are also inferior to the historical
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average in terms of prediction accuracy. On the other hand, the GRRJ and GRRM model

averaging estimators result in positive out-of-sample R2 in the large majority of cases, with

GRRJ being the slightly better estimator of the two. The result based on AOSP estimator

is not presented here because it does not perform as well as AOSP1. This may be because

our evaluation here is based on predictive risk instead of risk of β̃(h).

3.6.2 Forecasting Wages

We use the data given in Wooldridge (2003) containing a cross sectional sample of

526 observations from the U.S. Current Population Survey from year 1976. The dependent

variable of interest is the logarithm of average hourly earnings. We consider the following ten

regressors, ordered according to their correlation with the dependent variable: professional

occupation, education, tenure, female, service occupation, married, trade, SMSA, services,

and clerk occupation based on their correlations with the dependent variable. We consider

model averages based on 11 nested models in the same manner described in the last example,

and n1 = 100, 200, 300, 400..

Table 3.3 reports the out-of-sample R2 for the six methods. It is apparent from

the results that all six estimators yield more accurate forecasts than the historical average.

However, the advantage of the GRRJ and GRRM estimators observed in the last example

does not extend to the present case, where it is found that the FGRR, AOGRR and AOSP1

estimators all result in more accurate forecasts than the two model averaging estimators.

This can be explained by noting that R2 = .509 for the wage data is much higher than

that for the equity premium data, which is .097. Thus the standard deviation of errors in
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the wage data is much smaller compared to the standard deviation of error for the equity

premium data, and our simulations suggest that for the small standard deviation case the

GRRM and GRRJ estimators are outperformed by other estimators considered. This is

also the reason why in the equity premium data, the GRRM and GRRJ estimators prevail

since the standard deviation for this data set is much higher. Of the two model averaging

estimators, the GRRM estimator is slightly preferred to the GRRJ estimator.

3.7 Conclusions

We have proposed a new SP estimator of regression coefficients which is in the form

of the GRR estimator of Hoerl and Kennard (1970b). However, in contrast to the GRR, the

biasing factors in our SP estimator are easily implemented by the window-width and the

second moment of the kernel function used in the kernel density estimation. The selection

of window-width that minimizes Mallows criterion(predictive risk) as well as estimator’s

risk are also proposed. We also show that the GRR estimator is in fact a model average

estimator, and there is an algebraic relationship between the biasing factors of GRR and

SP estimators and the model average weights. Naturally, the SP and GRR estimators that

select the biasing factors based on this relationship have the same properties as the corre-

sponding model average estimator. This is an interesting finding for the future application

and interpretations of the SP and GRR estimators. Our Monte Carlo results demonstrate

that some of the recently introduced weight choice strategies for model averaging can result

in more accurate estimators than the well-known FGRR and OLS estimators over a wide

range of parameter space.
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Table 3.1: MSE for Each Estimator

DGP Estimators σ = 1 σ = 5

n = 50 n = 150 n = 50 n = 150

1 OLS 0.0251 0.0076 0.6775 0.1802
FGRR 0.0201 0.0071 0.3374 0.0974
GRRM 0.0377 0.0236 0.1065 0.0435
GRRJ 0.0373 0.0236 0.0980 0.0432

AOGRR 0.0217 0.0079 0.2591 0.0764
SP 0.0167 0.0064 0.3514 0.1248

AOSP1 0.0135 0.0046 0.2220 0.0713
AOSP 0.0126 0.0045 0.2170 0.0706

2 OLS 0.0253 0.0076 0.6846 0.1807
FGRR 0.0198 0.0072 0.3388 0.0997
GRRM 0.0341 0.0228 0.1066 0.0426
GRRJ 0.0335 0.0228 0.0979 0.0424

AOGRR 0.0212 0.0080 0.2592 0.0797
SP 0.0166 0.0064 0.3488 0.1247

AOSP1 0.0140 0.0046 0.2251 0.0704
AOSP 0.0136 0.0045 0.2157 0.0701

Table 3.2: Out-of-Sample R2 for Stock Returns

Estimator n1 = 144 n1 = 180 n1 = 216 n1 = 336 n1 = 456

OLS -0.0390 0.0062 -0.0434 -0.0425 -0.0208
FGRR -0.0375 -0.0369 -0.0398 -0.0610 -0.0621
GRRM 0.0408 0.0895 0.0564 0.0103 -0.0003
GRRJ 0.0692 0.1079 0.0701 0.0180 0.0020

AOGRR -0.0375 -0.0369 -0.0398 -0.0610 -0.0621
AOSP1 -0.0302 0.0195 -0.0271 -0.0170 -0.0148

Table 3.3: Out-of-Sample R2 for the Wage Data

Estimator n1 = 100 n1 = 200 n1 = 300 n1 = 400

OLS 0.4516 0.4465 0.4656 0.4450
FGRR 0.4514 0.4440 0.4658 0.4410

AOGRR 0.4509 0.4418 0.4642 0.4390
GRRM 0.3964 0.3366 0.3390 0.3644
GRRJ 0.3877 0.3357 0.3375 0.3627
AOSP1 0.4550 0.4477 0.4664 0.4470
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Chapter 4

Parametric and Nonparametric

Frequentist Model Selection and

Model Averaging∗

4.1 Introduction

Over the last several years many econometricians and statisticians have persis-

tently devoted their efforts in finding various paths to the true model. The uncertainty

in correctly specifying the regression model has resulted in a large amount of literature in

two major directions: firstly, what variables are to be included and secondly, how they are

∗Acknowledgment: The text of this chapter, in part or in full, is a reprint of the material as is appears

in Ullah, A. and Wang, H. (2013) Econometrics 1(2): 157-179. The co-author Aman Ullah listed in that

publication directed and supervised the research which forms the basis for this chapter.
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related with the dependent variable in the model. Thus “what” refers to determining the

variables to be included in constructing the model and “how” refers to finding the correct

functional form, e.g. parametric (specifications like linear, quadratic, etc.), or in general,

nonparametric smoothing methods that do not require specifying a parametric functional

form but instead let the data search for a suitable function that describes well the available

data, see Pagan and Ullah (1999), Li and Racine (2007), among others.

To determine “what”, model selection was first introduced, and it has a huge lit-

erature in statistics and econometrics. In fact, in recent years, model selection (variable

selection) procedures have become more popular due to the emergence of econometric and

statistical models with high dimension (large number) variables. As examples, in labor eco-

nomics, wage equations can have a large number of regressors (Belloni and Chernozhukov

(2011)) and in financial econometrics, portfolio allocation may be among hundreds or thou-

sands of stocks (Zhang, Fan and Yu (2011)). Such models raise additional challenges of

econometric modeling and inference along with the selection of variables. Different tools

have been developed based on various estimation criteria. The majority of such proce-

dures involve variable selection by minimizing penalized loss functions based on the least

squares and the log-likelihood, and their variants. The adjusted R2 and residuals sum of

squares are the usual variable selection procedures without any penalization. Among the

penalized procedures we have Akaike information criterion (AIC) (Akaike (1973)), Mallows

Cp procedure (Mallows (1973)), Bayesian information criterion (BIC) by Schwarz (1978),

cross-validation method by Stone (1974), generalized cross-validation (GCV) by (Craven

and Wahba (1979)), and the focused information criterion (FIC) by Claeskens and Hjort
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(2003). We note that the traditional AIC and BIC are based on least squares (LS), maxi-

mum likelihood (ML), or Bayesian principles, and the penalization is based on the l0-norm

for the parameters entering in the model, with the result penalization is proportional to

the number of nonzero parameters. Both AIC and BIC are variable selection procedures

and do not provide estimators simultaneously. On the other hand the bridge estimator

in Frank and Friedman (1993), Fu and Knight (2000) uses the lq-norm (q > 0), and for

0 < q ≤ 1 provides a way to combine variable selection and parameter estimation simul-

taneously. Within this class the least absolute shrinkage and selection operator (LASSO)

(q = 1) has become the most popular. For q = 2 we get the ridge estimator (Hoerl and

Kennard (1970)). For a detailed review of model selection in high dimensional modeling,

see Fan and Lv (2010), and the books Bühlmann and Van de Geer (2011), Claeskens and

Hjort (2008). Similarly, in the context of empirical likelihood estimation and generalized

methods of moments estimators, model selection criteria have been introduced by Andrews

and Lu (2001), Hall et al. (2007), among others.

Model selection is an important step for empirical policy evaluation and fore-

casting. However, it may produce unstable estimators because of bias in model selection.

For example, a small data perturbation or an alternative selection procedure may give a

different model. Reference Pötscher (1991) shows that AIC selection results in distorted

inference, and Kabaila (1995) explores the negative impact on confidence regions. Refer-

ence Bühlmann (1999) gives conditions under which post model selection estimators are

adaptive, but see Leeb and P(̈o)scher (2003, 2006) for their comments that they cannot be

uniformly estimated. For a selected model with unstable estimators, Breiman (1996) pro-
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vides bagging or bootstrap averaging procedure to reduce their variances for the i.i.d. data,

and by Jin, Su and Ullah (2013) for the dependent time series data. But this averaging

does not always work, e.g. for large samples and/or in entire parameter space.

Taking the above reasons into consideration, model averaging is introduced as an

alternative to model selection. Unlike in model selection, where the model uncertainty is

dealt with by econometricians selecting one model from a set of models, in model averaging,

we resolve the uncertainty by averaging over the set of models. There is large recent litera-

ture on Bayesian model averaging (BMA) and more recently, on frequentist model averaging

(FMA). Among the BMA contributions, model uncertainty is considered by setting a prior

probability to each candidate model, see Draper (1995), Hoeting et al. (1999), Clyde and

George (2004), Geweke (2005, 2007); for interesting applications in econometrics, see, e.g.,

Brock, Durlarf and West (2003), Sala-i-Martin, Doppelhofer and Miller (2004) and Mag-

nus, Powell and Pr(̈u)fer (2010). Also, see Claeskens and Hjort (2003) for comments on the

BMA approach. The main focus here is on the FMA method, which is totally determined

by data only and assumes no priors, and it has received much attention in recent years, see

Buckland, Burnham and Augustin (1997), Yang (2001), Burnham and Anderson (2002), Le-

ung and Barron (2006), Yuan and Yang (2005), Hansen (2007), Hansen and Racine (2012)

and Wan, Zhang and Zou (2010). Reference Claeskens and Hjort (2003) provides asymp-

totic theory. For applications, see Kapetanios, Labhard and Price (2006), Wan and Zhang

(2009), Claeskens and Hjort (2008). The concept behind the FMA estimators is related to

the ideas of combining procedures based on the same data, which have been considered be-

fore in several research areas. For instance, [?] introduces forecast combination and Olkin
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and Speigelman (1987), Fan and Ullah (1999) suggest combining parametric and kernel

estimators of density and regression respectively. Other works include bootstrap based av-

eraging (“stacking”) by Wolpert (1992), Breiman (1996)and LeBlanc and Tibshirani (1996),

information theoretic method to combine density by Yang (2000) and Catoni (1997), and

the mixing of experts models by Jordan and Jacobs (1994) and Jiang and Tanner (2000).

Similar kinds of combining have been used in computational learning theory by Vovk (1990,

1998) and in information theory by Merhav and Feder (1998).

Related to “how”, or rather determining the unknown functional forms of econo-

metric models, we use data based nonparametric procedures (e.g. kernel, smoothing spline,

series approximation). See, for example, Ullah (1988), Fan and Gijbels (1996), Pagan and

Ullah (1999) and Li and Racine (2007), for kernel smoothing procedures, Eubank (1999) for

the spline methods, and Geman and Hwang (1982) and Newey (1997) for the series methods.

These procedures help in dealing with the problems of bias and inconsistency in estimation

and testing due to misspecifying functional forms. Because of this recent developments on

nonparametric model selection and model averaging have taken place.

The current paper is hence focused on a review of parametric and nonparametric

approaches to model selection and model averaging mainly from a frequentist point of

view, and for independently and identically distributed (i.i.d.) observations. Earlier Fan

and Lv (2010) provides a review of parametric model selections, Wang, Zhang and Zou

(2009) surveys the FMA estimation, and Su and Zhang (2013) provides variable selection

in semiparametric regression models. To distinguish, our paper hence concentrates on

the review of frequentist model selection and model averaging under both parametric and
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nonparametric settings.

The chapter is organized as follows. We first introduce a review of parametric

model selection and parametric model averaging in Section 2. Then, in Section 3 we present

nonparametric model selection and model averaging procedures. A conclusion follows in

Section 4.

4.2 Parametric Model Selection and Model Averaging

4.2.1 Model Selection

Let us consider yi as a dependent variable and xi = (xi1,..., xiq)
′ a q × 1 vector of

explanatory variables/covariates. Then the linear regression model can be written as

yi = x′iβ + ui =

q∑
j=1

xijβj + ui, i = 1, ..., n (4.1)

or

y = Xβ + u (4.2)

where y is n× 1, X is n× q, β = (β1, ..., βq)
′, and u is n× 1.

Among the well known procedures for model selection, often used routinely, we

are looking at the goodness of fit R2, adjusted R2 (R2
a), and residuals sum of squared (RSS)

given by

R2 = 1−
∑
û2
i∑

(yi − ȳ)2
, R2

a = 1− (n− 1)
∑
û2
i

(n− q)
∑

(yi − ȳ)2
, RSS =

∑
(ûi)

2 (4.3)

where 0 ≤ R2 ≤ 1. The model with the highest R2 (or R2
a) or smallest RSS is chosen.

However R2 increases or RSS decreases, monotonically as q increases. Further, between
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R2 and R2
a, Bias(R

2
a) ≤ Bias(R2) but V (R2

a) ≥ V (R2). Thus R2
a may not always be

statistically more efficient (MSE(R2
a) ≤ MSE(R2)), see Srivastava, Srivastava and Ullah

(1995) for further detail. Thus R2
a and RSS are not preferred measures of goodness of fit or

model selection. Recently Rousson and Gosoniu (2007) develops a model selection procedure

based on the “mean squared prediction error” denoted by MSPE. Consider (xi1, ..., xiq, zi),

i = 1, ..., n, as a new observed sample in which zi is the “new observed value” and ŷi

is such that MSPE =
∑
E(zi − ŷi)

2/n = σ2
u(n + q + 1)/n. When a model has q = 0

(no explanatory variable), MSPE = σ2
y(n + 1)/n. Then, using the unbiased estimator of

MSPE0 = FPE0 = s2
y(n+ 1)/n, and of MSPE = FPE as s2

û(n+ q + 1)/n, Rousson and

Gosoniu (2007) introduces

R2
FPE = 1− FPE

FPE0
=

(n− 1)(n+ q + 1)R2 − 2qn

(n− q − 1)(n+ 1)
,

such that R2
FPE ≤ R2

a ≤ R2 where FPE represents final prediction error. The statistical

properties of the bias and MSE of R2
FPE , compared to those of R2

a and R2, are analyzed

in Wang (2013). Reference Rousson and Gosoniu (2007) has demonstrated that one of the

exciting advantages of R2
FPE is that it can be used for choosing a model with the best

prediction ability. Furthermore, R2
FPE not only overcomes inflation in R2, it also avoids

the problem of selecting an overfitted model with some irrelevant explanatory variables

due to using R2
a. In addition, they indicate that R2

FPE and AIC, discussed below, are

asymptotically equivalent and in model selection R2
FPE is perfectly consistent with using

AIC and is closest with BIC. Thus R2
FPE can be used simultaneously for goodness of fit as

well as for model selection.
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4.2.1.1 AIC, TIC, and BIC

Now we turn to the methods of model selection, AIC in Akaike (1973), Takeuchi

informaiton criterion (TIC) in Takeuchi (1976), and BIC in Schwarz (1978). For this, we

first note that if f(y) is an unknown true density, and g(y, θ) is an assumed density then

the Kullback-Leibler Information Criterion (KLIC) is given by

D(f, g) = KLIC(f, g) = Ef log(
f(y)

g(y, θ)
) = Ef log f(y)− Ef log g(y, θ),

where Ef is the expectation with respect to f(y). This is an expected “surprise” from

knowing f is in fact the true density of y. We note that D(f, g) ≥ 0 where equality holds if

and only if g = f almost everywhere. Further Ef log f(y) is called the entropy of distribution

f ; for more on entropy and information, see Maasoumi (1993) and Ullah (1996).

A concept related to entropy is the quasi maximum likelihood estimator (QMLE)

θ̂QML which maximizes the quasi log-likelihood function

L(θ) = Ln(θ) =
1

n

n∑
i=1

log g(yi,θ)

based on the random sample Y = (y1, ..., yn) from f(y). Since Ln(θ)→p Ef [log g(y1, θ)], it

is expected that θ̂QML converges in probability to the maximizer θ∗ of Ef [log g(y1, θ)] under

suitable conditions. Since Ef [log f(y1)] does not depend on θ, QMLE minimizes a random

function which converges to

KLIC(f, g) = Ef log f(y1)− Ef log g(y1, θ) = D(f, g).

Thus θ̂QML →p θ∗ where θ∗ = argminθD(f, g(θ)) is often referred to as the
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pseudo-true value of θ. It is well known that under some regularity conditions

√
n(θ̂QML − θ∗)→d N(0, G(θ∗)−1I(θ∗)G(θ∗)−1)

where G(θ) = −Eg[∂2 log g(y, θ)/∂θ∂θ′] and I(θ) = Eg[∂ log g(y1, θ)∂ log g(y1, θ)/∂θ∂θ
′].

When f(·) = g(·, θ∗), G(θ∗) = I(θ∗) and θ̂QML is the MLE and it is asymptotically efficient.

Now consider the fitted density ĝ(y) = g(y, θ̂QML) and

KLIC(f, ĝ) = Ef log(
f(y)

ĝ(y)
)

= c− Ey log g(y, θ̂QML)

where c =
∫
f(y) log(f(y))dy is free of the fitted model and Ey(·) denotes the expec-

tation with respect to the true density of y, i.e. g(y) here. Then E[KLIC(f, ĝ)] =

c − EYEy[log g(y, θ̂QML)] = c − n−1
∑
EYEyi [log g(yi, θ̂QML)] where Y and y are inde-

pendent. The expected KLIC can be interpreted as the expected likelihood when Y is used

for θ̂QML, and an independent sample y (with one observation here) used for evaluation. In

linear regression, the expected KLIC is the expected squared prediction error. Dropping c,

and using second order Taylor expansion, it can be shown that

nT = E[KLIC(f, ĝ)] = −E[Ln(θ̂)] + tr[I(θ∗)G(θ∗)−1].

Further, an asymptotically unbiased estimator of T can be written as

T̂ = −n−1{Ln(θ̂)− tr(ÎĜ−1)}

where Ln(θ̂) = log g(Y, θ̂), ÎĜ−1 is a consistent estimator of I(θ∗)G(θ∗)−1 in which Î =

1
n

∑ ∂ log g(yi,θ)
∂θ

∂ log g(yi,θ)
∂θ′ and Ĝ = − 1

n

∑
∂2 log g(yi, θ)/∂θ∂θ

′.
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When the model is correctly specified, that is g(y, θ∗)=f(y), G(θ∗)=I(θ∗) and

tr(I(θ∗)G(θ∗)−1) = q,

T̂ = −n−1Ln(θ̂) + n−1q,

which is related with AIC given by 2T̂ :

AIC = −2Ln(θ̂)

n
+

2q

n
. (4.4)

Thus, we can think of AIC as an estimate of the expected 2KLIC based on the

assumption that the model is correctly specified. Therefore, selecting a model based on the

smallest AIC amounts to choosing the best-fitting model in the sense of having the smallest

KLIC. A robust AIC by Takeuchi (1976), known as the Takeuchi Information Criterion

(TIC), is

TIC = −2Ln(θ̂)

n
+

2tr(ÎĜ−1)

n
,

which, unlike AIC, does not require g(y, θ) to be correctly specified. In general, picking

models with the smallest AIC/TIC is selecting fitted models whose densities are close to

the true density.

We note that in a linear regression model, the minimization of the AIC reduces to

the minimization of the following

AIC = log σ̂2 +
2q

n

where σ̂2 = û′û
n . It can be shown that G(θ∗) = I(θ∗) if ui|xi ∼ N(0, σ2). Thus AIC is

more appropriate under normality, otherwise it is an approximation for the non-normal and

heteroskedastic regression cases.
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Further, in a linear regression case, the minimization of TIC can be shown as the

minimization of

TIC = log σ̂2 +
2

nσ̂2

n∑
i=1

hiû
2
i +

k̂4

n

where k̂4 = 1
nσ̂4

∑n
i=1(û2

i − σ̂2)2 and hi = x′i(X
′X)−1xi. When the errors are homoskedastic

and normal,

TIC ' log σ̂2 +
2(q + 1)

n

which is close to AIC. Although differences may arise under heteroskedasticity and non-

normality. However, as we change models, typically the results û2
i and hence k̂4 may not

change much. In this case, TIC and AIC may give similar model selection results.

We note that the BIC due to Schwarz (1978) is

BIC = log σ̂2 +
(log n)q

n

in which the penalty term depends on the sample size and it is generally larger than the

penalty term appearing in the AIC. BIC provides a large sample estimator of a transfor-

mation of the Bayesian posterior probability associated with the approximation model. In

general, by choosing the fitted candidate model corresponding to the BIC criterion, one is se-

lecting the candidate model with the highest posterior probability. A good property of BIC

selection is that it provides consistent model selection, see for example Nishi (1984). That

is, when the true model is of finite dimension, BIC will choose the model with probability

tending to 1 as the sample size n increases.

In general, a penalized function can only be consistent if its penalty term (log n in

BIC) is a fast enough increasing function of n (see Hannan and Quinn (1979)). Thus AIC
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is not consistent as it always has some probability of selecting models that are too large.

However, we note that in finite samples, adjusted versions of AIC can behave much better,

see for example Hurvich and Tsai (1989). Further, since the penalty term of BIC is more

stringent than the penalty term of AIC, BIC tends to form smaller models than AIC. How-

ever, BIC provides a large-sample estimator of the transformation of the Bayesian posterior

probability associated with the approximating model, and AIC provides an asymptotically

unbiased estimator of the expected Kullback discrepancy between the generating model

and the fitted approximating model. In addition, AIC is asymptotically efficient in the

sense that it asymptotically selects the fitted candidate model which minimizes the MSE of

prediction, but BIC is not asymptotically efficient. This is because AIC can be advocated

when the primary goal of the model is to induce meaningful factors influencing the outcome

based on relative importance.

In summary, both AIC and BIC provide well-founded and self-contained approaches

to model selection although with different motivations and penalty objectives. Both are typ-

ically good approximations of their own theoretical target quantities. Often, this also means

that they will identify good models for observed data but both criteria can still fail in this

respect. For a detailed simulation and empirical comparison of these two approaches, see

Kuha (2004), and for their properties, see Nishi (1984) and Stone (1977, 1979). Both the

AIC and the TIC are designed for the likelihood or quasi-likelihood context. They perform

in a similar way. Their relationship is similar to the relationship between the conventional

and the White covariance matrix estimators for the MSE/QMLE or LS. Unfortunately, de-

spite the merit TIC has theoretically, it does not appear to be widely used perhaps because
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it needs a very large sample to get good estimates.

4.2.1.2 FIC

Let us start from the model

yi = x′iβ + z′iγ + ui, i = 1, ..., n

or

y = Xβ + Zγ + u

where X is an n× p matrix of variables intended (focused) to be included all the time yet

the variables in a n × q matrix Z may or may not be included. From the ML estimators

(β̂l, γ̂l), corresponding with the l-th model, the predictor for ml = x′βl+z′γl can be written

as m̂l = x′β̂l+z
′γ̂l at (x, z). Claeskens and Hjort (2003) provides MSE of m̂l. The basic idea

of FIC is to develop a model selection criterion that chooses the model with the smallest

estimated MSE. Such an MSE-based FIC for the l-th submodel is

F̂ IC l = (ω̂′(I − Ψ̂lL̂
−1)γ̂)2 + 2ω̂′Ψ̂lω̂,

where Ψ̂l = π′l(πlL̂
−1π′l)

−1πl, L̂ = (Z ′MxZ)−1 where Mx = I − X(X ′X)−1X ′, ω̂ =

X(X ′X)−1x − z, and πl captures the projection mappings from the full model to the l-

th submodel, such that ωl = πlω.

In contrast, from Claeskens and Hjort (2003),

AICl = −γ̂′L̂−1Ψ̂lL̂
−1γ̂ + 2 |l| ,

where |l| is the number of uncertain parameters in the l-th submodel, shows that when the
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estimand m = log f(y, β, γ) such that f(y, β, γ) is the probability density function of the

data, the MSE-based FIC is asymptotically equivalent to AIC.

4.2.1.3 Mallows Model Selection

Let us write the regression model (4.2) as

y = m+ u,

where m = Xβ. Then m̂ = m̂(q) = P (q)y, where P (q) = X(X ′X)−1X ′.

The objective is to choose q such that the average mean squared error (risk)

EL(q|X) is minimum, where

L(q) =
1

n
[m− m̂(q)]′[m− m̂(q)] =

1

n
(β̂ − β)′X ′X(β̂ − β) =

1

n
u′P (q)u

such that

R(q) = E[L(q)|X] =
1

n
σ2tr(P (q)) =

σ2q

n
.

Mallows criterion for selecting q is to minimize

C(q) =
û′û

n
+

2σ2q

n
,

where the second term on the right hand side is a penalty.

In fact, Mallows criterion is an unbiased estimator of the MSE of the predictive

estimator m̂ of m. This is because E[L(q)|X] = E[(m̂ − m)′(m̂ − m)/n] = E[u
′P (q)u
n ] =

σ2trP (q)/n and E[C(q)|X] = σ2(n−q)
n + 2σ2q

n = σ2 + σ2trP (q)/n. But the minimization of

E[L(q)|X] with respect to q is the same as the minimization of E[C(q)|X] since σ2 does

not depend on q.
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Alternatively,

1

n
(m̂−m)′(m̂−m) =

1

n
(m̂− y + y −m)′(m̂− y + y −m)

=
1

n
[û′û+ u′u− 2û′u]

and E[ 1
n(m̂ −m)′(m̂ −m)] = 1

nE[û′û + 2σ2trP − σ2]. So, an unbiased estimator is (û′û +

2σ2q − σ2)/n and its minimization is equivalent to the Mallows criterion.

4.2.1.4 Cross-Validation (CV)

CV is a commonly used procedure for model selection. According to this, the

selection of q is made by minimizing

CV (q) =
1

n

n∑
i=1

(yi − x′iβ̂−i)2

where β̂−i is the LS estimator of β dropping the i-th observations yi, xi from the sample.

It can be shown that E[CV (q)] 'MSPE(q), where

MSPE(q) ' E(yn+1 − x′n+1β̂)2 = Eû2
n+1

is the MSE of the forecast error ûn+1 = yn+1 − ŷn+1 with ŷn+1 = xn+1β̂. Thus, CV is an

almost unbiased estimator of MSPE(q).

This can be shown by first writing the MSPE, based on an out of sample observa-

tion from the same distribution as the in sample observation, as

MSPE(q) = E(yn+1 − x′n+1β̂)2 = Eû2
n+1

= Eu2
n+1 + E[(β̂ − β)′xn+1x

′
n+1(β̂ − β)]

= Eu2
n+1 +MSE(q)
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where MSE(q) = E[(m̂(xn+1)−m(xn+1))′(m̂(xn+1)−m(xn+1))] = E[(β̂−β)′xn+1x
′
n+1(β̂−

β)]. Since Eu2
n+1 = σ2 does not depend on q, its selection by MSPE(q) and MSE(q) are

equivalent.

We observe that ûn+1 = yn+1−xn+1β̂ is a prediction error based on first estimating

β̂ based on in sample n observations, and then calculating the error by using the out of

sample observation n+ 1. Therefore, MSPE(q) is the expectation of a squared leave-one-

out prediction error when the sample length is n+ 1. Using this idea we can also obtain a

similar leave-one-out prediction error for each observation i. This is given by ûi = yi−x′iβ̂−i

based on n observations. Thus, Eû2
i = MSPE(q) for each i, and

E[CV (q)] = E[
1

n

n∑
i=1

û2
i ] = MSPE(q).

Further, since Eû2
n+1 based on n+ 1 observations will be close to Eû2

i based on n

observations, CV (q) is an almost unbiased estimator of MSPE(q).

The CV (q) written above can be rewritten as

CV (q) =
1

n

n∑
i=1

ũ2
i

1− hii

where ũi = yi − x′iβ̂, hii is referred to as the leverage effect and it is the diagonal element

of the projection matrix X(X ′X)−1X ′, see Maddala (1988). This expression is useful for

calculations. Also, see Stone (1979) for a link of CV (q) with AIC.

4.2.1.5 Model Selection by Other Penalty Functions

The issue regarding the model selection has received more attention in recent years

because of the challenging problem of estimating models with large numbers of regressors,
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which may increase with sample size, for example, earning models in labor economics with

large number of regressors, financial portfolio models with large number of stocks, and VAR

models with hundreds of macro variables.

A different method of variable selection and estimating such models is penalized

least squares (PLS), see Fan and Lv (2010) for a review on this. In fact in this literature

estimation of parameters and variables selections are done by using a criterion function

involving loss function with a penalization function. Using lp-penalized, the PLS estimator

and variables selection problem are carried out as

min
β

[
n∑
i=1

(yi − x′iβ)2 + λ(

q∑
j=1

|βj |p)1/p]

where λ is a tuning or shrinkage parameter and the penalty is the restriction (
∑q

j=1 |βj |p)1/p ≤

c (another tuning parameter). For p = 0, the l0-norm becomes
∑q

j=1 I(βj 6= 0) with I(·)

as the usual indicator function which indicates the number of nonzero βj for j = 1, ..., q.

The AIC and BIC belong to this norm. For p = 1, the lp-norm becomes
∑q

j=1 |βj | ≤ c,

which is used in the LASSO for simultaneous shrinkage estimation (Tibshirani (1996)) and

for variable selection. It can be shown analytically that the LASSO method estimates the

zero coefficient as zero with positive probability as n → ∞. Next, for p = 2 the l2-norm

uses
∑q

j=1 β
2
j ≤ c and provides ridge type Hoerl and Kennard (1970) shrinkage estimation

but not variable selection. However, if we consider the generalized ridge estimator under∑
λ̂jβ

2
j ≤ c then the coefficient estimates corresponding to λ̂j → ∞ will tend to zero, see

Ullah et al. (2013).

Further, when 0 < p ≤ 1 we get the bridge estimator (Frank and Friedman (1993),

Fu and Knight (2000)) which provides a way to combine variable selection and parameter
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estimation together with p = 1 as the LASSO. For adaptive LASSO and other forms of

LASSO, see Su and Zhang (2013), Zou (2006), Zhang (2010) and Fan and Li (2001). Also,

see the link of LASSO with the least angel regression selection (LARS) by Efron et al.

(2004).

4.2.2 Model Averaging

Let us consider m be a parametric or nonparametric model, which can be a con-

ditional mean or conditional variance. Let m̂l, l = 1, ...,M be the set of estimators of m

corresponding to the different sets of regressors considered in the problem of model selec-

tion. Consider wl, l = 1, ...,M, to be the weights corresponding to m̂l, where 0 ≤ wl ≤ 1

and
∑M

l=1wl = 1. We can then define a model averaging estimator of m as

m̂(w) =

M∑
l=1

wlm̂l.

Below we present the choice of wl in linear regression models. For the linear

regression model consider the model in (4.1) or (4.2) where the dimension of β can tend

to ∞, as n → ∞. We take M models where l-th model contains ql regressors, which is a

subvector of xi. The corresponding model could be written as

y = Xlβl + u,

and the LS estimator of βl is

β̂l = (X ′lXl)
−1X ′ly.

This gives

m̂l = Xlβ̂l = Ply
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where Pl = Xl(X
′
lXl)

−1X ′l . The model averaging estimator (MAE) of m is given as

m̂(w) =
M∑
l=1

wlm̂l = P (w)y

where P (w) =
∑M

l=1wlPl. An alternative expression is

m̂(w) =
M∑
l=1

wlm̂l =
M∑
l=1

wlXlβ̂l = Xβ̂(w),

where we write β̃l =

(
β̂l
0

)
such that Xlβ̂l = [Xl X−l]

(
β̂l
0

)
= X

(
β̂l
0

)
= Xβ̃l and β̂(w) =

∑M
l=1wlβ̃l =

(∑M
l=1wlβ̂l

0

)
is the MAE of β. Thus, for the linear model, the MAE of m

corresponds to the MAE of β but this may not hold for the non-linear parameters model.

Now we consider the ways to determine weights.

4.2.2.1 Bayesian and FIC Weights

Under the Bayesian procedure we assume that there are M potential models and

one of the models is the true model. Then, using the prior probabilities that each of the

potential models is the true model, and considering the prior probability distributions of

the parameters, the posterior probability distribution is obtained as the weighted average

of the submodels where weights are the posterior probabilities that the given model is the

true model given the data.

The two types of weights considered are then

wl =
exp{−1

2AICl}∑M
l=1 exp{−1

2AICl}
and wl =

exp{−1
2BICl}∑M

l=1 exp{−1
2BICl}

where AICl = −2 logL+ 2ql and BICl = −2 logL+ ql log n. These are known as smoothed

AIC (SAIC) and smoothed BIC (SBIC) weights. While the Bayesian model averaging
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estimator (BMAE) has a neat interpretation, it searches for the true model instead of

selecting an estimator of a model with a low loss function. In simulations it has been found

that SAIC and SBIC tend to outperform AIC and BIC estimators, see Zhang, Wan and

Zhou (2012).

As for the FIC, consider the model averaging estimator as

m̃ =

M∑
l=1

wlm̂l,

where

wl = exp(−1

2

FICl
κω′Lω

)/
∑
all l

exp(
1

2

FICl
κω′Lω

)

and κ is an algorithmic parameter, bridging from uniform weighting (κ close to 0) to the

hard-core FICC (κ is large). For this and further properties and applications of FIC, see

Claeskens and Hjort (2003) and Zhang, Wan and Zhou (2012).

4.2.2.2 Mallows Weight Selection Method

In the linear regression model, m̂(w) = P (w)y is a linear estimator with w ∈WM .

So an optimal choice of w can be found following the Mallows criterion described above.

The Mallows criterion for choosing weights w is

C(w) = û(w)′û(w) + 2σ2tr(P (w))

where û(w) = y − m̂(w) = y −
∑M

l=1wlm̂l =
∑M

l=1wl(y − m̂l) =
∑M

l=1wlûl = Ûw and

tr(P (w)) =
M∑
l=1

wltrPl =
M∑
l=1

wlql = q′w
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in which q = (q1, ..., qM )′, w = (w1, ..., wM )′, ûl is the residual vector from the l-th model

and Û = (û1, ..., ûM ) is an n×M matrix of residuals from all the models. Thus

C(w) = w′Û ′Ûw + 2σ2q′w

is quadratic in w. Thus

ŵ = arg min
w∈WM

C(w),

which is obtained by using the quadratic programming procedure with inequality constraints

using Gauss or MATLAB. Then Hansen’s Mallows model averaging (MMA) estimator is

m̂(ŵ) =
M∑
l=1

ŵlm̂l.

Following Li (1987), Hansen (2007) shows that

L(ŵ)

Infw∈W ∗ML(w)
→ 1

as n→∞, and ŵ is asymptotically optimal in Li’s sense, where L(ŵ) = (m− m̂(ŵ))′(m−

m̂(ŵ)). However, Hansen’s result requires weights belonging to a discrete set and the models

to be nested. Wan, Zhang and Zou (2010) improves the result by relaxing discreteness and

by not assuming that the models are nested. Their approach is based on deriving an

unbiased estimator of the exact MSE of m̂(w).

Reference Hansen (2008) also proposes a corresponding forecasting method, using

Mallows model averaging (MMA). He proves that the criterion is an asymptotically unbiased

estimator of both the in-sample and the out-of-sample one-step-ahead MSE.
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4.2.2.3 Jackknife Model Averaging Method (CV)

Utilizing the leave-one-out cross validation (CV) procedure, which is also known

as the Jackknife procedure, Jackknife model averaging (JMA) method of estimating m(w)

by Hansen and Racine (2012) relaxes assumptions in Hansen (2007). The submodels are

now allowed to be non-nested and also the error terms can be heteroskedastic. The sum-

of-squared residuals in the JMA method is

CV (w) =
1

n
(y − m̃(w))′(y − m̃(w))

where m̃(w) is the vector of the Jackknife estimator computed with the i-th element deleted.

To be more specific, m̃l = X(X ′l(−i)Xl(−i))
−1X ′l(−i)y−i, where Xl(−i) is equal to Xl with its

i-th row deleted and y−i is y with the i-th element deleted. Thus

ũ(w) =
M∑
l=1

wl(y − m̃l) =
M∑
l=1

wlũl = Ũw

where Ũ = (ũ1, ..., ũM ) is an n ×M matrix, ũl = (ũ1l,..., ũnl)
′ is an n × 1 vector in which

ũil is computed with the i-th observation deleted. Then

CV (w) =
1

n
ũ(w)′ũ(w) =

1

n
w′Ũ ′Ũw

and JMA weights are obtained by minimizing CV (w) with respect to w = w̃l, and the JMA

estimator is m̃(w) =
∑M

l=1wlm̃l. Reference Hansen and Racine (2012) shows the asymptotic

optimality, using Li (1987) and Andrews (1991), in the sense of minimizing conditional risk

which is equivalent to the out-of-sample prediction MSE.

There are many extensions of the JMA method to various other econometric mod-

els. Reference Lu and Su (2012) does it for the quantile regression model. Reference Zhang,
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Wan and Zhou (2012) extends it for the dependent time series models or models with

GARCH errors. Also, using MMA method in Hansen (2007), for models with endogene-

ity, Kuersteiner, and Okui (2010) develops MMA based two-stage least squares (MATSLS),

model averaging limited information maximum likelihood (MALIML), and model averaging

Fuller (MAF) estimators.

However, it would be useful to have extensions of the MMA and JMA procedures

to the models with GMM or IV estimator. In addition the sampling properties of the

average estimators need to be developed for the purpose of statistical inference.

4.3 Nonparametric (NP) Model Selection and Model Aver-

aging

4.3.1 NP Model Selection

Let us write the NP model as

yi = m(xi) + ui

where xi is i.i.d. with density f and the error ui is independent of xi.

We can write the local linear model as

yi = m(x) + (xi − x)′β(x) + ui

= zi(x)′δ(x) + ui

or

y = Z(x)δ(x) + u

65



where zi(x) = [1 (xi − x)′]′ so that Z(x) is an n× (q + 1) matrix and δ(x) = [m(x) β(x)]′.

Then the local linear LS estimator (LLLS) of δ(x) is

δ̂(x) = (Z ′(x)K(x)Z(x))−1Z ′(x)K(x)y = P (x)y

where P (x) = (Z ′(x)K(x)Z(x))−1Z ′(x)K(x), K(x) = diag(K((x1 − x)/h), ...,K((xn −

x)/h)) is a diagonal matrix in which the kernel K((xi − x)/h) =
∏q
j=1K((xij − xj)/hj),

and hj is the window-width for the j-th variable. From this, pointwise m̂(x) = [1 0]δ̂(x),

β̂(x) = [0 1]δ̂(x). Further, profiled m̂ = (m̂(x1), ..., m̂(xn))′ can be written as

m̂ = Py

where P = P (h), generated by [1 0]P (xi) = [1 0](Z ′(xi)K(xi)Z(xi))
−1Z ′(xi)K(xi), for

i = 1, ..., n, is an n × n matrix. If h is fixed then m̂ is a linear estimator in y. But it

will be a nonlinear estimator in y if h = ĥ is either obtained by a plug-in estimator or by

cross-validation.

With respect to the goodness of fit measures for the NP models we note that

V (y) = V (m(x)) + E[σ2(x)].

So the global population goodness of fit is

ρ2 =
V (m(x))

V (y)
= 1− E[y −m(x)]2

V (y)
, 0 ≤ ρ2 ≤ 1,

and its sample global estimator is given by

R2 = [1−
∑
û2
i∑

(yi − ȳ)2
] = [1− û′û

y′M2y
]

= 1− y′M1(h)y

y′M2y

=
y′M∗1 (h)y

y′M2y
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where û = y − m̂ = y − P (h)y = M(h)y (M(h) = I − P (h)), M1(h) = M(h)′M(h),

M∗1 (h) = M2 −M1(h), and M2 = I − ιι′

n with ι being an n × 1 vector of unit elements.

However, 0 ≤ R2 ≤ 1 may not be valid since
∑

(yi− ȳ)2 6=
∑

(m̂(xi)− ȳ)2 +
∑
û2
i . Therefore,

one can use the following modified 0 ≤ R2
1 ≤ 1 as

R2
1 = R2I(a ≤ 1)

where a =
∑
û2
i /
∑

(yi − ȳ)2 and I(·) is an indicator function.

Another way to define a proper global R2 is to first consider a local R2(x). This

is based on the fact that at the point x,

∑
(yi − ȳ)2K(

xi − x
h

) =
∑

(m̂(xi)− ȳ)2K(
xi − x
h

) +
∑

û2
iK(

xi − x
h

)

because
∑
uiK(xi−xh ) = 0 and

∑
(xi − x)uiK(xi−xh ) = 0 due to local linear LS estimation.

Thus a local R2(x) can be defined as

R2(x) =

∑
(m̂(xi)− ȳ)2K(xi−xh )∑

(yi − ȳ)2K(xi−xh )
=
SSR(x)

SST (x)

which satisfies 0 ≤ R2(x) ≤ 1. A global R2
2 is then

R2
2 =

∫
x SSR(x)dx∫
x SST (x)dx

, 0 ≤ R2
2 ≤ 1.

The goodness of fit R2
1 is considered in Yao and Ullah (2013) where they showed

its application for the statistically significant variables selection in NP regression. R2
2 is

introduced in Su and Ullah (2013) and Huang and Chen (2008). For the variables selection

it may be more appropriate to consider an adjusted R2
1 as

R2
1a = R2

aI(b ≤ 1)
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where R2
a = (1 − n−1

trM1(h)
y′M1(h)y
y′M2y

) = 1 − b. As a practical matter, the most critical choice

in model selection in the nonparametric regression estimation above is the choice of the

window-width h and the number of variables q. Further, if instead of considering the local

linear estimator taken above and often used, we consider a local polynomial of degree d, then

Z(x) in δ̂(x) would be a n× (qd+ 1) matrix and we would need an additional selection for

d. Thus the nonparametric goodness of fit measures described above should be considered

as R2
1 = R2

1(h, q, d) and R2
1a = R2

1a(h, q, d) and they can be used for choosing, say h, for

fixed q and d, as the value which maximizes R2
1a(h, q, d). We note that d = 0 is the well

known Nadaraya and Watson local constant estimator and for d = 1, it is the local linear

estimator. Further, for given d and h, R2
1 = R2

1(q) and R2
2 = R2

2(q) can be used to choose q.

4.3.1.1 AIC, BIC, and GCV

In the NP case the model selection (choosing q) using AIC is proposed by Hurvich,

Simonoff and Tsai (1998). This is based on the LCLS estimator,

AIC = log σ̂2 +
1 + trP (h)/n

1− (trP (h) + 2)/n

where σ̂2 = û′û/n = y′M1(h)y/n in which M1(h) = M(h)′M(h) and M(h) = I − P (h)

where the (i, j)-th element of P (h) is Pi,j(h) = Kij/
∑n

l=1Kil and Kij =
∏q
s=1 h

−1
s K((xis−

xjs)/hs).

In the same way, we note that AIC = AIC(h, q, d) and it can be used to select,

for example, h given q and d (Racine and Li (2004)) or q given h and d. In the latter

case AIC = AIC(q). The result for the BIC = BIC(q) procedure in the NP model is not

yet known. However, if one considers NP sieve regression of the type m(x) =
∑q

j=1 zj(x)βj
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where zj(x) are nonlinear function of x and q, then BIC is similar to the BIC given in Hansen

(2012). This includes, for example, special cases of a series expansion in which zj(x) = xj ,

and a spline regression in which m(x) =
∑p

j=1 x
jβj +

∑r
j=1 βp+j(x − tj)I(x ≥ tj) with

q = p+ r, tj as j-th knot, and I(x ≥ tj) = 1 if x ≥ tj and 0 otherwise.

In Craven and Wahba (1979) an estimate of the minimizer of EL(q), called the

GCV, is proposed which does not require the knowledge of σ2. This can be written as the

minimization of

V (q) =
n−1

∑n
i=1(yi − m̂(xi))

2

(1− n−1trP )2

with respect to q. It has been shown by Craven and Wahba (1979) that E[V (q)|x] − σ2 '

E[L(q)|x] for large n, and the minimizer q̂ of EV (q) is asymptotically optimal in the sense

that EL(q̂)/minq EL(q) = 1 as n → ∞. That is, the MSE of q̂ tends to be minimum as

n → ∞. We note that L(q) in parametric and nonparametric cases are given in Sections

4.2.1.3 and 4.3.1.2, respectively.

4.3.1.2 Mallows Model Selection

Let us write the regression model

yi = m(xi) + ui

where E[ui|xi] = 0 and E(u2
i |xi) = σ2. Then, for m = (m(x1), ...,m(xn))′, y = (y1, ..., yn)′

and u = (u1, ..., un)′

y = m+ u.
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Let us consider the LLLS estimator of m, which is linear in y, as

m̂ = m̂(q) = P (q)y

where P = P (h) = P (q) as defined in Section 4.3.1. When ĥ→ h for large n, m̂ can become

asymptotically linear.

Our objective is to choose q such that the average mean squared error (risk)

E[L(q)|x] is minimum where

L(q) =
1

n
(m− m̂(q))′(m− m̂(q)).

We note that for û = y − m̂(q)

L(q) =
1

n
(m− m̂(q)y)′(m− m̂(q)y)

=
1

n
[û′û+ u′u− 2û′u]

and

R(q) = E(L(q)|x) =
1

n
E[û′û+ 2σ2trP (q)− σ2].

Further Mallows criterion for selecting q (number of variables in xi) is by mini-

mizing

C(q) =
1

n
(y − m̂(q))′(y − m̂(q)) +

2σ2

n
trP (q)

where the second term on the right-hand side is the penalty. Essentially, the minimization

of C(q) is the same as the minimization of the unbiased estimator of E[L(q)|x] = R since

σ2 does not depend on q, see Section 4.2.1.3 and Mallows (1973) and Craven and Wahba

(1979).
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4.3.1.3 Cross Validation (CV)

The CV method is one of the most widely used window-width selectors for NP

kernel smoothing. We note that the cross-validation estimator of the integrated squared

error weighted by the density f(x),

ISE(q) =

∫
x
(m̂(x)−m(x))2f(x)dx,

is given by

CV (q) =
1

n

n∑
i=1

(yi − m̂−i(xi))2

where m̂−i(xi) is m̂(xi) after deleting the i-th observations yi, xi from the sample. In fact,

CV (q) =
1

n

n∑
i=1

(m(xi)− m̂−i(xi))2 +
2

n

n∑
i=1

(m(xi)− m̂−i(xi))ui +
1

n

n∑
i=1

u2
i

where the first term on the right-hand side is a good approximation to ISE(h), because

the second term is generally negligibly small, and the third term converges to a constant

σ2 = E[σ2(x)] free from h. Therefore CV (q) = ISE(q) + σ2 asymptotically.

Also, in the case where m(x) is a sieve regression, Hansen (2012) shows that CV is

an unbiased estimator of the MSE of prediction error (MSEPE) of m, MSEPE = E[yn+1−

m̂(xn+1)]2, see Section 4.2.1.4. In addition, the minimization of MSEPE is equivalent to

the minimization of MSE and integrated MSE (IMSE) of estimated m for conditional and

unconditional x, respectively.

If, instead of the local linear of m(xi) we consider the local polynomial of order

d, then m̂(xi) is the LPLS estimator (Li and Racine (2007)), and CV (q) = CV (h, q, d)

continues to hold. For d = 0 we have a local constant LS (LCLS) estimator developed by
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Nadaraya (1964) and Watson (1964). For d = 1 we have the LLLS estimator as considered

above. In practice, the values of h and d can be determined by minimizing CV (h, q, d) with

respect to h and d for given q, which is developed by Hall and Racine (2013). For a vector

xi, if the choice of hj = ĥj for any j tends to be infinity (very large) then the corresponding

variable is an irrelevant variable. This can be observed from a simple example. Suppose

the m̂(x) for two variables xi1, xi2, considering the LCLS estimator is m̂(x1, x2) = m̂(x) =∑
yiK(xi1−x1h1

)K(xi2−x2h2
)/
∑
K(xi1−x1h1

)K(xi2−x2h2
). Thus if h2 →∞, then K(xi2−x2h2

) = K(0)

is constant and m̂(x) = m̂(x1, x2) =
∑
yiK(xi1−x1h1

)/
∑
K(xi1−x1h1

). Thus a large estimated

value of the window-width leads to the exclusion of variables, and hence variables selection.

In a seminal paper Li (1987) shows that Mallows, GCV and CV procedures are

asymptotically equivalent and all of them lead to optimal smoothing in the sense that∫
(m̂(x, q̂)−m(x))2dF (x)

infq
∫

(m̂(x, q)−m(x))2dF (x)
→p 1

where m̂(x) = m̂(x, q̂), given h and d, is an estimator of m(x) with q̂ obtained using one of

the above procedures.

Also, Härdle, Hall and Marron (1988) demonstrates that for the local constant

estimator (d = 0 and given q), CV = CV (h, q, 0) smoothing selectors of h are asymptotically

equivalent to GCV selectors. In an important paper, Racine and Li (2004) shows the

asymptotic normality of m̂(x) = m̂(x, ĥ), where ĥ is obtained by the CV method and xi

is a vector of mixed continuous and discrete variables. Their extensive simulation results

reveal (no theoretical proof) that AIC window-width selection criterion is asymptotically

equivalent to the CV method, but for small samples AIC tends to perform better than the

CV method. Further, with repect to the comparison of NP and parametric models, their
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results explain the observations of Li and Racine (2001) which finds that NP estimators with

smoothing parameters h chosen by CV can yield better prediction relative to commonly used

parametric methods for the datasets of several countries. Reference Andrews (1991) shows

that CV is optimal under heteroskedasticity. For GMM model selection which involves

selecting moments conditions, see Andrews (1999). Also, see Chen, Hong and Shum (2007)

for using minimization of empirical likelihood/KLIC and comments by Schennach (2007)

claiming a fundamental flaw in the application of KLIC.

4.3.2 NP Model Averaging

Let us consider m̂l, l = 1, ...,M, to be the set of estimators of m corresponding to

the different sets of regressors considered in the model selection. Then

m̂(w) =
M∑
l=1

wlm̂l = P (w)y

where m̂l = Ply, P (w) =
∑M

l=1wlPl and Pl is the P matrix, as defined before, based here

on the variables in the l-th model. Then the choice of w can be determined by applying

Mallows criterion (see Section 4.2.2.2) as

C(w) = w′Û ′Ûw + 2σ2q∗′w

where q∗ = (trP (q1), ..., trP (qM )), and Û = (û1, ..., ûM )′ is a matrix of NP residuals of all

the models. Thus we get m̂(ŵ) =
∑M

l=1 ŵlm̂l.

Similarly, as in Section 4.2.2.3, if we calculate m̃l by deleting one element of each

variable, then w can be determined by minimizing

CV (w) =
1

n
w′Ũ ′Ũw
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in which the NP residuals matrix Ũ = (ũ1, ..., ũM )′ with ũl = (ũ1l,..., ũnl)
′, and ũil is

computed with the i-th observation deleted.

For the fixed window-width the optimality result of ŵ can be shown to follow from

Li (1987). However, for h = ĥ the validity of Li’s result needs further investigation.

4.4 Concluding Remarks

Nonparametric and parametric models are studied in econometrics and practice.

In all applications, the important issue is to reduce model uncertainty by using model

selection or model averaging. This paper selectively reviews frequentist results on model

selection and model averaging in the regression context.

It is clear that most of the results presented are under the i.i.d. assumption. It is

useful to relax this assumption to allow dependence or heterogeneity in the data, see Racine

(2000) for model selection in dependent time series models using various CV procedures.

A systematic study of the properties of estimators based on FMA is warranted. Further,

results need to be developed for more complicated nonparametric models, e.g. panel data

models and models where variables are endogenous, although for the parametric case see

Caner (2009), Caner and Fan (2011), Garcia (2011), Liao (2013) and Gautier and Tsybakov

(2011). Also, the properties of NP model averaging estimators, when the window-width in

kernel regression is estimated are to be developed; although readers can see Hansen (2012)

for NP results of the estimators based on the sieve method.
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Chapter 5

Efficient Two Stage Estimation for

Nonparametric Panel with

Random Effects: With

Applications in Health and

Environmental Models

5.1 Introduction

Nonparametric modeling has gained its popularity by relaxing the restrictions

imposed on functional form compared to the parametric models. Recently, nonparametric
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modeling and estimation with panel data have attracted much attention among statisticians

and econometricians. Among the works, nonparametric random effects panel model has

raised a lot attention. Especially, a large number of literature has been developed where

the information from the error variance-covariance is incorporated and hence more efficiency

could be gained.

Recent works in nonparametric panel estimation with random effects include Ul-

lah and Roy (1998), Lin and Carroll (2000), Ruckstuhl, Welsh and Carroll (2000), Wang

(2003), Chen and Jin (2005), Chen, Fan and Jin (2008) and Su and Ullah (2007), among

others. However, Henderson and Ullah (2005) showed that almost all these papers devel-

oped weighted local linear estimators in which weights involve the matrix of kernel func-

tion and error variance-covariance matrix in different ways. Further, the error variance-

covariance matrix was estimated, sometimes differently, based on the first stage local linear

least squares (LL) estimation. Thus, they were essentially two-step weights least squares es-

timators. Yet in an extensive simulation study Henderson and Ullah (2012) have found that

some of these weighted estimators do not perform well and they may be beaten by the LL

estimator which ignores the error variance-covariance matrix. More recently, Martins-Filho

and Yao (2009, MY hereafter) proposed a two-step estimator by gaining information from

the off-diagonal elements of the error variance-covariance matrix and demonstrated that it

beats the LL estimator since the latter ignored information there. Then, Su, Ullah and

Wang (2013, SUW hereafter) made a modification from the MY estimator by transforming

the model in such a way that homoskedasticity was obtained. They showed more efficiency

was gained by the SUW estimator both theoretically and empirically in Monte Carlo simu-
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lations. However, both MY and SUW estimators can also be written as a two-step weighted

LL estimator with weights and transformed dependent variable different from those used in

the weighted LL estimators referred above.

Meanwhile, Yao and Li (2013, YL hereafter) utilized the error information by doing

a Cholesky decomposition of the variance-covariance matrix and incorporated a profiling

least squares estimation method to introduce a new nonparametric panel estimator. In

contrast to the two-step weighted LL estimators, they found the LL estimator of errors

first, and then used them to estimate the nonparametric model and parameters of error

variance-covariance matrix jointly in the second stage. By comparing against a class of

nonparametric panel estimators, e.g. Wang (2003), Chen and Jin (2005), Lin and Carroll

(2006), Chen, Fan and Jin (2008), YL showed that their estimator can outperform the other

estimators when proper bandwidths were selected with finite sample performances.

Although a lot efforts have been done to incorporate the information from the

error terms as mentioned above, most of the two-step weighted LL estimators transformed

the model into a format where a matrix times the regression function of interest is put on

the right hand side, which means that actually during the second stage, the weighted LL

estimator of interest of the regression function at the original data points is obtained by the

transformed data. In addition, transformation procedures in some were not straight forward.

On the other hand, though YL utilized the information from the estimated error in the first

stage, the profiling that motivated the model may also be too complicated to implement

due to the following two reasons. First, it may involve large number of parameters to be

estimated, hence providing lower degrees of freedom. Second Cholesky decomposition used
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introduces the problem of estimation with heteroskedasticity. In addition, it is not clear

how YL procedure compares with SUW procedure both theoretically and in finite sample

performances.

In this chapter, we provide a procedure incorporating the information in covariance

matrix through a transformation which is both easy to implement in practice and intuitively

straight forward to understand, and Monte Carlo simulation results have also shown its

merits compared to both the SUW and the YL estimators. Moreover, the estimator is

general in the sense that it can be applied for any regression model with non-scalar error

variance-covariance matrix, although later we focus our discussion of its behavior in the one

way error random effects panel model setting. Our Monte Carlo simulation shows efficiency

gains compared to both the SUW and YL estimators. Asymptotic properties are also

established. To illustrate the applicability of our efficient estimator, we have also applied

the method in two real data settings. The first application investigates the relationship

between health expenditure and education, delivers empirical results for 140 countries across

5 years, and broadens the scope of existing literature from a macroeconomic point of view.

The second application estimates the famous environmental Kuznets curve and emphasizes

the importance of our nonparametric estimation procedure in such modellings.

The remainder of this chapter is organized as follows. Section 2 first proposes our

two-step estimation procedure with general error variance-covariance matrix and then gives

its asymptotic properties. Section 3 applies the proposed estimation method to the random

effects panel model with both non-profile and profile procedures considered. In addition,

a modified new non-profile estimator developed from the YL estimator is introduced in
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the same section, where restrictions are put corresponding with the random effects panel

model structure. Section 4 provides the Monte Carlo simulation results by comparing our

estimator’s finite sample behavior against that of others. In the Section 5 two empirical

applications are introduced to illustrate the usefulness of our proposed estimator and in-

teresting empirical conclusions, as well as policy inferences are presented. Finally, the last

section concludes.

5.2 The Nonparametric Model and Two-Step Estimator with

General Error Covariance

Let us start from the nonparametric regression model

yi = m(xi) + wi, i = 1, ..., n (5.1)

where yi is the dependent variable, xi is a p× 1 vector of exogenous regressors and wi is an

error term such that Ewi = 0 and Ewiwj = σij(θ) in which θ determines σij , i, j = 1, ..., n,

and m(·) is an unknown function. Further, we assume that wi is independent of xi. But

we permit the time series structure in either xi or wi. Moreover, we allow the non-identical

distribution over the i′s.

Denoting m = (m(x1), ...,m(xn))′ as an n×1 vector we can write (5.1) in a vector

form as

y = m+ w (5.2)

where y = (y1, ..., yn)′ and w = (w1, ..., wn)′ is such that

Ew = 0 and Eww′ = Σ(θ) (5.3)
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in which Σ = Σ(θ) is an n×n matrix. Now, if we write a local linear approximation with for

xi of all the datapoints in (x1, ..., xn)′, for i = 1, ..., n, we have m(xi) ' m(x)+(xi−x)′β(x) =

zi(x)δ(x), where zi(x) = [1 (xi − x)′] is 1 × (p + 1), β(x) = ∂m(x)
∂x , δ(x) = (m(x) β′(x))′.

Then, for i = 1, ..., n, yi ' zi(x)δ(x) + wi can be written as

y = Z(x)δ(x) + w (5.4)

where Z(x) is n × (p + 1). The well known LL estimator of δ(x) is obtained by minimiz-

ing w′K(x)w = (y − Z(x)δ(x))′K(x)(y − Z(x)δ(x)) with respect to δ(x), where K(x) =

K(x, h) = diag(Kh(x1 − x), ...,Kh(xn − x)), Kh(·) = K(·/h)/hp, K(·) is a kernel function,

and h is the bandwidth parameter. This is given by

δ̂LL(x) = (Z ′(x)K(x)Z(x))−1Z ′(x)K(x)y. (5.5)

From this the LL estimator of m(x) = e′δ(x) is

m̂LL(x) = e′δ̂LL(x) (5.6)

where e = (1, 0, ..., 0) as a (p+ 1)× 1 vector.

This LL estimator can still be improved upon since the information hidden in

the error variance-covariance matrix Σ is not utilized For this reason, here we propose an

efficient two step estimation procedure for m(x) and δ(x) which uses the information in

(5.3). This is as follows.
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Starting from equation (5.2), we have

y = m+ w (5.7)

= m− Σ−1/2w + w + Σ−1/2w

= m+ (I − Σ−1/2)w + u

= m+Hw + u,

where u ≡ Σ−1/2w is the transformed error term such that Eu = 0 and Euu′ = I, and

H ≡ I − Σ−1/2. Define y∗ ≡ y −Hw we have

y∗ = m+ u. (5.8)

The two step more efficient (2S) estimators of δ(x) and m(x) are given by

δ̂2S(x) = (Z ′(x)K(x)Z(x))−1Z ′(x)K(x)ŷ∗ (5.9)

and

m̂2S(x) = e′δ̂2S(x) (5.10)

where ŷ∗ = y − Ĥŵ is based on the first stage estimator m̂LL in which ŵ = y − m̂LL and

Ĥ = I − Σ̂−1/2 with Σ̂ = Σ(θ̂) and θ is estimated by θ̂ at
√
N rate.

Let fi(x) denote the marginal density of xi and f̄ = f̄(x) = limn→∞ n
−1
∑n

i=1 fi(x).

We have the following theorem depicting the asymptotic properties for the two-step esti-

mator.

Theorem 1 Under proper regularity conditions A1-A4 given in the appendix, we have

√
nhpDh(δ̂2S(x)− δ(x)−B2S)→d N(0,Ω2S)
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where p equals the length of the multivariate xi, B2S =

(κ21
2 h2

∑p
j=1

∂2m(x)
∂x2j

0p×1

)
and Ω2S =(κ02)p/f̄(x) 01×p

0p×1
κ22(κ02)p−1

κ221f̄(x)
Ip

 , fi(x) is the marginal density of xi, Dh = diag(1, h, ..., h) is

a (p+ 1)× (p+ 1) matrix, κij =
∫
tik(t)jdt for i, j = 0, 1, 2.

Theorem 1 implies that for the two-step estimator of m(x), m̂2S(x)

√
nhp(m̂2S(x)−m(x)− κ21

2
h2

p∑
j=1

∂2m(x)

∂x2
j

)→d N(0, (κ02)p/f̄(x))

and for the two-step estimator of the derivative β(x), β̂2S(x)

√
nhph(β̂2S(x)− ∂m(x)/∂x)→d N(0,

κ22(κ02)p−1

κ2
21f̄(x)

Ip).

The proof of Theorem 1 is provided in the Appendix.

5.3 Nonparametric Panel with Random Effects

5.3.1 Nonparametric Two Step Estimator in Panel

To apply the above method in the panel model with random effects, let us start

from the model

yit = m(xit) + αi + εit, i = 1, ..., n, t = 1, ..., T (5.11)

= m(xit) + wit,

where yit is the dependent variable, xit is a p×1 vector of exogenous regressors, αi captures

the individual effect, which follows N(0, σ2
α) and εit is the idiosyncratic error which follows

N(0, σ2
ε). We assume for simplicity that εit is independent of αi and xit.
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After vectorization, (5.11) can be rewritten as

y = m+ α+ ε (5.12)

= m+ w,

where y and ε are nT × 1 vectors, α = (α1ι
′
T , ..., αnι

′
T )′, ιT is a vector of ones with length

T, m = (m(x11), ....,m(x1T ), ...,m(xn1), ...,m(xnT ))′, w ≡ α + ε = (w′1, ..., w
′
n) and wi =

(wi1, ..., wiT )′, i = 1, ..., n. Thus, the variance-covariance matrix for the error w can be

written as

Eww′ ≡ Σ = σ2
α(In ⊗ JT ) + σ2

ε(In ⊗ IT ) (5.13)

= σ2
1P + σ2

εQ

where Il are identity matrices of dimension l, l = n, T and nT respectively, JT is a matrix

of ones with dimension T, P = In⊗ J̄T , Q = InT −P and J̄T = JT /T, σ
2
1 = Tσ2

α+σ2
ε . From

the spectral decomposition as in Baltagi (2008) we note that

Σ−1/2 =
1

σ1
P +

1

σε
Q. (5.14)

Next, from (5.12) and (5.7) we can write

y∗ = y −Hw = m+ u (5.15)

where u = Σ−1/2w and H = I − Σ−1/2, in which Σ−1/2 is given in (5.13) and (5.14).

Now to implement, we perform the LL estimation first to obtain the ŵ as regression

residuals. Also, we obtain Ĥ = I− Σ̂−1/2 by estimating Σ̂ from the estimators of σ̂α and σ̂ε.

Following Henderson and Ullah (2005), among others, σ̂2
ε = 1

N(T−1)

∑
i

∑
t(ŵit− ̂̄wi)2 where
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̂̄wi =
∑

t ŵit/T and as before, ŵit are the i, tth element from ŵ .Further σ2
1 = Tσ2

α + σ2
ε ,

when σ̂2
1 = T

∑
t
̂̄w2
i /N is obtained, which gives σ̂2

α = (σ̂2
1 − σ̂2

ε)/T . This procedure gives

y̌∗ = y − Ĥŵ in operation, and our two-step estimator is

δ̂2S(x) = (Z ′(x)K(x)Z(x))−1Z ′(x)K(x)y̌∗ (5.16)

where the nT × (p + 1) matrix Z(x) = (1 (xit − x)′)′ for i = 1, ..., n, t = 1, ..., T, Kx =

diag{Kh(x11 − x), ...,Kh(xnT − x)}, and hence m̂2S(x) = e′δ̂(x) and the derivatives β̂2S(x)

can also be obtained from δ̂2S(x).

This estimator is obtained from performing the LL in the first step and then use

the residuals for the second step, thus, no profiling technique is adopted here. The following

Theorem 2 gives the asymptotic properties of the estimator in the panel data setting.

Theorem 2 Under proper regularity conditions A1-A4 given in the appendix, we have

√
nThpDh(δ̂2S(x)− δ(x)−Bpanel

2S )→d N(0,Ωpanel
2S )

where p equals the length of the multivariate xit,. B
panel
2S =

(κ21
2 h2

∑p
j=1

∂2m(x)
∂xj

0p×1

)
and

Ωpanel
2S =


(κ02)p/ 1

T

∑T
t=1 ft(x) 01×p

0p×1
κ22(κ02)p−1

κ221
T

∑T
t=1 ft(x)

Ip

 , ft(x) is the marginal density of xit,

Dh = diag(1, h, ..., h) is a (p+ 1)× (p+ 1) matrix, κij =
∫
tik(t)jdt for i, j = 0, 1, 2.

Theorem 2 implies that

√
nThp(m̂2S(x)−m(x)− κ21

2
h2

p∑
j=1

∂2m(x)

∂xj
)→d N(0, (κ02)p/

1

T

T∑
t=1

ft(x))

and

√
nThph(β̂2S(x)− ∂m(x)/∂x)→d N(0,

κ22(κ02)p−1

κ221
T

∑T
t=1 ft(x)

Ip).
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The proof of Theorem 2 could be found in the Appendix.

Alternatively, we can also use the profile least squares technique to implement this

method and get the two-step estimator. Now, to simplify, let’s rewrite y = m+Hw + u as

y = m+ Λθ + u (5.17)

where Λ =

 ŵ11 · · · ŵ1t · · · ŵn1 · · · ŵnT∑T
t6=1 ŵ1t · · ·

∑T
t6=T ŵ1t · · ·

∑T
t6=1 ŵnt · · ·

∑T
t6=T ŵnt


′

, θ =

(
c

d

)
, c =

1 − 1
σε

+ 1
T ( 1

σε
− 1

σ1
), d = 1

T ( 1
σε
− 1

σ1
) and σ2

1 = Tσ2
α + σ2

ε . Note here that because of the

setting of c and d, we need the estimate of d to be positive all the time.

As equation (5.17) shows, in y∗ = y − Λ̂θ = m + u, with Sy∗ = m, replace m, θ

with m̂, θ̂ respectively, we have

(I − S(x))y = (I − S(x))Λθ + u (5.18)

where S(x) = (1 0)(Z ′(x)K(x)Z(x))−1Z ′(x)K(x).

So, we have

θ̂ = {Λ′(I − S(x))′(I − S(x))Λ}−1(I − S(x))′(I − S(x))y (5.19)

and θ̃ = θ̂ if d̂ ≥ 0,

(
ĉ

0

)
otherwise. Last, we use the local linear least squares method

to do the regression to complete the estimation procedure. The asymptotic properties of

this estimator can easily be extended from that of the two-step estimator and YL. And the

simulations give comparable performances of these two estimators, the results are available

from the authors on request.
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5.3.2 The Non-Profile Estimator Developed from Cholesky Decomposi-

tion

In the YL estimation method in the panel setting, they used Cholesky decomposi-

tion of Σ to incorporate the information from the error terms. Specifically, Σ is decomposed

by a lower triangle matrix Φ with ones on the main diagonal and φi,t as the i, tth off-diagonal

element such that ΦΣΦ′ = D ⊗ In and E(Φwiw
′
iΦ
′) ≡ Eeie

′
i, where D = diag(d2

1, ..., d
2
T ) is

a diagonal matrix and ei = Φwi. Through this transformation, their model can be written

as

ydel = mdel + F̂ φ+ edel (5.20)

where ydel = (y12, ..., ynT )′, edel = (e12, ..., enT )′, mdel = (m(x12), ...,m(xnT ))′ are obtained

by deleting the first observation of each i from y, e and m, φ = (φ21, ..., φT,T−1)′ with dimen-

sion T (T−1)
2 ×1 and ŵit, i = 1, ..., n, t = 1, ..., T, comes from the first stage LL estimation of y

on x; and F̂ = (F̂12, ..., F̂1T , ..., F̂nT )′ with F̂iT = (0′(T−2)(T−1)/2, ŵi,1, ..., ŵi,T−1, 0
′

(T−1)T/2−(T−1)T/2),

0k being a vector of zeros with k length. It is interesting to note that the model considered

by YL is essentially the model y = m+ (I − Φ)w + Φw = m+Hcw + e where Hc = I − Φ

based on Cholesky decomposition matrix.

Then, YL suggested a profile estimation procedure where y∗del = ydel − F̂ φ =

m(xdel) + edel. This procedure utilizes LL estimation and obtains the profile least squares

estimator for φ from

(I − Sc(xdel))ydel = (I − Sc(xdel))F̂ φ+ edel (5.21)

where Sc(xdel) = (1 0)(Z ′(xdel)W (xdel)Z(xdel))
−1Z ′(xdel)W (xdel), W (xdel) = diag{Kh(x12−
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x)/d̂2
2, ...,Kh(x1T − x)/d̂2

T , ...,Kh(xnT − x)/d̂2
T } with Kh(t) = h−1K(t/h), and K(·) is the

kernel function and h is the bandwidth, d̂t is any consistent estimator of dt. In operations,

YL estimated m(x) by adding the first observations back for each individual in the proper

places, and obtained the estimator φ as

φ̂ = {F̂ ′(I − Sc(xdel))Ĝ−1(I − Sc(xdel))F̂}−1F̂ (I − Sc(xdel))′Ĝ−1(I − Sc(xdel))y (5.22)

where Ĝ = diag(d̂2
2, ..., d̂

2
T , ..., d̂

2
2, ..., d̂

2
T ). Then from ŷ∗ = y − F̂ φ̂ = m + e, the profile YL

(YL) estimator can be obtained. YL also provided the asymptotic properties of the their

estimator.

However, when we apply the YL method, we notice that in the profiling process,

a huge number of parameters in φ needs to be estimated, which reduces the degree of

freedom in the model. If we do have some knowledge about the structure of the error

variance-covariance matrix, e.g. one way error random effects as in this paper, then using

this we can simplify the YL estimation. Now we propose the restricted non-profile YL

(NYL) estimation method.

Since in the one way error component model with random effects, the structure of

variance-covariance matrix of the error terms Σ in (5.13) could give the specification of φ

as

φ = (−π, π

π − 1
,

π

π − 1
,

π

2π − 1
, ...,

π

(T − 2)π − 1
) (5.23)

where π = − σ2
α

σ2
α+σ2

ε
. For simplicity, let us rearrange F̂ φ as F̂∗φ∗ where F̂∗, with dimension
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n(T − 1)× (T − 1), is

F̂∗ =



ŵ11 0 · · · 0

0
∑2

i=1 ŵ1i
...

...
. . . 0

0 · · · 0
∑T−1

i=1 ŵ1i

...

ŵn1 0 · · · 0

0
∑2

i=1 ŵni
...

...
. . . 0

0 · · · 0
∑T−1

i=1 ŵni



, (5.24)

and

φ∗ = (φ21, φ31, ..., φT1)′ (5.25)

= (−π, π

π − 1
,

π

2π − 1
, ...,

π

(T − 2)π − 1
)′

without the repetitions as shown in the expression of φ. So the last step will be the local

linear estimation corresponding with

y = m+ F̂∗φ∗ + e. (5.26)

As the Cholesky decomposition shows

dt = diag(a,
(a+ b)(a− b)

a
,
(a+ 2b)(a− b)

a+ b
, ...,

(a+ (T − 1)b)(a− b)
a+ (T − 2)b

) (5.27)

where a = σ2
α + σ2

ε , b = σ2
α.

As shown in (5.25), to estimate φ∗, we just need to estimate two parameters,

σ2
α and σ2

ε . Also following Henderson and Ullah (2005) and others, σ̂2
α and σ̂2

ε can be

88



obtained as described in section 5.2. Thus, with σ̂2
α and σ̂2

ε and π̂ = − b̂
â = − σ̂2

α
σ̂2
α+σ̂2

ε
,

φ̂∗ = (−π̂, π̂
π̂−1 ,

π̂
2π̂−1 , ...,

π̂
(T−2)π̂−1) can be calculated directly. Then, inserting the first

observations back, we have ŷ∗ = y − F̂∗φ̂∗ = m + w. Then the last step follows that of

section 5.2. The asymptotic properties follows that of the YL estimator, however, from the

finite sample behavior in the next section we can still observe the improvement of the NYL

upon the YL estimator. This is due to the reason that in the finite sample, the YL needs

to do the profiling which reduces the degree of freedom, compared to the NYL estimation.

As mentioned in the introduction, to improve upon the LL estimator in (5.5), many

works have been done by incorporating the information in the error variance-covariance

matrix. Many of such estimators are written as δ̂(x) = (Z ′(x)W (x)Z(x))−1Z ′(x)W (x)y

where W (x) is the weighting matrix depending on the matrix of kernel function and error

variance-covariance matrix. For example, Lin and Carroll (2000) used
√
K(x)Σ−1

√
K(x) or

Σ−1
√
K(x) and Ullah and Roy (1998) considered W (x) = Σ−1/2K(x)Σ−1/2. Yet the finite

sample simulations show that these estimators cannot always outperform the LL estimator,

see Henderson and Ullah (2012). To cope with this, MY proposed a method where a two step

estimator is developed by setting W (x) = K(x) but the dependent variable is transformed

to HMY P
−1y + (I − HMY P

−1)m, where PP ′ = Σ and HMY is composed as a diagonal

matrix where the information of the diagonal elements of the Σ−1/2, v11, ..., vnn are extracted

and a transformed error with a new diagonal error variance-covariance matrix is obtained.

MY showed that this estimator always dominates the LL estimator. To further improve

upon the estimator by MY, SUW proposed a method where the diagonal error variance-

covariance matrix is further transformed into an identity matrix thus more efficiency is
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gained. In their case, Z(x) = H−1
MY Z(x) and the dependent variable is transformed to

P−1y+ (H−1
MY −P−1)m. The efficiency gain over MY is also proven in SUW both in theory

and by Monte Carlo simulation results. However, all these transformations are not quite

straight forward in the sense that the integrity of m is affected during the transformation.

Another recent work that maintains the integrity of m is YL. As introduced in

the next section, after the Cholesky decomposition, the information in the error term is

incorporated. However, heteroskedasticity remains after their transformation, whereas in

our proposed procedure, homoskedasticity is established after our transformation, which

saves us from the trouble of estimating the standard deviation of diagonal elements of the

transformed error term.

Furthermore, under the same assumption of the above theorem, the asymptotic

variance of the univariate local linear estimator m̂LL(x) with working independence cor-

relation structure (Lin and Carroll (2000)) is κ02
nhT ( 1

T

∑T
t=1 ft(x)σ−2

t )−1 where Eww′ = σ2
t .

Thus, if σ2
t ≥ 1, t = 1, ..., T, our proposed two-step estimator is asymptotically more ef-

ficient than the LL estimator. Moreover, the asymptotic variance of the YL estimator

is κ02
nhT ( 1

T

∑T
t=1 ft(x)d−2

t )−1, thus, if d2
t ≥ 1, t = 1, ..., T, our estimator is also asymptoti-

cally more efficient than the YL estimator. The equality holds only when Σ is an iden-

tity matrix. In addition, the asymptotic variance of the univariate SUW estimator is

κ02
nhT ( 1

T

∑T
t=1 ft(x)v2)−1, where v = 1

σε
− (1 − σε

σ1
) 1
Tσε

, therefore, if v2 ≤ 1, our proposed

two-step estimator could be asymptotically more efficient than the SUW estimator.
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5.4 Simulation Results

Now we report the Monte Carlo simulation results to evaluate the finite sample

performances of the estimators described in Section 3. In Yao and Li (2013), they compared

the behavior of the YL estimator against a series of other estimators, e.g. Wang (2003),

Chen and Jin (2005), Lin and Carroll (2006), Chen, Fan, Jin (2008) and showed that on

average the YL estimator works in a comparable way, especially when the bandwidth is

properly selected, the YL estimator outperforms that of the others. Hence for reporting

purposes, we will focus on the comparison of the YL estimator and our proposed estimators.

Also, we will compare our results with the inclusion of another newly developed

estimator by SUW. They improved upon the MY estimator by changing the error variance-

covariance of the transformed model hence gained efficiency. Thus, in the following simula-

tion results, we will report the comparisons between our proposed two-step estimator and

the YL estimator, restricted NYL estimator, SUW estimator on their performances of both

m(x) and the derivative ∂m(x)/∂x, i.e. β(x). We measure the behaviors on the basis of

”risk”, i.e. the expected mean squared error (MSE). Also, we include the bias and standard

deviation for each estimator for completeness.

Consider the following data generating process (DGP):

yit = m(xit) + αi + εit, i = 1, ..., n, t = 1, ..., T, (5.28)

where the univariate random variable xi is generated independently from N(0, 1) and we

specify two forms of m(x). In specification 1, m(x) = 1 − 0.9e−2x2 , and in specification 2,

m(x) = 0.5 + exp(−4x)/(1 + exp(−4x)), as chosen by SUW. For the error terms, αi and εit
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are independently and identically distributed following (i.i.d.) N(0, 1). For all estimators,

Epanechnikov kernel is chosen. For the selection of the first step bandwidth h, we use the

cross-validation under AIC criterion which is available in R version 2.13.1. Also as shown in

SUW, in the second step the bandwidth h′ used should be h′ = h
4
5 . To keep the consistency,

we treat the rest of estimators in the same way. Based on the estimation results of m(x)

and the derivative ∂m(x)/∂x at all the data points, the mean squared error (MSE) are

calculated and averaged across 240 repetitions. n is set to be 100 and T is fixed at 4. Table

1 reports the finite sample behaviors for the estimators we have: the naive LL estimator,

the SUW estimator, the YL estimator, the NYL estimator, and our two-step estimator.

Several inferences could be made from Table 1. First, our two-step estimator works

the best since it reduces “risk” to the largest extent compared to all other estimators for

both m(x) and ∂m(x)/∂x. Especially compared with SUW estimator, the efficiency gain is

obtained with the ease in implementation, without extracting elements in the HMY matrix,

which substantially facilitates the computation and reduces the time and resources required

to perform the Monte Carlo and/or empirical estimations. Second, the efficiency gain of

NYL over YL demonstrates that imposing restrictions in the YL method under the random

effects panel model structure can improve upon the original estimator. This is due to

the reduction of the number of parameters to be estimated. In the original YL method,

φ11, φ21, φ22,φ31,..., φnT are all to be estimated, yet by investigating the structure of the

variance-covariance matrix, we ease the problem and hence increase efficiency in the finite

sample performances.

92



5.5 Empirical Illustrations

5.5.1 The Estimation Method Used in the Multivariate Scenario

It is straightforward to apply our estimation method in the multivariate scenario.

Yet here in the empirical applications we will use the semiparametric framework to do the

analysis. This choice helps in two ways. First, it avoids the ”curse of dimensionality” that

multivariate nonparametric regressions tend to encounter. Second, applying the semipara-

metric procedure significantly reduces the time that we need to complete the estimation.

Now let us start from the model

yit = m(xit) + ritζ + wit, i = 1, ..., n, t = 1, ..., T (5.29)

or after vectorization,

y = m(x) + rζ + w, (5.30)

where ζ, a q × 1 vector, is the coefficient vector of the variable rit, which is of dimension

1× q. q controls the number of independent variables that we have in the parametric part

of the model. rit is independent from wit, r is of dimension nT × q. We adopt the Robinson

(1988) semiparametric estimation method to do the estimation of ζ in the first step. The

estimation of ζ by Robinson (1988) is intuitive as follows. First apply the conditional

expectation operator E(·|xit) and obtain

E(yit|xit) = E(m(xit)|xit) + E(ritζ|xit) + E(wit|xit) (5.31)

= m(xit) + E(rit|xit)ζ

with the law of iterated expectations. Define the conditional expectation gy at point x as
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gy(x) = E(yit|xit = x) and similarly gr(x) = E(rit|xit = x), then equation (5.31) can be

rewritten as

gy(x) = gr(x)ζ +m(x). (5.32)

Subtract (5.32) from (5.30), we get

y − gy(x) = (r − gr(x))ζ + w (5.33)

or ey = erζ + w

where ey = y − gy(x) and er = r − gr(x) are self-evident. To get the estimator of ζ, ζ̂, we

obtain êy = y − ĝy(x) and êr = r − ĝr(x) in the first stage and then run the LS of êy on

êr in the next stage. ĝy(x) and ĝr(x) can be obtained through the LL estimation. Then we

form the ”new” dependent variable yit− ritζ̂ in the following nonparametric estimations as

what we have described in the previous two sections.

5.5.2 Relationship between Education and Health Expenditure

Starting from Grossman’s (1972a, 1972b) model of health production, substan-

tial evidence indicating the causal relationship between health expenditure and education

has been found (Grossman and Kaestner 1997, Cutler and Lleras-Muney 2006, Yoo 2011).

Increased education may lead to the reduction of health care expenditure and Grossman

(1972a, 1972b) posited that increased educational attainment improves individual health

through greater productivity efficiency: with given amount of increase in education, people

receive higher education tend to produce ”health” more efficiently. In other words, the

marginal product of “health” is increasing. Also, Rosenzweig and Schultz (1983a, 1983b,
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RS hereafter) argued that individuals with higher education have more information to help

them make the decisions on health maintenance. Empirical datasets of the US are also

widely used to demonstrate their claims. For instance, the hypothesis that education re-

duces health expenditure are verified over the years, from one of the earliest literature, RS,

which used 1967, 1968, 1969 National Natality Followback Surveys (USDHEW) to examine

approximately 10,000 live births, to a latest one done by Yoo (2011), which was conducted

with the Medical Expenditure Panel Survey (MEPS-HC).

However, two limitations remain. One is that they analyzed the relationship be-

tween education and health expenditure from the microeconomic point of view, rather than

a broader, global prospective. Also, among many other works, most work drew their con-

clusion based on the US data only, which lacks generality. Second, the way in which the

analysis was done could be improved by introducing nonparametrics, which gives more

freedom than constructing a parametric model based on assuming the error terms follow a

specific distribution.

Taking the above concerns into account, we emphasize the merit our model has

in estimating the relationship between education and health expenditure. We will use the

Greene (2004) panel dataset from the World Health Organization to perform our analysis,

where n, number of countries is set to be 140 and T = 5 since we have years 1993 to 1997.

The dependent variable is per capita public and private health care expenditure (HEXP)

measured in 1997 dollars and the average years of education (EDUC) is our independent

variable xit. To partial out the effects related to other independent variables, we use rit as
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the composite measure of health care delivery (COMP)∗. More details could be found from

Greene (2004). Thus the model becomes

HEXPit = m(EDUCit) + COMPitζ + wit, i = 1, ..., n, t = 1, ..., T (5.34)

where all variables are measured in log terms. This is due to two reasons. First, as pointed

by Yoo (2011), health care expenditure is highly positively skewed, whose skewness could

be reduced by taking the log terms. Second, by measuring in log format, the derivatives

that we get will give us the elasticity of education on health expenditure directly.

The estimated mean elasticity for our two-step estimator of education is 0.7414,

whose positivity states that over the 140 countries we have, actually education increases

health expenditure, which is in contrast to what Grossman (1972a, 1972b), RS(1983a,

1983b), Yoo (2011) had as the conclusion for their hypothesis. Yet remember that when

they analyzed the elasticity of education, they used the US data only; by looking at the

US observations, the mean elasticity that we estimated with our model is −0.1810, which is

consistent with their empirical findings. More specifically, Figure 1 captures the elasticity

of all countries over the 5 years. Several inferences could be drawn from Figure 1 here.

First, the elasticity curve has several intersections with the 0 line, which demonstrates that

overall, the elasticity is not a constant term across countries, which supports the usage of

nonparametric estimation. Second, in countries with low average level of education ranging

∗Here, personal income, gini coefficient, population density, the country’s demoncracy level, government

efficiency, percentage of health care paid by the government and whether a country belongs to OECD, etc.

are all heterogeneity indicators of cross country. Thus, they all enter into the term αi, which is to be

estimated in the second stage.
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from no education to about 4 years of education, e.g. Bolivia, generally more education

leads to the increase of health expenditure. This could be explained by the fact that more

educated people usually have more access to better medicine and health facilities, and

thus correspondingly they will spend more on their health issues. And for most countries,

especially where people receive higher education (e.g. more than 7.3 years), the hypothesis

that there’s the inverse relationship between education and health expenditure no longer

holds. People are more willing to pay for their health as they are better educated, their

lives worth “more” than the others as they have better access to health care facilities or

more “capacity” to receive better health care. This “capacity” could be understood as

their purchasing power, or ability to communicate with the doctors and follow the doctors’

instructions more effectively.

Figure 2 captures the elasticities for OECD countries. From this figure, we can

observe that for these OECD countries, most people receive higher education than people

from the rest of the world since people have more purchasing power to pay for education in

developed countries. Also, as education increases, the elasticity of education on health care

expenditure increases from negative to positive. This transition could also be understood

by the logic provided before.

Now let’s look at the elasticity of education in the US as shown in Figure 3. Here

we can see that the negative values we have as elasticities support the hypotheses made by

Grossman (1972a, 1972b), RS (1983a, 1983b) and Yao (2011). Within the US, it is indeed

true that as education increases, health expenditure decreases. However, when we look at

the elasticity of the European countries, this is not the case. The positivity of the elasticities
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for Greece in Figure 4 shows that education serves as one of the key factors increasing health

expenditure. Also, over the 5-year period we can almost observe an increase in elasticity,

which means that over the years the given the same increase in education, more health care

expenditure needs to be made.

One of the possible explanation for the positivity among the OECD countries,

especially the European countries, could be understood by their high social welfare system.

Their system doesn’t motivate them to use “information on health” more efficiently since

they will get their medical care no matter what. Thus, people with more education are not

constrained by this “budget” as the American people are. Yet for the European people,

the government will take care of it with the near perfect social welfare plan, thus this

correspondence within the US system no longer exists.

5.5.3 The Environmental Kuznets Curve (EKC)

As the human race is building the world and developing economy, environmental

costs seem to be inevitable. What kind of relation does the cost, such as environmental

damage and/or pollution, and the developing economy have, and how is this relation evolv-

ing raise the interests of economists. One of the ideas that the economists hold serving as

an explanation would be the Kuznets curve hypothesis. It posits that there’s an bell-shaped

relation between environmental damage/pollution and Gross Domestic Product (GDP). At

the initial stages of an economic development, GDP will be increased as more environmental

damages are done, which happens because the marginal benefit of economic gains exceeds

the social marginal cost of doing damage to the environment. Yet as marginal cost is in-
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creasing and marginal benefit is decreasing, a threshold exists. Later when a threshold is

met, GDP will reach its peak for a given environmental condition and as more damages are

done, GDP will be decreasing.

Many works have been done to study whether the Kuznets curve hypothesis could

be verified. Mostly cited as the first literature, Malenbaum (1978) derived an inverted U-

shaped relationship between the intensity of metal use and income. Yet the topic gained

its popularity in the 1990s. Grossman and Krueger (1991) investigated the relationship

between air quality and economic growth in a random effect panel model with 42 countries’

data. Among the three air pollutants they used as indicator, sulfur dioxide (SO2) and smoke

revealed the bell shape that Kuznets curve proposed. For a more detailed literature review,

see Dinda (2004). As early works were done in the parametric setting, later economists

began the use of quadratic, cubic parametric models and nonparametric models to study

the hypothesis. For instance, Azomahou, Laisney and Van (2006) used both parametric

and nonparametric panel estimation to verify the existence of the Kuznets curve. While

it is indeed true that using a parametric model, with CO2 emissions as the environmental

indicator, they found evidence of the Kuznets curve; however with nonparametric fixed ef-

fects analysis, the hypothesis was rejected. Also, parametric model was rejected against the

nonparametric model specification. For more views on semiparametric and nonparametric

studies on EKC, see Zapata, Paudel and Moss (2008).

Here in our application, we will use Particulate Matter 10 (PM10) as our environ-

mental indicator as in Nigaru (2012), and economic development is measured by the Gross

Domestic Product (GDP). In this panel data, n = 160 and T = 4. The dependent variable
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yit is PM10 with unit µg/m3, while the independent variable xit is real GDP per capita

measured in constant 2000 US dollars. Both are measured in log terms. Three controls are

selected as trade openness measured in percentage in 2005 constant price, coal consumption

per capita measured in ton, and proportion of urban population as a percentage of total

population, which forms the vector of rit. Figure 5 reports the estimation result.

When we look at the estimation result that we get, it’s very obvious that when

we use PM10 as the indicator, we generate similar conclusion as in Azomahou, Laisney

and Van (2006). In other words, it is possible that when GDP per capital is high yet not

too high, we are going to observe a fact that even when the economy has already evolved

into a more developed phase, environmental damage may still stimulate the economy to

reach a higher GDP level. And in general, we have the negative relation between PM10

and GDP, which means environmental damage would harm the economy most of the time.

Thus, policy makers should still focus on directing the economy to a balanced growth path

where sustainable economic development should be encouraged.

5.6 Concluding Remarks

We have developed a new two stage local estimation procedure for regression func-

tions and their derivatives in the nonparametric setting. This is straight forward and easy

to implement in practice. Especially, application of this method using random effects panel

data with one-way error components has also been demonstrated. Monte Carlo simulation

results are also provided to show the efficiency gain associated with our estimator. Monte

Carlo simulation results and empirical applications have also been provided to demonstrate
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the usefulness of the estimation procedure. Moreover, the method can be easily extended

to other frameworks, such as varying-coefficients models, etc. The estimation procedure

proposed in our paper can also be used for the cluster and seemingly unrelated regression

models, or panel with serial correlations and/or heteroskedasticity. Further, it is straight

forward to use for the random effects panel with conditional variance-covariance Σ(x) esti-

mated nonparametrically. Such extensions are subjects for future research.
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Table 5.1: Simulation results for estimators of m(x) and ∂m(x)/∂x

Specification 1 Estimator LL SUW YL NYL 2S

m(x) MSE 0.0766 0.0510 0.0539 0.0534 0.0503
Std 0.2766 0.2254 0.2320 0.2314 0.2239

∂m(x)/∂x MSE 0.2496 0.1688 0.1738 0.1717 0.1653
Std 0.4996 0.4109 0.4169 0.4143 0.4065

Specification 2 m(x) MSE 0.0683 0.0463 0.0489 0.0485 0.0457
Std 0.2613 0.2152 0.2211 0.2202 0.2138

∂m(x)/∂x MSE 0.1804 0.1200 0.1273 0.1248 0.1185
Std 0.4246 0.3463 0.3567 0.3531 0.3441

Figure 5.1: Elasticities of Education for 140 Countries
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Figure 5.2: Elasticities of Education for OECD Countries
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Figure 5.3: Elasticities of Education for the US
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Figure 5.4: Elasticities of Education for the Greece
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Figure 5.5: Elasticities of PM10 for 160 Countries
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Chapter 6

Conclusion

This thesis focuses on the topics of ridge-type shrinkage estimation from both the

point of view of both semiparametric and model averaging, as well as the nonparamet-

ric estimation with panel data random effects. By relaxing the assumptions in functional

forms between the regressors and the regressand, and regressors to be considered, the top-

ics bring more possiblities for economists to deal with model uncertainty, parametrically,

semiparametrically, and nonparametrically. Chapter 2-3 discusses the Ridge-type shrink-

age estimation in both ordinary and general ridge regression settings. Both simulation

results and the empirical examples are adopted to prove the efficiency of the proposed es-

timators. Chapter 4 provides a comprehensive review on topics related to model selection,

model averaging, parametrically and nonparametrically. In addition to exploring the recent

developments in these areas, this chapter also proposes interesting extensions and future

directions along the line. Chapter 5 brings economists’ attention to panel data estimation

where the random effects are considered. A two stage estimator is proposed, which could
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result in a smaller MSE when certain conditions are satisfied. To illustrate the usefulness

of the estimation procedure, two empirical applications are also considered.

More specifically, chapter 2 proposes a class of ordinary ridge estimation proce-

dures where we start from kernel estimation, and by building up the connection between

ridge estimation and the kernel density estimator of the coefficients, MSE is reduced in

the new estimator. More over, through minimizing th unbiased estimator of MSE of the

predictor, another new estimation procedure provides us with nice regression results which

coincide with the Mallows criterion (Mallows, (1973)). This interesting theoretical results

also have proven the usefulness of the new criterion. Empirical application where the fore-

casting behavior of the proposed estimators are also reported, where large improvements of

the out of sample R squared upon the feasible ordinary ridge estimation are observed.

Chapter 3 extends the work of Chapter 2 into the general ridge regressions’ frame-

work. Here an asymptotically optimal semiparametric ridge regression procedure is exten-

sively studied. In addition to providing the asymptotic properties of this estimator, Monte

Carlo simulations with different DGP are also done to show the numerical behavior. Also,

a class of general ridge estimators incorporating Mallows model averaging and Jackknife

model averaging are also proposed. The latter estimators performs relatively well when the

model uncertainty passes a threshold. Thus, we complete the estimation recommendation

by using the AOSP when model uncertainty is small and using the GRRM/GRRJ when

the error variances are large. Two empirical applications, where we forecast wage and ex-

cess stock returns, are considered to demonstrate the real life behaviors of the proposed

estimators.
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Chapter 4 explores the literature in the realm of model averaging and model se-

lection for both parametric and nonparametric framework by introducing the concepts and

recent developments. Mainly focused on, yet not confined with, frequentists’ works in model

averaging and model selection, this review is comprehensive and inspiring. In addition to in-

troducing major works on parametric model averaging and model selection, nonparametric

model averaging estimation procedure is also proposed to extend the readers’ interests.

In chapter 5 of the thesis, a two-stage panel random effects estimation procedure

is studied where reduction of the MSE is achieved when certain conditions are satisfied.

This work improves upon the recent proposed estimation method proposed by Li and Yao

(2013). Theoretical proof, Monte Carlo simulations are provided to illustrate the good

behavior of the proposed estimator. In addition, two empirical applications are considered

to provide possible ways to adopt the estimation procedure. The first estimation investigates

the relationship between one’s educational level and his health expenditure; the second

estimates the environmental Kuznets curve nonparametrically. Both applications provide

interesting implications in the real life.
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Appendix A

Mathematical Derivations

A.1 Derivations in Chapter 2

Let f = f(x) denote the continuous density function of a random variable X

at point x, and x1, x2, ..., xn be the observations from f. As in section 2, kernel density

estimator f̃(xj) = 1
nh

∑n
i=1 k(

xij−xj
h ), where k(·) is the kernel function. In the population

Y = Xβ +U, Y is a scalar dependent variable, X = [X1, ..., Xq]
′ is a vector of q regressors,

β is an unknown vector of regression coefficients, U is an n×1 vector of random errors. We

make the following assumptions following Pagan and Ullah (1999):

A1. The observations x1, x2, ..., xn are independent and identically distributed

(i.i.d.).

A2. The kernel k(·) is a symmetric function around zero satisfying

(i)
∫
k(v)dv = 1,

(ii)
∫
v2k(v)dv = µ2 6= 0,
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(iii)
∫
k2(v)dv <∞.

A3. The second order derivatives of f are continuous and bounded in some neigh-

borhood of x.

A4. h = hn → 0 as n→∞.

A5. nhn →∞ as n→∞.

A6. EU = 0 and EUU ′ = σ2In .

Proof of Theorem 1.

Proof. Under the above assumptions, since

β̃(h) = (X ′X + nh2µ2I)−1X ′Y

= (X ′X + nh2µ2I)−1X ′(Xβ + U)

= (X ′X + nh2µ2I)−1((X ′X + nh2µ2I − nh2µ2I)β + U),

we have

β̃(h)− β = (X ′X + nh2µ2I)−1(X ′U − nh2µ2β)

= [I + (X ′X)−1nh2µ2I]−1[(X ′X)−1X ′U − (X ′X)−1nh2µ2β].

Let A = nµ2(X ′X)−1, then A = A′, hence

β̃(h)− β = (I + h2A)−1[(X ′X)−1X ′U − h2Aβ].

Since the window-width is small, or h2 → 0, we expand at 1, get a geometric series

at the right hand side as

(I + h2A)−1 = I − h2A+ h4A2 +O(h6).
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Thus

β̃(h)− β ' [I − h2A+ h4A2][(X ′X)−1X ′U − h2Aβ]

= (X ′X)−1X ′U − h2Aβ − h2A(X ′X)−1X ′U + h4A2β + h4A2(X ′X)−1X ′U,

and

Bias = E(β̃(h)− β) = h4A2β − h2Aβ,

V (β̃(h)− β) = E[(β̃(h)− β)(β̃(h)− β)′]

= σ2(X ′X)−1 − h2σ2(X ′X)−1A′ + h4σ2(X ′X)−1A′2 − h2σ2A(X ′X)−1

+h4Aββ′A′ + h4σ2A(X ′X)−1A′ + h4σ2A2(X ′X)−1

= σ2(X ′X)−1 − 2h2σ2 A
2

nµ2
+ h4[Aββ′A′ + 3σ2 A

3

nµ2
].

And hence the AMSE of β̃(h) is

AMSE = V (β̃(h)− β) + (Bias)2

= V (β̃(h)− β) + (h4A2β − h2Aβ)(h4A2β − h2Aβ)′

' V (β̃(h)− β) + h4Aββ′A′

= σ2(X ′X)−1 − 2h2σ2 A
2

nµ2
+ h4[2Aββ′A′ + 3σ2 A

3

nµ2
].

To minimize the risk, we need

E(β̃(h)− β)′(β̃(h)− β) = tr(AMSE) (A.1)

= σ2tr(X ′X)−1 − 2h2σ2 trA
2

nµ2
+ h4[2β′A2β + 3σ2 trA

3

nµ2
].
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The first order condition of equation (A1) gives ∂trAMSE
∂h = 0, and thus

h2 =
σ2trA2

2nµ2β′A2β + 3σ2trA3
.

Proof of Theorem 2.

Proof.

Under condition A1-A6 above, let D = (X ′X + nh2µ2I)−1, so D = D′ and

β̃(h)− β = (X ′X + nh2µ2I)−1X ′Y − β.

Thus MSE of β̃(h) is

MSE(β̃(h)) = E[(β̃(h)− β)′(β̃(h)− β)]

= E[(U ′X − nh2µ2β
′)D′D(X ′U − nh2µ2β)]

= E[U ′XD2X ′U ] + (nh2µ2)2β′D2β

= σ2tr(XD2X ′) + (nh2µ2)2β′D2β.

Since Ê(β̂−β)′(β̂−β) = s2tr(D2X ′X)+h2β̂D2β̂, where β̂ ∼ N(β, σ2(X ′X)−1),we

have

E(β̂′D2β̂) = E[(β̂ − β)′D2(β̂ − β)] + β′D2β

= E[(β̂ − β)′(X ′X)
1
2 (X ′X)−

1
2D′D(X ′X)−

1
2 (X ′X)

1
2 (β̂ − β)] + β′D2β

= E[Z ′CZ] + β′D2β

= σ2trC + β′D2β

where Z ≡ (X ′X)
1
2 (β̂ − β), C ≡ (X ′X)−

1
2D′D(X ′X)−

1
2 .
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Thus the unbiased estimator of β′D2β is β̂′D2β̂ − σ2trC, and the unbiased esti-

mator of the MSE of β̃(h) is s2tr(XD2X ′) + (nh2µ2)2[β̂′D2β̂ − s2trD2(X ′X)−1].

Proof of Theorem 3.

Proof. Under the same conditions with Theorem 2,

MSE(µ̃(h)) = E[(µ̃(h)− µ)′(µ̃(h)− µ)]

= E[(β̃(h)− β)′X ′X(β̃(h)− β)]

= E[(U ′X − nh2µ2β
′)D′X ′XD(X ′U − nh2µ2β)]

= E[U ′XD′X ′XDX ′U + (nh2µ2)2β′D′X ′XDβ]

= σ2tr[XD′X ′XDX ′] + (nh2µ2)2β′D′X ′XDβ.

Following the same logic in the proof of Theorem 2, the unbiased estimator of

(nh2µ2)2β′D′X ′XDβ is (nh2µ2)2[β̂′D′X ′XDβ̂ − s2tr(D′X ′XD(X ′X)−1)].

Thus, the unbiased estimator ofMSE(µ̃(h)) is s2tr(XD′X ′)2+(nh2µ2)2[β̂′D′X ′XDβ̂−

s2trD′X ′XD(X ′X)−1].

A.2 Derivations in Chapter 3

Proof of (3.38)

Proof. Observe that

R̃1(h) = (µ̂(h)− Y )′(µ̂(h)− Y ) + 2σ̂2tr(P (h)) (A.2)

= L(h) + U ′U − 2µ′P (h)U + 2µ′U + 2σ̂2tr(P (h))
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and

R1(h) = (P (h)µ− µ)′(P (h)µ− µ) + σ2tr(P 2(h))

= L(h)− U ′P 2(h)U − 2(P (h)µ− µ)′P (h)U + σ2tr(P 2(h)).

Hence to prove (3.38), it suffices to show that

sup
h∈H

|µ′P (h)U |
R(h)

= op(1), (A.3)

sup
h∈H

∣∣σ̂2tr(P (h))
∣∣

R(h)
= op(1), (A.4)

sup
h∈H

∣∣U ′P 2(h)U
∣∣

R(h)
= op(1), (A.5)

sup
h∈H

|(P (h)µ− µ)′P (h)U |
R(h)

= op(1) (A.6)

and

sup
h∈H

∣∣tr(P 2(h))
∣∣

R(h)
= op(1). (A.7)

Let λ(A) be the largest eigenvalue of the matrix A. From condition (3.37) and the

following formulae:

sup
h∈H

λ(P (h)) ≤ λ(X(X ′X)−1X ′) = 1,

sup
h∈H

tr(P (h)) ≤ tr(X(X ′X)−1X ′) = q,

sup
h∈H

U ′P (h)U ≤ U ′X(X ′X)−1X ′U,

(µ′P (h)U)2 ≤ µ′µU ′P 2(h)U ≤ µ′µλ(P (h))U ′P (h)U
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and

((P (h)µ− µ)′P (h)U)2 ≤ (P (h)µ− µ)′(P (h)µ− µ)U ′P 2(h)U ≤ R(h)U ′P (h)U,

we need only to show that

U ′X(X ′X)−1X ′U = Op(1), (A.8)

and

σ̂2 = Op(1). (A.9)

Equations (A.8) and (A.9) are implied by condition (3.36). The proof of (3.38) thus follows.

If in addition {L(ĥ)− ξ}ξ−1 is uniformly integrable, then

R1(ĥ)

infh∈H R1(h)
→p 1

follows from Zhang, Zou, Liang and Carroll (2014).

Proof of (3.41)

Proof. Observe that, with β̃(h) = B(h)β̂ and B(h) = (X ′X +D)−1X ′X,

R̂(h) = (B(h)β̂ − β̂)′(B(h)β̂ − β̂) + 2σ̂2tr(B(h)(X ′X)−1)

= L̃(h) + (β̂ − β)′(β̂ − β)− 2β̂′B(h)(β̂ − β) + 2β′(β̂ − β) + 2σ̂2tr(B(h)(X ′X)−1)

≡ L̃(h) + Ξ1(h) (A.10)
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and writing R(h) = MSE(h), we have

R(h) = (B(h)β − β)′(B(h)β − β) + σ2tr(B′(h)B(h)(X ′X)−1)

= L̃(h) + (β̂ − β)′B′(h)B(h)(β̂ − β)

−2β̂′B′(h)B(h)(β̂ − β) + 2βB(h)(β̂ − β) + σ̂2tr(B′(h)B(h)(X ′X)−1)

≡ L̃(h) + Ξ2(h). (A.11)

From the condition (3.39), we have β̂ − β = Op(n
−1/2), which, together with the

conditions (3.39)-(3.40) leads to

sup
h∈H

|Ξ1(h)|
R(h)

= op(1), (A.12)

sup
h∈H

|Ξ2(h)|
R(h)

= op(1). (A.13)

Hence, we can obtain (3.41).

A.3 Derivations in Chapter 5

Condition A1: The kernel K(·) is product kernel such that K(x) =
p∏
i=1

k(xi)

where k(·) is a univariate symmetric kernel with compact support ℵ such that (i)
∫
k(xi)dxi =

1; (ii)
∫
xik(xi)dxi = 0; (iii)

∫
x2
i k(xi)dxi = σ2

k; (iv) for all xi, x
′
i ∈ ℵ we have |k(xi)− k(x′i)| ≤

Ck |u− v|, Ck ∈ [0,∞).

Condition A2: (i) fi(x, θ0) is the marginal density of xi evaluated at x, with

fi(x, θ0) < c for all i; (ii) f̄(x) = limn→∞ n
−1
∑n

i=1 fi(x, θ0), and 0 < f̄(x) < ∞; (iii)
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fi(x, θ0) is differentiable, and
∣∣∣f (1)
i (x, θ0)

∣∣∣ < c; (iv) |f(xi, θ0)− f(x′i, θ0)| ≤ c |x− x′| for all

x, x′, and θ0 denotes the true parameters.

Condition A3: mα(x) < c for all x and α = 1, 2, mα(x) is the α-th order

derivative of m(x) evaluated at x.

Condition A4: As n→∞, h→ 0, nhq+2 →∞ and nhq+6 → 0.

Proof of Theorem 1

Proof. Provided any consistent estimator of H, Ĥ = H + op(1) in the first

stage, following MY, we can show that δ̂2S(x) is asymptotically equivalent to the infeasible

estimator δ̂2S(x) = (Z ′(x)K(x)Z(x))−1Z ′(x)K(x)y∗. Thus we have

δ̂2S(x) = (Z ′(x)K(x)Z(x))−1Z ′(x)K(x)y∗

= (Z ′(x)K(x)Z(x))−1Z ′(x)K(x)(m+ u)

where Eu = 0 and Euu′ = I.

Do a Taylor expansion of m around point x and this gives us

δ̂2S(x) = δ(x) + (Z ′(x)K(x)Z(x))−1Z ′(x)K(x)(B(x) + u) + op(h
2)

where B(x) is a n×1 column vector whose ith element is given by bx,i = 1
2(xi−x)′ ∂

2m(x)
∂x2

(xi−

x) and ∂2m(x)
∂x2

is the p× p Hessian matrix of m(x).
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It follows that

√
nThpDh(δ̂(x)− δ(x)) (A.14)

=
√
nThpDh(Z ′(x)K(x)Z(x))−1Z ′(x)K(x)B(x) +

√
nThpDh(Z ′(x)K(x)Z(x))−1Z ′(x)K(x)u+ op(1)

= Bpanel
2S + V panel

2S + op(1)

where

B2S ≡
√
nhpDh(Z ′(x)K(x)Z(x))−1Z ′(x)K(x)B(x)

and

V2S ≡
√
nhpDh(Z ′(x)K(x)Z(x))−1Z ′(x)K(x)u.

To calculate the asymptotic bias, we follow SUW, set Sn = n−1D−1
h Z ′(x)K(x)Z(x)D−1

h

and assume that we use the product kernel function, then

Sn = n−1
n∑
i=1

 1 (xi−x)′

h

(xi−x)
h

(xi−x)(xi−x)′

h2

K(xi − x)→p

f̄ 0

0 κ21f̄ Ip

 . (A.15)

Similarly,

1

n
D−1
h Z ′(x)K(x)B(x) =

1

n

( ∑n
i=1K(x)bx,i∑n

i=1
xi−x
h K(x)bx,i

)
=

(1
2κ21h

2
∑p

j=1
∂2m(x)
∂x2j

0p×1

)
+ op(h

2).

Next, B2S =
√
nhpS−1

n
1
nD
−1
h Z ′(x)K(x)B(x) =

(√
nhp κ21h

2

2

∑p
j=1

∂2m(x)
∂x2j

0p×1

)
+op(h

2)

can be obtained.

By equations (A.14) and (A.15), we get

V2S =
√
nhpS−1

n

1

n
D−1
h Z ′(x)K(x)u =

1 + op(1)

f̄

√
n−1hp

n∑
i=1

K(x)

(
ui

(xi − x)ui

)
.
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Then, conditioning on x, the asymptotic normality can be established by using

the central limit theorem since u′s are independent and identically distributed with mean

0 and variance 1.

Proof of Theorem 2

Proof. From Li and Ullah (1998), it is straight forward to show that obtained

from the nonparametric LL estimation, the residuals ŵ give the consistent estimators of

σ̂2
1 = σ2

1 + op(1), σ̂2
α = σ2

α + op(1) and σ̂2
ε = σ2

ε + op(1). These give Σ̂ = Σ + op(1) and thus

the the consistency of Ĥ = I − Σ̂−1/2 = H + op(1) is obtained.

Next we derive the asymptotic bias and variance of m̂(x). From equation (5.16),

following MY, we can show that δ̂2S(x) is asymptotically equivalent to the infeasible esti-

mator δ̂2S(x) = (Z ′(x)K(x)Z(x))−1Z ′(x)K(x)y∗. Thus we have

δ̂2S(x) = (Z ′(x)K(x)Z(x))−1Z ′(x)K(x)y∗

= (Z ′(x)K(x)Z(x))−1Z ′(x)K(x)(m+ u)

where Eu = 0 and Euu′ = I.

Do a Taylor expansion of m around point x and this gives us

δ̂2S(x) = δ(x) + (Z ′(x)K(x)Z(x))−1Z ′(x)K(x)(B(x) + u) + op(h
2)

where B(x) is a nT × 1 column vector whose i, tth element is given by bx,it = 1
2(xit −

x)′m′′(x)(xit − x) and m′′(x) is the p× p Hessian matrix of m(x).
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It follows that

√
nThpDh(δ̂(x)− δ(x)) (A.16)

=
√
nThpDh(Z ′(x)K(x)Z(x))−1Z ′(x)K(x)B(x) +

√
nThpDh(Z ′(x)K(x)Z(x))−1Z ′(x)K(x)u+ op(1)

= Bpanel
2S + V panel

2S + op(1)

where

Bpanel
2S ≡

√
nThpDh(Z ′(x)K(x)Z(x))−1Z ′(x)K(x)B(x)

and

V panel
2S ≡

√
nThpDh(Z ′(x)K(x)Z(x))−1Z ′(x)K(x)u.

To calculate the asymptotic bias, set SnT = (nT )−1D−1
h Z ′(x)K(x)Z(x)D−1

h , and

we have

SnT = (nT )−1
n∑
i=1

T∑
t=1

 1 (xit−x)′

h

(xit−x)
h

(xit−x)(xit−x)′

h2

K(xit − x) (A.17)

→ p

 1
T

∑T
t=1 ft(x) 0

0 1
T

∑T
t=1 ft(x)κ21Ip

 .

Similarly,

1

nT
D−1
h Z ′(x)K(x)B(x) =

1

nT

( ∑n
i=1

∑T
t=1K(x)bx,it∑n

i=1

∑T
t=1

xit−x
h K(x)bx,it

)
=

( 1
2T

∑T
t=1 ft(x)κ21h

2m′′(x)

0p×1

)
+ op(h

2).

Next, Bpanel
2S =

√
nThpS−1

nT
1
nTD

−1
h Z ′(x)K(x)B(x) =

(√
nThp κ21h

2

2 m′′(x)

0p×1

)
+op(h

2)

can be obtained.
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By equations (A.16) and (A.17), we get

V panel
2S =

√
nThpS−1

nT

1

nT
D−1
h Z ′(x)K(x)u

=
1 + op(1)

1
T

∑T
t=1 ft(x)

√
(nT )−1hp

n∑
i=1

T∑
t=1

Kx

(
uit

(xit − x)uit

)
.

Therefore, conditioning on x, the asymptotic normality can be established by using

the central limit theorem since given t, the u′ls are independent and identically distributed

with mean 0 and variance 1.
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