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ABSTRACT OF THE THESIS  
 
 

Temporal Regulation of Gene Expression Profiles in Rat Brains Following Ischemic 
Stroke 

 
 

by 
 
 

Hakeem Omotayo 
 

Master of Science, Graduate Program in Bioengineering 
University of California, Riverside, December 2019 

Dr. Byron D. Ford, Chairperson 
 
 

To improve understanding of the molecular mechanisms that underlie ischemic stroke, 

we analyzed early gene expression profiles in permanent middle cerebral artery occlusion 

(pMCAO) stroke model. Rats were allocated into 4 groups: control, 3h MCAO, 6h 

MCAO, and 12h MCAO. Cortical brain tissue was collected after stroke and subjected to 

microarray analysis. This information was then analyzed using a series of bioinformatic 

tools including Transcriptome Analysis Console (TAC), Genesis, Short time-series 

Expression Miner (STEM), and STRING. A number of differentially expressed genes 

were found to be either upregulated or downregulated in a temporal manner. At 3 hours 

post-stroke, 230 genes were upregulated and 21 downregulated, 635 were upregulated 

and 238 downregulated at 6 hours, 1033 were upregulated and 741 downregulated at 12 

hours following MCAO. STEM analysis highlighted several distinct patterns of gene 

activity. Genes that were temporally upregulated were highly associated with 

inflammatory response and apoptosis, while genes that were temporally downregulated 
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after stroke were strongly associated with cell membrane components and neurons. Genes 

that decreased at 3 hours and increased afterwards were also associated with 

inflammatory response. Genes that increased the 1st 6 hours and decreased slightly at 12 

hours were associated with RNA binding with indication that a key regulator THOC1 

may also be involved in apoptosis. Lastly genes that decreased at 6 hours but remained 

flat before and after were associated with hydroxy compound transport. The temporally 

upregulated genes separated into two distinct hubs: the 1st was mostly associated with 

cytokines and chemokines, and the 2nd was mostly made up of RGD, Rps, Eif, and 

ESNROG proteins which are mostly ribosomal or associated with translation. The main 

regulator in the 2nd hub Rsl1d1 is associated with apoptosis. The main regulators of 

inflammatory response appeared to be Il6, Il1b, and Ccl2. STRING analysis revealed no 

distinct pattern for the temporally downregulated genes. These results provide evidence 

that in addition to the neuronal death and inflammatory responses following stroke, 

regulation of translation may play an important role. Understanding the transcriptional 

mechanisms following ischemia may provide therapeutic targets for treating stroke. 
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Introduction 
Stroke 

Stroke is the sudden interruption in the blood supply to the brain(1). Stroke is the 

leading cause of adult disability and the 5th leading cause of death in the United States(2). 

Roughly 795,000 people in the United States have as stroke each year(3). Ischemic stroke 

occurs when an artery supplying blood to the brain becomes blocked. Roughly 87% of all 

strokes are ischemic (3, 4). The remaining 13% are hemorrhagic, caused by rupture of a 

blood vessel(4).  

Ischemic Stroke 

Due to their higher likelihood, ischemic stroke is the more commonly studied and 

therefore the type we modeled for this study. Ischemic stroke causes an area of initial 

damage due to oxygen and nutrient deprivation which occurs within minutes to hours(5) 

called the ischemic core. The core is characterized by an early onset neuronal death that 

begins within minutes following stroke. This area of immediate brain injury is characterized 

by low cerebral blood flow, energy failure and excitotoxicity(6, 7). This is followed by a 

much larger area of inflammatory secondary damage which occurs after hours to days 

called the penumbra. The resulting ischemic brain injury in the penumbra is accompanied 

by increased synthesis of inflammatory molecules and cytokines in neurons, glia and in the 

cerebral vasculature(6, 8-11). This inflammatory response endangers brain cells in the 

surrounding penumbra where blood supply is compromised but not completely interrupted 

(11-13). 
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Stroke and inflammatory response 

In the infarct core, brain ischemia causes early failure of ion pumps, loss of 

membrane integrity and necrotic cell death(14). Additionally, arterial occlusion leads to 

intravascular hypoxia, changes in shear stress and production of reactive oxygen species 

which activate the coagulation cascade causing further occlusion(14).  

Early neuronal death leads to the release of danger associated molecular patterns 

(DAMPs) such as extracellular ATP, heat shock proteins , HMGB1 and others which lead to 

activation of immune response(15). 

Neuronal injury and death also lead to excess glutamate release and excitotoxicity in 

regions of low blood flow. Astrocytes take in excess glutamate and other ions, to try to 

restore balance, but quickly become overwhelmed. These astrocytes may enter a 

proinflammatory state releasing inflammatory cytokines and exacerbating blood brain 

barrier disruption. 

Regardless of the cell type, a variety of proinflammatory factors are released 

following stroke which may increase the area of damage. 

Stroke Microarray Studies 

Early stroke studies only looked at mRNA expression for small number of genes of 

interest individually. However, this single gene approach does not capture the complex 

interactions or redundancy within the genome. Instead, a transcriptome analysis approach 

of looking at a large number of gene changes simultaneously offers the opportunity to home 

in on possible regulating gene groups. Microarray technology allows for the rapid analysis 

of a large amount of gene data(16). In a microarray, mRNA from a sample is hybridized in 

parallel to a large number of DNA sequences and immobilized on a solid surface in an 

ordered array(16). Next mRNA from the sample is extracted, converted to DNA and labelled, 
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hybridized to the DNA elements of the array, and detected by fluorescence scanning or 

phosphor-imaging(16). 

Several prior microarray studies have been performed to understand gene 

expression following ischemic stroke. The first microarray ischemia study looked at 

changes in the striatum and cortex 3h after ischemia and found that of the 24 genes 

differentially regulated 2 fold or more, most were immediate early genes such as c-fos, 

NGFI-A, NGFI-C, Krox-20, and Arc(17). Another study looked at DNA regulation in cortical 

slices 6h after MCAO and identified several genes such as IFN, NDGAP-1, and NPR which had 

not previously been shown to be modulated following focal ischemia(18). Yet another  

study looked at RNA samples from the periinfarct cortex of rats 24h after permanent middle 

cerebral artery occlusion (pMCAO) and found that of 328 differentially expressed genes in 

ischemia compared to SHAM 163 of these had not previously been reported in 

stroke(19).The study also linked the genes to 14 different functional categories including 

metabolism related genes, stress response proteins, neurotransmitter/hormone related 

genes, and cytokine/chemokine related genes(19). Some of our previous studies have even 

shown differences in gene expression between the transient middle cerebral artery 

occlusion (tMCAO) and pMCAO models 24h after stroke(20, 21) with pMCAO more 

associated with neurotransmitter receptors, ion channels and growth factors and tMCAO 

more associated with inflammation and apoptosis(20). The pMCAO model may be more 

similar to an untreated stroke, as it may take days for reperfusion to occur by the body’s 

endogenous processes(20).  

Each of these studies was able to give a single snapshot, but many of these genes 

have dynamic expression patterns. Understanding these may help us better understand the 

mechanisms behind gene expression in stroke. 
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Clustering Techniques 

General methods such as k-means clustering(22), hierarchical clustering(23), and 

self-organizing maps(24) are often used to analyze gene expression data(25).  However, 

these methods do not account for temporal dependency among successive time points(25). 

It is also important to note that due to the large data size, many genes may have the same 

expression pattern due to random chance(25, 26). Short Time-series Expression Miner 

(STEM) is a program that clusters, compares and visualizes microarray data for a small 

series of 3-8 timepoints (25). STEM takes advantage of the large number of genes and small 

number of timepoints to identify statistically significant temporal expression profiles and 

genes associated with these profiles(26). Additionally, STEM can link Gene Ontologies to 

sets of genes that have the same temporal expression patterns(25). 

STEM Clustering in Other Types of Studies 

STEM has already been used in a time-series spinal cord injury model paper, which 

looked at gene fold-change values at different time points after injury(27). In that study 

STEM was used to associate deregulated transcripts into eight groups and associate Gene 

Ontologies with each of them(27). In a study on inflammatory responses in amnion cells 

after cytokine stimulation, STEM was used because hierarchical clustering was not 

sufficient to group the large variation in co-expressed genes based on relative levels of 

induction(28). STEM was also used to associate similar groups to Gene Ontologies in that 

study(28). In a study of gene expression responses in the brain and heart to Ephedra herba, 

STEM was used to select temporally expressed genes(29). 
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Scope of this Study 

Though several studies have used microarray analysis to look at gene changes at a 

single timepoint. This is the 1st stroke study using STEM to evaluate temporal expression 

of genes. Because microarrays encompass a large number of genes, this method allows 

for clustering of genes based on temporal expression, which may give insight to possible 

mechanisms of gene regulation following stroke. This information may allow us to look 

for potential therapeutic targets for stroke treatment. 

Methods 

Animals and Ischemia Induction  

All animals were treated humanely and with regard for alleviation of suffering 

and pain and all surgical protocols involving animals were performed by sterile/aseptic 

techniques and were approved by the Institutional Animal Care and Use Committee at 

Morehouse School of Medicine prior to the initiation of experimentation.  Male adult 

Sprague - Dawley rats (250-300g; Charles River Laboratory International, Inc., USA) 

were housed in standard cages in a temperature-controlled room (22 ± 2°C) on a 12 h 

reverse light-dark cycle.  Food and water were provided ad libitum. 

Animals were randomly allocated into 4 groups: SHAM(control), 3, 6 or 12 hour 

MCAO. All rats except the SHAM group were subjected to a left permanent middle 

cerebral artery occlusion (pMCAO). After anesthesia administration, a rectal probe 

monitored the core body temperature and a Homoeothermic Blanket Control Unit 

(Harvard Apparatus, Hollister, MA) was used to ensure the body temperature maintained 

at 37 degrees Celsius. Cerebral blood flow was monitored throughout the length of the 
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surgery by a continuous laser Doppler flowmeter (Perimed, Ardmore, PA), with a laser 

Doppler probe placed 7mm lateral and 2mm posterior to bregma in a thinned cranial skull 

window. MCAO was induced by the intraluminal suture method as we previously 

described (30). Briefly, a 4 cm length 4-0 surgical monofilament nylon suture coated with 

silicon (Doccol Corp., Sharon, MA, diameter 0.37mm, length 2.3-2.5 mm) was inserted 

from the external carotid artery (ECA) into the internal carotid artery (ICA) and then into 

the Circle of Willis, to occlude the origin of the left middle cerebral artery (MCA). Rats 

in the sham control group underwent the same procedure as those in the injury group, but 

a filament was not inserted into the ICA. Animals were sacrificed three hours, six hours, 

or twelve hours after MCAO.  

Microarray Analysis 

Animals in the control group (SHAM) were sacrificed 3 hours following surgery. 

While the 3 hour, 6 hour, and 12 hour groups were sacrificed 3 hours, 6 hours, and 12 

hours after MCAO respectively. Brains were extracted and sectioned into 2 mm coronal 

sections (approximately +3.0 to −5.0 from bregma) using a brain matrix. The brains were 

separated at midline and the injured (left) cortical tissue was isolated. A left hemi-cortical 

tissue from the sham was used as the control. Total RNA was extracted with TRIzol 

Reagent (Life Technologies Corp, Carlsbad, CA), quality controlled and quantified by 

Agilent 2100 Bioanalyzer (Agilent Technology, Santa, Clara, CA). Microarrays were 

completed according to manufacturing guidelines (Affymetrix Inc., Santa, Clara, CA), 

with cRNA hybridized to an Affymetrix Rat Genome 2.0st Gene Chip (Affymetrix Inc.). 
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Transcriptome Analysis Console (TAC) 

CEL files from the Affymetrix Rat Genome 2.0 Gene Chip were imported to TAC 

4.0 for quality control and to normalize the data through multi array averages and identify 

differentially expressed genes. For differential expression analyses a cutoff of 2-fold 

change and p-value of < 0.05 were used. TAC also provided principle component 

analysis information for the experimental samples. This information was exported as a 

.txt file.  Since there were a number of transcript IDs that did not have corresponding 

genes, a homemade MATLAB script was used to sort out these transcripts that did not 

correspond to genes. This list was then saved as an Excel file.  

Genesis 

Genesis was used to cluster genes that showed similar expression patterns among 

the treatment groups and more easily visualize them. In order to analyze the chart 

information in Genesis it had to be converted to “Stanford” format, which meant 

normalizing the Log base 2 expression data, by subtracting the SHAM baseline from each 

group. The original file, the Stanford file, and the file containing both were all saved in 

the same EXCEL workbook under separate sheets. Genesis provided hierarchical 

clustering and K-means clustering information as well as heatmaps of the gene 

expression. Each individual cluster was saved as a “.txt” file containing the genes in each 

cluster.  

Enrichr 

Enrichr is a free online resource where one can input a list of genes to be 

associated with Ontologies that were highly enriched among them 
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http://amp.pharm.mssm.edu/Enrichr/. Ontologies were show on the organismal, cellular, 

and molecular levels. Enrichr pulls its ontologies from 8 different databases: GO 

Biological Process, GO Molecular Function, GO Cellular Component, MGI Mammalian 

Phenotype, Human Phenotype Ontology, Jensen TISSUES, Jensen COMPARTMENTS, 

and Jensen DISEASES. This program was mainly used to analyze the Genesis dataset, as 

several other programs had a gene ontology function already built in. Each cluster from 

Genesis was analyzed in Enrichr as a .txt file. Enrichr provided information on Gene 

Ontologies linked to each cluster. 

Enrichr displayed the top ontologies associated with each cluster as well as four 

scores: p-value, q-value, z-score, and combined score. The p-value is computed using 

Fisher’s exact test assuming a binomial distribution and independence for probability of 

any gene belonging to any set. The q-value is an adjusted p-value using the Bejamini-

Hocherg method for correction for multiple hypotheses testing. The z-score is computed 

using a modification to the Fischer’s exact test, since Fischer’s exact test would produce 

lower p-values for longer lists, Enrichr precomputes a background expected rank for each 

term in each gene set library. The z-score is the standard deviation from this expected 

rank. And the combined score is the z-score multiplied by the natural log of the p-value. 

STEM  

Stem was used to cluster differentially expressed genes based on their temporal 

profiles.  

The text file from TAC (with blanks removed using MATLAB script), was analyzed by 

STEM. The data was normalized. Spot IDs were included in the data file, so the box 
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remains checked. And the bullet next to “normalize data” is filled. Under “Gene info” the 

Gene Annotation Source and Cross Reference Source should both be “user provided”. 

Using rgd.gaf as the gene annotation file and goa_rat_rna.gpi.gz as the cross reference 

file. These files can be found http://geneontology.org/page/download-annotations and 

ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/ respectively.  Under options, the default 

controls are left (STEM Clustering method, 50 model profiles, 2 maximum unit change in 

model profiles between time points). 

Alternatively, the data file can be formatted without Spot IDs. In which case, 

bubble in “Normalize data”, and leave a blank next to “Spot IDs included in the data 

file”. 

STRING 

String is a free online database of known and predicted protein-protein 

interactions https://string-db.org/. String was used to identify potential “Hub” genes that 

may regulate pathways associated with a gene set. String was used to analyze the data 

sets from the STEM analysis and was used on individual profiles as well as superclusters. 

 

Results 

Transcriptome Analysis Console Analysis 

To determine gene expression following treatment, microarray analysis was 

performed on cortical tissues from each experimental group using the Transcriptome 

Analysis Console (TAC). As a quality control step, principal component analysis (PCA) 

was performed. As a qualitative assessment, PCA showed similar grouping between 
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samples from the same experimental condition, as well as a temporal progression away 

from SHAM for the stroke groups Figure 1. Of the 36,685 gene probes on the Affymetrix 

rat 2.0 chip, 10,464 were annotated for the rat genome. Of those 251 were differentially 

regulated between 3h MCAO and SHAM with 230 upregulated and 21 downregulated, 

873 were differentially regulated between 6h MCAO and SHAM with 635 upregulated 

and 238 downregulated, finally 1774 were differentially regulated between 12h MCAO 

and SHAM with 1033 upregulated and 741 downregulated Figures 2-5. Thus, the number 

of upregulated genes and the number of downregulated genes both increase over time. 

The Venn diagram shows how many differentially expressed genes overlapped between 

each set of comparisons as well as how many were unique to each condition Figure 6. Of 

the 251 genes differentially expressed between 3h MCAO and SHAM, only 51 were 

unique to 3h, 302 overlapped with just the 6h comparison, 35 overlapped with just the 

12h comparison and 130 genes overlapped across all 3 timepoints. Of the 873 genes 

differentially expressed between 6h MCAO and SHAM, 302 were unique to 6h, while 

406 overlapped with just the 12h condition. Finally of the 1774 genes that were 

differentially expressed between 12h MCAO and SHAM, 1203 genes were unique to 

12h. The gene information from TAC was then analyzed with a variety of different tools 

to further gain insight about the cellular and molecular nature of the expression patterns. 
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 Figure 1. 3D principle component analysis (PCA) graph. SHAM (n=4) animals are represented in green. 3h MCAO 
(n=3) are represented in blue. 6h MCAO (n=4) are represented in red. And 12h MCAO (n=4) are represented in purple. 



 12 

 
Figure 2. Scatter plot showing the average hybridization signal intensity of the genes in the 3h MCAO (n=3), Compared 
to the SHAM (n=4) group. The red dots indicate genes upregulated 2-fold or more. The green dots indicate genes 
downregulated 2-fold or more. And the grey dots indicate genes that were not differentially regulated with at least 2-
fold. 
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 Figure 3. Scatter plot showing the average hybridization signal intensity of the genes in the 6h MCAO (n=4), Compared 
to the SHAM (n=4) group. The red dots indicate genes upregulated 2-fold or more. The green dots indicate genes 
downregulated 2-fold or more. And the grey dots indicate genes that were not differentially regulated with at least 2-
fold. 
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 Figure 4. Scatter plot showing the average hybridization signal intensity of the genes in the 12h MCAO (n=4), 
Compared to the SHAM (n=4) group. The red dots indicate genes upregulated 2-fold or more. The green dots indicate 
genes downregulated 2-fold or more. And the grey dots indicate genes that were not differentially regulated with at least 
2-fold. 
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Figure 5. TAC expression data, based on 2-fold change cutoff. Each group compared to SHAM (animals 
given surgery but no stroke). A p-value cutoff of 0.05 was used. The groups are as follows: SHAM (n=4), 3h 
MCAO (n=3), 6h MCAO (n=4), 12h MCAO (n=4). Ebayes Anova Method was used. 
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Genesis Analysis 

As an early sorting mechanism, k-means clustering with Genesis was used to 

separate differentially expressed genes into 10 different clustering patterns Figure 7. 

Clusters 1 and 5 contained genes that were continuously sharply upregulated over time 

and contained 327 and 50 genes respectively. Cluster 8 contained 856 genes that were 

continuously upregulated but relatively lower. Clusters 6 and 10 contained genes that 

were continuously downregulated over time and contained 343 and 1131 genes 

respectively. Cluster 2 contains 1357 genes that decrease at 3h and 6h and then remain 

relatively flat. Cluster 3 contains 1080 genes that remain close to baseline for 3h and 6h 

Figure 6. The number of differentially expressed genes in each category compared to SHAM. With the overlapping areas being 
genes that remain differentially expressed compared to SHAM between different experimental conditions. 2 fold cutoff with p≤0.05 
was used. For example, the pink circle 251 genes that are differentially expressed between 3h MCAO and SHAM. The 51 genes in A 
are only differentially expressed at 3h MCAO, while the 35 genes in AB are differentially expressed compared to SHAM at both 3h 
and 6h. And the genes in ABC are differentially expressed compared to SHAM at 3h, 6h, and 12h. 
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and then increase at 12h. Cluster 4 contains 973 genes that remain close to baseline for 3h 

and 6h and then decrease at 12h. Cluster 7 contains 888 genes that increase for 3 and 6h 

then decrease slightly at 12h. Cluster 9 contains 598 genes that increase for 3h and 6h 

then return to baseline at 12h.  

 
 

Figure 7. Genesis analysis results. The graphs shown are k-means clustering Stanford plots of the average normalized Log base 
2 expression for each cluster. The error bars are measuring how well genes within that cluster fit with the average shape of that 
cluster. The top left of each box has the cluster name and number of genes in the cluster. 
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Enrichr Analysis of Gene Ontologies from Genesis Clusters 

Enrichr was then used to determine Gene Ontologies associated with each of the 

10 Genesis clusters Figures 8-17. Enrichr displayed the top ontologies associated with 

each cluster as well as four scores: p-value, q-value, z-score, and combined score. The 

continuously sharply upregulated Genesis clusters 1 and 5 both have molecular functions 

associated with cytokine/chemokine activity and immune function. Cluster 1 is also 

associated with RNA binding. The continuously slightly upregulated cluster 8 was 

associated with molecular functions related to with RNA binding and protein synthesis. 

On the other hand, the continuously downregulated clusters 6 and 10 were both 

associated with cellular ontologies dealing with neuronal cell components and membrane 

transport.  

 
 
 
 

Figure 8. Enrichr Gene Ontology results for Genesis Cluster 1. Listing the GO database, the top ontologies in the cluster 
associated with each. And the statistical confidence of each ontology. The z-score deviation from expected rank and is computed 
using a modified Fischer’s exact test. The combined score is the z-score multiplied by the natural log of the p-value. 



 19 

 
 
 
 
 

 
 
 
 
 

 
 
 

Figure 9. Enrichr Gene Ontology results for Genesis Cluster 2. Listing the GO database, the top ontologies in the cluster 
associated with each. And the statistical confidence of each ontology. The z-score deviation from expected rank and is computed 
using a modified Fischer’s exact test. The combined score is the z-score multiplied by the natural log of the p-value. 

Figure 10. Enrichr Gene Ontology results for Genesis Cluster 3. Listing the GO database, the top ontologies in the cluster 
associated with each. And the statistical confidence of each ontology. The z-score deviation from expected rank and is computed 
using a modified Fischer’s exact test. The combined score is the z-score multiplied by the natural log of the p-value. 

Figure 11. Enrichr Gene Ontology results for Genesis Cluster 4. Listing the GO database, the top ontologies in the cluster 
associated with each. And the statistical confidence of each ontology. The z-score deviation from expected rank and is computed 
using a modified Fischer’s exact test. The combined score is the z-score multiplied by the natural log of the p-value. 
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Figure 12. Enrichr Gene Ontology results for Genesis Cluster 5. Listing the GO database, the top ontologies in the cluster 
associated with each. And the statistical confidence of each ontology. The z-score deviation from expected rank and is computed 
using a modified Fischer’s exact test. The combined score is the z-score multiplied by the natural log of the p-value. 

Figure 13. Enrichr Gene Ontology results for Genesis Cluster 6. Listing the GO database, the top ontologies in the cluster 
associated with each. And the statistical confidence of each ontology. The z-score deviation from expected rank and is computed 
using a modified Fischer’s exact test. The combined score is the z-score multiplied by the natural log of the p-value. 

Figure 14. Enrichr Gene Ontology results for Genesis Cluster 7. Listing the GO database, the top ontologies in the cluster 
associated with each. And the statistical confidence of each ontology. The z-score deviation from expected rank and is computed 
using a modified Fischer’s exact test. The combined score is the z-score multiplied by the natural log of the p-value. 
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Short Time-Series Expression Miner (STEM) Analysis 

Short Time-Series Expression Miner (STEM) was selected to reduce possible 

statistical noise from the large number of genes for our short time study. If the same 

Genesis analysis was run multiple times, there would be minor fluctuation in the size of 

the profiles. However, Genesis does not account for random error that occurs by having a 

Figure 15. Enrichr Gene Ontology results for Genesis Cluster 8. Listing the GO database, the top ontologies in the cluster 
associated with each. And the statistical confidence of each ontology. The z-score deviation from expected rank and is computed 
using a modified Fischer’s exact test. The combined score is the z-score multiplied by the natural log of the p-value. 

Figure 16. Enrichr Gene Ontology results for Genesis Cluster 9. Listing the GO database, the top ontologies in the cluster 
associated with each. And the statistical confidence of each ontology. The z-score deviation from expected rank and is computed 
using a modified Fischer’s exact test. The combined score is the z-score multiplied by the natural log of the p-value. 

Figure 17. Enrichr Gene Ontology results for Genesis Cluster 10. Listing the GO database, the top ontologies in the cluster 
associated with each. And the statistical confidence of each ontology. The z-score deviation from expected rank and is computed 
using a modified Fischer’s exact test. The combined score is the z-score multiplied by the natural log of the p-value. 
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large set of genes. In order to account for these discrepancies, STEM was used to analyze 

the TAC dataset. STEM was used to cluster the genes gathered from the probe set from 

TAC. Out of a possible 50 model profiles, it divided the differentially expressed genes 

into 9 significant clusters based on their expression over time Figure 18. Colored profiles 

were statistically significant. Profile 9 contained 419 genes that had a trend of continuous 

downregulation. Profile 11 had 104 genes with a trend of continuous downregulation. 

Profile 1 had 67 genes and a similar trend. Profile 40 contained 117 genes with a trend of 

continuous upregulation. Profile 42 contained 93 genes that were continuously 

upregulated. Profile 48 contained 103 genes that were continuously upregulated. Profile 

49 contained 117 genes that were sharply upregulated up to 6h then slightly less 

upregulated at 12h. Profile 18 contained 65 genes that were downregulated at 3h and 

upregulated afterwards. Lastly profile 23 contained 28 genes that were downregulated at 

6h but stayed relatively flat before and after. Of these, some clusters were grouped 

together into larger superclusters that behaved similarly and were displayed in the same 

color. The red supercluster (profiles 1, 9, and 11) contained genes that were continuously 

downregulated. Whereas the green supercluster (profiles 40, 42, 48) contained genes that 

were continuously upregulated. 
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Additionally, each cluster or supercluster was then associated with enriched Gene 

Ontologies Figures 19-23. The corrected p-value uses a randomization test where 

samples of the same size of the set being analyzed is drawn with a Bonferroni correction 

being used when the p-value enrichment is based on the expected size of the set of genes. 

500 samples are used for randomized multiple hypothesis corrected enrichment p-values. 

Significant ontologies for STEM were considered to be ones with p<0.05 for the 

corrected p-value. The expected number of genes assigned is the average number of 

genes assigned over all permutations. 

Figure 18. STEM profile summary. Each gene is assigned a profile. The colored profiles are statistically significant. 
And profiles of the same color belong to the same larger supercluster. The number on the top left of the box is the profile 
number. Within each box is a graph of normalized Log base 2 gene expression that goes from left to right SHAM, 3h, 
6h, 12h.  
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Among the 73 significant ontologies in the red supercluster which contained 

continuously downregulated genes: plasma membrane parts, ion transport, and ontologies 

related to neurons were all highly enriched Figure 19.  

 
 
 
 
 

Among the 262 ontologies in the green supercluster which contained continuously 

upregulated genes: inflammatory and apoptotic processes were highly enriched Figure 

20.  

 
 
 

 
 

Figure 19. Top 10 out of 73 significant Gene Ontologies associated with the red supercluster. Showing the number of genes in the 
profile or supercluster assigned to each ontology, the expected number of genes if based on random chance, and the corrected p-value 
for each assigned ontology. 

Figure 20. Top 10 out of 262 significant Gene Ontologies associated with the green supercluster. Showing the number of genes in the 
profile or supercluster assigned to each ontology, the expected number of genes if based on random chance, and the corrected p-value 
for each assigned ontology. 
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Profile 18, which was downregulated at 3h and upregulated afterwards, contained 

genes associated with defense response Figure 21. This ontology overlapped with the 

ontologies of the green supercluster.  

 

 
 
 

 
Profile 49 was always upregulated but was less at 12h than 6h Figure 22. In this 

profile, RNA binding and nucleic acid binding were highly enriched.  

 
 
 
 

Lastly, profile 23 contained genes that remained at baseline, dropped at 6h, and 

then maintained a new lower baseline. Among these genes transport was enriched, 

especially organic hydroxy compound transport Figure 23. 

 
 
 
 
Inflammatory Response Ontologies Expression 

Since profile 18 (that decreases at 3h and increases afterwards) and the continuously 

upregulated green supercluster both shared similar ontologies, we decided to look into the 

inflammatory response genes in each of those profiles Figures 24-27. The 14 

Figure 21. Gene Ontologies associated with the profile 18. Showing the number of genes in the profile or supercluster assigned to 
each ontology, the expected number of genes if based on random chance, and the corrected p-value for each assigned ontology. 

Figure 22. Gene Ontologies associated with the profile 49. Showing the number of genes in the profile or supercluster assigned to 
each ontology, the expected number of genes if based on random chance, and the corrected p-value for each assigned ontology. 

Figure 23. Gene Ontologies associated with the profile 23. Showing the number of genes in the profile or supercluster assigned to 
each ontology, the expected number of genes if based on random chance, and the corrected p-value for each assigned ontology. 
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inflammatory response genes associated with profile 18 included ITGAX, LSP1, SELE, 

PTPRC, TNIP2, CXCL6, LGALS3, PRKCD, S1PR3, CDH5, SLPI, SERPINA3N, 

SBNO2, and CCL20. CCL20 and SERPINA3N were the most highly expressed in this 

set Figure 24. The 24 inflammatory response genes associated with profile 40 include 

ENPP3, ITGAM, ANXA1, CCL2, CCL7, KDM6B, STAT3, SOCS3, SERPINE1, TLR1, 

CXCL2, CD14, ITGB2, IL1RN, LBP, CD44, IL1A, IL1B, A2M, IL6, PDPN, ICAM1, 

IL1R2, TIMP1. CCL2 and TIMP1 were the most highly expressed in this set Figure 25. 

The 10 inflammatory response genes associated with profile 42 include ZFP36, CCL3, 

FCGR2B, SPP1, EDNRB, PTPN2, HMOX1, S100A8, S100A9 and CASP4. CCL3 and 

SPP1 were the most highly expressed in this set Figure 26. The 8 inflammatory response 

genes associated with profile 48 include JAK2, CCL4, PTGS2, IER3, PTGES, JUN, and 

NAMPT. PTGS2 and CCL4 are the most highly expressed in this set Figure 27. Each of 

these profiles had a CCL among its top 2 highly expressed genes. 
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Figure 24. Normalized Log2 expression of genes in inflammatory response ontology for profile 18. 

Figure 25. Normalized Log2 expression of genes in inflammatory response ontology for profile 40. 
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Figure 26. Normalized Log2 expression of genes in inflammatory response ontology for profile 42. 
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STRING Analysis 

Following STEM analysis, the different STEM clusters were placed in String for 

further analysis. String was used to create protein networks associated with the given 

genes of interest. String was used to analyze each of the significant profiles and clusters 

Figures 28-33.  

Due to their similar Ontologies, the combination of profile 18 and the green 

supercluster was the 1st to be examined with String Figure 28a. This group created a 

network of 350 genes with an average of 8.82 connections. This network contained two 

distinct hubs where the genes contained each had a significantly large number of 

connections compared to the genes outside these hubs. The larger hub mostly contained 

Figure 27. Normalized Log2 expression of genes in inflammatory response ontology for profile 48. 
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cytokines and chemokines Figure 28b. Within the larger hub the most highly connected 

gene by far was IL6 with 79 connections Table 1. While the smaller hub contained 

proteins related to RNA and protein synthesis, including many ribosomal proteins and 

translation initiation factors Figure 28c. The most highly connected genes in the small 

hub were Rsl1d1 with 32 connections and Etf1 with 31 connections Table 2. Rsl1d1 is a 

ribosomal domain coding gene that acts as pro-apoptotic regulator in response to DNA 

damage. Etf1 is part of a complex that promotes nonsense mediated mRNA decay. The 

small hub also contained several Rps, ENSRNOG and Rpl genes which are ribosomal 

proteins and Eif genes which are translation initiation factors Table 2. 
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Figure 28. Figure 28a shows the gene network associated with the genes from the combined green supercluster and 
profile 18. The 2 red circles indicate hubs that contain a large number of highly connected genes. Figure 28b is a 
zoomed in version of the larger hub, while Figure 28c is a zoomed in version of the smaller hub. 

A 
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Table 1. Chart of number of connections for genes in network. Network is from STRING analysis of network made up of 
combination of profile 18 and green supercluster from the larger hub (shown in Figure 28b). The genes listed all had more 
connections than the average for the network (above 8.82 connections). Only the number of connections was counted and not the 
relative confidence of each connection. 
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Table 2. Chart of number of connections for genes in network. Network is from STRING analysis of network made up of 
combination of profile 18 and green supercluster from the smaller hub (shown in Figure 28c). The genes listed all had more 
connections than the average for the network (above 8.82 connections). Only the number of connections was counted and not the 
relative confidence of each connection. 
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Since the larger hub was mostly associated with inflammation ontologies, String 

was also used to look at the subset of genes in the combination of profile 18 and the green 

supercluster from the inflammatory response ontology Figure 29. This group had 56 

genes with an average of 12.6 connections. Of these, 25 were highly connected with a 

node degree above the average for that network Table 3. Of the inflammatory response 

genes CCL2, IL1B, and IL6 all appear to be distinct hub genes with 33 or more 

connections each Table 3. 
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Figure 29. The gene network associated with the “Inflammatory response” ontology genes from the combined green supercluster 
and profile 18. The red circle indicates a hub of highly connected genes. 
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The green supercluster was a network of 294 genes Figure 30. It showed a similar 

pattern to the network that combined it with profile 18. Similarly, to the combined 

network, it grouped into 2 distinct hubs, though this was slightly less pronounced. The 

Table 3. Chart of number of connections for genes in network. Network is from STRING analysis of inflammatory response 
gene ontology from combination of profile 18 and green supercluster (shown in Figure 29). The genes listed all had more 
connections than the average for the network (above 12.6 connections). Only the number of connections was counted and not the 
relative confidence of each connection. 
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larger hub in the green supercluster network mostly containing cytokines and 

chemokines.  While the smaller hub once again contained several Rps, ENSRNOG and 

Rpl genes which are ribosomal proteins and Eif genes which are translation initiation 

factors.   

 

Figure 30. The gene network associated with the genes from the green supercluster. The 2 red circles indicate hubs that contain a 
large number of highly connected genes. 
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The red supercluster did not have much distinct grouping in its networks despite 

being the largest network of 579 genes Figure 23.  This seems to indicate lack of a 

controlled connecting mechanism. Since various cellular processes are all generally 

downregulated and there appears to lack a controlling hub, this general decrease in 

expression may be due to general cell death. 

 
 
 

 

Figure 31. The gene network associated with the genes from the red supercluster. Despite the large number of genes 
that make up the supercluster, there does not appear to be a distinct hub. 
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The network associated with profile 49 was made up of 115 genes, roughly half of 

which were connected to 1 or more genes Figure 32. The proteins: Smek2, Thoc1, 

Fyttd1, Upf3b and Prfp39 had the most connections, each with 7 or more connections 

each Table 4. 

 
 
 
 

 

 

Figure 32. The gene network associated with the genes from profile 49. There appear to be a few distinct genes with 
significantly more connections than the rest (7 or more).  These include Smek2, Thoc1, Fyttd1, Upf3b and Prpf39. 
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The network associated with profile 23 was a small one of roughly 25 genes 

Figure 33. Of these the acetylcholine receptor Chrm4 and the dopamine receptor Drd2 

had the most connections (3 each). 

 

Figure 33. The gene network associated with the genes from profile 23. The red circle indicates the 2 genes (Chrm4 
and Drd2) with the most connections in the network (3 each). These appear to be connected with 2 other genes (Hrh3 
and Chrna4) that also seem to have more connections than average (2 each). 

Table 4. Chart of number of connections for genes in network. Network is from STRING analysis profile 49 (shown in Figure 
31). The genes listed all had more connections than the average for the network (above 1.79 connections). Only the number of 
connections was counted and not the relative confidence of each connection. 



 43 

 

Discussion 

From the TAC analysis the number of upregulated genes as well as the number of 

downregulated genes increase over time following stroke. Meaning that cell death alone 

does not account for all of the gene regulation following stroke, and that there must be 

numerous active regulatory responses as well. 

Both Gene Ontology and String analysis of the green supercluster implicate 

inflammatory response and apoptosis as major pathways. This timescale fits well as what 

is currently understood about the immunology of stroke(6, 8-11) as much of the 

inflammation tends to increase during the 1st 6-12 hours following stroke. While at first 

glance, upregulation of both of these appears somewhat contrary to our previous EASE 

analysis paper which associated downregulation of both of these to pMCAO(20). In 

actuality, certain inflammatory factors, such as interleukin-1β have been shown to peak at 

3–12 h, then decline over the next several hours and days (31, 32). Of the inflammatory 

response genes CCL2, IL1B, and IL6 all appear to be distinct hub genes with 33 or more 

connections each Table 2. IL1B was implicated previously in one of our tMCAO 

models(33). While IL6 was previously implicated in our pMCAO nonhuman primate 

model(34). Jun was previously implicated as well(19, 21). 

The String analysis of the red supercluster seems to indicate lack of a controlled 

connecting mechanism as various cellular processes are all generally downregulated but 

without any central gene hubs. This combined with the Gene Ontology results from 

STEM imply that these processes may be decreasing due to general cell death. And since 
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many of these processes are related to neurons it hints at neuronal death specifically. This 

corresponds with early neuronal death following stroke(20, 30, 35-40). 

Overall the network associated with profile 49 was not very highly connected. 

String analysis of profile 49 linked it to RNA transport and the nucleolus which fits well 

with the Gene Ontologies of RNA binding and nucleic acid binding associated to it in 

STEM. The most connected proteins in the String analysis for this profile were Smek2, 

Thoc1, Fyttd1, Upf3b and Prfp39 with 7 or more connections each. These are mostly 

connected with mRNA splicing and export. This implies that these processes are highly 

upregulated for the 1st 6h following stroke but resources are diverted from these 

processes afterwards. Smek2 is a protein phosphatase, Prpf39 is a pre-mRNA splicing 

factor, Thoc1 is associated with mRNA transcription and transport but also participates in 

the apoptotic pathway, Upf3b decays nonsense mRNAs and Fyttd1 is required for mRNA 

transport from the nucleus to the cytoplasm. Thoc1 was in cluster 9 of the supporting 

information of our previous study, but was not identified as a gene of interest(41). 

Smek2, Fyttd1, Upf3b and Prfp39 do not appear to be previously identified in relation to 

stroke. 

The String analysis of profile 23 indicates that this small group of genes is not a 

uniformly connected network. But the two genes with the most connections Chrm4 and 

Drd2 are an acetylcholine and dopamine receptor respectively.  

Though the Genesis clusters do not directly match to the STEM profiles. Both had 

sets of continuously upregulated and continuously downregulated genes. The ontologies 

associated with the continuously sharply upregulated Genesis clusters 1 and 5 were 
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associated with molecular ontologies for cytokines and chemokines much like the STEM 

green supercluster of continuously upregulated genes. Whereas the continuously slightly 

upregulated Genesis cluster 8 was associated with the molecular ontology of RNA 

binding much like the mostly upregulated STEM profile 49. Conversely, the continuously 

sharply downregulated Genesis clusters 6 and 10 had cellular ontologies associated with 

dendrites, which complements the STEM red supercluster of continuously downregulated 

genes that had ontologies associated with neuronal processes. 

String analysis of the combination of profile 18 and the green supercluster 

produced 2 distinct hubs that were roughly replicated in the string analysis of the green 

supercluster. The smaller of these 2 distinct hubs was associated with ribosomal and 

translation initiation processes. Many members of this group were proteins that made up 

the ribosome including Rsl1d1, members of the Rps, RGD and ENSRNOG families, as 

well as several translation initiation factors such as members of the Eif family. The most 

highly connected gene Rsl1d1 acts as a pro-apoptotic regulator.  

Likewise, profile 49 was made up of genes associated with different aspects of 

protein regulation, with one of the more highly connected genes Thoc1 associated with 

the apoptotic pathway as well. 

Taken together these may imply that this upregulation of genes associated with 

protein expression may be involved in apoptosis following stroke. Several prior studies 

have found associations between regulation of protein synthesis and apoptosis(42-46). 

And potential regulatory mechanisms have previously been suggested(42). Thus, it is 

likely that in addition to inflammatory response, regulation of apoptosis through control 
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of protein synthesis could be a major controlling factor over the early 12-hour window. 

This apoptosis is likely upregulated in response to energy stress following stroke(47). 

Conclusion 
 

The results of this study demonstrate indicate distinct temporal patterns of gene 

regulation following stroke. Genes continuously upregulated for 12 hours following 

stroke fall into two distinct patterns. The 1st contains genes that control inflammation and 

apoptosis where CCL2, IL1B, and IL6 all appear to be important regulatory factors. The 

2nd is associated with RNA regulation with the top 2 genes being Rsl1d1 a ribosomal 

protein associated with apoptosis and Etf1 which promotes nonsense mediated mRNA 

decay along with mostly RGD, Rps, and ESNROG ribosomal proteins and Eif translation 

initiation factors which had not previously been associated with stroke. Meanwhile, there 

is another set of genes involved in protein regulation that increase for the 1st 6 hours and 

decrease slightly at 12 hours but remain above baseline the entire time. These include 

Smek2, Prpf39, Thoc1, Upf3b, and Fyttd1. Understanding these regulatory patterns may 

be useful in designing treatments for stroke. 
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