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Edited by David Weitz, Harvard University, Cambridge, MA; received August 17, 2022; accepted October 13, 2022

A quantitative understanding of the coupled dynamics of flow and particles in aerosol
and droplet transmission associated with speech remains elusive. Here, we summarize an
effort that integrates insights into flow-particle dynamics induced by the production plo-
sive sounds during speech with skin-integrated electronic systems for monitoring the pro-
duction of these sounds. In particular, we uncover diffusive and ballistic regimes
separated by a threshold particle size and characterize the Lagrangian acceleration and
pair dispersion. Lagrangian dynamics of the particles in the diffusive regime exhibit fea-
tures of isotropic turbulence. These fundamental findings highlight the value in skin-
interfaced wireless sensors for continuously measuring critical speech patterns in clinical
settings, work environments, and the home, based on unique neck biomechanics associ-
ated with the generation of plosive sounds. We introduce a wireless, soft device that cap-
tures these motions to enable detection of plosive sounds in multiple languages through a
convolutional neural network approach. This work spans fundamental flow-particle phys-
ics to soft electronic technology, with implications in monitoring and studying critical
speech patterns associated with aerosol and droplet transmissions relevant to the spread of
infectious diseases.

flow-particle physics j experimental fluid mechanics j computational fluid dynamics j
skin-integrated electronics j machine learning

Aerosol- and droplet-based transmission of infectious diseases, ranging from Mycobacterium
tuberculosis to common cold, and associated flow and particle dynamics are poorly under-
stood, as evidenced by relative lack of quantitative insights into the spread of COVID-19
(1, 2). Recent studies provide social distancing guidelines based on various conditions,
including one-to-one exposure to infectious particles (3, 4), turbulent gas clouds (5), space
and time dependence of virus transmission from speech-driven aerosol transport (6),
indoor airborne transmission (7, 8), and relative humidity (9, 10). Particle dynamics of
aerosols/droplets have been investigated primarily under intensive respiratory activities,
including coughing and sneezing (11). The few studies of particle size distributions
during speaking (12, 13) show significant variability, possibly due to the complex
mechanisms of speech (14). Recent work shows that phonetic characteristics of bila-
bial closure (BC) plosive sounds such as “P” generate unique, coherent flow structures
where sequential plosives create developed, jet-like turbulent flow and complex trans-
port in a conversation (15). Despite these observations, the induced flow patterns and
dynamics of generated respiratory aerosols and droplets during plosive vocal activities
and at different audio levels remain elusive. Indeed, whether certain infectious diseases
are transmitted via aerosols or droplets (16) or even the threshold between aerosols and
droplets (17) represent topics that remain under debate. Particle size plays a central role
in aerodynamic behavior; the size threshold for aerosols, which remain in the air, can be
determined by the background and induced flows. Experimental characterization of such
processes is not trivial; measurements often involve high-power illumination synchro-
nized with high-resolution cameras and customized optical settings that require proper
and extensive safety precautions and training (18). These methods may be cumbersome
as means to quantify fluid-particle interactions during vocal activities over a broad range
of individuals, particularly outside of controlled laboratory settings. A promising comple-
mentary approach is to exploit multiple, continuous on-body sensing modalities with
soft wearable sensors and associated data analytics (19).
Continuous vital signs monitoring with wearable devices has well-established clinical

benefits in both hospital and home settings (20). A fully automated soft wearable sen-
sor implements a thin and flexible form factor with deformable electronic circuit and
soft device architecture techniques to ensure skin conformability (21), especially impor-
tant for the highly curved geometry of the human neck. Measured mechano-acoustic
(MA) signals span a wide range from quasistatic to the audio band, without confounding
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effects of ambient and external sounds (22). Recent advances in
convolutional neural networks (CNN) and other deep learning
methodologies (23, 24) enable accurate pattern recognition of
acoustic signals by directly exploiting the time-frequency features
without handcrafted features in various applications, such as
music genre recognition (25) and cough (26) and singing detec-
tion (27). Several wearable devices have been developed for sens-
ing respiratory activities (22, 26), biomechanics (28, 29) and
electrograms (30, 31). Still, none has been used to study flow
and particle physics during vocal activities in conjunction with
optical fluid measurements and numerical simulations. Flexible,
skin-mounted bio-integrated electronics with integrated deep
learning analytics offer the potential to bridge the gap between
our fundamental understanding of flow and particle physics asso-
ciated with phonation activity and infectious disease transmission
through the air.
The presented work explores fluid mechanics in plosive

sounds and sets the basis for potential novel applications of plo-
sive sound detection with skin-integrated electronics. In partic-
ular, this paper discusses fundamental phenomena associated
with particle and induced flow dynamics via particle tracking
velocimetry (PTV) and particle image velocimetry (PIV) sup-
ported by Euler-Lagrangian direct numerical simulations (DNS)
and analytic arguments. Biomechanics aspects of the surface of
the neck surface are investigated via three-dimensional digital-
image correlation (3D-DIC) to capture unique features of neck
vibrations induced by production of plosive sounds. These fluid
and biomechanics results form the foundations for a wireless,
soft MA device with the capability of plosive sound detection
through a convolutional neural network (CNN) approach.
The following sections describe and discuss (i) droplet

dynamics and induced flow, formation and impact of domi-
nant vortices for a set of plosive sounds at decibel levels via
PTV and PIV, and correlation between audio level (dB) and
mass transport; (ii) dynamics of a wide range of particle sizes
spanning aerosols and droplets with experimentally validated
DNS; (iii) theoretical assessment of the impact of initial condi-
tion on particle dynamics and induced flow and thresholds
between aerosol and droplet in the Lagrangian frame of refer-
ence; (iv) biomechanics across the neck during production
of plosive sounds and other vocal/respiratory activities via
3D-DIC; (v) design of optimized, automated, skin-integrated
electronic sensors with synchronized pairs of high-bandwidth
inertial measurement units (IMUs) across the suprasternal
notch (SN) and sternocleidomastoid (SCM) for capturing
unique MA signals of plosive sounds; and (vi) CNN of MA
signals for detection of plosive sounds in various individuals.

Results

Droplet Dynamics and Induced Flow in Plosive Consonants.
The size distribution and dynamics of droplets are experimentally
characterized in 80 distinct cycles of four representative BC plosive
words (“Peter,” “piper,” “pick,” and “pack”) (15) spoken by a 30-
year-old healthy male across various audio levels, ranging from 68
to 98 dB using PTV (see Materials and Methods and SI Appendix,
Video S1). Four high-speed cameras synchronized with a 40 W
laser are used to characterize the size and particle locations, as illus-
trated in Fig. 1 A and B; a representative instant during a plosive
sound is shown in Fig. 1C. Large droplets of radii R�100 μm
exhibit ballistic-like behavior with similar velocity magnitude and
direction, whereas smaller droplets (R�100μm) show irregular

velocity vectors. The characteristic Stokes number, Stk = 2
9
ρuR2

μL ,

embodies this phenomenon; here, ρ is the particle density, u is
the fluid velocity, μ is the dynamic viscosity of the air, and L is
the reference length given by the equivalent diameter of mouth
opening. Large particles with Stk > 1 detach from the flow
(9, 32), especially in these highly decelerating flows. PTV-
derived particle number and size distribution are illustrated in
Fig. 1 D–F and SI Appendix, Fig. S1. The number of droplets in
the BC plosive sounds, shown at various audio levels in Fig. 1D,
correlates with audio level (dB) regardless of plosive words, simi-
lar to previous work on coughing and speech (26). One of the
main differences between coughing and BC plosive sound is
that the latter contains stop consonants where the lips block
the airflow entirely, build pressure, and release flow. This pho-
netic mechanism generates systematic aerosolization from sali-
vary filaments at the lips that break into speech droplets (33).
Depending on the lips’ condition, BC plosive sound can gener-
ate a significant number of droplets compared with other
speech and even more than coughing at a higher audio level
due to its unique mechanism (Fig. 1E). In addition to the
number of droplets, the droplet size distribution represents
a key parameter in developing an improved understanding
and modeling capability for droplet dispersion induced by plo-
sive consonants. The droplet size distribution is obtained for
all measured cycles in the range of R = 50 to 150 μm and fitted
with the generalized Pareto distribution (GPD), defined as

f Rð Þ = 1
σ ð1� 1 + k x�θð Þ

σ

� ��1�1
k
, where σ, k, and θ are scale,

shape, and threshold parameters, respectively, in Fig. 1F. It is
worth noting that regardless of the type of BC plosive words
and audio levels, generated droplets are described well by the
GPD in the measured range, similar to the case of coughing
(34). The mean traveled distance of droplets, x , exhibits depen-
dence with R and dB (Fig. 1G). As R increases, the maximum
x increases and associated critical time decreases, as a large
droplet carries comparatively larger momentum but experiences
higher drag. Systematic increases in x occurred with dB. It is
worth noting that x plateau within length and time scales of
< 101 cm and < 100 s in the isolated single puffs generated by
different plosive consonants. Complementary PIV experiments
are performed to reveal the formation and impact of a vortex
ring from plosive sounds (Fig. 2 A and B and SI Appendix,
Video S2) (33).

Computational Results. Three-dimensional DNS are carried
out to model the flow and droplets interaction induced by plo-
sive sounds and complement the experiments on the droplet
dynamics smaller than the observable size (R < 25 μm) and
Lagrangian trajectories. The simulation accounts for two-way
coupled physics with respect to mass, heat, and momentum
transfer between air and droplets using a Lagrangian point-
particle approach. In addition, mass transfer between the drop-
lets and surrounding air due to evaporation is considered with
the assumption of incompressibility with a low Mach regime
and constant pressure. For the simulation domain, convective
and slip boundary conditions are employed for the outlet and
the rest of the faces, respectively. Three components are imple-
mented for the model of a human head, namely, outer surface
of the head, inner surface of the pathway, and the inlet. No-slip
boundary condition is applied for the outer surface. Algebraic
wall model boundary condition is employed in the inner sur-
face of the pathway. Dirichlet boundary condition is used to
prescribe the uniform velocity of the air for the inlet (see
details in Materials and Methods). Approximately 500 particles
are introduced for the speech duration with a size distribution
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following the GPD distribution observed in the experiments. Fig.
2C demonstrates the particle trajectories with respect to R and, as
expected, comparatively larger particles travel longer distances
with projectile-like motion. Sufficiently small particles are trapped
inside the vortex ring structure induced by the sharp shear at the
boundary of the jet-like flow and pushed farther than large par-
ticles. The vortex ring accompanied by a ballistic mechanism has
shown its effectiveness in mass transport in nature (35). It is
worth pointing out that the simulations consider the absence of
ambient flow to capture essential features induced by plosive
sounds. Fig. 2D shows a similar instant as in the results from
PIV experiments (Fig. 2B) to illustrate the specific mechanism of
plosive sounds. Notably, large particles’ acceleration allows them
to escape or be weakly affected by the vortex ring structure. In
contrast, the induced flow substantially affects small particles’
velocity magnitude and direction. This mechanism is compared
and validated with the experiments as shown in Fig. 2E. They

exhibit a strong correlation between the audio level and initial gas
velocity, ug .

On a Theoretical Basis for the Particle Dynamics in a Vortex
Ring. Conceptual assessment of validated DNS shed light on
the coupled physics between initial gas velocity, ug , and sound
level (dB), and associated particle dynamics over a range of
sizes. Fig. 2F shows the ensemble-averaged velocity in the
streamwise direction, u = h 1T

Ð T
0 udtiR , with respect to R ,

where T = 0.2 s is the time span. The bulk u velocity distribu-
tions evidence two distinct regions. One of them is inversely
related to R �Rc , suggesting a diffusive regime, whereas the
other is proportional to R �Rc , leading to a ballistic-like

regime, where Rc =
ffiffiffiffiffiffiffiffi
9μLS
2ρug

q
is the critical particle radius and

S = 0:1 is the critical Stokes number. Particles in the ballistic
regime are modulated by the initial condition and surpass the
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Fig. 1. Droplet dynamics of plosive sounds via particle tracking velocimetry (PTV). (A) PTV experimental setup. (B) Raw image of droplets generated from
plosive sounds. (C) Detected/tracked droplet via PTV; color and vector denote the radius and velocity of droplets. (D) Number of droplets, N, with respect to
dB. (E) Droplet statistics at various respiratory activities. (F) Probability function of droplet radii R; inset denotes the PDF in semilong scale and the solid line
represents the GPD with σ = 1, k = 0:52, and θ = 0. (G) Mean traveled distance of droplets at different R and dB.
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Fig. 2. Flow and particle physics of plosive sounds via PIV and computational fluid dynamics (CFD). (A) PIV experimental setup. (B) Representative instant of
the flow field induced by plosive sounds. (C) Numerical results of particle trajectories with respect to particle size at the initial gas velocity, ug = 1:6 m/s; color
denotes the particle streamwise velocity u. (D) Representative instant of the flow-particle interaction induced by plosive sounds. (E) Validation of the numeri-
cal results based on the comparison of particle travel characteristics with PTV results at various dB; the inset shows the correlation of the traveled distance
of droplets in the range of 40 μm < R < 50 μm between experimental results with respect to dB and simulation with respect to ug . (F) Ensemble-averaged
particle velocity u with respect to R; insets show semilog scale highlighting the ballistic (blue; Upper Left) and diffusive (red; Bottom Right) regimes; dotted col-
ored vertical lines are the critical radii Rc corresponding to ug . (G) Probability density function (PDF) of normalized Lagrangian accelerations, a=a21=2, of par-
ticles in the diffusive (red circle) and ballistic (blue triangle) regimes. (H) Pair dispersion, Φ2, of particles in diffusive (solid lines) and ballistic (dashed lines)
regimes at various ug ; dotted colored vertical lines are the critical times Tc corresponding to ug .
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induced flow. The bulk velocity in this regime increases with
R and ug can be characterized by

u =
2R2upρ

9μT
1� exp � 9μ

2R2ρ
T

� �� �
for R > Rc =

ffiffiffiffiffiffiffiffiffiffiffi
9μLS
2ρug

s
,

[1]

where up = 0:9ug is the peak velocity. However, particles in the
diffusive regime exhibit an inverse relation with R as they are
initially carried by the induced flow. Nondimensional bulk
velocity u=ug trends, shown in the top and bottom insets of
Fig. 2F, further reveal common features. The top inset reveals a
u/ug self-similar behavior that collapses into a scale, as inferred
from Eq. 1. The log-log representation in the bottom inset
highlights dynamics in the diffusive regime and critical values
separating the two regimes by Rc . As ug increases, Rc decreases
due to an increase in the Stk number at a given particle size.
Unlike the particle dynamics in the ballistic regime, u/ug does
not overlap and exhibits a sharper decrease with respect to ug
due to the distinct interaction between R and the induced flow,
as described by the Stk number.
Inspection of the Lagrangian characteristics of the particle

dynamics provides additional insight on particle behaviors as
tracers, i.e., aerosols, or inertial particles, i.e., droplets, or
in-between state obeying diffusive and ballistic regimes. It
includes the probability density function (PDF) of normalized
Lagrangian accelerations along the streamwise direction, a=ha2i1=2,
and pair dispersion, Φ2ðtÞ = h r tð Þ � ri½ �2i, where r tð Þ is the
separation between two particles as a function of time, where ri
is the initial separation. Notable characteristics of a=ha2i1=2 and
Φ2ðtÞ of tracer particles in turbulent flows include non-Gaussian
PDF of a=ha2i1=2 with a heavy-tail distribution, indicating inter-
mittent events (36, 37) and Φ2ðtÞ ∝ t 2 scaling predicted by
Batchelor (38). Particle behaviors based on these characteristics
can provide information on transmission by quantifying the
linkage with the flow at a given length, size, and time scale from
a Lagrangian perspective. The a=ha2i1=2 PDF in the diffusive
regime exhibits a non-Gaussian symmetric distribution with
heavy-tail evidencing intermittent events, similar to that found
in tracers in fully developed turbulence (36). However, the parti-
cle acceleration PDF in the ballistic regime shows a positively
skewed distribution with comparatively high kurtosis resembling
a skew-normal distribution. The results indicate that particles
in this regime mostly face deceleration with reduced effect of
flow disturbances. In addition, R2ðtÞ increases with t 2 in the
ballistic regime, similar to tracers in developed turbulence (39).
A change in the trend occurred at a characteristic strain time
scale, Tc = 2=ω, where ω is the vorticity magnitude. On the
other hand, the relative dispersion of particles in the diffusive
regime increases linearly in the time span. This behavior occurs
with particles in a quiescent fluid undergoing Brownian motions;
i.e., the particles are not affected by the induced flow (see details
in SI Appendix, Supplementary Note).

Biomechanics Across the Neck during Plosive Consonants.
Fundamental assessments in flow-particle physics associated
with critical speech patterns in the context of infectious disease
transmission further motivate the development of continuous
monitoring technologies for such respiratory activities during
natural daily activities in work and home settings. BC plosive
sound detection through soft, skin-mounted electronic sensors
critically relies on determining optimal physiological mounting

locations. Spatiotemporal maps of motions of the neck during
various vocal activities determined by 3D-DIC (40) reveal the
biomechanics associated with BC plosive sounds (SI Appendix,
Video S3), using methods similar to those in 3D-PTV of the
neck during cardiac and breathing activities (22). A basic sche-
matic and representative images of 3D-DIC measurements are
given in Fig. 3 A and B. Experiments quantify 3D displace-
ments across the entire neck, resolving over 6,000 grid points
during representative BC plosive sounds and nonplosive sounds
in the 75–85 dB range and during swallowing.

Two physiological locations exhibit distinct mechanisms of
plosive sounds. One of these is the SN, a dip between two
clavicles and located on the apex of the sternum. The other is
the SCM muscle, a two-headed neck muscle above the clavicle.
Out-of-plane displacements at the SN, ΔzSN, and the SCM,
ΔzSCM, drastically increase shortly before pronouncing the plo-
sive sound “P,” as shown in Fig. 3C. The rapid change follows
from obstruction of the airstream by the lips, which builds
pressure inside the trachea and expands the cartilaginous tube.
The quick release of blockage in the airway during the process
of plosive pronunciation can be described in terms of the tem-
poral derivatives, ΔvSN and ΔvSCM as shown in Fig. 3D. Both
ΔvSN and ΔvSCM exhibit sharp increases, reaching a local peak
velocity Vp, and decrease as unique features of plosive sounds
in both locations. Three-dimensional maps of relative instants
defined as (I), (II), (III), and (IV) in Fig. 3C, where the local
maximum deformation in the out-of-plane direction occurs for
each plosive sound, capture the similar mechanism across vari-
ous BC plosive words, as shown in Fig. 3 E–H.

The 3D maps of other types of phonetic sounds, such as
“will” and “sing,” are shown in Fig. 3 I and J. The deforma-
tions of the SN and SCM are the largest in the order of plo-
sive [p] (Fig. 3C), fricative [s] (Fig. 3L), and approximant [w]
(Fig. 3K) sounds, consistent with the degree of the blocked
airflow. Deformations are relatively small during vowel sounds
(e.g., [i] [a]) due to the near-absence of blockage of the air-
flow relative to that associated with consonant sounds (see
Materials and Methods). Measurements performed at both the
SCM and the SN help to distinguish signals from other activi-
ties that also exhibit large deformations at SN such as swal-
lowing, as shown in Fig. 3 M–P. The swallowing undergoes a
similar displacement magnitude at SN compared with the
one found in a plosive sound during the esophageal phase
(Fig. 3O). However, such displacements do not occur at the
SCM, as the bolus travels downward by peristaltic motions
inside the esophagus.

Design of Dual-in-Plane (DiP) MA sensor. The thin, soft physi-
cal properties of the wireless device enable continuous measure-
ments of dual MA signals from the skin surface in these regions
without discomfort. The DiP device is optimized for plosive
sound detection, while retaining sensing capabilities from previ-
ous versions designed for cardiopulmonary applications (21).
The resulting measurements are immune from cross-talk among
multiple individuals and from other effects of ambient sounds,
highlighting an essential advantage over other approaches, such
as those that rely on microphones. Fig. 4A shows the system rela-
tive to a US quarter, with a section of 22 × 65 mm and a thick-
ness under 9 mm, and a weight below 7 g. Fig. 4B and SI
Appendix, Fig. S3 show an exploded view and layout of the MA
device. A silicone enclosure surrounds a flexible printed circuit
board (fPCB) and multiple passive and active electrical compo-
nents, including two identical inertial measurement sensors, a
Bluetooth system-on-chip (SoC), and a lithium-polymer battery.

PNAS 2022 Vol. 119 No. 46 e2214164119 https://doi.org/10.1073/pnas.2214164119 5 of 12

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2214164119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2214164119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2214164119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2214164119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2214164119/-/DCSupplemental


B

Suprasternal
Notch (SN)

Sternocleido-
mastoid (SCM)

Plosive Speech

Non-plosive Speech Swallowing

0

80

0-40 0
30

(m
m

)

3

E

Δ (mm)0 3

“Peter” (I)E “Peter” (((((((((((((((((I)))))))))))))))))))))))))))

0-40 0
303

F

e Speeche
Δ (mm)-0.5 3.5

“Piper” (II)F “Piper” (II)

0-40 0
303

G

Δ (mm)-1 4

“Picked” (III)

0 0

G “Picked” (III)

0-40 0
303

H

wingw
Δ (mm)-3 4

“Pack” (IV)H “Pack” (IV)

0

80

0-40 0
30

(m
m

)

3

I

Δ (mm)
-1.5 1.5

“Will” (V)I “Will” (((((((((V)))))))))))))))))))))))

0-40 0
303

J

Δ (mm)
0.5 2.5

“Sing” (VI)J “Sing” (VI)

-600-60 0

M

Δ (mm)
-3 1.7

0

80

30

z
(m

m
)

0600

M
0

(
)

0 0

N

Δ (mm)
2

30
0

-3

N

A 3D DIC

High Speed
Cameras

Hig
Ca

Speckle 
Pattern

Neck

CCC

Δ
(m

m
)

0 2 (s)

“Peter” “Piper” “Picked” “Pack”

4

0

4 ΔzSCM +3

ΔzSN

(I) (II) (III) (IV)
V

(m
m

/s
)

0

40

-40

0 2 4

vSCM +40

vSN

P- icked ack

(s)

D

P-eter i P- er P- P-

Vp

Δ
(m

m
)

0 1

0

4

“We” “Will”

(V)

(s)

ΔzSCM +3

ΔzSN

K “Sing a” “Song”

(VI)

0 1(s)

L
(VII) (VIII)

O

0 3(s)

0

-4

Δ
(m

m
)

ΔzSCM +3

ΔzSN

EPPPOP
P

V
(m

m
/s

)

0

40

-40

vSCM +40

vSN

0 3(s)

Fig. 3. Mechanics of the neck via three-dimensional digital-image correlation (3D-DIC). (A) 3D-DIC experimental setup. (B) A sample raw image set for
stereoscopic vision; red circle and blue triangle symbols denote suprasternal notch (SN) and sternocleidomastoid (SCM). (C, D) Displacement and velocity
profiles of plosive sounds; dotted vertical lines exhibit local maxima. (E–H) 3D displacement fields of plosive sounds. (I, J) 3D displacement fields of nonplosive
sounds. (K, L) Displacement profiles of nonplosive sounds. (M, N) 3D displacement fields of swallowing. (O, P) Displacement and velocity profiles of swallowing
at the oral (OP), pharyngeal (PP), and esophageal (EP) phases.

6 of 12 https://doi.org/10.1073/pnas.2214164119 pnas.org



A
Silicone 

Elastomer
cone
omer

Battery

fPCB

Sensor 2

Sensor 1

Through
Holes

Through
Holes

B

E

Machine LearningDiP device

Flash
Memory

MCU

Bluetooth

Speech

User Interface

PMIC
Wireless
Charging

Li-Pol
Battery

V/I/Temp.
Protection

Plosive

Non-PlosiveNon-Plosive

Machine Learning

Plosive

IMU1

IMU2

1 cm

GF H
Plosive Speech

0.5

-0.5

0

0 0.2t (s)

“Pack”

P

0(g
)

(g
)

0.8

-0.8

0

Non-plosive Speech

0 0.3t (s)

“We”

45

30

15

0

V
P

(m
m

/s
)

1

0.5

0
60 70 80 90

P
(g

)

dB

Vp (via 3D-DIC)Vp (via 3D DIC)
p (via MA device)

XM (via PTV)

4

2

X
M

(c
m

)

6

C

Turn right Turn left

D
20 Standard

t (s)20

0

-20

z
(m

m
)

DiP

A1exp( )1 p( )

A2exp( )

Fig. 4. Wireless, skin-interfaced dual-in-plane (DiP) mechano-acoustic platform for plosive sound detection. (A) Image of the device interfacing the
suprasternal notch (SN) and sternocleidomastoid (SCM) (Top); size comparison to a Washington quarter (Bottom). (B) Exploded schematic illustration of the
holey design, including active and passive electrical components, fPCB interconnect schemes, and silicone enclosure architectures. (C) Images of the device
undergoing various mechanical deformations while worn on the subject: a turning right angle of 90°(Left) and a turning left angle of 90°(Right). (D) Natural
frequencies and damping ratios of a DiP device and standard device. (E) Block diagram of platform (PMIC and MCU are power management integrated cir-
cuit and microcontroller, respectively); a tablet provides the interface to control the device and download the data from the device through Bluetooth. The
tablet uploads the data to the cloud platform through a Wi-Fi. The cloud-based machine learning processes the classification of plosive and nonplosive
sounds. (F, G) MA signals of representative nonplosive and plosive sounds, respectively. (H) The fitted linear model of number of droplets NL via PTV, local
peak velocity VP via 3D-DIC, and local peak acceleration aP vs. dB.

PNAS 2022 Vol. 119 No. 46 e2214164119 https://doi.org/10.1073/pnas.2214164119 7 of 12



Serpentine interconnections between these components enable a
low equivalent elastic modulus of the integrated devices. Fig. 4C
and SI Appendix, Fig. S4 show images of a device undergoing
various mechanical deformations while worn on a subject during
representative motions: stretching (sensor on SCM) and com-
pressing (sensor on SN) under turning right angle of 80°, com-
pressing (sensor on SCM and SN) under turning left angle of
80°, and twisting (sensor on SN) under looking up of 80°
motions. Further modifications from previously reported ver-
sions of this device (21, 26) customize the system for detecting
plosive sounds by adding holes (SI Appendix, Fig. S5) through
the encapsulating layers. This “holey” design reduces the stresses
at the skin interface and provides additional advantages (41);
these include improvements in flexibility in comparison with the
natural frequency and damping ratio of standard devices (21) as
shown in Fig. 4D. The block diagram in Fig. 4E summarizes the
system architecture and operation (see Materials and Methods).
Local peak acceleration (aP ) allows distinguishing nonplosive

and plosive sounds as shown in Fig. 4 F and G and SI
Appendix, Fig. S6. Plosive consonant sounds, such as pronounc-
ing a voiceless “pack” sound, induce a sharp peak (red arrow in
Fig. 4G) caused by sudden airflow that follows from releasing
the lips, unobserved in nonplosive sounds (Fig. 4F). The mean
traveled distance of droplets, XM , from the inset of Fig. 2E,
local peak velocity of the skin vibrations at SN, Vp, from Fig.
3D, and local peak acceleration of MA signals at SN, ap, from
Fig. 3F show positive correlations with respect to dB as shown
in Fig. 4H. The results indicate that with a proper calibration
between dB, ap and XM , speech patterns and features associated
with the flow-particle characteristics from a wide range of indi-
viduals, including those with high potential for disease trans-
mission, could be identified by the sensor.

CNN Algorithm for Plosive Sound Detection. The sensor data
can classify plosive and nonplosive sounds for a wide range of
individuals using machine learning techniques. Fig. 5A shows rep-
resentative MA signals recorded at the SN and corresponding
spectrograms during the articulation of plosive and nonplosive
words from a representative English vocabulary (see Materials and
Methods). MA signals of nonplosive sounds show pronounced har-
monic features. Those of plosive sounds exhibit weak but wide-
band nonharmonic signatures and harmonics. These nonharmonic
signatures are closely associated with the quick release of air pres-
sure in the cartilaginous tube. The mechanism produces a rapid
change in the tube volume, confirmed by 3D-DIC and MA sig-
nals in terms of VP and aP , respectively. The effect of skin condi-
tion especially for older adults, the age group most susceptible to
infectious disease, is negligible in detecting plosive speech patterns,
as the MA signals show similar temporal and frequency character-
istics across different ages (SI Appendix, Fig. S7). MA signals
from the SCM (SI Appendix, Fig. S8) exhibit similar differences
between plosive and nonplosive sounds. A CNN can recognize
these different features. The algorithm starts with a short-time
Fourier transform of synchronized z axis accelerations at the SN
and one side of the neck using a Hanning window with a width
of 0.4 s moving in time steps of 0.01 s (Fig. 5B). The algorithm
considers each windowed signal with a duration of 0.8 s inde-
pendently in the process of sound classification. A minimum
amplitude threshold of �10,000 detects peaks of the logarithm
of spectral power integrated across the high-frequency band
(>10 Hz) and labels them as speech, with a minimum time inter-
val between peak events of 0.8 s. The spectrogram of the MA sig-
nals at the SN (shape: 320 × 80) SCM (shape: 320 × 80) form a
concatenated spectrogram (shape: 320 × 160) that serves as the

input of the CNN model (Fig. 5C). The CNN starts with four
stages of convolutions with rectified linear unit (ReLU) activation
and a kernel size of 3 × 3, followed by two layers of fully con-
nected neural networks with ReLU activation and two dropout
layers (P = 0.5) alternately. The final output of the CNN model
has two neurons with Softmax activation, which correspond to
the probabilities for classifying the event as a plosive or nonplo-
sive sound.

The training uses data collected from 10 volunteers, each
consisting of ∼2,500 articulations of plosive words and 2,500
articulations of nonplosive words from a representative English
vocabulary (see Materials and Methods). A standard method to val-
idate the generalization performance of a machine learning model
relies on a leave-one-out strategy, where one leaves a subject out
of the training set (nine subjects for training) and then tests the
trained model on this subject. Iterations apply this approach to
each of the 10 subjects. Each training set consists of a random col-
lection of 80% of the labeled events from the nine subjects,
thereby leaving the remaining 20% for validation. The training
uses an Adam optimization algorithm. Fig. 5D shows the averaged
confusion matrix of 10 leave-one-out testing cycles. The model
achieves accuracies of 0.87 ± 0.03 for nonplosive words and
0.87 ± 0.04 for plosive words. Fig. 5E shows the overall classifica-
tion accuracies on each subject using a model trained on the other
nine subjects. The overall accuracy is above 0.85 for nine subjects
and 0.83 for one subject, with MA spectrograms from SN and
SCM as input features. In comparison, models trained only on
the spectrograms from SN or only on those from the side show
lower accuracies of about 0.8. Fig. 5F presents the receiver operat-
ing characteristic curves for each subject. The high area under the
curve >0.89 for all subjects indicates that the model achieves a
good balance between sensitivity and specificity. Plosive sound
detection in another language, Korean as an example, exhibits
similar results to English’s, suggesting that the approach captures
the essential physics of plosive sound regardless of language (SI
Appendix, Fig. S8).

Discussion

This paper presents the results of experimental and numerical
investigations of the flow-particle physics induced by production
of plosive sounds. The associated dynamics embody vortex ring,
tracer- and inertial particle interactions. We identify diffusive and
ballistic particle regimes, where particles exhibit a self-similarity
behavior predominantly governed by initial conditions of the
speech in the ballistic regime. In contrast, particles in the diffusive
regime are trapped inside the vortex ring and show a strong
dependence on background flow structures. The unique biome-
chanics of the neck surface during production of plosive sounds
motivate the development of a customized, soft wearable device
for plosive sound detection. Using the CNN method, we demon-
strate effective plosive sound detection in English and Korean.
This approach may serve as a complementary method to identify
unique speech patterns associated with the flow-particle physics
in droplet/aerosol transmission over a broad range of individuals
in both home and clinical settings.

Materials and Methods

PTV on Tracking Droplets. Particle dynamics of plosive sounds generated by a
healthy male (31 y old) were quantified by PTV. Plosive words including “Peter,”
“piper,” “packed,” and “pack” were repeated for 22, 15, 17, and 26 times at vari-
ous audio levels ranging from 65 to 99 dB, respectively (measured by Decibel ×
calibrated by SD-4023 sound level meter and R8090 Sound Level Calibrator). PTV
experiments were recorded by four synchronized 2MP Emergent HT-2000M
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cameras with a 50 mm F1.4 manual-focus Kowa lens at the frame rate of 500 fps.
The investigation volume for tracking particles was ∼30 × ∼20 × ∼10 cm3

illuminated by a synchronized Nd:YLF (Neodymium-doped yttrium lithium fluo-
ride) laser with pulse energies of 25 mJ (527-49-M, Terra). Preprocessing, cali-
bration, tracking, and postprocessing were processed by the PTV code developed
by the RETEG group at UIUC (42). Image sequences were preprocessed by sub-
tracting the background noise and enhancing the contract, and particles were
detected in a subpixel level with the area estimation. The scattering cross-section
of a detected particle, refractive index of particle as well as the surrounding
medium, and wavelength of the light source were implemented to calculate the
actual radius of detected particles based on the Mie scattering theory (43, 44).
The minimum radius of particles measured in this work was ∼25 μm. Detected
particles were tracked using the Hungarian algorithm and linked by performing
a five-frame gap closing to produce longer trajectories. Velocity and Lagrangian
acceleration were filtered and computed using fourth-order B splines (45).

PIV on Plosive Flow Fields. PIV experiments were implemented to under-
stand flow dynamics of plosive sound produced by a human. A male adult spoke
the “pa” sound in front of a closed acrylic box with a hole, on which he put his
mouth. The cross-section of the box was 20 × 20 cm square, and the length was
40 cm. Before each experiment, the acrylic box was filled with green, dyed water
droplets generated from a nebulizer, which served as tracer particles. The PIV sys-
tem includes a Nd:YLF laser with pulse energies of 50 mJ (527-80-M, Terra), a
digital camera (2,560 × 1,600 pixels, CMOS Phantom Miro 340), a synchro-
nizer, and a PIV control software (Insight 4G software, TSI). A 1 mm thick laser
sheet illuminated a middle plane of the box. The field of view covered 130 cm
in a streamwise direction from the mouth and 190 cm in a cross-flow direction.
With a sampling frequency of 300 Hz, 1,000 image pairs were captured, where
delta t between the images for one pair was 50 μs. Two-dimensional velocity
fields were obtained from the image pairs, using a recursive cross-correlation
method with the final window size 20 × 20 pixel. The corresponding velocity
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field consists of a total of 12,504 velocity vectors with a spacing of Δx = Δy =
1.4 mm.

Computational Fluid Dynamics. Three-dimensional numerical simulations
are carried out by solving the compressible Navier-Stokes equations for the
gas phase, while the droplets are modeled as Lagrangian point particles.
The air and droplets are two-way coupled with respect to mass, heat, and
momentum transfer. The governing equations for mass, momentum,
energy, and gas species are Favre-filtered conservation and are given as
follows:

∂ρ
∂t

+ ∇ � ðρu!Þ = SY ;

∂ρu!

∂t
+ ∇ � ðρu!u!Þ = �∇p + ∇ � τ + Su;

∂ρE
∂t

+ ∇ � ðρu!HÞ = ∇ � τ � uð Þ � ∇ � ðρα∇hÞ + Sq;

∂ρY
∂t

+ ∇ � ρu
!
Y

� �
= �∇ � j + SY ;

where u
!
, ρ, p, and τ are the velocity vector, mixture density, pressure, and vis-

cous stress tensor, respectively, for the air. The specific total energy density is
defined as E = e + 1

2 u
! � u! as the sum of specific internal energy, e, and spe-

cific kinetic energy. H = E + p=ρ is the stagnation enthalpy, α is the mixture
thermal diffusivity, and h is the mixture enthalpy. Y and j are the mass fraction
and diffusive species flux, respectively, associated with gaseous aerosols.
SY , Su, Sq denote the mass, momentum, and heat transferred from the dis-
persed aerosol to the gas phase, respectively. The air obeys an ideal gas equa-
tion of state, and the governing equations are solved using a second-order finite
volume discretization on unstructured grids. The numerical scheme is con-
structed with low numerical dissipation, making it amenable for turbulent trans-
port and dispersion simulations.

Droplets are assumed as discrete single-component spherical particles whose
volumetric loading is small, and their density is much larger than that of the air.
The evaporation of droplets assumes a quiescent surrounding air, or equiva-
lently, the air evolves at a faster time scale compared with that of evaporation,
and the system has a constant pressure. The governing equations to the dynam-
ics of droplets are (46):

dXi
dt

= vi,

dvi
dt

=
f1
τd

� �
ui � við Þ + gi,

dTd
dt

= � 6Nu
ρLCLD2

λ

Cp
Δh� � Lv ln

1� Y∞
1� Yvs

� �� �
,

dmd

dt
= �πDSh

λ

Cp
ln

1� Y∞
1� Yvs

� �
,

where Xi, vi, Td, and md denote position, velocity, temperature, and mass of a
single droplet. ui and TG are the local velocity and temperature of the carrier air,
gi is gravitational acceleration, and Lv refers to the latent heat of vaporization.
The parameter f1 is the correction to Stokes drag for droplet motion and eva-
poration and to heat transfer due to evaporation, where f1 is defined
as f1 = 1:0 + 0:15Re0:687d + 0:0175Red=ð1 + 4:25 × 104Re�1:16

d Þ (47). The

time constant for Stokes flow τd is defined as τd =
ρdD

2
d

18μG
, where Dd is the diame-

ter of a single aerosol and Nu = αDd
λ and Sh = hmDd

D are the Nusselt (Nu) and
Sherwood (Sh) numbers, where α is convective heat transfer coefficient and λ is
the thermal conductivity of the air. hm is convective mass transfer coefficient and
D is mass diffusivity of air. Δh� = βðh∞ � hv Ts, Ysð ÞÞ=ðexp βð Þ � 1Þ, where
β is defined as β = ln ð1� Y∞Þ=ð1� YvsÞð Þ.

The μ, ρ, λ, CP, h, and Y indicate viscosity, density, thermal conductivity, heat
capacity at constant pressure, enthalpy, and the mass fraction, respectively, with
the subscripts i, d, s, vs., ∞, and L indicating vector components, droplet

properties, properties at droplet surface, saturated vapor state, far-field proper-
ties, and liquid (droplet) properties. The code implementation is validated by
comparing the evolution of the temperature and radius of droplets to the work
of Wong and Lin (48). For more details of numerical methods, the readers are
referred to previous works (49, 50).

The computational domain is a pipe of radius 0.5 m and 1.15 m in length
(x∈[�0.15, 1]). The initial ambient condition is a stagnant flow with a tempera-
ture and pressure of 298.15 K and 101,325 Pa. Mass fraction of the water vapor
is set as 0.014. As a human head model, a small sphere of radius 0.075 m is
included at x = �0.075 m at the conduit center with a pathway of air and drop-
lets that lead to the mouth, modeled as a pipe of diameter 2 cm. The inlet of
the simulations is located at the other end of this modeled pathway, which coin-
cides with the center of the sphere. Thus, the air jet and droplets are ejected into
ambient air through the mouth at the origin. Inlet velocity of plosive sounds is
modeled as a rectangular function with a constant value of 0.7, 1.0, 1.3, and
1.6 m/s for 0.05 s, which correspond to the cases shown in Fig. 2E and SI
Appendix, Video S3. Parameters are chosen to yield a similar group dynamic of
droplets produced in the experiments.

Additionally, we assume the gas is fully saturated. Droplets are injected
throughout the same time duration with the 90% of the background gas velocity.
The size distribution of injected droplets are set to follow the log-normal distribu-
tion provided by the experiment (e.g., see Fig. 1F). The total number of droplets
introduced for the entire speech duration is ∼400 to ∼500. This number of drop-
lets is similar to the experimental results (Fig. 1D) and ensures the convergence
of the group dynamic statistics.

Algebraic wall model boundary condition is used at the inner wall of the
pathway. It assumes an equilibrium turbulent boundary layer and a velocity pro-
file following the law of the wall, leading to a nonlinear equation for the wall
stress. Given the flow variables from the near-wall cell, such as velocity, density,
and viscosity, the wall stress is solved using Newton’s method applied to the
inner surface of the pathway. Moreover, the no-slip boundary condition is used
for the surface of the head. In contrast, the slip boundary condition is employed
for all boundary faces except the face at the downstream location. The Navier-
Stokes characteristic boundary condition is used for subsonic nonreflecting
outflow.

We use grids of hexagonal close-packed topology. The grid is partially refined
near the pathway wall and near the mouth to capture the viscous layer and vortex
formation. The refined grid in the former region is 0.6 and 0.3 mm for the latter.
Also, an additional refinement zone of grid size 2.5 mm is added for the evolu-
tion of the jet. Then, the grid is coarsened to 4 cm toward the edges of the
domain resulting in 5.4 million elements. A slice of the domain illustrating mesh-
ing is displayed in SI Appendix, Fig. S10.

3D-DIC on Plosive Biomechanics of the Neck Surface. Neck vibrations of a
healthy male (31 y old) during production of plosive and nonplosive sounds as
well as swallowing motions are captured by 3D-DIC. The measurement used
two of those cameras used in the PTV experiments operating at a frame rate of
500 fps. The image sequences were processed with the open-source 3D-DIC soft-
ware, MultiDIC (40). The investigation area was 10 × 9 × 6 cm3, covering the
entire neck. The DIC subset radius and spacing were 20 and 10 pixels, resolving
over 6,600 grids.

Design and Fabrication of DiP MA Sensor. For the design of DiP MA sensor,
Autodesk EAGLE (version 9.6.0) was used to create a stretchable and bendable
MA sensor’s fPCB schematic diagram and board layout. The use of serpentine-
shaped outlines connecting separate four islands (main body, charging coil, two
IMUs) ensured a high degree of mechanical decoupling. A summary of the bill of
materials for the device includes a BLE SoC (nRF52840, Nordic Semiconductor),
PMIC (power management integrated circuit; BQ25120, Texas Instruments), 8Gb
NAND (NOT-AND) flash memory (MT29F8G01, Mm), 3.7V lithium-polymer battery
(75 mAh), voltage and current protection IC (integrated circuit) for Li-Polymer bat-
tery (BQ2970, Texas Instruments), and two IMUs embedded temperature sensing
unit (LSM6DSL, STMicroelectronics). SEGGER Embedded Studio (Release 4.20,
SEGGER Microcontroller GmbH) downloaded customized firmware to BLE (Blue-
tooth Low Energy) IC, then the fPCB with soldered components was folded and
connected with the battery. A freeform prototyping machine (Roland MDX 540)
created aluminum molds for the top and the bottom layers, made of silicone
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elastomer (Silbione-4420, each 300 mm thick, mixed at a ratio of 1:1 base to cur-
ing agent) cured at 95 °C in an oven for 20 min. Placing the fPCB between these
top and bottom layers, filling the gaps with a soft silicone material (Eco-Flex
0030, 1:2 ratio) and then curing at 60 °C in an oven for 30 min completed the
fabrication.

DiP MA Sensor for Plosive Sound Detection. All of the participants pro-
vided written/verbal consent prior to their participation in this research
study. Study procedures were approved by the Northwestern University Insti-
tutional Review Board (IRB#: STU00209682). All study-related procedures
were carried out in accordance with the standards listed in the Declaration of
Helsinki, 1964. During the study, participants wore an MA device at the SN
and SCM (Fig. 4A). In the case of participants, a clinician/research staff assis-
ted in placing the sensor. A tablet provides the interface to control the MA
device wirelessly, allowing downloading of the sensor data through Blue-
tooth. The tablet uploads the data to the cloud platform through a Wi-Fi
interface. SI Appendix, Fig. S11 shows representative results of z axis MA sig-
nals in static (sitting, orange-shaded area) and dynamic (walking, green-
shaded area) conditions. A sampling rate of 1.6 kHz successfully captures
high-fidelity signatures of vocal cord vibrations manifested through the SN
and SCM while pronouncing various words, including plosive and nonplosive
consonants. Data from the IMU1 (black) and IMU2 (red), collected from the
SN and SCM, respectively, during three different phrases, 1: “Peter piper
picked a peak,” 2: “Sing a song of six pence,” and 3: “We will beat the coro-
navirus,” at four different voice levels (1 is low and 4 is high), are shown in
SI Appendix, Fig. S8. The oscillatory behaviors for the DiP and single device
are captured by the high-speed tracking method (SI Appendix, Video S4)
(51). The DiP device exhibits 55.0% and 73.3% decreases in natural fre-
quency and damping ratios, respectively, compared with those of a single
IMU device. The improvement of its flexibility allows for measuring indepen-
dent, isolated MA signals in both locations of SN and SCM, minimizing cross-
talk while accommodating physiological neck motions.

Plosive Sound Classification. Classification of sounds is based on the size of
the air passage during the production of the sound. First, vowels and consonants
correspond to sounds with a free air passage or blocked or turbulent airflow
(14). In phonetic usage, consonants can be classified by the degree of airflow
blockage, from large to small: stops [p, t, k, b, d, g, m, n, ng], fricatives [f, v, th,
s, z], approximants [w, r], and lateral [l]. Here, the stops represent complete clo-
sure of articulators, which blocks the airstream through the mouth or nose. Two
types of stops include oral stops (i.e., plosives) [p, t, k, b, d, g], in which airflow
is perfectly blocked before speech, and nasal stops [m, n, ng], in which airflow
through the oral cavity stops while nasal airflow continues. Moreover, oral stops
can be classified into more specific categories according to the phase of articula-
tion: BC [p, b], in which the two lips block the airflow, and the others [t, k, d, g],
in which the tongue tip or body blocks the airflow.

Machine Learning Algorithm.
Representative vocabulary for nonplosive words. English: we, will, well, wall,
worry, why, who, where, wow, you, your, raw, rare, he, her, how, high, hire,
here, hurry, may, me, my, mine, mining, man, mom, mean, meaning, many,
money, mini, minimum, main, moon, name, nanny, nine, none, noun, noon,
no, nun, wear, wealth, way, rain, rich, ring, really, relieve, health, hush, hair,
fine, five, fall, false, favor, flavor, fever, three, church, sign, sing, song, same, say,
sell, sale, slow, vanish, vary, value, jar, jam, join, zoo, zoom, learn, less, lime,
lemon, long, line.

Korean: 우리(uri; we, us), 라면(ramyeon; instant noodle), 하늘(haneul;
sky), 승진 (seungjin; promotion), 주사 (jusa; injection), 사자 (saja; a lion),
장신 (jangsin; tall), 명상 (myeongsang; meditation), 해 (hae; year), 재 (jae;
ashes), 새(sae; bird), 신사(sinsa; gentleman), 주말(jumal; weekend), 주일
(ju-il; weekday),놀이(nol-I; play),해산물(haesanmul; seafood),논산(nonsan;
Nonsan),전주(jeonju; Jeonju),울산(ulsan; Ulsan),청주(cheongju; rice wine),
서울 (seoul; Seoul), 사수 (sasu; shooter), 모래 (molae; sand), 레몬 (lemon;
lemon), 멜론(mellon; melon), 정치(jeongchi; politics), 맛살(mas-sal; taste),
호수 (hosu; lake), 망치 (mangchi; hammer), 노루 (nolu; Roe deer), 나무
(namu; tree), 수치 (suchi; shame), 스물 (seumul; twenty), 스님 (seunim;
monk), 소모(somo; consumption), 전체(jeonche; all), 하루(halu; one day),
하산(hassan; climbing down), 해소(haeso; solution), 후추(huchu; pepper),

호소(hoso; appeal),한숨(hansoom; sigh),마루(malu; floor),마흔(maheun;
forty), 마련 (malyeon; prepared), 명칭 (myeongching; designation), 명소
(myeongso; sights),망상(mangsang; delusion),상추(sangchu; lettuce),상해
(sanghae; wound), 나라(nala; country), 남해(namhae; Namhae), 서해(seo-
hae; West Sea), 선생(seonsaeng; teacher), 성찰(seongchal; reflection), 재해
(jaehae; disaster),함수(hamsu; function),명시(myeongsi; Express),추상(chu-
sang; abstract), 상자 (sangja; box), 한정 (hanjeong; limit), 마음 (ma-eum;
mind),사람(salam; person),사정(sajeong; circumstance),주제(juje; subject),
낭만 (nangman; romance), 사랑 (sarang; love), 정체 (jeongche; identity),
점수 (jeomsu; score), 사물 (samul; objects), 사망 (samang; dead), 채무
(chaemu; financial obligation), 현재(hyeonjae; now), 현장(hyeonjang; scene),
만찬(manchan; feast), 모자(moja; hat), 주체(juche; subject), 멸시(myeolsi;
contempt), 추수(chusu; harvest), 매미(maemi; cicada), 차례(chalye; order),
차마(chama; but), 호재(hojae; good news), 소리(soli; sound), 소설(soseol;
novel),소수(sosu; decimal).
Representative vocabulary for plosive words. English: pipe, pay, pie, pop,
pup, pep, pupa, papa, peep, puppy, peppy, pebble, bay, baby, boy, buy, bye,
by, bee, beep, Bob, Bobby, play, person, pillow, pass, pin, praise, pain, poor,
plosive, please, poison, pump, plan, ball, bench, beach, blue, belly, below, beef,
bean, burn, bunny, bear, balloon, bar, brush, busy, base, key, kit, kid, kick, cat,
cow, coke, cake, tie, toy, ticket, date, day, dye, dad, dog, dig, guy, get, gate,
good, tell, kill, dizzy, grow, tiny, tire, time, team, tall, toss, toast, trunk, terminal,
kind, king, kiss, candle, car, common, come, dinner, doll, drill, dawn, dark, dol-
lar, ghost, gift, girl, guess, gas, green, Greek, glove.

Korean:폐포(pyepo; alveoli),포부(pobu; aspiration),부부(bubu; couple),
피부(pibu; skin), 패배(paebae; defeat), 파(pa; onion), 피(pi; blood), 파이
(pai; pie), 표피(pyopi; epidermis), 밥(bab; rice), 법(beob; method), 벼(byeo;
rice plant), 표어(pyoeo; watchword), 폭발(pogbal; explosion), 배부(baebu;
distribution), 비파(bipa; loquat), 펍(peob; pub), 부피(bupi; volume), 배포
(baepo; distribute), 팝 (pab; pop), 바보 (babo; dumb), 뽀빠이 (ppoppai;
Popeye), 도끼 (dokki; ax), 토끼 (tokki; rabbit), 가격 (gagyeog; price), 기도
(gido; prayer), 고기 (gogi; meat), 대구 (daegu; Dae-gu), 크기 (keugi; size),
도둑(dodug; theif), 도덕(dodeog; moral), 투기(tugi; speculation), 태극기
(taegeuggi; Korean flag),도구(dogu; tool),독(dog; poison),깨(kkae; sesame),
가게(gagae; store),가구(gagu; furniture),그때(geuttae; then),카드(kadeu;
card), 때(ttae; time), 떡국(tteoggug; rice cake soup), 턱(teog; chin), 코끼리
(kokkili; elephant), 개구리 (gaeguli; frog), 개미 (gaemi; ant), 도랑 (dolang;
channel), 도미 (domi; Sea bream), 대화 (daehwa; conversation), 기린 (gilin;
giraffe), 토론(tolon; debate), 통로(tonglo; passage), 타락(talag; corruption),
통화 (tonghwa; currency), 고향 (gohyang; hometown), 건전지 (geonjeonji;
battery), 도화지 (dohwaji; drawing paper), 가을 (ga-eul; autumn), 겨울
(gyeoul; winter), 계란 (gyelan; egg), 꾸러미 (kkuleomi; package), 고라니
(golani; elk),고난(gonan; hardship),고명(gomyeong; garnish),도난(donan;
theft), 대학 (daehag; university), 다리미 (dalimi; iron), 다리 (dali; bridge),
대전(daejeon; Daejeon),기사(gisa; report),도사(dosa; Taoist),동대문(dong-
daemun; Dong Dae Mun), 트럭 (teuleog; truck), 카메라 (kamela; camera),
가족(gajok; family),탈락(tallag; leaving out),땅거미(ttang-geomi; dusk).
CNN. The CNN starts with four stages in the following order: 32-channel 3 × 3
convolution, 1 × 6 max pooling, 128-channel 3 × 3 convolution, 1 × 3 max
pooling, 256-channel 3 × 3 convolution, 3 × 3 max pooling, 512-channel
3 × 3 convolution, global max pooling. The model subsequently consists of a
fully connected neural network with 512 neurons at the input and a dropout
layer (P = 0.5) followed by a fully connected neural network with 128 neurons
at the input and a dropout layer (P = 0.5). At the final output are two neurons
representing the probabilities of the two classes. All layers use the ReLU activa-
tion. The CNN uses an Adam optimizer for training. The training process follows
a leave-one-out strategy, where one leaves a subject out of the training set (nine
remaining subjects for training) and then tests the trained model on this subject.
Each training set applies a fivefold cross-validation procedure. This approach iter-
ates through each of the 10 subjects. All analyses used Python 3.0 with SciPy
and TensorFlow packages.

Data Availability. All study data are included in the article and/or supporting
information.
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