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Polygenic risk associated with post-
traumatic stress disorder onset and severity
Burook Misganaw1, Guia Guffanti2, Adriana Lori3, Duna Abu-Amara4, Janine D. Flory5,6SBPBC, Susanne Mueller13,14,
Rachel Yehuda5,6, Marti Jett7, Charles R. Marmar4, Kerry J. Ressler2 and Francis J. DoyleIII1

Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric illness with a highly polygenic architecture without large effect-
size common single-nucleotide polymorphisms (SNPs). Thus, to capture a substantial portion of the genetic
contribution, effects from many variants need to be aggregated. We investigated various aspects of one such
approach that has been successfully applied to many traits, polygenic risk score (PRS) for PTSD. Theoretical analyses
indicate the potential prediction ability of PRS. We used the latest summary statistics from the largest published
genome-wide association study (GWAS) conducted by Psychiatric Genomics Consortium for PTSD (PGC-PTSD). We
found that the PRS constructed for a cohort comprising veterans of recent wars (n= 244) explains a considerable
proportion of PTSD onset (Nagelkerke R2= 4.68%, P= 0.003) and severity (R2= 4.35%, P= 0.0008) variances. However,
the performance on an African ancestry sub-cohort was minimal. A PRS constructed with schizophrenia GWAS also
explained a significant fraction of PTSD diagnosis variance (Nagelkerke R2= 2.96%, P= 0.0175), confirming previously
reported genetic correlation between the two psychiatric ailments. Overall, these findings demonstrate the important
role polygenic analyses of PTSD will play in risk prediction models as well as in elucidating the biology of the disorder.

Introduction
Post-traumatic stress disorder (PTSD) is a debilitating

mental illness that can develop following a traumatic
experience, such as combat, sexual assault, or natural
disaster1. It occurs in ~10% of those experiencing severe
trauma, with a lifetime incidence rate of 6.8−8% in the US
general public2,3 and up to 15% among Operation
Enduring Freedom and Operation Iraqi Freedom (OEF/
OIF) veterans4,5. The current approach to diagnosis in
general clinical practice relies on clinician interviews and
patient self-reports. Variation in patients’ willingness to
self-disclose, as well as highly heterogeneous symptom
presentations and severity levels of PTSD6, make accurate
and timely diagnosis challenging. Underdiagnoses, in

particular, may result in serious, and at times fatal, out-
comes that could have potentially been avoidable7–10.
The urgent need for biomarkers as an objective diag-

nostic and prognostic tool for PTSD cannot be over-
stated11,12. Despite an international effort studying
military and civilian cohorts where many molecular layers
and modalities were investigated13–16, there are, as of yet,
no validated blood-based PTSD biomarker panels.
Towards this end, one of the more-promising approaches,
facilitated by a recent large-scale multi-site collaborative
genome-wide association study (GWAS) from the Psy-
chiatric Genomics Consortium for PTSD (PGC-PTSD)17,
is genomic profiling using single-nucleotide polymorph-
isms (SNP’s).
PTSD genomic profiles assess the degree of genetic

propensity, in probabilistic terms, for developing PTSD
following a traumatic experience. This information is of
great importance not only for identifying biomarkers for
disease prognosis, but also for elucidating disease etiology
and mechanisms. As genetic profiles can be obtained prior
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to trauma exposure, they can also be used to plan pre-
ventative measures in at-risk populations, including
military personnel. For example, duty assignments,
number of tours, and dwell times between tours can be
adjusted in relation to risk and resilience profiles. Pre-
deployment resilience building strategies and persona-
lized early interventions can also be implemented, espe-
cially for those that are at a higher risk. Furthermore, in
the long-term, enhanced understanding of the genetics of
the disorder will inform the design and tailoring of
effective therapeutics.
The main technical challenge in building genomic

profiles, besides shortage of study samples, is the fact that
the genetic architecture of PTSD, not unlike most other
complex psychiatric traits18, is highly polygenic. Indivi-
dual (or even a few dozen) common SNP variants account
for only a small part of the genetic influence. For instance,
the largest published PTSD GWAS to date17, done with
20,000 (25% cases) participants, could not find any novel
GWAS significant variant, nor could it replicate pre-
viously identified hits. A study of this sample size had 80%
power to detect a disease (causative) allele with genotype
relative risk of 1.186–1.35 (assuming an additive model
with disease allele frequency of 5–20% and a prevalence of
8% requiring a significance level of 5e-8). This suggests
that common variants have individually small effect-sizes
and are not by themselves predictive of PTSD risk.
Despite this lack of individual large effect-size common

variants, small effects from many variants accumulate to
result in a moderate level of heritability. Among those
exposed to trauma, twin studies indicated a PTSD herit-
ability of ~30% in men and 70% in women19,20. Also of note,
a moderate level of heritability (30%), particularly for
women, was recently confirmed with SNP array-based
heritability analysis17. Hence, a sensible way of capturing the
genetic liability of an individual is, instead of looking at
individual genes and variants in isolation, to account for the
additive effects of these small effect risk variants. The total
sum of risk variants, weighted by corresponding effect-sizes,
which are usually obtained from GWAS summary statistics,
is commonly known as polygenic risk score (PRS)21,22.
We investigated various issues pertaining to PTSD-PRS.

First, we discussed its opportunities and limitations from
a theoretical performance analysis. Next, we constructed
the PRS using GWAS summary statistics in a deeply
phenotyped and well-curated cohort comprised of OIF/
OEF veterans conducted by Systems Biology PTSD Bio-
markers Consortium (SBPBC), hereafter referred to as the
SysBio cohort. We then showed that ancestral makeup
similarity between discovery and validation cohorts was a
major performance determinant. Furthermore, as a
demonstration of genetic overlap among psychiatric ill-
nesses, we use schizophrenia GWAS summary statistics to
predict PTSD phenotypes. Overall, in addition to

theoretical and empirical investigation of PRS prediction
performance on PTSD onset and severity, we demon-
strated its use in studying genetic correlation with other
psychiatric disorders.

Methods
Participants
Study participants are OEF/OIF veterans recruited from

New York University Langone Medical Center (NYU), the
James J Peters VA Medical Center (JJPVAMC), and Icahn
School of Medicine at Mount Sinai (ISMMS) as part of a
multi-site consortium effort (SBPBC) to identify, validate,
and deploy PTSD diagnostic biomarkers. All participants
in both cases and controls had experienced combat
exposure. Written informed consent was obtained from
all participants before the clinical assessment was con-
ducted. Assessment of combat-associated PTSD diagnosis
and severity was based on CAPS-IV (Clinician Adminis-
tered PTSD Scale for DSM-IV) administered by a
doctoral-level clinician. Deep and extensive phenotype
information was thoroughly gathered. These included, in
addition to CAPS, the Structured Clinical Interview for
DSM-IV for anxiety, mood, alcohol and substance use,
and psychotic disorders, as well as demographics data
including race/ethnicity, age, relationship-status, and
anthropometric data, including BMI, weight, and height.
Further details about clinical and demographic data can
be found in Table 1. In order to maximize signal detec-
tion, those with intermediate severity level sub-threshold
PTSD were excluded. Other exclusion criteria included (i)
any drug abuse within a year of assessment, (ii) lifetime
schizophrenia, bipolar disorder, obsessive-compulsive
disorder or other psychotic disorders, (iii) head injury
with current post-concussion symptoms, (iv) trauma
exposure within 3 months of assessment to exclude non-
combat-associated PTSD, and (v) current suicidal or
homicidal ideation. Of the genotyped subset, 116 parti-
cipants are PTSD cases (CAPS range: 37–102, median:
65.5), whereas the other 128 are trauma exposed, age and
ethnicity matched, healthy controls (CAPS range: 0–24,
median: 2).

Raw genotype data, imputation, and quality–control of
target cohort
Blood samples were drawn at JJPVAMC or ISMMS and

shipped to Emory University for SNP genotyping. The
genotype data were obtained with the Infinium PsychArray
BeadChip from Illumina (San Diego, CA, USA). Genotype
calling was made with GenomeStudio. Samples were pro-
cessed in two batches (owing to different sample arrival
times). Per-sample genotyping rate, in each batch, was
>99%, resulting in a total of 303,378 typed variants. Hence,
no sample needed to be discarded due to quality–control
(QC). This leaves 244 samples with genotype and
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phenotype data. Imputation was performed with standard
steps. First, the genotype data were split into individual
chromosomes. Then, strand orientation of genotyped data
of each autosomal chromosome were checked and cor-
rected with PLINK23. As pre-phasing was believed to
improve imputation accuracy and speed, the study data
were pre-phased with SHAPEIT24 with genetic map data
for build 3725. Imputation was done for a window of 5Mb
at a time with IMPUTE226 using phased reference panel
from 1000 Genome Project phase 3 data set. The imputed
data were reassembled with GTOOL. The following cri-
teria were used for QC filtering with PLINK: minimum
threshold for a minor allele frequency of 0.01, maximum
individual missingness rate of 0.1, and Hardy–Weinberg
equilibrium p-value of 0.001. A total of 9,831,409 variants
survived this QC filtering step. Of note, our target SysBio
cohort participants were completely independent of the
discovery GWAS cohort of the PGC-PTSD study.

GWAS summary statistics data
PRS is often trained on GWAS summary statistics data,

without the need to directly access raw individual-level
genotype training data, which is often not readily avail-
able. Reliable estimation of PRS parameters, however,
requires a large sample size GWAS. GWAS summary
statistics data, unlike individual-level genetic data, are
often publicly available for many traits and diseases. It
typically contains results from univariate association test
statistics on a variant-per-row format. In this study,
GWAS summary statistics data from two studies were
used as base/discovery data sets:1 PTSD GWAS summary
statistics data, which is the largest published PTSD study
to date (n= 10 k, 25% cases) with European ancestry
participants17, and2 Schizophrenia GWAS summary sta-
tistics data, which is the largest psychiatric genetic study
(37 K cases and 113 K controls) to date, also consisting of
mostly European ancestry participants27.

LD clumping, P value thresholding, and computing PRS
To choose the optimal predictive set of SNP’s on the

target data set, we conducted the standard LD clumping
followed by P value thresholding procedure. The LD
clumping was done on windows of 250 kb with a squared
correlation of allele counts r2= 0.1. This means that
within a given 250 kb window with r2= 0.1, the SNP with
the smallest p value was chosen as a representative SNP.
A PTSD-PRS was constructed and its performance
(Nagelkerke R2, a measure of coefficient of determination
for binary traits) was evaluated over a grid of ten equally
spaced p value thresholds from 0.1 to 1 inclusive, and the
nominal significance threshold of 0.05 (Fig. S1). Each time
only SNP’s with lower P value than the threshold were
included in the PRS summation and the p value threshold
with the best performance (PT= 0.2) was chosen for the
final PRS calculation. For schizophrenia–PRS, a threshold
of 0.05 had been shown to be the most predictive in the
original publication27. Thus, this threshold was used to
avoid multiple testing burden. The first five principal
components were added as covariates to correct for
population stratification in both analyses. Standardization
was done by converting raw scores to z scores (centering
by mean and scaling by standard deviation). This part of
the analyses was done with a wrapper function around the
R code of PRSice v1.2528.

PRS
PRS summarizes genetic liability from many variants

into a single number as a weighted sum of per-loci risk
allele dosage21. More precisely, PRStj ¼

P
i2S β̂tixij; where

xij 2 0; 1; 2f g is the additively coded allele frequency of
the ith marker for the jth individual, S is a set of SNP’s
that survived the clumping and thresholding steps, t is one
of the two traits studied as base phenotypes, and β̂ti is

Table 1 Sample characteristics by PTSD status of SysBio
cohort included in this study

PTSD cases

(n= 128)

Healthy controls

(n= 116)

P value

CAPS cur 2.00 (0.00, 6.00) 65.50 (51.75, 80.25) <0.001

CAPS LT 8.00 (3.00, 15.00) 90.00 (77.75, 101.00) <0.001

Female 14% (18) 14% (16) 0.952

BMI 27.35 (24.45, 29.85) 28.25 (25.61, 32.28) 0.028

Age 30.00 (27.75, 37.00) 31.00 (28.75, 36.25) 0.338

Race/ethnicity

Asian 7% (9) 3% (3)

Black 23% (30) 29% (34)

Hispanic 28% (36) 42% (49) 0.026

White 38% (49) 24% (28)

Other 3% (4) 2% (2)

Education

1 2% (3) 3% (4)

2 20% (26) 35% (41)

3 24% (31) 30% (35) 0.009

4 35% (45) 25% (29)

5 17% (22) 6% (7)

6 1% (1) 0% (0)

BDI 3.00 (0.00, 9.25) 24.00 (16.50, 31.00) <0.001

CAPS, Clinician Administered PTSD Scale (cur: current and LT: Life-Time); BMI,
Body Mass Index; BDI, Beck Depression Inventory II total score (n= 239)
For continuous variables, Q2 (Q1, Q3) represent the median, the lower quartile,
and the upper quartile, respectively. For categorical variables, percentages (and
frequencies) are shown. Wilcoxon rank sum test for continuous variables and
Pearson χ2 test for categorical variables are used. Education levels: 1, Up to 12th
grade; 2, H.S. Diploma or GED; 3, 2 yrs. college A.A. Degree; 4, 4 yrs. College
Bachelor’s Degree; 5, Masters Degree; 6, Doctoral Degree
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estimated effect-size (log odds ratio or regression coeffi-
cient) obtained from GWAS summary statistics on the
base phenotype, which may be genetically correlated, but
not necessarily the same as the target phenotype. In our
case, the base phenotype is either PTSD or schizophrenia,
depending on the discovery data set used in the analyses
(PGC-PTSD or PGC-schizophrenia), whereas the target
phenotype is PTSD diagnosis.

Genetic clustering to evaluate ancestry
The clustering was performed with PLINK23. First var-

iants were filtered with the QC criteria described above.
The resulting set of SNP’s was LD (linkage dis-
equilibrium) pruned with window size of 50, shift size of 5
and correction (r2) threshold of 0.2 (–indep-pairwise 50 5
0.2). Then IBS (identity-by-state) similarity between
individuals was computed (–genome) with the pruned
data. Clustering was performed with this similarity matrix
(–cluster). This yielded the four clusters shown in Fig. S2.
Self-identified ethnicity/race composition of the clusters
are shown in Fig. S2. Cluster 1 primarily contains Asians
and some Hispanics. Cluster 2 contains almost all Whites
and some Hispanics. Cluster 3 contains almost all Blacks.
Cluster 4 mostly consists of Hispanics (See Table S1 for
details).

Additional statistical analyses
R2 of the PRS was computed as the difference between

the R2 of full model that contains PRS along with cov-
ariates and the R2 of null model that contains only cov-
ariates. Similarly, Nagelkerke’s pseudo-R2 of the PRS was
computed as the difference in Nagelkerke’s pseudo-R2

between that of the full model and null model. The p
value of the null hypothesis that the regression coefficient
of PRS is zero is reported with the R2. Odds ratios and
difference in mean CAPS (and corresponding 95% con-
fidence intervals) between quantiles were computed using
the glm function in R (with family= “binomial” or family
= “gaussian”), with the first five principal components
added as covariates to control for population stratifica-
tion. The power analysis for single variants in the Intro-
duction section (for the previous largest GWAS) was done
using GAS power calculator. Standardization was done by
converting raw scores to z scores (centering by mean and
scaling by standard deviation). All computations were
done on R (version 3.2.3) statistical computing environ-
ment and PLINK (v1.90b3s 64-bit)23.

Results
Projections from theoretical analysis
Initially, we sought to provide a preview of the roadmap

ahead using analytical derivation. In light of upcoming
large-scale genetic studies, this approach will also set
expectations for opportunities and limitations for future

genetic risk prediction studies of PTSD. These projections
are predicated on standard assumptions and models from
quantitative genetic theory (Supplementary Materials).
Using the heritability estimate of 30% (obtained from
early male twin studies and recent SNP heritability esti-
mates for women) and an estimated disease prevalence of
8%, the optimal panel trained on an infinite number of
samples would have an AUC of a little over 80% (Fig. 1). It
should be noted that unlike most study samples, including
the present study samples, where cases are intentionally
oversampled so as to make up half of a study cohort (i.e.,
ascertainment), both the training sample (whose sample
size is shown in the horizontal axis) and replication sample
(whose performance is shown in the vertical axes) are
assumed to be drawn randomly and independently from
the general public where disease incidence rate is 8%.

Constructing PTSD-PRS from GWAS summary statistics
We used the two GWAS summary statistics data from

the largest PTSD GWAS study published to date con-
ducted by PGC-PTSD:17 one performed on European
ancestry cohorts and another on African ancestry. Each
study consists of ~10,000 samples with ~25% PTSD
positive cases. The African ancestry summary statistics
did not result in any statistically significant predictive
PRS, even when considering only African–American (or
cluster 3) subset of our target subjects. This might arise
from several technical challenges, including the fact that
the African genome is highly diverse with short LD blocks
and recent admixtures29–31, and most commercial arrays
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that tag a single variant from an LD block have low
genetic coverage for African ancestry genome32. For this
reason, only the European (EA)-based summary statistics
are used in the present study to build PTSD-PRS for all
target subjects including those of African ancestry
participants.
The PRS was constructed with a clumping-and-

thresholding approach with the first five principal com-
ponents added as covariates (see Methods). The PRS
constructed with the best performing P value threshold
(PT= 0.2, which accounts for 24,034 independent var-
iants) explained ~5% of PTSD onset variance (Nagelkerke
R2= 4.68%, P= 0.003) as well as PTSD severity variance
(R2= 4.35%, P= 0.0008) as measured by CAPS (a quan-
titative measure of PTSD severity that ranges from 0
to 120).
For all genotyped samples pooled together (n= 244),

the PTSD-PRS has an AUC (area under the receiver
operating characteristic curve) of 0.60 for PTSD diagnosis
and a C-index of 0.58 for prediction of CAPS. Next, using
the PRS values, participants are stratified into equal-sized
quantiles. The odds ratio for PTSD diagnosis between the
highest and lowest quartiles is 11.2 (95% CI= 5.4–23.1),
and between highest and lowest deciles is 50.5 (95% CI=
15.9–160) (Fig. 2). Similarly, the difference in mean CAPS
between the highest and lowest quartiles is 40.7 (95% CI
= 0.9–80.5), and between highest and lowest deciles is
58.3 (95% CI=−12.5–129.1) (Fig. 2).

Ancestral composition is a major performance factor
As our cohort comprises ethnically diverse participants,

reflective of the diversity among those serving in the US
military, we examined the degree to which genetic
ancestry affects PRS prediction performance. In order to
define more genetically homogeneous subgroups of our

cohort, instead of using self-identified ethnicity/race,
hierarchical clustering was performed with the genetic
data in an unsupervised manner (i.e., without making use
of self-identified ethnicity/race label), see Methods. Hav-
ing defined four genetic ancestry clusters (Fig. S2), we
examined the performance of the PRS in the four clusters
separately. Not surprisingly, the EA PRS has the most
predictive value for clusters 1 and 2 (Table S1). In con-
trast, its performance on clusters 3 and 4 are near one
representing a random classifier. It should be noted that
limitations of PRS to predict across ancestral groups has
been reported for other traits as well33,34.

Cross-disorder prediction with schizophrenia–PRS
One of the most-profound findings emerging from

recent psychiatric genomic studies is the degree to which
psychiatric disorders, as defined and classified based on
conventional diagnostic nosologies, overlap at a genetic
level35,36. To demonstrate this point for PTSD, we chose
the largest (n= 150 K) and most successful (108 sig-
nificant hits) PGC study to date conducted in schizo-
phrenia27, and showed evidence of polygenic overlap with
PTSD. For schizophrenia–PRS, the step of choosing the
optimal p value threshold (P value thresholding) is skip-
ped in order to avoid multiple testing burden. Instead, a
threshold of nominal significance (PT= 0.05) has been
shown to be the most predictive in the original publica-
tion27, and that threshold is used here.
The resulting PRS explains ~3% of the variance in

predicting PTSD onset (Nagelkerke R2 of 2.96%, p=
0.0175). The corresponding AUC and C-index are 0.57 for
both. For stratification, odds ratio for PTSD diagnosis
between the highest and lowest quartiles is 4.5 (95% CI=
−4.4–60.8), and between highest and lowest deciles is
12.6 (95% CI= 3.9–40.9). The difference in mean CAPS

Fig. 2 PTSD onset and PTSD severity and stratification into risk groups with PRS. The first (lowest) quintile is used as a reference. For every
other quintile, the mean difference in CAPS (or the odds ratio of PTSD onset) from the first quintile is plotted (corresponding to the dot in the plot).
The bars indicate 95% confidence intervals around the mean differences (or odds ratios)
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between the highest and lowest quartiles is 28.2 (95% CI
=−4.4–60.8), and between the highest and lowest deciles
is 53.6 (95% CI= 12.3–94.98).

Discussion
In this study, we have demonstrated that the PRS con-

structed from currently published GWAS results has
significant, albeit insufficient for clinical use, discrimina-
tion and stratification ability for predicting PTSD diag-
nosis, as well as symptom severity. Theoretical analysis
indicates the remaining potential of the PRS that is yet to
be realized. Furthermore, the prediction ability of
schizophrenia–PRS on PTSD outcomes points to the
existence of polygenic overlap between PTSD and schi-
zophrenia, confirming previously reported genetic corre-
lation between the two disorders.
We believe that three aspects of PRS construction merit

particular attention and need to be explored further in
future studies. First, the method employed to construct
the PRS. Conventional machine learning approaches,
where the model is trained on raw genotype data, have
been reported to outperform the GWAS-based approach
used here37. However, such approach was not feasible
because raw genotype data in large-scale studies were not
available. In a GWAS-based approach, summary statistics
data of GWAS are used to estimate risk score coefficients
of genotype dosage. After initial use in schizophrenia21,
this approach has proven successful in capturing and
predicting the genetic influence on multiple complex
polygenic traits38,39. Here we showed a PRS constructed
in a GWAS-based approach successfully stratified patients
into risk groups with distinct PTSD risk and severity levels
in a cohort that is independent of the discovery GWAS
samples. We expect uncertainties in the likelihoods and
estimates will become lower as more data are amassed.
The expected rate of this improvement is estimated from
a theoretical analysis. Furthermore, advances in novel
methodological approaches may accelerate this pace.
Most notably, recent methods leverage information on
genetically related traits to improve power of univariate
association statistics40 or to improve polygenic prediction
performance41,42.
Second, future polygenic risk prediction models, in

addition to common single-nucleotide variants studied in
this article, can incorporate rare and low frequency var-
iants43,44 and other complex structural polymorphisms
(for example, copy number variations that have been
shown to be important for psychiatric disorders45). Given
the rapidly evolving technological developments in whole
genome and exome sequencing, this is an avenue that will
become possible in the very near future. Once identified,
these rare variants are likely to have larger effect-sizes
(negative selection), and have potential to substantially
improve prediction accuracy. Integrating other modalities,

including neuroimaging biomarkers and other omics
panels such as epigenomics, transcriptomics, metabo-
lomics, and proteomics, is also promising.
Third, the PRS predicted phenotype is an important

factor to consider for future studies. PTSD is character-
ized by a heterogeneous set of distinct symptoms. PTSD-
PRS, as applied in the current study, attempts to predict
genetic influences on the overall diagnosis, ignoring het-
erogeneity in the clinical presentation. As larger geno-
typed samples that are more deeply phenotyped become
available, it will be possible to create genetic scores for
clinical subtypes (for example, dissociative and depressive
subtypes) and sub-phenotypes (for example, the four
symptom clusters of PTSD) as well as specific traits, some
of which might be shared with other disorders. This is
particularly valuable for PTSD, and psychiatric illnesses in
general, where comorbidity is prevalent and the bound-
aries around symptom-based diagnostic criteria are a
moving target. This approach may also unearth pleio-
tropic patterns and help explain the widespread genetic
correlations among psychiatric disorders and behavioral
traits.
Ethnic diversity in genetic study cohorts (as is the case

for a cohort consisting of US military members or, for that
matter, the nation’s population at large) presents both
unique challenges and opportunities. On one hand,
beyond the mere proportional representation of the
diverse US military service men and women, a genetically
diverse study sample facilitates identification of trans-
ethnic and population-specific causal variants46. On the
other hand, genetic predictors trained on a GWAS con-
ducted on a given ancestral group is less predictive in
samples from a different ancestral group. As most genetic
studies are conducted with European ancestry partici-
pants47, the prediction for non-Europeans is more diffi-
cult, particularly for African ancestry individuals, as is
seen in the present study.
Going forward, it is important to keep both pros and

cons of genetic biomarkers in mind. One of the reasons
genetic biomarkers are attractive for psychiatric traits is
the fact that samples from in vivo brain tissue, the primary
disorder-relevant tissue for a psychiatric illness, is usually
inaccessible. Most other “-omics” markers have tissue-
specific variation, with peripheral profiles not aligning
with those from the brain. Also, in addition to being a
more stable marker, presently available technologies for
genetic markers have a better analytical validity than other
omics assays. On the other hand, information content
from a single-molecular layer might be inherently limited
(as shown here for genetic predictors with theoretical
analyses). In order to build a robust biomarker panel,
combining multiple modalities might be necessary.
Addressing ethical concerns and potential misuses of
genetic information also should be considered48.
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Limitations of the study need to be noted. First and
foremost, the current PRS has sub-optimal predictive
accuracy owing in part to the fact that the discovery
GWAS is still underpowered. Our target cohort is also
small and comprises very well-curated samples that is not
a random representative sample from the general popu-
lation. Here, we almost exclusively used data from male
participants. Future studies need to include larger num-
bers of female participants, particularly in light of the fact
that women have double the rates of PTSD heritability
and prevalence. Also, preliminary findings on gender-
specific mechanisms of the illness have been reported49,50.
In addition, functional interpretation of the PRS is also
difficult owing to the large number of genetic variants it
comprises.
In summary, our work contributes to the use of

polygenic risk for a further understanding of PTSD risk
and its underlying mechanisms, whereas also identifying
areas of needed future research. Overall, these findings
showed that PRS, in addition to being a powerful
prognostic tool, is useful in unravelling disease etiology
and mechanisms, which, in turn, will enable more per-
sonalized and novel intervention strategies. As more
well-powered genetic studies become available in the
near future, together with advances in whole-genome
and exome sequencing, accuracy, and insight obtained
from such analyses will become even more precise and
useful clinically.
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