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ABSTRACT OF THE DISSERTATION

Scalable Target Marketing:

Distributed Markov Chain Monte Carlo for Bayesian Hierarchical Models

By

Federico Bumbaca

Doctor of Philosophy in Management

University of California, Irvine, 2018

Professor Imran Currim, Chair

I propose a distributed Markov chain Monte Carlo (MCMC) algorithm for estimating Bayesian

hierarchical models when the number of cross-sectional units is very large and the objects of in-

terest are the unit-level parameters. The two-stage algorithm is asymptotically exact, retains the

flexibility of a standard MCMC algorithm, and is easy to implement. The algorithm constructs an

estimator of the posterior predictive distribution of the unit-level parameters in the first stage, and

uses the estimator as the prior distribution in the second stage for the unit-level draws. Both stages

are embarrassingly parallel. I demonstrate the algorithm with simulated data from a hierarchical

logit model and show that it is faster and more efficient than a single machine algorithm by at least

an order of magnitude. For a relatively small number of observations per cross-sectional unit, the

algorithm is both faster and has better mixing properties than the standard hybrid Gibbs sampler. I

illustrate my approach with data on 1,100,000 donors to a charitable organization, and simulations

with up to 100 million units.
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1 Introduction

Many problems in marketing and economics, and in particular target marketing, require unit-

specific decisions such as which online advertisement to show, what prices to charge, or which

promotion to offer. These targeted strategies are becoming popular due to the availability of very

large data sets. These panels allow for unit-level inferences which are the basis of optimal unit-

level strategies. These panels are characterized by a very large number of cross-sectional units,

N (> 1,000,000) and a small number of observations per unit, T (< 50). The small number of

observations per unit require the sharing of information across units for inference procedures.

Bayesian hierarchical models are well suited for panel data problems in which unit-level pa-

rameters are desired (Rossi and Allenby 1993). The unit-level parameters are associated with each

unit’s data points, whereas the model’s common parameters specify the population distribution

of the unit-level parameters and characterize their uncertainty. Typically, a hybrid Markov chain

Monte Carlo (MCMC) algorithm (Rossi, Allenby, and McCulloch 2005) running on a single pro-

cessor is used to conduct inference in Bayesian hierarchical models. A common MCMC algorithm

is the hybrid Gibbs sampler which alternates between draws of the unit-level parameters, given the

previous iteration’s common parameters draw, and a draw of the common parameters, given the

previous iteration’s unit-level parameter draws. The process continues until the combined draws

are from their joint posterior distribution.

Estimating Bayesian hierarchical models with panel datasets that have a very large N are a chal-

lenge for existing algorithms. When the number of units is very large, simulation from unit-level

posterior distributions is not feasible within a reasonable amount of time on a single processor, due

to processor performance. Using only a sample of the cross-sectional units to reduce computational

burden does not produce individual level parameter estimates for all units.

Distributing the data and simulations across multiple machines is another approach to address-

ing the resource limitation problem. In particular, when estimating a Bayesian hierarchical model

with a hybrid Gibbs algorithm, an easy-to-implement distributed algorithm is to simulate the com-

mon parameter draws on the master machine and to distribute the simulation of the unit-level
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parameter draws across multiple worker machines. The limitation of this approach is that each

parallel process needs an updated common parameter draw for each iteration of the unit-level

parameter draws (and conversely, each common parameter draw requires updated unit-level pa-

rameter draws). The problem is that communicating the common parameter draws to each parallel

process (and communicating the unit-level parameter draws to the master process) on each itera-

tion is prohibitively expensive across multiple computers (Scott et al. 2016). My own simulations

find that although there is an improvement in effective sample size generated per unit of comput-

ing, it is marginal compared to the fully distributed approach I introduce in this article. Results are

available from the authors.

Bardenet, Doucet and Holmes (2015) broadly classify applications of MCMC to Bayesian

inference when N is big into two groups, distributed and subsampling algorithms. Embarrassingly

parallel distributed approaches parallelize computation in a distributed computing environment

while minimizing the communication of data across machines. Subsampling algorithms reduce the

number of individual data point likelihood evaluations on a single computer. Although these big

N algorithms were not conceived for hierarchical models, I may adapt them albeit at significant

cost. The crux of the matter is that Bayesian hierarchical models do not easily lend themselves

to embarrassingly parallel estimation when the objects of interest are both the unit-level and the

common parameters, or to subsampling when the number of observations per unit is not very large.

I elaborate in Section 2 why current methods don’t work with hierarchical models.

I propose a distributed MCMC algorithm for hierarchical models that simulates draws from the

unit-level posterior distributions. It consists of two stages: (i) an MCMC algorithm constructs an

estimator for the posterior predictive distribution of the unit-level parameters, and (ii) an indepen-

dence Metropolis-Hastings or direct sampling algorithm simulates unit-specific parameter draws,

using the first stage estimator as the prior. The method is asymptotically exact. The algorithm’s

estimator of the unit-level posterior distribution is an asymptotically unbiased estimator of the sin-

gle machine unit-level posterior, as the number of units per shard approaches infinity. Further, the

algorithm retains the central ideas and flexibility of any standard MCMC algorithm (for example,
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the hybrid Gibbs sampler) for which any prior may be stipulated, such as a mixture of distributions.

While my focus is not on recovering draws of the common parameters, I may easily simulate them

by conditioning on the available unit-level draws.

The algorithm performs well: for non-conjugate posterior distributions, unit-level posterior

densities converge to those of the “gold standard” single machine hybrid Gibbs algorithm much

more efficiently (as measured by effective sample size per unit of computing). For small T the pro-

posed algorithm estimates a Bayesian hierarchical model more than an order of magnitude faster

(in execution time for a given number of MCMC iterations) and more efficiently than the single

machine hybrid Gibbs algorithm. For large T the algorithm is still faster by an order of magnitude

but efficiency decreases to about an order of magnitude greater. For conjugate posterior distribu-

tions the performance of the proposed algorithm is independent of the number of observations per

unit. I test the algorithm on a large cluster of computers for estimating models with up to 100

million units. This is particularly important when the high precision that a big N method enables is

critical to the application of interest. To further boost speed and efficiency I propose a subsampling

algorithm which samples the data in the first stage.
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2 Related Literature

The literature emphasizes Bayesian inference for large data sets that do not have a panel structure.

In this section, I review this literature and explain why these methods are difficult to extend to

the hierarchical setting without compromising the accuracy or the computational gains that can be

realized from a distributed processing environment.

The general hierarchical model can be written:

yit ∼ p(yit |βi ) f or i = 1, ...,N and t = 1, ...,Ti(2.1)

βi ∼ p(βi |θ ) f or i = 1, ...,N(2.2)

θ ∼ p(θ |τ )(2.3)

p(yit |βi ) is the probability of observing yit at time t for unit i, N is the number of cross-sectional

units, Ti is the number of observations for unit i, and {βi} are the unit-level parameters. There

is a standard two-stage prior with p(βi |θ ) as the first-stage. I refer to θ as common parameters

with prior density p(θ |τ ) and hyper-parameters τ . Although Ti is unit-dependent, I let Ti = T for

notational simplicity.

Bardenet, Doucet and Holmes’ (2015) discussion of distributed algorithms focuses on those

of Scott et al. (2016) and Neiswanger, Wang, and Xing (2014). These algorithms estimate non-

hierarchical models in an embarrassingly parallel manner. Scott et al. (2016) suggests a two-stage

extension to estimate hierarchical models. For each of the two stages, Scott et al. (2016) partitions

the full data Y = {yit} into S shards such that all of the observations for a unit are in the same

shard Ys = {yit}i∈Is
, where Is is a vector indicating the randomly allocated units to shard s. The first

stage simulates both the common θ and unit-level {βi} parameter draws with S parallel MCMC

simulations (each shard on a separate worker machine), discards the unit-level parameter draws,

and algorithmically combines the S collections of common parameter draws for each iteration of

the MCMC algorithm. The second stage draws the unit-specific parameters in an embarrassingly

parallel manner (each shard of units on a separate worker machine), given the synthesized common
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parameter draws from the first stage.

They express the posterior for the common parameters in the first stage as the product of S

subposteriors.

p(θ |Y,τ ) ∝ ∏
s

p(θ |Ys,τ )(2.4)

∝ ∏
s

{
p(Ys |θ ) p(θ |τ )1/S

}
(2.5)

∝ ∏
s

{[
∏
i∈Is

p(βi |θ )∏
t

p(yit |βi )

]
p(θ |τ )1/S

}
(2.6)

∝ ∏
s

{
∏
i∈Is

p(βi |θ ) p(θ |τ )1/S

}
(2.7)

where the full data prior for θ is p(θ |τ ) = ∏
S
s=1 p(θ |τ )1/S. For each of the S parallel processes,

they simulate the common parameter draws from p(θ |Ys,τ ) ∝ ∏i∈Is p(βi |θ ) p(θ |τ )1/S, given the

{βi}i∈Is
draws.

Given the S collections of common parameter draws, Scott et al. (2016) and Neiswanger, Wang,

and Xing (2014) algorithmically synthesize a single collection of draws from the full data posterior

distribution p(θ |Y,τ ) in different ways. On the rth iteration of an MCMC simulation, Scott et al.

(2016) synthesize the combined draw θ r with a weighted average of the rth draws of θ from the S

processes, θ r
s .

(2.8) θ
r =

(
∑
s

Ws

)−1(
∑
s

Wsθ
r
s

)

where the weight Ws = Σ−1
s and Σs =Var (θs |Ys,τ ).

I emphasize the primary limitations of the algorithm over secondary considerations1,2. Al-

though the algorithm is exact if p(θ |Ys,τ ) is normal, since p(θ |Y,τ ) must also be normal, it

1If some of the subposteriors are centered very far from other subposteriors their product may be poorly approxi-
mated (Bardenet, Doucet and Holmes 2015).

2If p(θ |τ ) is a conjugate distribution, p(θ |τ )1/S is not necessarily also a conjugate distribution. The modeler must
either approximate p(θ ,τ)1/S with a suitable conjugate distribution, or revert to a possibly less efficient Metropolis-
Hastings algorithm for the simulation of θ draws.

5



is approximate otherwise. For precise target marketing I require exact estimates. Additionally,

the population distribution of the unit-level parameters p(βi |θ ) must be a single component or

unimodal distribution, due to the problem of combining draws from different multimodal distribu-

tions. For example, θ draws from mixture component k in shard 1 may lie in the region of a major

mode whereas as θ draws from mixture component j in shard 2 may lie in the non-overlapping re-

gion of a minor mode. It would be inappropriate to algorithmically combine their draws since they

are in different and unrelated regions. This factor is especially salient in the marketing context. A

multimodal prior as the population distribution p(βi |θ ) allows a great deal of flexibility and the

opportunity to discover new structure (Rossi, Allenby, and McCulloch 2005).

Neiswanger, Wang, and Xing’s (2014) distributed (nonparametric density product estimation)

MCMC algorithm has an advantage over that of Scott et al.’s (2016) in that it does not require

a normal posterior or normal subposteriors for exactness. It is asymptotically exact for any pos-

terior. To synthesize the combined draws, they first use kernel density estimation with a normal

kernel to construct S shard-specific density estimators p̂(θ |Ys,τ ) for the densities of each shard’s

parameters.

(2.9) p̂(θ |Ys,τ ) =
1
R ∑

rs

φ
(
θ
∣∣θ rs

s ,h2Id
)

where h is a smoothing parameter, and θ
rs
s is the rth

s draw of θ for shard s.

The full data posterior density estimator is the product of these S shard-level estimators.

p̂(θ |Y,τ ) ∝ ∏
s

p̂(θ |Ys,τ )(2.10)

=
1

RS ∏
s

∑
rs

φ
(
θ
∣∣θ rs

s ,h2Id
)

(2.11)

∝ ∑
r1

· · ·∑
rS

w{r1,...,rS}φ

(
θ

∣∣∣∣θ̄{r1,...,rS},
h2

S
Id

)
(2.12)

where θ̄{r1,...,rS}=
1
S ∑s θ

rs
s and w{r1,...,rS}=∏s φ

(
θ

rs
s
∣∣θ̄{r1,...,rS},h

2Id
)
. p(θ |Y,τ ) is a mixture of RS

normal densities with unnormalized mixture weights w{r1,...,rS}. The synthesized draw for iteration

6



r, θ r, is drawn from p(θ |Y,τ ) in two steps: (i) draw a mixture component {r1, . . . ,rS} with an

independence Metropolis with Gibbs sampler (Neiswanger, Wang, and Xing 2014), and (ii) draw

θ r from this mixture component.

The algorithm has several fundamental limitations as well as secondary concerns1,2. The com-

putational complexity of the algorithm is quadratic with S (the authors also suggest an alternative

algorithm whose complexity is linear with S), suggesting that its complexity may materially impact

the computational advantages of a distributed approach for large values of S. Since the method is

based on kernel density estimation I do not expect it to scale well as the dimension of the parameter

space grows, due to the curse of dimensionality. Finally, the bound on the mean-squared-error of

the approximated posterior increases exponentially with the number of shards S (Bardenet, Doucet

and Holmes 2015).

Bardenet, Doucet and Holmes (2015) make brief mention of distributed algorithms that avoid

multiplying the S subposteriors. They combine subposteriors by their barycenter (Srivastava et

al. 2015) or median (Minsker et al. 2014). The challenge with these combinations is that their

statistical meaning is unclear. Although Minsker et al.’s (2014) median estimate is robust to outliers

it has the potential of losing valuable information (Bardenet, Doucet and Holmes 2015).

Bardenet, Doucet and Holmes (2015) also present an overview of subsampling-based algo-

rithms for non-hierarchical models. Subsampling algorithms run on a single computer with all of

the data in memory. They reduce the number of individual data point likelihood evaluations that

are necessary at each MCMC iteration. I may estimate Bayesian hierarchical models with sub-

sampling methods in primarily two ways: (i) subsampling the unit-level draws {βi} to draw the

common parameters θ , and (ii) subsampling a unit’s T observations to draw βi.

In a typical MCMC algorithm that alternates between draws of {βi} and θ , and when N is

huge, it may be advantageous to subsample the {βi} draws to compute the log-likelihood and ratio

for making an acceptance decision for the proposal draw for θ . Although there are computational

gains to be made at each iteration of the θ draws if N is extremely large, say millions, I argue

that these savings are minuscule compared to the amount of computation required to draw the N
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unit-level draws at each iteration. This is especially true if p(βi |θ ) and p(θ |τ ) are conjugate, in

which case the θ draws are already extremely fast.

The opportunity for substantial computational gains seems most appropriate for subsampling

the unit-level data for the unit-level draws for non-conjugate posteriors. However, when applied

in my context of drawing unit-level parameters in a hierarchical model when T is not large, it is

doubtful whether subsampling algorithms that are designed for very large T may be of value3 .

3Bardenet, Doucet and Holmes’ (2015) improved confidence sampler is designed for subsampling in cases of very
large sample size (they consider subsampling samples of size 1,000 from datasets with up to 10,000,000 observations).
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3 The Proposed Algorithm

I guide the reader through the development of the proposed algorithm by presenting a sequence of

three algorithms.

3.1 The Model

The standard Bayesian hierarchical model (2.1 - 2.3) induces a joint posterior distribution (3.1) of

the model parameters {βi} and θ

(3.1) p({βi} ,θ |Y,τ ) ∝ p(θ |τ )∏
i

[
p(βi |θ )∏

t
p(yit |βi )

]

where Y = {yit} is the full data of observed outcomes and covariates (I omit the covariates for

notational convenience). The posterior full conditional densities are

βi |θ ,yi ∝ p(βi |θ )∏
t

p(yit |βi ) for i = 1, ...,N(3.2)

θ |{βi} ,τ ∝ p(θ |τ )∏
i

p(βi |θ )(3.3)

I assume that p(βi |θ ) and p(yit |βi ) are not conjugate: p(βi |θ ,yi ) is a non-conjugate distribution.

I discuss the simpler conjugate case in Section 3.5.4.

3.2 Benchmark Algorithm A1

Algorithm A1 is a single machine benchmark algorithm that draws {βi} and θ from the joint poste-

rior (3.1). A1 may be a MCMC algorithm, a direct sampling algorithm, or any other algorithm that

draws from the model’s posterior distribution. The βi and θ draws are from their respective poste-

rior marginal densities, p(βi |Y,τ ) and p(θ |Y,τ ). The densities p(βi |Y,τ ) for i = 1, ...,N repre-

sent “truth” against which subsequent algorithms are compared. A typical implementation of A1

is a hybrid Gibbs algorithm that alternates between draws from (3.2) and (3.3). Since p(βi |θ ,yi )
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is non-conjugate, I need a Metropolis-Hastings algorithm to draw βi. If p(θ |τ ) and p(βi |θ ) are

conjugate, as is commonly the case, p(θ |{βi} ,τ ) is a conjugate distribution from which I may

sample θ directly.

3.3 Equivalent Algorithm A2

To motivate the single machine algorithm A2 I integrate out θ from (3.2) and derive an explicit

expression for the posterior marginal density of βi, p(βi |Y,τ ). For the moment I assume that the

posterior marginal density of θ , p(θ |Y,τ ), is known.

p(βi |Y,τ ) =
∫

p(βi |θ ,yi ) p(θ |Y,τ )dθ(3.4)

∝

∫
p(βi |θ )∏

t
p(yit |βi ) p(θ |Y,τ )dθ(3.5)

=
∫

p(βi |θ ) p(θ |Y,τ )dθ ∏
t

p(yit |βi )(3.6)

= Eθ |Y,τ [p(βi |θ )]∏
t

p(yit |βi )(3.7)

where Eθ |Y,τ [p(βi |θ )] =
∫

p(βi |θ ) p(θ |Y,τ )dθ .

To get an intuitive sense for (3.7) I may interpret Eθ |Y,τ [p(βi |θ )] as the posterior predictive

density4 of βi - the density of βi before observing yi, given p(θ |Y,τ ). “posterior” refers to the

dependence on the posterior p(θ |Y,τ ), and “predictive” refers to the prediction of βi before ob-

serving yi. Although yi is included in Y , it influences βi only indirectly through p(θ |Y,τ ). To

emphasize that Eθ |Y,τ [p(βi |θ )] is a density function of βi, I denote it as pθ |Y,τ (βi). Rewriting

(3.7) by replacing Eθ |Y,τ [p(βi |θ )] with pθ |Y,τ (βi), simplifying ∏t p(yit |βi ) to p(yi |βi ), and nor-

4My definition differs from but is closely related to that of Gelman et al. (2014) (Appendix: Theorem 1).
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malizing

p(βi |Y,τ ) ∝ Eθ |Y,τ [p(βi |θ )]∏
t

p(yit |βi )(3.8)

= pθ |Y,τ (βi) p(yi |βi )(3.9)

p(βi |Y,τ ) =
pθ |Y,τ (βi) p(yi |βi )

p(yi)
(3.10)

p(βi |Y,τ ) may be interpreted as a consequence of Bayes’ theorem (3.10) in which pθ |Y,τ (βi) is

a highly informative prior distribution for βi before observing yi, p(yi |βi ) is the likelihood of yi

occurring given βi, p(yi) is a normalization constant, and p(βi |Y,τ ) is the posterior distribution

of βi after observing yi.

Ideally, I would like to draw βi from (3.9 - 3.10) but I need pθ |Y,τ (βi), which is a mathematical

object. I replace the ’expectation’ operator in pθ |Y,τ =Eθ |Y,τ [p(βi |θ )] with the ’average’ operator

to construct the estimator ṗθ |Y,τ (βi)

ṗθ |Y,τ (βi) =
1
R ∑

r
p(βi |θ r )(3.11)

where θ r is the rth draw of θ from p(θ |Y,τ ), and R is the total number of draws5. I replace

pθ |Y,τ (βi) in (3.9) with ṗθ |Y,τ (βi) to draw βi from ṗ(βi |{θ r} ,Y,τ )

ṗ(βi |{θ r} ,Y,τ ) ∝ ṗθ |Y,τ (βi)∏
t

p(yit |βi )(3.12)

=
1
R ∑

r
p(βi |θ r )∏

t
p(yit |βi )(3.13)

I denote the posterior marginal density induced by ṗ(βi |{θ r} ,Y,τ ) as ṗ(βi |Y,τ ). Algorithms A1

and A2 are equivalent: ṗ(βi |Y,τ ) = p(βi |Y,τ ) (Appendix: Theorems 2 and 3).

Finally, to derive (3.12 - 3.13) I assumed that draws from p(θ |Y,τ ) are available to construct

ṗθ |Y,τ (βi). This suggests a two-stage algorithm for A2. Stage one constructs ṗθ |Y,τ (βi) and stage

5I assume that R is sufficiently large that the Strong Law of Large Numbers guarantees convergence of ṗθ |Y,τ (βi)
to pθ |Y,τ (βi) (Robert and Casella 2010).
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two draws {βi}. More specifically, stage one implements algorithm A1 to draw {βi} and θ from

(3.1), discards the {βi} draws, and keeps the θ draws to construct ṗθ |Y,τ (βi) using (3.11). Stage

two draws βi from ṗ(βi |{θ r} ,Y,τ ) (3.12) for i = 1, ...,N.

Although it is inefficient to discard the {βi} draws in stage one only to redraw them in stage two

with no apparent benefit, both sets of draws are from p(βi |Y,τ ), the purpose of A2 is to motivate

A3 through the introduction of ṗθ |Y,τ (βi). This peculiarity of A2 goes away in A3.

3.4 Distributed Algorithm A3

Algorithm A3 is my proposed algorithm (Figures 3.1 and 3.2), an embarrassingly parallel imple-

mentation of A2.

3.4.1 Stage One

The first stage constructs an estimator of ṗθ |Y,τ (βi) in an embarrassingly parallel manner by first

implementing algorithm A1 on mutually exclusive subsets of the data, each on a separate machine.

I partition the full data Y into S shards such that all of the data for unit i are in the same shard:

Ys = {yit}i∈Is
, s = 1, ...,S, and Is is a vector indicating the randomly allocated units to shard s. The

joint subposterior distribution of the model parameters for shard s follows (3.1)

(3.14) p
(
{βi}i∈Is

,θs |τ,Ys
)

∝ p(θ |τ )∏
i∈Is

[
p(βi |θ )∏

t
p(yit |βi )

]

For each parallel process, following (3.11), the {βi}i∈Is
draws are discarded, and the θs draws

are used to construct the subposterior predictive distribution of βi for shard s, which I denote as

ṗθ |Ys,τ (βi)

ṗθ |Ys,τ (βi) =
1
R ∑

r
p(βi |θ r

s )(3.15)

where θ r
s is the rth draw of θ for shard s, and R is the total number of draws5. To construct an
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Figure 3.1: Algorithm A3: The proposed algorithm (for non-conjugate posterior)

Stage One: Draw β ∼ p̈θ |Y,τ (β )
Input: Y , S
Output: {β r}

1. Divide Y into S shards

(a) Is = {i : zi = s}, s = 1, ...,S, where p(zi = s) = 1
S , and |Is|= N

S

(b) Ys = {yit}i∈Is
, s = 1, ...,S

2. Run S parallel simulations (s = 1, ...,S)

(a) for r = 1 to R

i. Draw {β r
i }i∈Is

,θ r
s |τ,Ys ∝ p(θ |τ )∏i∈Is [p(βi |θ )∏t p(yit |βi )] (Algorithm A1)

(b) keep {θ r
s } and discard {β r

i }i∈Is

(c) for r = 1 to R/S

i. Draw zr ∼Multinomial
(
n = 1, p =

{ 1
R , ...,

1
R

})
, zr ∈ {1, ...,R}

ii. Draw β r
s ∼ p(β r

s
∣∣θ zr

s )

3. Collect the β r
s draws and shuffle

(a) {β r}← shu f f le({β r
s })

Stage Two: Draw {βi}
Input: Y , S, {β r}
Output: {β r

i }

1. Divide Y into S shards

(a) Is = {i : zi = s}, s = 1, ...,S, where p(zi = s) = 1
S , and |Is|= N

S

(b) Ys = {yit}i∈Is
, s = 1, ...,S

2. Run S parallel independence Metropolis-Hastings simulations (s = 1, ...,S)

(a) β 1
i = β 1, for i ∈ Is

(b) for r = 2 to R

i. αr
i = min

{
∏t p(yit |β r )

∏t p(yit|β r−1
i )

,1
}

, for i ∈ Is

ii. β r
i =

{
β r wp αr

i

β
r−1
i wp 1−αr

i
, for i ∈ Is

13



Figure 3.2: A Practitioner’s Guide

1. Estimate C0

(a) Choose a sufficiently large N′� N, but not too large, say N′ = 10,000

(b) Choose a sufficiently small S′ > 1, say S′ = 3

(c) Choose a sufficiently large R for MCMC convergence and mixing

(d) Run Algorithm A1 to construct ṗθ |Y,τ (βi) =
1
R ∑r p(βi |θ r )

(e) Run Algorithm A3 Stage One to construct p̈θ |Y,τ (βi) =
1

SR ∑s ∑r p(βi |θ r
s )

(f) Estimate ε2 ≈ supβik,k∈{1,...,d}

[∣∣p̈θ |Y,τ (βik)− ṗθ |Y,τ (βik)
∣∣2]

(g) Approximate C0 ≈
(

S′2+1
S′N′Rε2

)
2. Choose ε2

max = supβi
E
[∣∣p̈θ |Y,τ (βi)− ṗθ |Y,τ (βi)

∣∣2]

3. Estimate Smax ≈


⌊
C0NRε2

max
⌋

if S2
max� 1⌊

C0
2

(
NRε2

max +
√
(NRε2

max)
2−4C−2

0

)⌋
otherwise

4. Choose S≤ Smax

5. If S = Smax run Algorithm A3

6. If S < Smax

(a) Estimate p≈


√

S
Smax

if S2� p2 and S2
max�1√

S2

C0SNRε2
max−1 otherwise

(b) Run Algorithm A ′
3
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estimator of ṗθ |Y,τ (βi) I average the S shard-level estimators ṗθ |Ys,τ (βi), s = 1, ...,S.

p̈θ |Y,τ (βi) =
1
S ∑

s
ṗθ |Ys,τ (βi)(3.16)

=
1

SR ∑
s

∑
r

p(βi |θ r
s )(3.17)

p̈θ |Y,τ (βi) is an asymptotically unbiased estimator of ṗθ |Y,τ (βi) as the number of units per shard

approaches infinity: limN/S→∞E
[
p̈θ |Y,τ (βi)

]
= ṗθ |Y,τ (βi) (Appendix: Theorems 4 and 5).

p̈θ |Y,τ (βi) has better variance properties than ṗθ |Ys,τ (βi): its limit distribution has a smaller vari-

ance by a factor of S (Appendix: Theorem 4). For this reason I discard these first stage {βi}i∈Is

draws in favor of draws derived from p̈θ |Y,τ (βi) in the second stage.

A distinctive feature of the proposed algorithm is that it does not algorithmically combine

the {θ r
s } draws to synthesize single machine {θ r} draws, as required by Scott et al. (2016) and

Neiswanger, Wang, and Xing (2014). I use the {θ r
s } draws to construct p̈θ |Y,τ (βi), a mathematical

procedure that does not require computation. Since the computational complexity of constructing

and drawing from p̈θ |Y,τ (βi) is independent of the number of shards, the computational complexity

of the algorithm is as well.

3.4.2 Stage Two

The second stage of the proposed algorithm draws {βi} in an embarrassingly parallel manner. As

in the first stage I partition the full data Y into S shards, one shard per machine. To draw βi using

p̈θ |Y,τ (βi) from the first stage, I replace ṗθ |Y,τ (βi) in (3.12) with p̈θ |Y,τ (βi) to draw from

p̈(βi |{θ r} ,Y,τ ) ∝ p̈θ |Y,τ (βi)∏
t

p(yit |βi ) for i ∈ Is(3.18)

=
1

SR ∑
s

∑
r

p(βi |θ r
s )∏

t
p(yit |βi ) for i ∈ Is(3.19)

where {θ r
s } denotes the collection of θ draws from the first stage. I denote the posterior marginal

distribution induced by p̈(βi |{θ r} ,Y,τ ) as p̈(βi |Y,τ ). Algorithm A3 is an asymptotically unbi-
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ased estimator of A2 as the number of units per shard approaches infinity:

limN/S→∞E [p̈(βi |Y,τ )] = p(βi |Y,τ ) (Appendix: Theorem 6).

I propose an independence Metropolis-Hastings algorithm to draw from (3.18-3.19). More

precisely, the proposal and target densities are p̈θ |Y,τ (βi) and p̈θ |Y,τ (βi)∏t p(yit |βi ), respectively.

I simulate R proposal draws from p̈θ |Y,τ (βi). Given the previous iteration’s draw β
r−1
i , I accept

proposal draw β r
i with probability

α = min

{
1,

p̈θ |Y,τ (β
r
i )∏t p(yit |β r

i )

p̈θ |Y,τ
(
β

r−1
i
)

∏t p
(
yit
∣∣β r−1

i
) p̈θ |Y,τ

(
β

r−1
i
)

p̈θ |Y,τ
(
β r

i
) }(3.20)

= min

{
1,

∏t p(yit |β r
i )

∏t p
(
yit
∣∣β r−1

i
)}(3.21)

a very fast computation.

When T is not large an independence Metropolis-Hastings algorithm is especially attractive:

p̈θ |Y,τ (βi), a highly informative prior, has a large influence on the unit-specific posterior density

since the unit likelihood ∏t p(yit |βi ) is relatively flat, and therefore draws from p̈θ |Y,τ (βi) are ex-

pected to have a high acceptance rate. I do not need a more computationally intensive random walk

algorithm. Furthermore, under mild conditions, an independence Metropolis-Hastings algorithm

converges uniformly rather than geometrically or worse for a random walk algorithm (Robert and

Casella 2010). However, for large T each unit’s likelihood may be more sharply peaked and in-

fluenced less by the prior. Proposal draws from p̈θ |Y,τ (βi) are therefore expected to have lower

acceptance rates when T is large.

3.5 Algorithm A3 Additional Details

3.5.1 Communication Overhead

Algorithm A3, as described, implies that I communicate R draws of θ r
s from each parallel process

in stage one to the master machine to construct p̈θ |Y,τ (βi), from which I simulate R draws of

βi in stage two. To decrease communication overhead between parallel processes and the master
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machine, I simulate the stage two draws from p̈θ |Y,τ (βi) in parallel in stage one, rather than in stage

two. To simulate R draws from p̈θ |Y,τ (βi) =
1
S ∑s ṗθ |Ys,τ (βi) in stage one: (i) simulate R

S draws

from ṗθ |Ys,τ (βi) in parallel on each of the S machines, (ii) communicate the draws to the master

machine, and (iii) combine and shuffle. To simulate a draw from ṗθ |Ys,τ (βi) =
1
R ∑r p(βi |θ r

s ): draw

a multinomial distributed indicator vector with parameter vector
( 1

R , ...,
1
R

)
to determine the active

component r, and draw from p(βi |θ r
s ).

I reduce first stage communication overhead from each parallel process to the master machine

from R draws of θ r
s to R

S draws of βi. For example, if βi is a d-dimensional vector and p(βi |θ ) is

the normal distribution, θ represents the mean and covariance parameters for a normal distribution

which requires d+ d(d+1)
2 elements. I reduce communication overhead from R

(
d + d(d+1)

2

)
to R

S d,

a reduction by a factor of dS.

3.5.2 Maximum Number of Shards

Although p̈θ |Y,τ (βi) is an asymptotically unbiased estimator of ṗθ |Y,τ (βi) as Ns = N/S approaches

infinity, for finite Ns E
[
p̈θ |Y,τ (βi)

]
6= ṗθ |Y,τ (βi). Even though the bias goes away as Ns approaches

infinity, it is of practical importance to bound the error for finite Ns. For the practitioner the object

of interest is the maximum number of shards for partitioning the data as a function of an error

bound. I define the error bound as the maximum expected squared error6 between p̈θ |Y,τ (βi) and

ṗθ |Y,τ (βi): ε2
max = supβ

[
E
[∣∣p̈θ |Y,τ (βi)− ṗθ |Y,τ (βi)

∣∣2]]. It follows (Appendix: Theorems 7 and

8) that the maximum number of shards is

Smax ≈
⌊
C0NRε

2
max
⌋

for S2
max� 1(3.22)

where I may estimate C0 =
{

supβi

[
∇p(βi |θ )T I−1

θ
∇p(βi |θ )

]}−1
empirically (Appendix: Theo-

rem 8 and Appendix B: Figure 3.2). Iθ is the Fisher information matrix evaluated at the true value

of θ . The proposed algorithm scales with Fisher information, the amount of information that Y

6I choose the maximum expected squared error instead of the expected total variation distance for analytical con-
venience.
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carries about θ .

3.5.3 Stage One Subsampling Algorithm A ′
3

If S < Smax, possibly due to a limitation in the number of available machines in the computing

environment, then Ns =
N
S > N

Smax
= Nsmax and supβ

[
E
[∣∣p̈θ |Y,τ (βi)− ṗθ |Y,τ (βi)

∣∣2]] < ε2
max. That

is, Ns is larger than it needs to be for supβ

[
E
[∣∣p̈θ |Y,τ (βi)− ṗθ |Y,τ (βi)

∣∣2]] = ε2
max. I may reduce

computation and communication overhead with a modification to the first stage by sampling Y

with probability p prior to dividing the data into S shards. The optimal stage one subsampling rate

(Appendix: Theorem 9) is

(3.23) p≈
√

S
Smax

for S2� p2 and S2
max� 1

If p� 1 I may expect substantial savings in first stage computation. The proposed algorithm with

stage one subsampling is described in Figures 3.2 and 3.3.

3.5.4 p(βi |θ ) and p(yit |βi ) are Conjugate

For the proposed algorithm, I assumed that p(βi |θ ) and p(yit |βi ) are not conjugate. If they are

conjugate, I may sample the βi draws in stage two directly from a mixture whose components are

a conjugate distribution. To draw from (3.19): (i) draw multinomial distributed indicator vectors

with parameter vectors
(1

S , ...,
1
S

)
and

( 1
R , ...,

1
R

)
to determine the indices {s,r}, and (ii) draw βi

from the conjugate distribution p(βi |θ r
s )∏t p(yit |βi ). The performance of this second stage im-

plementation is independent of the number of observations T per unit because I avoid using the

independence Metropolis-Hastings algorithm.

3.5.5 Common Parameters

The shard-specific θ draws from the first stage of the proposed algorithm (3.14) are from p(θ |Ys,τ ),

not p(θ |Y,τ ). If the researcher is interested in the common parameters, I may simulate draws
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Figure 3.3: Algorithm A ′
3 Stage One: The proposed algorithm with subsampling

Stage One: Draw β ∼ p̈θ |Y,τ (β )
Input: Y , S, p
Output: {β r}

1. Sample Y with probability p ∈ (0,1)

(a) Ii ∼ Bernoulli(p), i = 1, ...,N

(b) Define Ip = {i : Ii = 1}, N p = ∑i Ii,

(c) Y p = {yit}i∈Ip

2. Divide Y p into S shards

(a) Ip
s = {i ∈ Ip : zi = s}, s = 1, ...,S, where p(zi = s) = 1

S , and
∣∣Ip

s
∣∣= N p

S

(b) Y p
s = {yit}i∈Ip

s
, s = 1, ...,S

3. Run S parallel simulations (s = 1, ...,S)

(a) for r = 1 to R

i. Draw {β r
i }i∈Ip

s
,θ r

s
∣∣τ,Y p

s ∝ p(θ |τ )∏i∈Ip
s
[p(βi |θ )∏t p(yit |βi )] (Algorithm A1)

(b) keep {θ r
s } and discard {β r

i }i∈Ip
s

(c) for r = 1 to R/S

i. Draw zr ∼Multinomial
(
n = 1, p =

{ 1
R , ...,

1
R

})
, zr ∈ {1, ...,R}

ii. Draw β r
s ∼ p(β

∣∣θ zr

s )

4. Collect the β r
s draws and shuffle

(a) {β r}← shu f f le({β r
s })

19



from (3.3) using the second stage unit-level draws {βi}. If p(βi |θ ) and p(θ |τ ) are conjugate, as

is commonly the case, I may sample the θ draws directly from a conjugate distribution.

20



4 Simulation

I demonstrate the proposed algorithm using simulated data to estimate a hierarchical multinomial

logit model with four choice alternatives and four response parameters, β ′i = (βi1,βi2,βi3,βi4). The

first three response parameters are alternative-specific intercepts, and the fourth parameter is the

coefficient for a common covariate (for example, price). For data generation I draw each unit’s

response parameter βi from a normal distribution with mean µ ′ = (1,2,3,−2) and covariance Σ

equal to the identity matrix. For estimation I impose a normal prior for βi and a normal inverse

Wishart prior for θ = {µ,Σ}.

I run the simulation on a 32-core Linux computer, each core representing a single machine. The

benchmark algorithm A1 is a random walk hybrid Gibbs sampler implemented with the R bayesm

library function rhierMnlMixture (Rossi 2015). The independence Metropolis-Hastings algo-

rithm in the second stage of A3 is implemented in R and C++. Parallelism is implemented with

the R parallel library function mclapply. Due to the memory limitations of my computer, both

algorithms return the posterior draws for a random sample of 1,000 cross-sectional units.
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Figure 4.1: Convergence of marginals of posterior predictive density estimators
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T = 5 observations per unit, S = 30 shards, and R = 10,000 MCMC iterations including 2,000
iterations for burn-in (ṗθ |Ys,τ (βi) in grey, p̈θ |Y,τ (βi) in red, ṗθ |Y,τ (βi) in blue)

4.1 Convergence

I first evaluate the convergence of p̈θ |Y,τ (βi) to ṗθ |Y,τ (βi). Figure 4.1 compares plots of the

marginals of ṗθ |Y,τ (βi), the S shard-level estimators ṗθ |Ys,τ (βi), and p̈θ |Y,τ (βi). I consider two
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elements of βi: one of the three intercepts βi3, and the coefficient of the alternative-specific co-

variate βi4. I find that p̈θ |Y,τ (βi) ≈ ṗθ |Y,τ (βi) at Ns = 3,333. p̈θ |Y,τ (βi) converges to ṗθ |Y,τ (βi)

at a faster rate than ṗθ |Ys,τ (βi) since most of the shard-level marginal densities ṗθ |Ys,τ (βi) do not

converge at Ns = 3,333 and many do not converge at Ns = 33,333. This finding is consistent with

the theoretically larger variance of ṗθ |Ys,τ (βi) by a factor of S. Plots of the ratio of marginals are

consistent with these findings (Figure 4.2).
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Figure 4.2: Convergence of marginals of posterior predictive density estimators
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T = 5 observations per unit, S = 30 shards, and R = 10,000 MCMC iterations including 2,000
iterations for burn-in (

ṗθ |Ys,τ (βi)

ṗθ |Y,τ (βi)
in grey,

p̈θ |Y,τ (βi)

ṗθ |Y,τ (βi)
in red,

ṗθ |Y,τ (βi)

ṗθ |Y,τ (βi)
= 1 in blue)

I next evaluate the convergence of unit-level posterior densities p̈(βi |Y,τ ) to p(βi |Y,τ ). The Q-Q

plots in Figure 4.3 compare quantiles of the βi draws from the proposed algorithm with those of the

benchmark for a random sample of five cross-sectional units, for T = 5, 15, and 45 observations
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per unit, and Ns = 3,333 units per shard (N = 100,000). For convenience in interpretation I plot

the 45-degree line. Qualitatively, I find excellent convergence for T = 5 and good convergence

for T = 15 and T = 45 (for example, see unit 1). The diminishment is due to the independence

Metropolis-Hastings algorithm in the second stage. As I increase T unit-level posterior densities

narrow. Narrower posteriors decrease acceptance rates. Fewer accepted draws reduce effective

sample sizes, increase bias, and negatively impact convergence.

The random walk of the benchmark algorithm for the Metropolis-Hastings draws causes ac-

ceptance rates to increase slightly as T increases (from 20.2% at T = 5 to 22.9% at T = 45). For

the independence Metropolis-Hastings algorithm in the second stage of the proposed algorithm

acceptance rates decrease with T (from 36.4% at T = 5 to 5.0% at T = 45). The random walk

algorithm adapts to the shape of each unit’s posterior whereas the independence algorithm draws

from a fixed proposal distribution that is independent of any unit’s posterior. To compensate for

this effect I may increase the number of proposal draws for those units that have a large number of

observations and low acceptance rates.
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Figure 4.3: Convergence of unit-level posteriors: Q-Q plots (Ns = 3,333)

Q-Q plots of unit-specific draws from the proposed algorithm and the single machine hybrid
Gibbs algorithm, for a random sample of five units and T = 5, 15, and 45 observations per unit.
Ns = 3,333 units per shard, N = 100,000 units, S = 30 shards, and R = 20,000 MCMC iterations
including 4,000 iterations for burn-in
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Table 4.1: Convergence of unit-level posterior densities: Q-Q Correlations (Ns = 3,333)

T
β1 β2 β3 β4

1%ile 5%ile Median 1%ile 5%ile Median 1%ile 5%ile Median 1%ile 5%ile Median

5 .994 .998 .999 .991 .997 .999 .994 .998 .999 .992 .998 .999

15 .982 .993 .999 .977 .993 .999 .976 .993 .999 .978 .994 .999

45 .912 .976 .997 .926 .974 .997 .909 .976 .997 .936 .979 .998

Correlation percentiles of unit-specific draw quantiles from the single machine hybrid Gibbs algo-
rithm and the proposed algorithm, for a random sample of 1,000 units. N = 100,000 units, S = 30
shards, and R = 20,000 MCMC iterations including 4,000 iterations for burn-in

Since correlation is a measure of the linear relationship between two variables I may quantify

the linear relationship between quantiles of the draws of the proposed algorithm and those of the

benchmark. A correlation that is very close to one indicates an exact linear relationship (a straight

line) and excellent convergence. Table 4.1 presents the 1st and 5th correlation percentiles, and

the median correlation of unit-level draws for a random sample of 1,000 cross-sectional units.

Median correlations are excellent (.997 - .999) across all values of T and suggest an exact linear

relationship. However in the tails I see some decline especially at larger values of T . For T = 5,

the 5th percentiles are excellent (.997 - .998) and the 1st percentiles decrease slightly (.991 - .994).

For T = 15 the 5th percentiles remain excellent (.993 - .994) but the 1st percentiles indicate poor

convergence (.976 - .982). For T = 45 both the 5th percentiles (.974 - .979) and the 1st percentiles

(.909 - .936) suggest poor convergence.
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Figure 4.4: Convergence of unit-level posteriors: Q-Q plots (Ns = 33,333)

Q-Q plots of unit-specific draws from the proposed algorithm and the single machine hybrid Gibbs
algorithm, for a random sample of five units and T = 5, 15, and 45 observations per unit. Ns =
33,333 units per shard, N = 1,000,000 units, S = 30 shards, and R = 20,000 MCMC iterations
including 4,000 iterations for burn-in
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Table 4.2: Convergence of unit-level posterior densities: Q-Q correlations (Ns = 33,333 units per
shard)

T
β1 β2 β3 β4

1%ile 5%ile Median 1%ile 5%ile Median 1%ile 5%ile Median 1%ile 5%ile Median

5 .993 .998 .999 .995 .997 .999 .995 .998 .999 .994 .998 .999

15 .980 .994 .999 .978 .993 .999 .979 .993 .999 .982 .995 .999

45 .916 .973 .997 .919 .974 .997 .918 .970 .997 .900 .973 .997

Correlation percentiles of unit-specific draw quantiles from the single machine hybrid Gibbs al-
gorithm and the proposed algorithm, for a random sample of 1,000 units. Ns = 33,333 units per
shard, N = 1,000,000 units, S = 30 shards, and R = 20,000 MCMC iterations including 4,000
iterations for burn-in

Figure 4.4 and Table 4.2 present convergence results for Ns = 33,333 (N = 1,000,000). The

correlations for Ns = 3,333 (Table 4.1) agree closely with those for Ns = 33,333 (Table 4.2). The

reason why correlations do not increase further at Ns = 33,333 is because convergence occurs

at Ns ≈ 3,333: once p̈θ |Y,τ (βi) converges to ṗθ |Y,τ (βi) at Ns ≈ 3,333 any further increase in

Ns negligibly decreases the maximum expected squared error between ṗθ |Y,τ (βi) and p̈θ |Y,τ (βi).

Although several units in Figure 4.4 (see units 3 and 5 for T = 45) converge rather poorly I surmise

that this may be due to the small sample of units chosen for the figures. The reason why these

particular units converge poorly is because T is large and their posteriors are likely in the tails of

the predictive density.

4.2 Performance

To quantify the performance of the proposed algorithm relative to the benchmark I consider four

metrics: execution time, effective sample size (ESS), ESS per minute, and the ratio of ESS/minute

of the proposed algorithm to the hybrid Gibbs sampler. The effective sample size for correlated

draws is the size of an i.i.d. sample with the same variance as the simulated draws (Robert and

Casella, 2010). ESS per minute is therefore a measure of the amount of information obtained from

posterior draws per unit of computing time. It quantifies the efficiency of an MCMC chain.
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Table 4.3: Performance of the proposed algorithm

T Algorithm
Ns = 3,333 N = 100,000 Ns = 33,333 N = 1,000,000

Time ESS ESS/min ESSProposed/min
ESSGibbs/min Time ESS ESS/min ESSProposed/min

ESSGibbs/min

5
Gibbs 158 1,141 7.2

38.0
1,553 1,145 .7

37.6
Proposed 12 3,301 273.7 117 3,254 27.7

15
Gibbs 203 1,170 5.8

12.4
2,140 1,172 .5

13.2
Proposed 19 1,362 72.2 182 1,309 7.2

45
Gibbs 388 1,212 3.1

4.0
3,649 1,209 .3

3.3
Proposed 36 444 12.4 384 426 1.1

Performance metrics are for a random sample of 1,000 units. Ratios relative to the single machine hybrid
Gibbs algorithm are in parentheses. For the subsampling algorithm, Ns = 3,333 units per shard in the first
stage (first stage sampling rate p = 10%), Ns = 33,333 units per shard in the second stage. S = 30 shards,
and R = 20,000 MCMC iterations including 4,000 iterations for burn-in

For small T (T = 5) the proposed algorithm dominates the single machine hybrid Gibbs algorithm

(Table 4.3) in two respects: (i) distributed processing decreases execution time by an order of mag-

nitude, and (ii) the independence Metropolis-Hastings algorithm produces less correlated draws,

resulting in an ESS that is about three times larger. For N = 1,000,000 the proposed algorithm

takes two hours versus 26 hours for the benchmark. Efficiency (ESS per minute) relative to the

benchmark is larger by a factor of thirty-seven.

For moderate and large T (T = 15 and 45) the proposed algorithm remains an order of mag-

nitude faster but ESS declines, especially for large T . The decline is attributed to the expected

decrease in acceptance rates. The proposed algorithm takes three hours for moderate T (versus 36

for the benchmark) and 6.5 hours for large T (versus 2.5 days for the benchmark). Efficiency gains

relative to the benchmark decrease to a factor of thirteen for moderate T and to 3-4 times for large

T .

4.3 Scalability with N

I evaluate the scalability of the proposed algorithm for N up to 100 million units on a large cluster

with a parallel distributed file system. Each Linux node has 24 cores. I implement parallelism
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with scripts and C++ and I optimize the I/O intensive parts of the R code. For each run, T = 5

observations and R = 20,000 MCMC iterations, including 4,000 iterations for burn-in. I keep

every 10th draw for each of the N units. I set the number of shards S so that Ns = 33,333 or larger.

Table 4.4: Scalability with N

Units Shards Units per Shard Total Execution Time in minutes
N S Ns =

N
S (I/O time)1

1 million 30 33,333 61 (0)
10 million 300 33,333 76 (2)

100 million 1,7282 57,870 162 (21)

Scalability testing is implemented on a large cluster with a parallel distributed file system. T = 5
observations, R = 20,000 MCMC iterations including 4,000 iterations for burn-in and keeping
every 10th draw.

1. I/O time is the amount of time in minutes that is used for transferring data to and from each
node for each stage. It is included in the total execution time.

2. The cluster limits the number of cores that a single application may use at one time to 1,728

For N = 1 million units and T = 5 the proposed algorithm (Table 4.4) runs about twice as fast (61

minutes) on the large cluster compared to the 32-core Linux computer (117 minutes). For N = 10

million the proposed algorithm runs in 76 minutes, a relatively small increase from 61 minutes

for a ten-fold increase in N. Communication overhead increases to 2 minutes due to the ten-fold

increase in the number of file transfers between worker machines and the master computer. For

N = 100 million I need 3,000 shards to maintain Ns = 33,333, however the cluster limits us to

1,728 cores. Execution time increases to 162 minutes, still a relatively modest amount of time for

a ten-fold increase in N. Communication overhead increases to 21 minutes due to the even larger

number of file transfers. Although I do not compare the efficiency of the proposed algorithm to

the benchmark, I expect that efficiency gains also increase approximately linearly with N provided

that the computing environment is not limited in the number of available cores.

31



4.4 Subsampling in Stage One

Since p̈θ |Y,τ (βi) converges to ṗθ |Y,τ (βi) at Ns ≈ 3,333 I may subsample Y at rate p = 10% in the

first stage (algorithm A ′
3 ). For N = 1 million units and S = 30 shards, Ns = pN/S = 3,333. I do

not find any difference in first stage convergence between Ns = 3,333 and Ns = 33,333 (Figure 4.5

and Table 4.5, as compared to Figure 4.4 and Table 4.2).
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Figure 4.5: Convergence of unit-level posterior densities (with stage one subsampling): Q-Q plots

Q-Q plots of unit-specific draws from the proposed subsampling algorithm and the single machine
hybrid Gibbs algorithm, for a random sample of five units and T = 5, 15, and 45 observations per
unit. Ns = 3,333 units per shard in the first stage, Ns = 33,333 units per shard in the second stage,
N = 1,000,000 units, S = 30 shards, and R = 20,000 MCMC iterations including 4,000 iterations
for burn-in
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Table 4.5: Convergence of unit-level posterior densities (with stage one subsampling): Q-Q corre-
lations

T
β1 β2 β3 β4

1%ile 5%ile Median 1%ile 5%ile Median 1%ile 5%ile Median 1%ile 5%ile Median

5 .992 .996 .999 .994 .997 .999 .990 .996 .999 .992 .9978 .999

15 .971 .993 .999 .972 .992 .999 .974 .993 .999 .980 .995 .999

45 .908 .970 .997 .913 .968 .997 .916 .971 .997 .887 .971 .998

Correlation percentiles of unit-specific draw quantiles from the single machine hybrid Gibbs al-
gorithm and the proposed algorithm with stage one subsampling, for a random sample of 1,000
units. Ns = 3,333 units per shard in the first stage, Ns = 33,333 units per shard in the second stage,
N = 1,000,000 units, S = 30 shards, and R = 20,000 MCMC iterations including 4,000 iterations
for burn-in

Subsampling improves performance and efficiency substantially. On the 32-core Linux computer

for small T , execution time decreases and efficiency increases by a factor of four, resulting in

an efficiency gain of over two orders of magnitude relative to the benchmark ( Table 4.6). For

moderate and large T relative efficiency more than doubles.

Table 4.6: Performance of the proposed algorithm (with stage one subsampling)

T Algorithm
Ns = 33,333 N = 1,000,000

Time (minutes) ESS ESS/minute
ESSProposed/min

ESSGibbs/min

5
Proposed 117 3,254 27.7 37.6

Subsampling∗ 27 3,294 122.0 165.4

15
Proposed 182 1,309 7.2 13.2

Subsampling∗ 68 1,318 19.3 35.3

45
Proposed 384 426 1.1 3.3

Subsampling∗ 174 430 2.5 7.5

Performance metrics are for a random sample of 1,000 units. For the proposed algorithm with first
stage subsampling, Ns = 3,333 units per shard in the first stage (first stage sampling rate p = 10%),
Ns = 33,333 units per shard in the second stage. S = 30 shards, and R = 20,000 MCMC iterations
including 4,000 iterations for burn-in
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On the large cluster (Table 4.7) for N = 1 and 10 million units, subsampling reduces execution

time by a factor of four to 13 minutes and 19 minutes, respectively. For N = 100 million units

execution time is halved from 162 minutes to 78 minutes. Communication overhead is not affected

by subsampling.

Table 4.7: Scalability with N (with stage one subsampling)

Units Shards Units per Shard
Algorithm

Total Execution Time in minutes
N S Ns =

N
S (I/O time)1

1 million 30 33,333
Proposed 61 (0)

Subsampling2 13 (0)

10 million 300 33,333
Proposed 76 (2)

Subsampling 19 (3)

100 million 1,7283 57,870
Proposed 162 (21)

Subsampling 78 (19)

Scalability testing is implemented on a large cluster with a parallel distributed file system. T = 5
observations, R = 20,000 MCMC iterations including 4,000 iterations for burn-in and keeping
every 10th draw.

1. I/O time is the amount of time in minutes that is used for transferring data to and from each
node for each stage. It is included in the total execution time.

2. For the proposed algorithm with stage one subsampling p = 10%.

3. The cluster limits the number of cores that a single application may use at one time to 1,728
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5 Application: Donor Response

I illustrate the proposed algorithm by modeling donor response to solicitations using data from a

nonprofit charitable organization. Since the number of donors is very large, the need for an efficient

estimation method is clear.

The data from a leading US nonprofit organization (Malthouse 2009) contains the donation and

solicitation histories for about 1.1 million donors, 3 million donations, and 28 million solicitations

for donations over a fifteen-year period (1992-2006). Data for each donor is collected beginning

from the date of her first donation. The total number of donors increases linearly over time. I

remove incomplete histories, reducing the number of cross-sectional units to 1,088,269. Donors

make an average of 2.8 donations (standard deviation is 4.3) with a mean interdonation time of 362

days (standard deviation is 262 days). The 25th, 50th, and 75th percentiles of the total number of

donations per donor after their initial donation are 0, 0, and 2, respectively. The majority of donors

only donate once or at most several times before “lapsing” (Feng 2014). Only about seven percent

of all solicitations after the first donation result in donations. The 25th, 50th, and 75th percentiles

of the number of solicitations per donor are 12, 21, and 31, respectively.

The dependent variable represents whether or not a donor responds to a solicitation, given

that she has donated at least once. As covariates I use an intercept, the number of days since

her last donation (recency), and the number of past donations (frequency). The average of past

donation amounts does not influence donor response. I log transform the data and estimate a

hierarchical binomial logit model of solicitation response with my proposed algorithm and the

single machine hybrid Gibbs algorithm. I use a normal prior for βi and a normal inverse Wishart

prior for θ = {µ,Σ}, the mean and covariance matrix of the normal prior.

36



Figure 5.1: Donor response: Convergence of marginals of posterior predictive density estimators
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S = 30 shards, Ns ≈ 36,000 units per shard, and R = 40,000 MCMC iterations including 5,000
iterations for burn-in (ṗθ |Ys,τ (βi) in grey, p̈θ |Y,τ (βi) in red, ṗθ |Y,τ (βi) in blue)

Figure 5.1 plots the marginals of ṗθ |Y,τ (βi), ṗθ |Ys,τ (βi), and p̈θ |Y,τ (βi) for S = 30 shards (Ns ≈

36,000). Marginal posterior predictive densities converge well. Although plots of the ratio of

marginals (Figure 5.2) show that β1 (intercept) and β3 (frequency) do not converge as well as β2

(recency), especially in the tails, unit-level posterior densities for a random sample of 24 units
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converge well (Figure 5.3). Presumably, this is because there are a sufficiently large number of

observations per unit (median of 21 observations per unit) in the likelihood to influence the poste-

rior far enough away from the posterior predictive density. Correlation percentiles of unit-specific

draw quantiles for a random sample of 1,000 cross-sectional units confirm my qualitative findings

(the 1st and 5th percentiles and the median are 995, .999, and 1.0).

Figure 5.2: Donor response: Convergence of marginals of posterior predictive density estimators
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S = 30 shards, Ns ≈ 36,000 units per shard, and R = 40,000 MCMC iterations including 5,000
iterations for burn-in (

ṗθ |Ys,τ (βi)

ṗθ |Y,τ (βi)
in grey,

p̈θ |Y,τ (βi)

ṗθ |Y,τ (βi)
in red,

ṗθ |Y,τ (βi)

ṗθ |Y,τ (βi)
= 1 in blue)
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Figure 5.3: Donor response: Q-Q plots showing convergence of unit-level posteriors

Q-Q plots of unit-specific draws from the proposed algorithm and the single machine hybrid Gibbs
algorithm, for a random sample of twenty-four units. Ns ≈ 36,000 units per shard, N = 1,088,269
units, S = 30 shards, and R = 40,000 MCMC iterations including 5,000 iterations for burn-in
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The proposed algorithm takes about 6 hours versus 3 days and 5 hours for the benchmark. Accep-

tance rates are 54% and 23% for the proposed algorithm and the benchmark, respectively. Effective

sample sizes (ESS) are 15,389 and 3,178, respectively (out of 40,000 MCMC iterations including

5,000 for burn-in), and ESS per minute are 40.15 and 0.69, respectively. The proposed algorithm

is more efficient than the single machine hybrid Gibbs algorithm by a factor of 58, significantly

better than the 13-fold efficiency gain with simulated data for T = 15 (Table 4.3). This may be

due to the simulated dataset’s high variability compared to the more realistic low variability of the

donation dataset. The donation dataset’s smaller Fisher information, due to its lower variability,

induces a flatter likelihood function even though there are a median of 21 observations per unit for

the donation dataset and only 15 for the comparable simulation dataset. Higher acceptance rates

(54% versus 17%), values of ESS (15,389 versus 1,309), and efficiency gains (58 versus 13) are a

consequence. In practice, the simulation dataset’s high Fisher information may not be representa-

tive of real datasets, which suggests that the efficiency gain of the proposed algorithm is expected

to be markedly higher than cited using the simulation dataset in this article.

5.1 Scalability with S

The constant C0 in (3.22) characterizes the proposed algorithm’s inherent scalability which is de-

pendent on Y and the model. I estimate C0 for the donation and simulation datasets with the

aid of small scale simulations (Appendix: Theorem 8 and Table 5.1). Simulations take 1 hour

for the donation dataset and 20 minutes for the simulation dataset. Our estimates of C0 are off

by 10-20%. Comparing estimates of C0 for the donation (C0 = 7.980× 10−7) and simulation

(C0 = 2.278×10−4) datasets, measures of their respective Fisher information about θ , the simula-

tion data carries about three orders of magnitude more information about the common parameters

θ than does the donation data. The proposed algorithm scales better with the simulation dataset.
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Table 5.1: Scalability with S: Estimation of C0

Dataset
C0 Estimation1 with N′� N Squared Error2

Actual Maximum
C0

Maximum Expected Actual Maximum
Squared Error ε2 Squared Error ε2

max Squared Error ε2
actual

Simulation 9.143×10−5 2.278×10−4 8.24×10−6 1.04×10−5

Donation 1.193×10−2 7.980×10−7 9.88×10−4 8.98×10−4

1. To estimate C0 for the simulation dataset, I first construct ṗθ |Y,τ (βi) and p̈θ |Y,τ (βi)
with sufficiently large N′ � N and sufficiently small S′ > 1. I choose N′ = 10,000
units, S′ = 3 shards, R = 16,000 MCMC iterations after burn-in (4,000). I approxi-
mate the maximum expected squared error as the actual maximum squared error ε2 ≈
supβik,k∈{1,...,d}

[∣∣p̈θ |Y,τ (βik)− ṗθ |Y,τ (βik)
∣∣2] and approximate C0 ≈

(
S′2+1

S′N′Rε2

)
. For the do-

nation dataset I use N′ = 10,000 units, S′ = 3 shards, R = 35,000 MCMC iterations after
burn-in (5,000) to estimate ε2 and calculate C0.

2. I solve for the maximum expected squared error ε2
max for Smax = 30 because I are limited

to a maximum of 30 cores in my computing environment: ε2
max ≈

(
S2

max+1
SmaxNR

)
C−1

0 . For the
simulation dataset N = 1,000,000 units, S = 30 shards, R = 16,000 MCMC iterations after
burn-in (4,000). For the donation dataset N = 1,088,269 units, S = 30 shards, R = 35,000
MCMC iterations after burn-in (5,000). The actual maximum squared error is estimated by
constructing p̈θ |Y,τ (βi) and using ε2

actual ≈ supβik,k∈{1,...,d}

[∣∣p̈θ |Y,τ (βik)− ṗθ |Y,τ (βik)
∣∣2].

I conclude that although low Fisher information datasets are more efficient in terms of ESS per

unit of computing, they limit the scalability of the proposed algorithm with S. I expect that for

low Fisher information datasets Smax is more likely to limit scalability than the number of available

computers. For high Fisher information datasets the number of available computers is more likely

to limit scalability. In the latter case I may increase performance by subsampling in the first stage

to accommodate the limited number of available computers, while keeping within a given error

bound.

5.2 Subsampling Units

Although the focus of this article is to propose a scalable algorithm for estimating all of the unit-

level parameters in Bayesian hierarchical models, it is interesting to examine the effect of a sub-
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sampling7. I show that inferences from a subsample of units are very different from the those based

on all of the data. Even large subsamples can provide incorrect inferences.

Figure 5.4: Donor response: Marginal posterior densities of µ and Σ (for moderate and big N)
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R = 40,000 MCMC iterations including 5,000 iterations for burn-in

I consider a moderate subsample (N = 10,000) which can easily run on a single processor MCMC

implementation. I compare inferences about the common parameters for this subsample with the

full sample of data (N ≈ 1,100,000). In my hierarchical binary logit model of donor response, I

assume that unit-level response parameters have a multivariate normal distribution, βi ∼ N (µ,Σ).

The common parameter θ consists of a mean vector µ and the unique elements of the covariance
7Subsampling in this context refers to subsampling the cross-sectional units for purposes of estimating the common

parameters, whereas in the context of the proposed algorithm it is for purposes of constructing an estimator of the
posterior predictive density.
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matrix Σ. I plot marginal posterior densities (Figure 5.4) of the common parameter draws for mod-

erate and big N. Standard deviations for all elements of {µ,Σ} decrease by a factor of about 10,

as expected when increasing the sample size by 100. More interestingly, there is a clear separation

of the posterior means for several elements of µ and Σ between moderate and big N. Multivariate

tests for the equality of means are significant8. This suggests that a big N approach to parameter es-

timation has the added benefit of different and presumably more accurate parameter estimates and

characterization of heterogeneity, and that the proposal to subsample units may provide misleading

inferences.

To illustrate the managerial relevance of different parameter estimates with increasing subsam-

ple size I consider a prediction task. I estimate a hierarchical binomial logit model of solicitation

response to predict the probability of response for a focal subsample of 1,000 random donors with

at least 16 observations (solicitations). The first 15 observations are used for model estimation

and the remaining for prediction. The prediction period is donor-dependent, it is not a fixed time

interval. I estimate the model with an increasing number of donors from 1,000 to 1 million. In all

cases the first 1,000 donors is the focal subsample used for prediction. For the remaining donors

beyond the first 1,000, at most 15 observations are used for model estimation. A model with an

intercept term and three covariates predicts well: time since last donation, number of donations in

the current year, and total donation amount in the current year.

8Krishnamoorthy and Yu’s (2004) modified Nel and van der Merwe multivariate test for the equality of means are
significant. p-values for µ and the unique elements of Σ are 4.866×10−16 and 1.346×10−35, respectively.
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Figure 5.5: Donor response: Predicted response probability
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Mean prediction error is the mean absolute deviation between the predicted probability of response
and the observed probability of response (0 or 1). Prediction accuracy is the proportion of correct
predictions, wherein a prediction probability greater than fifty-percent is interpreted as a positive
predicted response.
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Figure 5.5 plots the mean prediction error9 and prediction accuracy10 as a function of the number

of donors for model estimation. Mean prediction error decreases from 27% when estimating a

model with 1,000 donors, to 18% with 1 million donors. Prediction accuracy increases from 75%

to 87%. A 12% increase in efficiency can be substantial when managing a very large donor pool.

9Mean prediction error is the mean absolute deviation between the predicted probability of response and the ob-
served probability of response (0 or 1).

10Prediction accuracy is the proportion of correct predictions, wherein a prediction probability greater than fifty-
percent is interpreted as a positive predicted response.
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6 Conclusions

I propose a distributed MCMC algorithm for estimating Bayesian hierarchical models when the

number of units is very large (big N) and the objects of interest are the unit-level parameters.

The method is asymptotically exact, retains the flexibility of any standard MCMC algorithm to

accommodate any prior, has a computational complexity that is independent of the number of

shards, does not impose any distributional assumptions on posteriors, has lean communication

requirements, and is easy to implement using existing MCMC packages.

For small T , the proposed algorithm dominates the performance of the single machine hybrid

Gibbs algorithm in two respects. It is more computationally efficient by distributing its processing,

and it is more algorithmically efficient by simulating draws that are less correlated. This double-

win produces an overall efficiency gain of at least an order of magnitude (for N = 1,000,000)

relative to the single machine hybrid Gibbs algorithm. To boost performance further, a modifica-

tion to the proposed algorithm subsamples the data in the first stage. Using simulated data with

N = 1,000,000 and T = 5, the single machine hybrid Gibbs algorithm takes 26 hours to run, the

proposed algorithm needs 2 hours, and the proposed algorithm with stage one subsampling runs in

30 minutes. For larger T , the algorithm still dominates the single machine hybrid Gibbs algorithm

in the sense of delivering about an order of magnitude greater effective sample size per unit of

computing even though the mixing properties are not as favorable.

I apply the proposed algorithm to a panel of one million donors to model donor response to

solicitations. The efficiency gain, as measured by effective sample size per unit of computing, is

markedly higher than that of my simulated examples. This is due to the comparatively low Fisher

information of the donor dataset. In general, I expect that for real applications efficiency gains of

the proposed algorithm are greater than those cited for the simulated examples in this article.

The proposed algorithm may be implemented on a multicore computer or a cluster of comput-

ers. I have demonstrated its scalability with simulated and real panels of one million units on a

multicore computer, a pedestrian environment. The potential for scalability is even greater on a

large cluster. My simulations suggest that efficiency gains increase approximately linearly with N.
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With 100,000,000 units and utilizing a 1,728-processor cluster, only a few hours of computation

time is required to undertake unit-level parameter inference.
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8 Appendix: Theorems

In the following proofs, ṗθ |Y,τ (βi), ṗθ |Ys,τ (βi) and p̈θ |Y,τ (βi) are estimators of posterior predictive

densities constructed from convergent MCMC chains. Y = {Ys}S
s=1 is the data for all N units, Ys

is the data in shard s for Ns =
N
S units, and S > 1 is the number of shards. βi ∈ Rd where d is the

dimension of βi.

Theorem 1. Gelman et al.’s (2014) posterior predictive density of βi is Eθ |Y−i,τ [p(βi |θ )]

Proof. Gelman et al.’s (2014) definition of the posterior predictive distribution of yi is the density

of yi after observing Y−i, where Y−i excludes yi, an unknown observable. I extend this idea to the

unit-level parameter βi in a Bayesian hierarchical setting: the posterior predictive distribution of βi

is the density of βi after observing Y−i.

p(βi |Y−i,τ ) =
∫

p(βi |θ ) p(θ |Y−i,τ )dθ

= Eθ |Y−i,τ [p(βi |θ )]

Theorem 2. E
[
ṗθ |Y,τ (βi)

]
= Eθ |Y,τ [p(βi |θ )] for βi ∈ Rd

Proof. The proof is inspired by Beaumont (2003).

E
[
ṗθ |Y,τ (βi)

]
= E{θ r}|Y,τ

[
1
R

R

∑
r=1

p(βi |θ r )

]

=
∫ 1

R

R

∑
r=1

p(βi |θ r )p({θ r}|Y,τ )d {θ r}

=
∫
· · ·
∫ 1

R

R

∑
r=1

p(βi |θ r )
R

∏
j=1

p
(
θ

j |Y,τ
)

dθ
1 . . .dθ

R

=
1
R

R

∑
r=1

∫
p(βi |θ r )p(θ r |Y,τ )dθ

r
∏
j 6=r

∫
p
(
θ

j |Y,τ
)

dθ
j

=
1
R

R

∑
r=1

Eθ r|Y,τ [p(βi |θ r )]
∫

p
(
θ

j |Y,τ
)

dθ
j = 1

= Eθ |Y,τ [p(βi |θ )]
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Theorem 3. ṗ(βi |Y,τ ) = p(βi |Y,τ ) for βi ∈ Rd

Proof.

ṗ(βi |Y,τ ) =
∫

ṗ(βi |{θ r} ,Y,τ ) p({θ r}|Y,τ )d {θ r}

= E{θ r}|Y,τ [ṗ(βi |{θ r} ,Y,τ )]

= E{θ r}|Y,τ

[
ṗθ |Y,τ (βi)∏

t
p(yit |βi )

]
= E{θ r}|Y,τ

[
ṗθ |Y,τ (βi)

]
∏

t
p(yit |βi ) p(yit |βi ) is not stochastic

= Eθ |Y,τ [p(βi |θ )]∏
t

p(yit |βi ) Theorem 2

= p(βi |Y,τ ) Equation 3.7

Theorem 4. The limit distributions of ṗθ |Ys,τ (βi) and p̈θ |Y,τ (βi) for βi ∈ Rd are:

1.
√

N
(

ṗθ |Ys,τ (βi)− ṗθ |Y,τ (βi)
)
→P N

(
0,∇p(βi |θ )T

(
S2+1

R

)
I−1
θ

∇p(βi |θ )
)

2.
√

N
(

p̈θ |Y,τ (βi)− ṗθ |Y,τ (βi)
)
→P N

(
0,∇p(βi |θ )T

(
S2+1

SR

)
I−1
θ

∇p(βi |θ )
)

Proof. 1. limit distribution of
√

N
(

ṗθ |Ys,τ (βi)− ṗθ |Y,τ (βi)
)

1.1. limit distribution of
√

N
(

ṗθ |Y,τ (βi)− p(βi |θ )
)

for βi ∈ Rd

For purposes of deriving limit distributions, I take a frequentist view in that Y is a random

sample from a distribution for some fixed, nonrandom, unknown parameter. I assume that N is

large enough that standard asymptotics apply and that the Bernstein-von Mises theorem yields a

good approximation to the posterior (Le Cam and Yang 2000; Vaart 1998). In particular, I assume

that posterior distributions approach a normal distribution centered at the true parameter value with

covariance equal to the inverse of the Fisher information matrix divided by N.

Let θ r
N denote the rth draw from the posterior distribution of θ using algorithm A1 with data Y

for N units. Therefore
√

N (θ r
N−θ)→d N

(
0, I−1

θ

)
where Iθ is the Fisher information matrix at θ

51



for N units of data Y . Since θ is a unknown constant
√

N (θ r
N−θ)→P N

(
0, I−1

θ

)
by Vaart (1998)

Theorem 2.7. For notational simplicity I dispense with the N subscript for θ r.

I derive the limit distribution of
√

N
(

ṗθ |Y,τ (βi)− p(βi |θ )
)

by applying the multivariate delta

method to
√

N (θ r−θ)→P N
(
0, I−1

θ

)
and using the transformation ṗθ |Y,τ (βi) =

1
R ∑r p(βi |θ r ).

βi ∈ Rd

√
N (θ r−θ) →P N

(
0, I−1

θ

)
√

N (p(βi |θ r )− p(βi |θ )) →P N
(

0,∇p(βi |θ )T I−1
θ

∇p(βi |θ )
)

multivariate delta method
√

N
(

∑
r

p(βi |θ r )−∑
r

p(βi |θ )

)
→P N

(
0,∇p(βi |θ )T RI−1

θ
∇p(βi |θ )

)
sum of R random variables

√
N
(

1
R ∑

r
p(βi |θ r )− p(βi |θ )

)
→P N

(
0,∇p(βi |θ )T (RIθ )

−1
∇p(βi |θ )

)
divide by R

√
N
(

ṗθ |Y,τ (βi)− p(βi |θ )
)
→P N

(
0,∇p(βi |θ )T (RIθ )

−1
∇p(βi |θ )

)

1.2. limit distribution of
√

N
(

ṗθ |Ys,τ (βi)− p(βi |θ )
)

for S > 1, βi ∈ Rd

Similarly, for each shard of Ns =
N
S units of data Ys,

√
Ns (θ

r−θ)→P N
(
0,SI−1

θ

)
, where Iθ

S is

the Fisher information matrix at θ for N
S units of data. I assume that N

S is large enough so that the

Bernstein-von Mises theorem applies. Therefore, following the reasoning in step 1.1,

√
Ns
(

ṗθ |Ys,τ (βi)− p(βi |θ )
)
→P N

(
0,∇p(βi |θ )T S (RIθ )

−1
∇p(βi |θ )

)
√

N
(

ṗs
θ |Y,τ (βi)− p(βi |θ )

)
→P N

(
0,∇p(βi |θ )T S2 (RIθ )

−1
∇p(βi |θ )

)
multiply by

√
S

1.3. limit distribution of
√

N
(

ṗθ |Ys,τ (βi)− ṗθ |Y,τ (βi)
)

for S > 1, βi ∈ Rd
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Subtract
√

N
(

ṗθ |Y,τ (βi)− p(βi |θ )
)

from
√

N
(

ṗθ |Ys,τ (βi)− p(βi |θ )
)

√
N
(

ṗθ |Ys,τ (βi)− p(βi |θ )
)
−
√

N
(

ṗθ |Y,τ (βi)− p(βi |θ )
)
→P N

(
0,∇p(βi |θ )T

[
S2 (RIθ )

−1 +(RIθ )
−1
]

× ∇p(βi |θ ))

√
N
(

ṗθ |Ys,τ (βi)− ṗθ |Y,τ (βi)
)
→P N

(
0,∇p(βi |θ )T

(
S2 +1

R

)
I−1
θ

∇p(βi |θ )

)

2. limit distribution of
√

N
(

p̈θ |Y,τ (βi)− ṗθ |Y,τ (βi)
)

for βi ∈ Rd

Apply the transformation p̈θ |Y,τ (βi) =
1
S ∑s ṗθ |Ys,τ (βi)

√
N
(

ṗθ |Ys,τ (βi)− ṗθ |Y,τ (βi)
)
→P N

(
0,∇p(βi |θ )T

(
S2 +1

R

)
I−1
θ

∇p(βi |θ )

)
see step 1.3

√
N
(

1
S ∑

s

(
ṗθ |Ys,τ (βi)− ṗθ |Y,τ (βi)

))
→P N

(
0,∇p(βi |θ )T

(
S2 +1

SR

)
I−1
θ

∇p(βi |θ )

)
mean of S rand. vars.

√
N
(

p̈θ |Y,τ (βi)− ṗθ |Y,τ (βi)
)
→P N

(
0,∇p(βi |θ )T

(
S2 +1

SR

)
I−1
θ

∇p(βi |θ )

)

Theorem 5. limN→∞E
[
p̈θ |Y,τ (βi)

]
= limN/S→∞E

[
p̈θ |Y,τ (βi)

]
= ṗθ |Y,τ (βi) for βi ∈ Rd

Proof. Let θ r
N denote the rth draw of θ from the posterior density p(θ |Y,τ ), where N is the number

of units of data in Y . It is reasonable to assume that the sequence θ r
1 , θ r

2 ,... of random vectors is

uniformly integrable because I may choose any prior density p(θ |τ ) that appropriately restricts

the amount of probability in the tails of posterior p(θ |Y,τ ). Since θ r
N →P θ (Theorem 4 step

1.1) and θ r
N is uniformly integrable, it follows that θ r

N →L1 θ by Grimmett and Stirzaker (2007)

Theorem 7.10(3). Therefore, for βi ∈ Rd , ṗθ |Y,τ (βi)→L1 p(βi |θ ) by the same reasoning as in

Theorem 4 (replace convergence in probability with L1-convergence).

Similarly, by the above reasoning, θ r
Ns
→L1 θ and ṗθ |Ys,τ (βi)→L1 p(βi |θ ). Again, following

the same reasoning as in Theorem 4 (replace convergence in probability with L1-convergence), it

follows that p̈θ |Y,τ (βi)→L1 ṗθ |Y,τ (βi) and therefore that limN→∞E
[
p̈θ |Y,τ (βi)

]
= ṗθ |Y,τ (βi). For

fixed S, limN→∞E
[
p̈θ |Y,τ (βi)

]
= limN/S→∞E

[
p̈θ |Y,τ (βi)

]
.
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Theorem 6. limN→∞E [p̈(βi |Y,τ )] = limN/S→∞E [p̈(βi |Y,τ )] = p(βi |Y,τ ) for βi ∈ Rd

Proof.

lim
N→∞

E [p̈(βi |Y,τ )] = E
[

lim
N→∞

p̈(βi |Y,τ )
]

Dominated Convergence Theorem

= E
[

lim
N→∞

E
[

p̈θ |Y,τ (βi)∏
t

p(yit |βi )

]]
= E

[
lim

N→∞
E
[
p̈θ |Y,τ (βi)

]]
∏

t
p(yit |βi ) p(yit |βi ) is not stochastic

= E
[
ṗθ |Y,τ (βi)

]
∏

t
p(yit |βi ) Theorem 5

= Eθ |Y,τ [p(βi |θ )]∏
t

p(yit |βi ) Theorem 2

= p(βi |Y,τ ) Equation 3.7

where in the first line the Dominated Convergence Theorem applies because

p̈(βi |Y,τ ) = E [p̈(βi |Y,τ )∏t p(yit |β )] is a bounded density function - both

p̈(βi |Y,τ ) = 1
SR ∑s ∑r p(βi |θ r

s ) and p(yit |βi ) are bounded density functions. For fixed S,

limN→∞E [p̈(βi |Y,τ )] = limN/S→∞E [p̈(βi |Y,τ )].

Theorem 7. For large finite N, the expected squared error between ṗθ |Ys,τ (βi) and ṗθ |Y,τ (βi), and

between p̈θ |Y,τ (βi) and ṗθ |Y,τ (βi), for βi ∈ Rd , are:

1. E
[∣∣ṗθ |Ys,τ (βi)− ṗθ |Y,τ (βi)

∣∣2]≈ (S2+1
NR

)
∇p(βi |θ )T I−1

θ
∇p(βi |θ )

2. E
[∣∣p̈θ |Y,τ (βi)− ṗθ |Y,τ (βi)

∣∣2]≈ (S2+1
SNR

)
∇p(βi |θ )T I−1

θ
∇p(βi |θ )

Proof. I make rather strong assumptions for the purpose of approximating the expected squared

error. I do not claim rigorous results. Given that
√

N
(

ṗθ |Ys,τ (βi)− ṗθ |Y,τ (βi)
)
→P N

(
0,∇p(βi |θ )T

(
S2+1

R

)
I−1
θ

∇p(βi |θ )
)

under the assumptions

of Theorem 4, I additionally assume that a finite N is sufficiently large such that for βi ∈ Rd I may

justify the approximation

ṗθ |Ys,τ (βi)− ṗθ |Y,τ (βi)∼ N
(

Bs (βi)

N
,∇p(βi |θ )T

(
S2 +1

NR

)
I−1
θ

∇p(βi |θ )

)
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where Bs(βi)
N is a small non-zero bias. I assume that ṗθ |Ys,τ (βi)− ṗθ |Y,τ (βi) is approximately

normally distributed with mean Bs(βi)
N and variance ∇p(βi |θ )T

(
S2+1
NR

)
I−1
θ

∇p(βi |θ ) for βi ∈ Rd ,

and

E
[∣∣ṗθ |Ys,τ (βi)− ṗθ |Y,τ (βi)

∣∣2] ≈ Var
(

ṗθ |Ys,τ (βi)− ṗθ |Y,τ (βi)
)
+E

[
ṗθ |Ys,τ (βi)− ṗθ |Y,τ (βi)

]2
= ∇p(βi |θ )T

(
S2 +1

NR

)
I−1
θ

∇p(βi |θ )+

(
Bs (βi)

N

)2

≈ ∇p(βi |θ )T
(

S2 +1
NR

)
I−1
θ

∇p(βi |θ ) large N

Similarly, given that
√

N
(

p̈θ |Y,τ (βi)− ṗθ |Y,τ (βi)
)
→P N

(
0,∇p(βi |θ )T

(
S2+1

SR

)
I−1
θ

∇p(βi |θ )
)

under the assumptions of Theorem 4, I additionally assume that a finite N is sufficiently large

such that for βi ∈ Rd I may justify the approximation

p̈θ |Y,τ (βi)− ṗθ |Y,τ (βi)∼ N
(

B(βi)

N
,∇p(βi |θ )T

(
S2 +1
SNR

)
I−1
θ

∇p(βi |θ )

)

where B(βi)
N is a small non-zero bias. Therefore

E
[∣∣p̈θ |Y,τ (βi)− ṗθ |Y,τ (βi)

∣∣2] ≈ Var
(

p̈θ |Y,τ (βi)− ṗθ |Y,τ (βi)
)
+E

[
p̈θ |Y,τ (βi)− ṗθ |Y,τ (βi)

]2
= ∇p(βi |θ )T

(
S2 +1
SNR

)
I−1
θ

∇p(βi |θ )+

(
B(βi)

N

)2

≈ ∇p(βi |θ )T
(

S2 +1
SNR

)
I−1
θ

∇p(βi |θ ) large N

Theorem 8. The maximum number of shards Smax for a given maximum expected squared error

ε2
max, and an empirical estimate for C0 are:

1. Smax ≈
⌊

C0
2

(
NRε2

max +
√

(NRε2
max)

2−4C−2
0

)⌋
≈
⌊
C0NRε2

max
⌋

for S2
max � 1, where C0 ={

supβ

[
∇p(βi |θ )T I−1

θ
∇p(βi |θ )

]}−1
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2. C0 ≈
(

S′2+1
S′N′R

){
supβik,k∈{1,...,d}

[∣∣p̈θ |Y,τ (βik)− ṗθ |Y,τ (βik)
∣∣2]}−1

, where N′ � N is suffi-

ciently large and S > 1 is sufficiently small

Proof. Denote the expected squared error between p̈θ |Y,τ (βi) and ṗθ |Y,τ (βi) as ε2 (βi) for βi ∈Rd .

Therefore for βi ∈Rd , ε2 (βi)=E
[∣∣p̈θ |Y,τ (βi)− ṗθ |Y,τ (βi)

∣∣2]≈(S2+1
SNR

)
∇p(βi |θ )T I−1

θ
∇p(βi |θ )

(Theorem 7). The maximum expected squared error is

ε
2
max = sup

βi

[
ε

2 (βi)
]

≈ sup
βi

[(
S2 +1
SNR

)
∇p(βi |θ )T I−1

θ
∇p(βi |θ )

]
=

(
S2 +1
SNR

)
sup

βi

[
∇p(βi |θ )T I−1

θ
∇p(βi |θ )

]

Define C0 =
{

supβi

[
∇p(βi |θ )T I−1

θ
∇p(βi |θ )

]}−1
so that ε2

max ≈
(

S2+1
SNR

)
C−1

0 . Solving for

the maximum number of shards Smax subject to the maximum expected squared error ε2
max

Smax ≈

NRε2
max +

√
(NRε2

max)
2−4C−2

0

2C−1
0


≈

⌊
C0NRε

2
max
⌋

S2
max� 1

∇p(βi |θ )T I−1
θ

∇p(βi |θ ) must be computed at the true value of θ for βi ∈ Rd . It is more

convenient to empirically estimate C0 =
{

supβ

[
∇p(βi |θ )T I−1

θ
∇p(βi |θ )

]}−1
for some small

but sufficiently large N′� N and a sufficiently small S′ > 1, so that N′/S′ is large enough that the
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Bernstein-von Mises theorem applies.

ε
2
max = sup

βi

[
ε

2 (βi)
]

(
S′2 +1
S′N′R

)
sup

βi

[
∇p(βi |θ )T I−1

θ
∇p(βi |θ )

]
≈ sup

βi

[
E
[∣∣p̈θ |Y,τ (βi)− ṗθ |Y,τ (βi)

∣∣2]]
(

S′2 +1
S′N′R

)
C−1

0 ≈ sup
βi

[
1
M ∑

m

∣∣∣p̈m
θ |Y,τ (βi)− ṗθ |Y,τ (βi)

∣∣∣2]

C0 ≈
(

S′2 +1
S′N′R

){
sup

βi

[
1
M ∑

m

∣∣∣p̈m
θ |Y,τ (βi)− ṗθ |Y,τ (βi)

∣∣∣2]}−1

≈
(

S′2 +1
S′N′R

){
sup

βi

[∣∣p̈θ |Y,τ (βi)− ṗθ |Y,τ (βi)
∣∣2]}−1

M=1

where p̈m
θ |Y,τ (βi) is the posterior predictive density estimator for the mth random partitioning of

data Y into S shards. For computational convenience, I let M = 1.

Since βi ∈ Rd , for d > 1 it may be computationally demanding to estimate

supβi

[∣∣p̈θ |Y,τ (βi)− ṗθ |Y,τ (βi)
∣∣2]. Let βi = (βi1, ...,βid)

T so that p̈θ |Y,τ (βik) and ṗθ |Y,τ (βik) de-

note the βik, k ∈ {1, ...,d}, marginals of p̈θ |Y,τ (βi) and ṗθ |Y,τ (βi), respectively. I approximate

supβi

[∣∣p̈θ |Y,τ (βi)− ṗθ |Y,τ (βi)
∣∣2] with C supβik,k∈{1,...,d}

[∣∣p̈θ |Y,τ (βik)− ṗθ |Y,τ (βik)
∣∣2] where C is

a proportionality constant that may be absorbed by C0. Therefore

C0 ≈
(

S′2 +1
S′N′R

){
sup

βik,k∈{1,...,d}

[∣∣p̈θ |Y,τ (βik)− ṗθ |Y,τ (βik)
∣∣2]}−1

Theorem 9. The optimal stage one subsampling rate is p≈
√

S
Smax

for S2� p2 and S2
max� 1

Proof. Let p denote the first stage subsampling rate, and replace Ns =
N
S with Ns =

N p
S in Theorem

4 step 1.2 to show that

√
N
(

p̈θ |Y,τ (βi)− ṗθ |Y,τ (βi)
)
→P N

(
0,∇p(βi |θ )T

(
S2 + p2

SRp2

)
I−1
θ

∇p(βi |θ )

)
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Follow Theorem 7 to show that

E
[∣∣p̈θ |Y,τ (βi)− ṗθ |Y,τ (βi)

∣∣2]≈ ∇p(βi |θ )T
(

S2 + p2

SNRp2

)
I−1
θ

∇p(βi |θ )

Follow Theorem 8 to show that

ε
2
max ≈

(
S2 + p2

SNRp2

)
C−1

0

Solve for p

p≈

√
S2

C0SNRε2
max−1

Simplify using Smax ≈C0NRε2
max (Theorem 8) and S2� p2

p≈
√

S
Smax

S2� p2 and S2
max�1
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