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Abstract

While the localization of radiological sources has traditionally been handled with statistical

algorithms, such a task can be augmented with advanced machine learning methodologies.

The combination of deep and reinforcement learning has provided learning-based naviga-

tion to autonomous, single-detector, mobile systems. However, these approaches lacked

the capacity to terminate a surveying/search task without outside influence of an operator or

perfect knowledge of source location (defeating the purpose of such a system). Two stop-

ping criteria are investigated in this work for a machine learning navigated system: one

based upon Bayesian and maximum likelihood estimation (MLE) strategies commonly used

in source localization, and a second providing the navigational machine learning network

with a “stop search” action. A convolutional neural network was trained via reinforcement

learning in a 10 m × 10 m simulated environment to navigate a randomly placed detector-

agent to a randomly placed source of varied strength (stopping with perfect knowledge dur-

ing training). The network agent could move in one of four directions (up, down, left, right)

after taking a 1 s count measurement at the current location. During testing, the stopping cri-

teria for this navigational algorithm was based upon a Bayesian likelihood estimation tech-

nique of source presence, updating this likelihood after each step, and terminating once the

confidence of the source being in a single location exceeded 0.9. A second network was

trained and tested with similar architecture as the previous but which contained a fifth action:

for self-stopping. The accuracy and speed of localization with set detector and source initiali-

zations were compared over 50 trials of MLE-Bayesian approach and 1000 trials of the CNN

with self-stopping. The statistical stopping condition yielded a median localization error of

~1.41 m and median localization speed of 12 steps. The machine learning stopping condi-

tion yielded a median localization error of 0 m and median localization speed of 17 steps.

This work demonstrated two stopping criteria available to a machine learning guided, source

localization system.
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Introduction

Radiological source surveying and localization protocols are a necessary component in the

defense against rogue nuclear sources. While the mapping and pinpointing of radioactive

sources was originally tasked to human surveyors with handheld detectors, these tasks can

now be accomplished with autonomous robotic vehicles hoisting detectors–unmanned aerial

or ground vehicles (UAVs, UGVs), for example. These autonomous, single-detector systems

can leverage the benefits of machine learning (ML) algorithms for navigation and a wealth of

statistical algorithms for estimating source location. Maximum likelihood estimation (MLE)

and Bayesian approaches are popular statistical techniques for source localization in detector-

networks [1–5] and single detector systems [6–8] alike. Further, these statistical techniques

can be easily modified to work in unison with ML-navigation. However, doing so leaves the

system with a fundamental, unmet requirement: a stopping criterion–a rule for when the

autonomous system can end its search and yield the estimated source location. This work

investigates using a statistical stopping criterion for a joint ML-statistical system and compares

the performance with a purely ML approach.

MLE and Bayesian approaches are well-suited to capture the inherent randomness in radio-

active decay and well-defined measurement statistics. However, these purely statistical meth-

ods compound in complexity when addressing the complicated features of source localization

scenarios, such as attenuating barriers [2, 3], multiple sources [1, 4, 5, 9], or poor signal-to-

noise ratio [10]. Much work is based upon a robust detector-network infrastructure [1–5]–a

factor limiting the applicability of such approaches. Statistical algorithms developed for single

detector systems either have no navigational control [6, 11], a predefined path [7–9, 12], or no

stopping criteria [13]. An algorithm incorporating solutions to all the listed problems, while

feasible, may be constrained by the required computation time, functionally eliminating any

real-time analysis for navigational decisions. Due to these complexities, a combination of ML

and statistics is a promising alternative to a purely statistical approach.

Within recent years, the combination of reinforcement learning (RL) with deep neural net-

work architecture fuses navigation and localization strategies into a single algorithm [14, 15].

RL is a category of ML in which an agent responds to an environment with predefined actions

to achieve a set goal. How well the agent performs is scored based on a reward function. In RL,

the reward function is maximized to achieve an optimal action policy. In the context of source

localization:

1. the agent is a detector-carrying entity;

2. the environment is the surveying area, relevant obstacles, background radiation, and source

radiation;

3. the actions are discrete movements (e.g., up, down, left, right);

4. the goal is to navigate towards (localize) the radioactive source;

5. and the reward is based upon how quickly (in how many steps) the source is localized.

Q-learning and double Q-learning algorithms have been implemented as a training mecha-

nism for RL in which a model of the environment is not needed for finding an optimal action

policy [16]. This methodology has been successfully demonstrated in Zheng at al. [14], where

an RL detector-agent could localize a source 44% faster than gradient search and uniform

search methods.

Currently, RL localization strategies with UAVs terminate using perfect knowledge–they

use the ground-truth source location (which would not be available in the field) to determine
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when to end a run [14, 15]. The effectiveness of the stopping criterion ultimately determines

the accuracy of localization strategies. With current models, in the absence of true source loca-

tion or human intervention, navigation would proceed indefinitely. This work investigates two

types of stopping criteria for RL-guided source localization: 1) the first is based on popular

MLE and Bayesian approaches for source localization, operating independently from RL-navi-

gation, and 2) the second incorporates a stopping action into the RL-navigational algorithm

itself, eliminating the need for statistical inference entirely.

Materials and methods

In this section, we first define the simulated environment in which tests were carried out and

in which the neural networks (one with a stopping action and the other without) were trained.

Then, we provide an overview of the MLE-Bayesian scheme for source location estimation and

search termination. The neural network architecture and training details are presented in the

subsequent two subsections: first for the navigational network, and second for the navigational

network with stopping.

Simulation environment and data

Tests and training were conducted in a simulated, instance-based environment with a 10

m × 10 m grid and 1 m grid spacing. Within this environment, a single wall extruding from a

random position on the perimeter with variable length and occupying grid points may be pres-

ent depending on the instance. A radioactive test source with intensity I cnts/s–defined such

that a detector 1 m away would detect I counts in 1 s–is placed randomly in an open position.

A background intensity of b cnts/s was set for all grid points–defined such that a detector on

any grid point would detect an average of 25 counts in 1 s in the absence of source. This inten-

sity was selected based upon the average background radiation levels on the University of Illi-

nois at Urbana-Champaign (UIUC) campus with a Kromek D3S hand-held detector [17]. A

diagram of an instance of this environment can be seen in Fig 1.

A model for radiation detection at each grid point was implemented based upon source

strength, background strength, and radiation attenuation. The probability of observing m
counts measured by a detector during a unit-time interval was modelled by a Poisson distribu-

tion:

PðmjlÞ ¼
e� llm

m!
ð1Þ

where λ is the total intensity of radiation present (including both source and background), and

m is the number of counts detected. The total intensity λ is then:

l � bþ I � d� 2 � fnot blockedg ð2Þ

Here, d is the Euclidean distance between the detector and the source. The unit function

fnot blockedg
equals one when the “not blocked” condition is met, otherwise it is zero. Using a

simplified assumption of attenuation, if a wall is present in the simulated environment, it

blocks all source counts from passing through it, preventing source signal at certain grid loca-

tions. Dividing the source intensity by the distance-squared approximately accounts for geo-

metric efficiency and the detector solid angle. Thus, after a source with intensity I is placed, the

expected intensity λ can be computed for each grid point by sampling from a Poisson distribu-

tion defined in Eq 1. We note this methodology assumes source gammas are fully attenuated

by obstructions and that gammas do not scatter off of obstruction surfaces. These assumptions

result in fewer counts than potentially expected in the vicinity near obstructions–either
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scattered back on the source-side or penetrated through on the shielded-side. The environ-

ment model used in this work can be expanded to include the physics of both these potentiali-

ties, but they are not expected to have a substantial effect on the RL performance, and the

necessary material-modeling is beyond the scope of this implementation. Source intensity I
differs between the training and evaluation steps, and so will be defined in the respective sec-

tions. A detector can occupy any grid point that is not occupied by a wall and collection times

are limited to 1 s.

For the MLE-Bayesian algorithm, the source and background counts need to be estimated

(or separated). To accommodate this, a spectrum is generated for each collection instead of a

gross count total. Background spectra were drawn from a large dataset collected on UIUC

campus. The background spectra data was collected with a Kromek D3S gamma-ray detector

on UIUC campus with no anomalous sources present. This data was provided from [18]. This

background set consists of 14077, 1 s spectra with an average of 40±16 counts spread across

1024 detector channels (binned from the 4096 native to the D3S). The source spectra were syn-

thesized via a statistical model as in [19]. This process first computes how many source counts

are detected and then distributes them into a source spectrum for each collection. The number

of source counts captured by the detector is computed as c = �g Pois(I/d2), with the source

intensity I, the distance d meters between the detector and the source, and the geometric effi-

ciency �g–calculated from the face dimensions of the detector (0.5 in × 2.54 in for the D3S).

Here, a random Poisson number was generated for each source spectrum synthesized and

used to compute c, as indicated by Pois(I/d2). Then, for each count in c, a random Normal

number was generated following N(p, σ2), where σ is defined by the FWHM of the detector

Fig 1. Simulated environment. Diagram of a possible configuration of the simulation environment with the detector-

agent marked with the “D” and the source location marked with the “S”. A wall is seen protruding from the right side

of the environment. Detector-agent location is restricted to the center of grid locations.

https://doi.org/10.1371/journal.pone.0253211.g001
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and p is the peak channel (here, p = 100 for just overlapping the background and source spec-

tra). This random Normal number indicates which channel that count is placed in. This syn-

thesized source spectrum is computed and a background spectrum sampled for each

measurement and are then combined for a total spectrum. An example of this spectrum with

labelled counts can be seen in Fig 2.

MLE-Bayesian localization scheme

The goal of both MLE and Bayesian inference is to extract properties of an unknown probabil-

ity distribution. MLE provides a point estimate of distribution parameters while Bayesian

inference yields a distribution for these parameters. In the context of source localization, we

are interested in estimating the location r2(x,y) and intensity I of an unknown source given a

series of measurements m2mi–formally, P(r,I|m). Bayesian inference updates an ongoing esti-

mate (the posterior) of this via Bayes’ formula:

Pðr; IjmÞi ¼
Pðmijr; IÞ � Pðr; IÞ

PðmÞ
ð3Þ

where P(r,I) is the prior, the initial estimate of the distribution; P(m) is the probability

of observing m, which is typically computed via integration over the parameter space,

though this is often intractable and involves more advanced computation techniques [2];

and P(mi|r,I) is the probability of most recent observation given r and I, constructed by substi-

tuting Eq 2 into Eq 1. For updating an ongoing estimate, the prior in Eq 3 can be substituted

with P(r,I|m)i−1.

Fig 2. Simulated spectrum. One second of data with real background counts in blue and simulated source counts in

green. Here, the visualized spectrum is showing the first 140 channels of 1024 channels–higher channels contain

mostly zero counts and are not displayed.

https://doi.org/10.1371/journal.pone.0253211.g002
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In MLE many observations are taken into account at once. Similarly, Bayesian schemes can

involve multiple observations at each update step. In such cases, with N observations, P(mi|r,I)
is recast as a likelihood function:

Lðr; IÞ ¼
Qn

NPðmnjr; IÞ ¼
Qn

N
e� mnmmn

n

mn!
ð4Þ

where we have adopted the convenient notation of Miller et al. in the estimated source

response μ as [6]:

mnðr; IÞ ¼ bi þ I � snðrÞ � fnot blockedg ð5Þ

Here, sn(r) is the expected detected counts due to a unit-strength source at location r. The n
can refer to either a detector at the nth position or the nth detector in a network. The research-

ers in [6] go on to approximate this distribution as Gaussian with variance equal to the count

rate (Eq 5) of the test source.

The goal of MLE is to find parameters r and I which maximize Lðr; IÞ as:

ðr̂; ÎÞ ¼ Argmax½Lðr; IjmÞ� ð6Þ

Maximizing Eq 4 is equivalent to maximizing the log of the likelihood function, which replaces

the product in Eq 4 with a summation. This optimization step is typically non-trivial, and

depending upon technique, may result in parameters describing a local maximum rather than

the global maximum [10]. In this approach, like that in [6], the likelihood function in Eq 4 is

updated after every measurement, bypassing the integration required for Eq 3. Because the

environment is discretized into a grid, there are roughly 100 possible source locations

(depending on wall presence), marginalizing the multidimensional likelihood functions into

100 intensity-dependent functions as:

LrðIÞ ¼
Q

tPðxtjr; IÞ ð7Þ

For each r (each potential source location), after each time step t, the product is updated by

multiplication of the newest likelihood term P(xt|r,I).
Here, the likelihood P(xt|r,I) is probed at 100 possible source intensities ranging from 0 to

10000 cnts/s (about double of what can be encountered during training of the RL navigation

algorithm). While this does introduce hyperparameters into the scheme, the purpose of this

implementation is to test stopping conditions, and so this represents an adequately formulated

solution similar to popular methods. After each new collection, the likelihood of the source

being at any one location is computed by acquiring the maximum of LrðIÞ – which is 100 dis-

crete points at each r and so is performed easily. This likelihood map is then normalized so the

sum is equal to 1. The initial distribution is set to uniform at all source locations and potential

intensities.

Thus, a Bayesian-like approach is used to update an ongoing likelihood map by maximizing

individual likelihood functions. In Miller et al. the background b in Eq 5 is assumed to be con-

stant after recording a few seconds of data taken to be only background. We utilize the anom-

aly detection algorithm proposed in [19] to first detect source presence and then to compute

estimated background and source counts after each step. This selection is a natural choice for

background estimation as this anomaly detection scheme is designed for time-series, sparse

gamma-ray data. The spectral background data outlined previously were used here.

For evaluating stopping conditions, the RL-guided search would terminate after a location

achieved a likelihood of 0.9 or higher; this location serves as the source location estimate. In

addition, distance requirements were tested to investigate if whether enforcing close-approach
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to high-likelihood locations would influence localization accuracy–i.e., the detector must be

within a certain radius of the estimated location in order to terminate. For each trial, when the

0.9 likelihood threshold is crossed and for every step where it remains crossed, the distance

between that location and the detector-agent location was computed. If this distance is the

closest-approach so far, it is record as satisfying all distance requirement equal to or greater

than that distance–e.g., a 5 m closest approach will satisfy a 5 m, 6 m, and 7 m (and so on) clos-

est-approach requirement if those greater distances qualified yet due to sub-threshold likeli-

hood values. The navigation was permitted to run until it satisfied a 0 m distance requirement,

noting the location accuracy and steps for every distance along the way. For testing this ap-

proach, set initializations were used: the detector agent was initialized to grid point [1, 10] (the

upper-left corner), the source was initialized to grid point [2, 8] (near the bottom-right cor-

ner), and source intensity I was set to 2000 cnts/s. This intensity equates to roughly 18 cnts/s

being detected at the initialization location. The number of steps taken to produce a localiza-

tion estimate and its accuracy were recorded and 50 trials were conducted. With this evalua-

tion, no walls were generated, as this methodology cannot handle the attenuation complexity

structures would introduce. Hite and Mattingly [2] have proposed a methodology for tackling

this, but it relies upon a detector-network and would likely push computation times orders of

magnitude larger than the 1 s dwell times.

Q-Leaning convolutional neural network for navigation

The convolutional neural network (CNN) for source localization and navigation used in this

study is taken from [14], and so an overview of the approach will be given here. The problem

at hand is navigating a detector agent within the simulated environment to the source location.

This problem is formulated as a finite discrete Markov decision process where the agent

responds to a sequence of states (s) with one of four discrete actions (a) in anticipation of a

reward (R). The action space consists of moving up, down, left, or right (from a top-down

view). The state space consists of three matrices describing the number of measurements taken

at each grid point, the mean of all measurements taken at each grid point, and a map of the

environment. During training, the action policy is learned based upon compassion between

the network output and the computable reward via the Q function. The training reward for

each time step is:

Rt ¼
0:5; if the agent moves closer to the source

� 1:5; otherwise
ð8Þ

(

This reward structure is deliberately asymmetric to encourage localizing as quickly as possible.

The goal of Q learning within RL is to find the optimal action value function Q�(s,a)

Q�ðs; aÞ ¼ max
p

E½
P

t0¼0
gt
0Rt0 js; a; p� ð9Þ

This function represents the maximum expected cumulative future reward beginning from

state s, with action a, action policy π, discounted by γ, and accumulated for future steps t0. A

CNN, whose inputs are the state matrices (environment and history) and whose output is the

expected cumulative reward for taking each action (the greatest of which is taken to be the

action in testing), is trained to approximate this Q function. The architecture of this network

can be seen in Fig 3 if the fifth visualized output is dropped.

This network was trained over one million episodes, with source intensity varying uni-

formly between 3000 and 7000 cnts/s between episodes. Every 100 episodes, a checkpoint was

created and 30 evaluation episodes were performed with fixed network parameters. For more
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specific training and implementation details, see [14]. The researchers provided the trained

CNN produced from their work (https://github.com/rillab/RLRadiation).

Q-Leaning convolutional neural network with self-stopping

Notably, the work in [14] lacks an independent stopping condition, in which the agent termi-

nates its search. Here, we propose an expansion of this work to include a fifth action into the

action space: a stopping condition. This addition is a natural extension of the CNN and results

in a small architectural change, see Fig 3.

With the new action space, the reward structure needs to be amended. If the agent takes a

move action (up, down, left, or right), then the reward definition in Eq 8 is used. If the agent

takes a stop action, then the reward is computed as:

R ¼ � 1:5 � fminimum steps to source locationg ð10Þ

The minimum number of steps to reach the source location already needs to be computed for

calculating the future reward in the original network, and so this adds no computational com-

plexity. Keep in mind, reward is only computed during training, when the source location is

known to the training algorithm but not the CNN itself. With this reward structure, the further

the agent is from the source when it stops, the more it is punished. Using -1.5 as opposed to

-0.5 prioritizes getting as close to the source as possible over taking fewer steps. The same

training regimen and parameters as in [14] were used.

For evaluating localization accuracy, 1000 episodes were run with the trained network with

identical testing initialization as to the MLE-Bayesian scheme–taking note of localization

Fig 3. CNN with stopping architecture. Architecture of the CNN with self-stopping. The only difference between this

self-stopping network and the navigation only network is the addition of a fifth output representing a termination

action. Removing x5 would yield the network architecture used in [14].

https://doi.org/10.1371/journal.pone.0253211.g003
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speed and accuracy. In addition to this, 1000 episodes with randomly generated walls were

also run. Each episode ended when either 100 steps were taken or the stopping action was

taken. The trained CNN produced from this work can be found at https://github.com/rillab/.

Results

First presented are the performance details of the MLE-Bayesian scheme and the training

results of the CNN with stopping in respective subsections. Then, each algorithm’s localization

results are presented in a comparison subsection.

MLE-Bayesian localization performance

The MLE-Bayesian localization scheme was guided by a CNN for navigation, separating

source location estimation and the decision-making process for choosing the next surveying

location. After each step, a likelihood map of source location was updated–this process is illus-

trated in Fig 4, showing the likelihood map after steps 1, 3, 6, and 10. The environment was ini-

tialized as described in the Methods section with source intensity I set to 2000 cnts/s. For this

demonstration, the source and background count estimation algorithm was not used.

The performance of a trial with count estimation is presented in Fig 5 with environmental

parameters the same as above. An anomaly was detected after step 6, and source and back-

ground counts were separated thereafter. With the environmental initialization described and

over 50 trials, an anomaly was detected after a median of six steps with a lower quartile of five

steps and an upper quartile of seven steps. After an anomaly was detected, estimated and true

source counts had an average correlation coefficient of 0.997 and the estimated and true

Fig 4. MLE-Bayesian updating scheme. Presented is a demonstration of the MLE-Bayesian approach as it localizes a

source of intensity 2000 cnts/s. Shown here are steps 1, 3, 6, and 10 taken with the trained CNN. The detector-agent is

indicated with the “D”, its path with the black borders, and the source with the “S”.

https://doi.org/10.1371/journal.pone.0253211.g004
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background counts had an average correlation coefficient of 0.72. This demonstrates the

MLE-Bayesian scheme is using high quality information during its estimation process.

CNN with self-stopping training results

The CNN with stopping was trained over the course of one million episodes with each episode

terminating after either 100 steps were taken or the stopping action was taken. Every 100 epi-

sodes, a checkpoint of model parameters and performance was created. Along with this, a vali-

dation test was run with 30 randomly initialized episodes and fixed network parameters,

yielding mean, minimum, and maximum rewards for each validation set–as seen in Fig 6.

The reward is a performance metric for both navigation and stopping. Specifically, the

reward from navigation is incrementally given after each step in each localization trial while

Fig 5. Example of count prediction. Representation of the counts and their quality as seen by the MLE-Bayesian

approach with trained CNN. An anomaly is detected after the 6th collection, leading to a good estimated separation of

source and background counts. Background counts are shown in blue with diamonds–true is solid while estimated is

dashed. Source counts are shown in red with squares–true is solid while estimated is dashed. Total counts is in black

with circles.

https://doi.org/10.1371/journal.pone.0253211.g005

Fig 6. Validation episode rewards for CNN with self-stopping during training. Shown is the (A) minimum, (B) mean, and (C) maximum rewards for the 30

validation episodes performed every 100 training episodes with network parameters held constant.

https://doi.org/10.1371/journal.pone.0253211.g006
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the reward from stopping occurs once per trial; the raw reward is a combination of these two

factors. So, while the overall performance of the algorithm can be monitored during training

via the reward curves, the navigation and stopping performance must be individually tested

(following sections). Despite this, observing increasing reward is a promising sign during

training. The mean test reward converges to near-zero after about 700k episodes. The mini-

mum and maximum test rewards were much more varied than the mean test reward, converg-

ing to -40 and 5, respectively. This behavior can be explained with outlier scenarios the

network either did not adequately handle or encountered regularly. The 842,500th checkpoint

was selected for further testing as it yielded the greatest minimum test reward.

Localization results

Localization of a radioactive source was measured on two criteria: localization error (meters

between estimated and true source location) and localization time (number of steps taken).

This dual metric is necessary for consideration due to the task at hand: exceptional localization

speed with poor localization accuracy would make for a poor algorithm, and vice versa.

Over the 50 trials for the MLE-Bayesian test, the median localization error was 1.41 m for

all distance requirements (representing a diagonal displacement), as seen in Fig 7A. The locali-

zation accuracy with no distance requirement is labelled “First Pass,” indicating it is simply the

first time the likelihood threshold is passed. Each other distance requirement represents the

performance of the system if the detector had to move within that distance of the 0.9 likelihood

location to terminate. No trial satisfied a distance requirement of 6 m without also satisfying a

smaller distance requirement, and so all these distributions match the 6 m case, as seen with

the “First Pass” case with essentially has an infinite distance requirement. It should be noted

that the localization error is discretized in a sense due to the grided environment, making only

certain errors achievable. While the 1 m distance requirement yielded the narrowest range of

errors, this requirement appears to have little effect on accuracy performance. The steps taken

was more noticeably affected by the distance requirement (due to the need to move close to

the estimated source), but still had relatively consistent performance, seen in Fig 7B.

Over the 1000 trials for either case, the CNN had a median error of zero whether walls were

present or not. Further, the addition of walls had only a slightly negative effect on localization

error distribution, visible in Fig 8A. The CNN speed performance was on par with the slower

Fig 7. Localization error and steps taken for MLE-Bayesian approach. Whisker and box plots showing (A) the distribution of localization error and (B) steps taken to

localize by the MLE-Bayesian method. The “x” marks the mean of the distribution.

https://doi.org/10.1371/journal.pone.0253211.g007
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MLE-Bayesian distance requirements, with a median of 17 and 19 steps for no wall and with

walls, respectively. Similar to localization accuracy, wall presence did have a slightly negative

effect on the spread of steps taken, seen in Fig 8B.

Discussion

Disregarding the trials with walls for a moment (as they were exclusive to the CNN with stop-

ping), a trade-off is evident between the two investigated approaches: that of speed and accu-

racy. The MLE-Bayesian approach tended to localize the source slightly faster, while the CNN

approach localized much more accurately. With the nature of the environment and simplicity

of the simulation, the comparatively worse localization performance of the MLE-Bayesian

approach may be due to the strict threshold set for stopping. Recall that a given grid-point

needed a likelihood equal to or exceeding 0.9 for the search to terminate. Because of the ran-

domness of radiation emission from the source and background–and despite the excellent sep-

aration of source and background counts–, requiring such high confidence may hinder

localization accuracy in some situations. Selecting the optimal threshold for this scenario may

be inadequate for others where source or background strength is drastically different. This

hyperparameter is ultimately a user-defined variable and selecting different values may yield

different localization results. The speed of the MLE-Bayesian approach may also increase with

lower threshold values because less evidence (collections/steps) is then required. Lowering this

parameter, however, may cause a premature termination, stopping the search before the agent

has navigated closer to the source where it would have access to more information. The dis-

tance requirement had little effect on performance, but such a criterion may be required or

desired for larger scale searches.

The CNN with self-stopping had excellent performance for localization despite no separa-

tion of source and background counts, a process which could easily be incorporated into the

scheme. The speed of its localization is 5 to 7 steps slower than the MLE-Bayesian approach,

but it is required to navigate to the exact estimated source location while the MLE-Bayesian

approach may stop further away. The strength of this approach is two-fold: 1) no hyperpara-

meters need to be determined outside of training, and 2) exposure to novel environments

Fig 8. Localization error and steps taken for CNN with self-stopping. (A) Histogram of localization error and (B)

whisker and box plots of the steps taken to localize by CNN with self-stopping. The “x” marks the mean of the

distribution.

https://doi.org/10.1371/journal.pone.0253211.g008
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during training can expand its applicability. While this model was trained with a range of

source intensities and uniform background strength, incorporating a range of background

strengths during training comes with only the trade-off of more training. Further, this network

is able to navigate around obstacles, implicitly accounting for attenuation of source. The same

cannot be said for the MLE-Bayesian approach which would need to explicitly account for

this. While possible, adding such physics computations would likely increase the dwell time

beyond one second and also reduce the confidence in estimates due to potential error in esti-

mated attenuation coefficients.

Generally, the CNN with self-stopping approach is more flexible and accurate than the

MLE-Bayesian approach while requiring more steps. The ML approach comes with a heavy

upfront cost in training but can account for many variables that would otherwise need to be

accounted for during deployment of a statistical model.

Conclusion

This study compares two general approaches for terminating an ML-guided source search:

one in the ML field of RL and the other using an MLE and Bayesian statistical strategy. As

small drone technology becomes more viable for national security efforts–specifically in

source localization tasks, it is necessary to investigate single-detector source localization

strategies and all the hurdles in their implementation. Early efforts using ML for this have

demonstrated success in quick and accurate localization and in the handling of navigational

obstacles. These methods did not, however, sufficiently incorporate a method for stopping

the search.

Comparing an MLE-Bayesian based approach and a reinforcement learning CNN with self-

stopping approach for ending a search, the pure ML scheme localized with much greater accu-

racy but did so in a greater number of steps. The network that contained a stopping action had

a median localization of accuracy of 0 m while the mixed ML-Bayesian approach only attained

a best performance median accuracy of ~1.5 m. This increase is significant while considering

the 10 m × 10 m environment. The speed of localization did diminish when using the stopping

action network, however, lagging to an 17 step median over the 12 step median of the mixed

MLE-Bayesian approach. Further, the benefit of the MLE-Bayesian approach is it provides a

likelihood distribution of source presence at every area of interest and is based upon radiation

physics. However, the drawbacks are that: 1) hyperparameters corresponding to confidence

and source strength are required, and 2) accounting for structures in the search area for atten-

uation is challenging and may increase localization time. The CNN with stopping requires

considerable upfront training, but because the drone is guided by ML, such training is already

necessary. With ML, the generalizability is dependent upon the diversity and rigor of training,

leading to potentially unaccounted for circumstances. For localization approaches depending

on ML for navigation, however, this problem already needs to be addressed. As such, adding a

stopping action is recommended.
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