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1.  Introduction
Tropical cyclones are a dominant form of disturbance in coastal tropical and sub-tropical forests. In the past 
30  years, Puerto Rico experienced five cyclonic storms (hereafter hurricanes) greater than category 3 (i.e., 
wind speed greater than 178  km  hr −1); these major storms caused intense forest mortality and severe forest 
structural damage (Uriarte et al., 2019). Hurricane disturbance can affect biodiversity, species interactions, the 

Abstract  Tropical cyclones are an important cause of forest disturbance, and major storms caused severe 
structural damage and elevated tree mortality in coastal tropical forests. Model capabilities that can be used 
to understand post-hurricane forest recovery are still limited. We use a vegetation demography model, the 
Functionally Assembled Terrestrial Ecosystem Simulator, coupled with the Energy Exascale Earth System 
Model Land Model (ELM-FATES) to study the processes and the key factors regulating post-hurricane 
forest recovery. We implemented hurricane-induced forest damage, including defoliation, structural biomass 
reduction, and tree mortality, performed ensemble model simulations, and used random forest feature 
importance. For the simulation in the Luquillo Experimental Forest, Puerto Rico, we identified factors 
controlling the post-hurricane forest recovery, and quantified the sensitivity of key model parameters to the 
post-hurricane forest recovery. The results indicate a tendency for the Bisley forests to shift toward the light 
demanding plant functional type (PFT) when the pre-hurricane biomass between the light demanding and 
shade tolerant PFTs is nearly equal and forests experience hurricane disturbance with mortality >60% for both 
the two PFTs. Under more realistic conditions where the shade tolerant PFT is initially dominant, mortality 
>80% is required for a shift toward dominance of the light demanding PFT at Bisley. Hurricane mortality and 
background mortality are the two major factors regulating post-hurricane forest recovery in simulations. This 
research improves understanding of the ELM-FATES model behavior associated with hurricane disturbance and 
provides guidance for dynamic vegetation model development in representing hurricane induced forest damage 
with varied intensities.

Plain Language Summary  To enhance the understanding of forest recovery after hurricanes, 
we implemented hurricane induced forest damage into the Functionally Assembled Terrestrial Ecosystem 
Simulator, coupled with the Energy Exascale Earth System Model Land Model (ELM-FATES). We performed 
ensemble ELM-FATES simulations with varied forest damage intensities in the Luquillo Experimental Forest, 
Puerto Rico, and used the output to identify factors controlling the post-hurricane forest recovery, which 
was further evaluated with random forest feature importance (RFFI) that quantifies the sensitivity of the 
key model parameters to the post-hurricane forest recovery. The results imply that hurricane mortality and 
background mortality are the major factors regulating post-hurricane forest recovery. Changes to the intensity 
of simulated hurricanes could alter forest composition and structure during recovery, which modifies forest 
ecological processes and potentially shift the wet forests in Puerto Rico to states with increased vulnerability 
to tropical cyclones. This research enhances our understanding of the ELM-FATES model behavior associated 
with hurricane disturbance and broadens the application of RFFI in quantifying the parameter sensitivity of a 
dynamic global vegetation model (DGVM). This research addresses the essential role of representing hurricane 
induced forest damage in DGVMs, an advanced tool for the future studies of tropical forest dynamics.
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recovery and biomass composition

•	 �ELM-FATES simulations at a 
Puerto Rico forest site can represent 
reasonable GPP and ET seasonality 
but the flux magnitudes are biased low
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spatiotemporal dynamics of populations and communities, and biogeochemical cycling (Brokaw et  al.,  2012; 
Chazdon,  2003; Walker,  2012; Zimmerman et  al.,  2021). Hurricane disturbance can have tremendous and 
spatially heterogeneous impacts on tropical forests, but their representation in Earth System Models (ESMs) is 
limited. To build a foundation for representation of hurricane damage and post-hurricane recovery on tropical 
forest, we studied Hurricane Hugo (18 September 1989), a category 4 hurricane that passed the Luquillo Exper-
imental Forest (LEF), located in northwestern Puerto Rico (Walker et al., 1992), a site of long-term ecological 
studies. Hugo defoliated the entire forest area while causing severe structural damage that varied spatially. Explic-
itly, Hugo reduced the aboveground biomass by 50% in the windward Bisley Experimental Watersheds (hereafter 
Bisley) (18°20’ N, 65°50’ W) in the east area of LEF, while biomass reduction in the leeward El Verde study site 
(18° 19’ N, 65° 49’ W), was minimal (Drew et al., 2009).

ESMs are limited by spatial resolution and the representation of vegetation. Specifically, most ESMs are run at 
spatial resolutions of 1–2° or coarser (Eyring et al., 2016). Vegetation dynamics are not sufficiently represented in 
ESMs. For example, Dirmeyer et al. (2021) used the simulation output from 37 models from the Climate Model 
Intercomparison Project Phase 6 (CMIP6) to study the impacts of carbon dioxide variation on hydroclimate, but 
only nine out of the 37 models include dynamic vegetation modules. Among these models that can represent vege-
tation dynamics, only a few models have wind disturbance processes included. By implementing typhoon-induced 
biomass reduction into the Spatial Explicit Individual-Based Dynamic Global Vegetation Model (SEIB-DGVM), 
Wu et al. (2019) simulated the impacts of typhoon on the carbon dynamics of a cool-temperate forest in northern 
Japan. ORCHIDEE-CAN is the only land surface component that can capture the dynamics of forest structure due 
to storm disturbance on both regional and global scales (Chen et al., 2018). The Ecosystem Demography model 
version 2 (ED2) can be employed as a dynamic global vegetation model (DGVM), and the first simulations using 
an offline version of the ED2 for studies of hurricane damage and forest recovery were performed at the El Verde 
site in Puerto Rico (Feng et al., 2017). Similarly, Zhang, Bra, et al.  (2022) and Zhang, Heartsill-Scalley, and 
Bras (2022) implemented a hurricane induced wind mortality module and a seedling recovery module into ED2 
and projected the recovery trajectory of plant function type (PFT) composition, size structure, and stem density, 
at the Bisley site in Puerto Rico. Using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES), 
which has been coupled with the Energy Exascale Earth System Model (E3SM) Land Model (ELM-FATES), 
Negron-Juárez et al. (2020) implemented some simplified processes such as clear-cut and windthrow to represent 
forest disturbance. A selective logging module that can specify the timing and aerial extent of logging events and 
represent ecological, biophysical, and biogeochemical processes following a logging event has been implemented 
into ELM-FATES (Huang et al., 2020). Here, processes associated with hurricane disturbance and recovery are 
still under development in most of the DGVMs.

In this study, we aim to advance the understanding of the key plant-physiology-related parameters that regulate 
the post-hurricane forest recovery and enhance the ability of ELM-FATES to represent hurricane disturbance and 
post-hurricane recovery of tropical forests. We first use ELM-FATES to quantitatively estimate post-hurricane 
forest recovery rates and forest compositional changes. We perform numerical experiments to study the effects 
of hurricane damage on forest structure, with hurricane damage represented by defoliation, structural biomass 
reduction, and mortality in the model. We then examine how hurricanes with varied disturbance intensities 
affect the forest recovery rates and forest composition in terms of the biomass among different PFTs. Based on 
ELM-FATES ensemble simulations, this study also uses the Random Forests method (Breiman, 2021) to identify 
essential parameters that regulate the post-hurricane forest biomass recovery. We aim to improve understand-
ing of the sensitivity of modeled forest recovery rates and composition to (a) pre-hurricane forest composition, 
(b) hurricane disturbance with varied intensity, and (c) the key model parameters that characterize the selected 
PFTs. Lastly, to evaluate how well ELM-FATES represents the photosynthetic carbon assimilation and land–
atmosphere water exchange, we perform model-data comparison by taking the ensemble mean of the simulations 
with realistic forest status and using multiple data sets. This research lays the foundation for using ELM-FATES 
to understand post-hurricane vegetation dynamics.

2.  Methods
2.1.  Research Site and the Observational Data

We focused our numerical experiments on the Bisley Experimental Watersheds located in the east part of LEF, 
in northeastern Puerto Rico. The mean monthly temperature is 23.5–27°C and mean annual rainfall is 3,208 mm 
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(Brown et al., 1983; Garcia-Martino et al., 1996). As suggested by the annual precipitation amount at Bisley and 
the research by Running et al. (2004), the study site, similar to much tropical forest, is radiation limited in terms 
of vegetation productivity development. Thus, hurricane-induced water stress relief is not a factor evaluated in 
this study. Tabonuco forest, named after a prominent species at Bisley (Dacryodes excelsa.; Common name 
tabonuco), occupies the greatest area of LEF, and usually has trees mixed with lianas and canopies ranging from 
25 to 30 m in height (Heartsill-Scalley, 2017) when mature. The forests in LEF have been affected by varying 
intensities and scales of disturbances, including hurricanes. The LEF has been impacted by the major hurricanes 
Hugo in 1989, Georges in 1998, and Irma and Maria in 2017. Hurricane Hugo, which made landfall at Puerto 
Rico on 18 September 1989, defoliated the entire area and reduced the aboveground biomass by 50% at Bisley 
(Drew et al., 2009).

In 1989, 86 permanent forest plots with a cumulative area of 0.71 ha were established in Bisley (Heartsill-Scalley 
et al., 2010). Measurements at all plots are taken at a 5-year interval; all stems ≥2.5 cm diameter at 1.3 m from the 
ground (i.e., DBH) are measured at the site. In this study, we use the Bisley tree census data from the US Forest 
Service Research Data Archive (Zhang, Bra, et al., 2022; Zhang, Heartsill-Scalley, & Bras, 2022) to calculate the 
hurricane mortality rates of each PFT based on censuses conducted 3 months before and 3 months after hurricane 
Hugo (18 September 1989) (Heartsill-Scalley et al., 2010; Zhang, Bra, et al., 2022; Zhang, Heartsill-Scalley, & 
Bras, 2022). In the post-Hugo survey, trees were considered dead if there was no evidence of resprouting along the 
branches or stems, no leaves, no new leaves, more than 50% root exposure, stem breakage, or no tree in place of 
where there once was a tree. We assign censused trees to two PFTs, light demanding and shade tolerant, based on 
traits compiled by Adame et al. (2014) (Section 2.3). We estimate the mortality from hurricane Hugo as the ratio 
of the number of stems that existed in the pre-Hugo census but not in the post-Hugo census to the number of stems 
that existed in the pre-Hugo census (Zhang, Bra, et al., 2022; Zhang, Heartsill-Scalley, & Bras, 2022) and find that 
the hurricane mortality rate for the light demanding PFT was 52% while that of the shade tolerant PFT was 45%.

We also use the measurements at Bisley to evaluate the model performance before Hurricane Hugo. The biomass 
sampling at Bisley in September 1989, provides above-ground biomass (AGB) information for all species before 
Hurricane Hugo (Scatena et al., 1996). The relative contribution of each PFT to the overall forest biomass is 
used to evaluate pre-hurricane forest biomass partitioning among the light demanding and shade tolerant PFTs 
simulated by ELM-FATES. The observations suggested the biomass partition between the light demanding and 
shade tolerant PFTs is 29% versus 71%, and this biomass partition is used to evaluate the ELM-FATES spin-up, 
which is discussed in Section 2.4.2.

2.2.  ELM-FATES

We use ELM-FATES (Fisher et al., 2015; Holm et al., 2020; Koven et al., 2020) to study the post-hurricane forest 
recovery at the Bisley site. ELM is based on the Community Land Model Version 4.5 (CLM4.5) with new options 
for representing soil hydrology and biogeochemistry (Burrows et  al.,  2020). ELM-FATES is developed with 
the Ecosystem Demography (ED) concept of a cohort-based representation of vegetation dynamics (Moorcroft 
et al., 2001). Different from the big-leaf structure, ED and FATES separate the landscape into implicit patches 
according to age since last disturbance. The landscape-scale age distribution resulting from disturbance is repre-
sented with a patch fusion/fission scheme, which tracks the landscape-scale age. In different patches, individual 
plants are grouped into cohorts by PFTs and height classes. This grouping method captures the dynamic matrix of 
disturbance recovery processes in a forest ecosystem. Thus, ELM-FATES tracks the changing abundance of trees 
of different sizes and PFTs arising from tree growth, mortality, recruitment, and the impact of disturbances. Simi-
lar to the original ED formulation, ELM-FATES bases growth and allocation on observed plant allometric rela-
tionships, yet diverges in its representation of the light environment by using the perfect plasticity approximation 
(PPA) that describes the crown spatial arrangements throughout the canopy and organizes cohorts into discrete 
canopy layers (Fisher et al., 2010; Purves et al., 2008). Plant mortality is attributed to background mortality (i.e., 
the mortality observed in a stand in the absence of abrupt disturbances; Taccoen et al., 2019), carbon starvation, 
hydraulic failure, freezing stress, and optionally size dependent senescence, all of which reflect plant responses 
to environmental factors and to ecosystem structure.

2.3.  ELM-FATES Parameterization

To obtain reasonable ELM-FATES simulations at Bisley, we perform model parameterization. By following the 
field data grouping method (Section 2.1), all the ELM-FATES simulations are performed by using two PFTs: 
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light demanding and shade tolerant broadleaf tropical evergreens. We first use a tropical forest parameter set 
that minimizes bias against observed basal area, leaf area, growth increment and mortality rate at Barro Colo-
rado Island Panama (BCI), a tropical forest site, as drawn from an ensemble of perturbed parameter simulations 
(Koven et al., 2020). We then refer to Huang et al. (2020) to parameterize these two PFTs. These parameter values 
permit co-existence of two PFTs and are consistent to observed values across the pantropical range (e.g., Kattge 
et al., 2009; Powell et al., 2018). We focus on the adjustment of parameters that distinguish plant functional strat-
egies and these parameters include top-of-canopy values for maximum carboxylation at reference temperature 
(Vcmax25,top), leaf N:C, leaf longevity, among others (Table 1). We reduce the Vcmax25,top value of the shade 
tolerance PFT from 50 μmol m −2 s −1, which is suggested by Huang et al. (2020), to 45 μmol m −2 s −1 in order 
to better fit in the leaf economic spectrum (i.e., the relationships between Vcmax25, top, specific leaf area, and 
area-based value of leaf nitrogen; Walker et al., 2014). Wood density follows observations in tropical America 
(Reyes et al., 1992) as shown for the shade tolerant PFT are included in Table S1 in Supporting Information S1. 
We perform model simulations by following the parameterization discussed above (Sections 2.4.2 and 3.1). To 
better match the observations, we also adjust the parameter values of Vcmax25,top and specific wood density of 
the shade tolerant PFT to favor a faster growth of the shade tolerant PFT. Specifically, we increase the value of 
Vcmax25,top from 45 to 47.5 μmol m −2 s −1, and reduce the specific wood density value from 0.65 to 0.625 g cm −3. 
The parameter values of the light demanding PFT are not changed. This update maintains the parameter values 
in reasonable ranges (Table  1) and reproduces PFT-based AGB partitions more consistent with observations 
(Section 3.1). We include the parameter values in Table 1 and more details of ELM-FATES parameterization of 
this study are discussed in Text S1 in Supporting Information S1.

2.4.  Model Configuration and Experimental Design

The overall design for our numerical experiments is illustrated in Table 2. We conduct experiments with two 
spin-up conditions that represent different distributions of the PFTs. With PFTs nearly evenly divided, we conduct 
Experiments A to understand how rates of hurricane mortality affect the relative recovery of each PFT. Using 
the more realistic PFT distribution, we repeat the manipulation of mortality rates (Experiment B). Thereafter, we 
adjust mortality rates to reflect those measured in the field by repeated inventories (Experiment C). In a final set 
of experiments, we test parameter sensitivities (Experiment D). Using the ensemble of the model runs we then 
compared the simulations to data representing ecosystem fluxes (Experiment E). In all the simulations, ambient 
CO2 concentration is fixed, with the value of 367 ppm; in other words, the impacts of CO2 fertilization on forest 
recovery rates are not considered in this study.

Parameter names Units
Light 

demanding
Shade 

tolerant
Reported 

ranges
Reference for the 

parameter value range

Specific leaf area m 2 gC −1 0.015 0.014 0.01–0.017 Feng et al. (2017)  a

Vcmax at 25°C umol m −2s −1 65 45 (47.5 b) 20.0–75.0 Kattge et al. (2009)

Specific wood density g cm −3 0.4 0.65 (0.625 b) 0.5–0.8 Reyes et al. (1992)  a

Leaf longevity yr 0.9 2.6 0.8 Kattge et al. (2011)

Background mortality rate yr −1 0.047 0.02 0.02–0.05 Powell et al. (2018)

Leaf N:C gN gC −1 0.043 0.025 0.043 Kattge et al. (2011)

Root longevity yr 0.9 2.6 1.17–16.7 Feng et al. (2017)  a

Fine root N:C gN gC −1 0.035 0.035 0.036 Silver and Miya (2001)

Allocation of fine root C per leaf C gC gC −1 0.62 0.62 0.56–2.37 Feng et al. (2017)  a

Growth respiration factor unitless 0.3 0.3 0.19–0.61 Feng et al. (2017)  a

Fraction of plants in understory cohort impacted by overstorey treefall 
(ecosystem-level)

unitless 0.625 0.625 0–1 Koven et al. (2020)

Note. Parameter values are based on cited studies of the pantropics.
 bThe adjusted parameter values for SPINUP2, which is introduced in Section 3.1.  aThe parameter values in the paper are specifically obtained from Puerto Rico.

Table 1 
Parameterization of the Light Demanding and Shade Tolerant PFTs at Bisley
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2.4.1.  Model Driving Data

We use the meteorological forcing data from Daymet, which provides gridded estimates of daily weather param-
eters at the 1 km spatial resolution from 1950 to present for Puerto Rico (Thornton et al., 2021; Figure S1 in 
Supporting Information S1). Using the sub-daily temporal information from other meteorological reanalysis data 
sets, Daymet was further temporally downscaled to 3-hourly time steps and provided in the format required for 
ELM simulations (Kao et al., 2022). The process of temporal downscaling preserved the relative magnitude in 
each sub-daily time step while maintaining the total and average Daymet values on each day. The widely used 
Global Soil Wetness Project Version 3 (GSWP3; Yoshimura & Kanamitsu, 2013) meteorological reanalysis data 
set for offline land surface model simulation and diagnosis was selected to temporally downscale Daymet from 
1950 to 2014. Since GSWP3 is not available after 2014. We used NCEP North American Regional Reanalysis 
(NARR; Mesinger et al., 2006) to extend the temporal downscaling of Daymet to 2017. We also compared the 
overlapping 1980–2014 sub-daily Daymet downscaled by GSWP3 and NARR to verify that the change from 
GSWP3 to NARR does not cause biases. Here, we cycle the sub-daily Daymet forcing during 1950–1959 30 
times to spin-up the model for 300 years (Koven et al., 2020). Beginning from the spun-up case, we perform 
hurricane disturbance simulations during 1950–2017.

2.4.2.  Model Spin-Ups

To understand how pre-hurricane forest composition affects post-hurricane forest recovery characteristics, we 
perform two spin-up simulations, one with a nearly even biomass partition between the light demanding and 
shade tolerant PFTs (SPINUP1) and the other spin-up with biomass partition that reflects the observational data 
(SPINUP2; Section 2.1). The difference between the two spin-up conditions depends on parameter values for 
Vcmax25,top and specific wood density (Table 1). We perform model simulations by using the model initial files 
from these two spin-ups (Table 2). The purpose of performing simulations with SPINUP1 is to study if the model 
can return to the pre-perturbation status or shift the PFT distributions with an even pre-hurricane biomass parti-
tion between PFTs and hurricane disturbance at varied intensity. We also adjust parameter values for SPINUP2 
to obtain a more realistic biomass partition that is suggested by observations (Table 1). The spin-up results are 
discussed in Section 3.1.

2.4.3.  Implementation of Hurricane Disturbance

We implement hurricane disturbance with different intensities through processes of defoliation, 20% sapwood 
and structural organ biomass reduction (herein structural damage) to the surviving trees, and hurricane-induced 
mortality rates. Defoliation is imposed on ELM-FATES by prescribing the timing of leaf-off and leaf-on in the 
phenology module. The loss of biomass from trees surviving the hurricane is imposed in ELM-FATES by briefly 
increasing the sapwood and structure turnover rates. The default turnover rate (i.e., turnover time frames) of these 
two components is 150 years. We assume that hurricane disturbance raises this turnover rate to 0.014 years (i.e., 
5 days). This increased turnover rate is applied to the model for one model day leading to an integrated loss of 

Experiment name The initial condition Rbiomass_LD:TOT: Rbiomass_ST:TOT Experimental design Description

A SPINUP1 48%: 52% Even hurricane mortality values for LD and ST Section 3.2.1 & Table S2 in 
Supporting Information S1

B SPINUP2 29%: 71% Even hurricane mortality values for LD and ST Section 3.2.1 & Table S3 in 
Supporting Information S1

C SPINUP2 29%: 71% Realistic hurricane mortality rates Section 3.2.2 & Table S4 in 
Supporting Information S1

D SPINUP2 29%: 71% Parameter sensitivity tests and random forest feature 
importance estimates

Section 3.3 & Table S5 in 
Supporting Information S1

E SPINUP2 29%: 71% Model–data comparison by using the model ensemble 
simulations with observed hurricane mortality rates

Section 3.4

Note. LD represents the light demanding PFT and ST represents the shade tolerant PFT. Rbiomass_LD:TOT indicates the ratio between the light demanding biomass to the 
total biomass, and Rbiomass_ST:TOT indicates the ratio between the shade tolerant biomass to the total biomass. The details of each sub-experiment are referred to Tables 
S2–S6 in Supporting Information S1.

Table 2 
The Experimental Design of This Study
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∼20% of the woody biomass. To further represent hurricane-induced forest damage, we add a hurricane mortality 
term in the model, which can be prescribed to represent different hurricane mortality rates for the two PFTs. This 
hurricane mortality term will only be applied to the model for one day when a hurricane happens, and it will be 
added to the total mortality rate, which consists of background mortality, carbon starvation mortality, hydraulic 
failure mortality, freezing stress mortality, and optionally size dependent senescence. Based on the model struc-
ture of ELM-FATES, these three disturbance types will be applied to the model in the order of (a) defoliation, 
(b) hurricane induced mortality, and (c) structural damage. Thus, the structural damage will be only applied to 
surviving trees. In terms of the disturbance intensity, we applied all three types of damage to the Bisley forests. 
These damage types can be independently applied in ELM-FATES to represent hurricane disturbance with vari-
ous intensity.

2.4.4.  ELM-FATES Simulated Biomass Recovery Sensitivity to Hurricane Mortality Rates

Hurricane disturbance intensity is determined by the features of a hurricane (e.g., wind speed, pathways) and the 
pre-hurricane forest status (e.g., species composition, age, and soil moisture; Uriarte et al., 2019); as a result, it 
varies much with specific hurricane events. In other words, it's difficult to estimate the mortality rate difference 
between PFTs, so we perform both hypothetical (Section 2.4.4) and quasi-realistic (Section 2.4.5) simulations in 
this study. We first perform model simulations by assuming both the light demanding and shade tolerant PFTs 
experience the same hurricane-induced mortality rates, which range from 30% to 90% (Table S2 and Figure S3 in 
Supporting Information S1), to evaluate the post-hurricane forest biomass recovery from varied hurricane mortal-
ity rates. These simulations are combined with other disturbance types, including mortality-only, defoliation and 
mortality, and defoliation, structural damage and mortality as shown in the three simulations groups of Table S2 
in Supporting Information S1. For all the simulations with hurricane mortality, we assume only one major hurri-
cane disturbed Bisley during 1950–2017. We simulate all types of disturbance on 1 September 1950, and run the 
model for 1950–2017 after the model spin-up. Simulations with this time frame allow for an understanding of the 
long-term (∼70 years) post-hurricane forest behavior. We use the ELM-FATES initial files from both SPINUP1 
and SPINUP2 for Experiment A and Experiment B, respectively (Table 2). The experimental design is hypothet-
ical and used to study the competition between the two PFTs when they are equally and realistically disturbed.

2.4.5.  Observation-Driven Hurricane Simulations

Besides performing hypothetical simulations that are discussed in Section 2.4.4 (Table S2 in Supporting Infor-
mation S1), we also consider three alternate scenarios of hurricane-driven mortality informed by observations 
and literature. Using observed differences in hurricane mortality rates among species at Bisley, we estimate that 
the hurricane mortality rates of the light demanding and shade tolerant PFTs are 52% and 45%, respectively 
(Section 2.1). The simulation with this mortality distribution between PFTs is named hurricane disturbance C1 
(Tables 2 and Table S4 in Supporting Information S1). We also use hurricane-induced mortality rates suggested 
by Zhang, Bra, et al.  (2022) and Zhang, Heartsill-Scalley, and Bras  (2022), which summarized the hurricane 
mortality rate variations among PFTs during Hurricane Hugo, 1989 and Hurricane Maria, 2017. According to 
Zhang, Bra, et al. (2022) and Zhang, Heartsill-Scalley, and Bras (2022), the Hugo induced mortality rate of the 
light demanding trees is ∼80%. Because the PFT partition in our study does not include the mid-successional and 
palm PFTs included by Zhang, Bra, et al. (2022) and Zhang, Heartsill-Scalley, and Bras (2022) and we use the 
species-to-PFT grouping method from Adame et al. (2014), we assign 50% mortality for the shade tolerant PFT 
(Zhang, Bra, et al., 2022; Zhang, Heartsill-Scalley, & Bras, 2022). This simulation is named hurricane distur-
bance C2 (Tables 2 and Table S4 in Supporting Information S1). To understand the sensitivity of forest recovery 
to different hurricane mortality rate combinations, we also applied another group of mortality values with 50% 
and 35% for the light demanding and shade tolerant PFTs, respectively (Figure S2 in Supporting Information S1), 
by referring to the summarized forest mortality values for hurricane Maria (Zhang, Bra, et al., 2022; Zhang, 
Heartsill-Scalley, & Bras, 2022). This simulation is named hurricane disturbance C3 (Tables 2 and Table S4 in 
Supporting Information S1). All these simulations use the restart file from SPINUP2, with biomass partitions 
between the two PFTs constrained by observations.

2.4.6.  Forest Recovery Rates

One of the research goals is to study the forest recovery rate variations due to hurricane disturbance with differ-
ent intensity. Thus, we estimate the forest recovery rates (herein Rrecovery; kgC  m −2  yr −1) by calculating the 
linear regression coefficient of the biomass in the first 10 simulation years after the hurricane disturbance (i.e., 
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1951–1960). The regression coefficient values for the two PFTs are shown in Figure 3, in which we use the simu-
lation results with defoliation and structural damage (herein D-SBreduction) as well as different hurricane mortal-
ity rates implemented (Experiments A3 and B3; Tables S2 and S3 in Supporting Information S1). To further 
understand the use of ELM-FATES output during 1951–1960 for the calculation of Rrecovery, we also test Rrecovery 
variations with different recovery time frames. We calculate Rrecovery by using the model output based on initial 
files of both SPINUP1 and SPINUP2 during the time frames of 1951–1955, 1961–1970, and 1951–1970 (Figures 
S4 and S5 in Supporting Information S1).

2.5.  Parameter Sensitivity Tests and Importance Quantification

We explore the parameter sensitivity for the light demanding and shade tolerant PFTs in simulated post-hurricane 
forest recovery. With ELM-FATES, we perturb seven parameters (the first seven rows in Table 1) used to char-
acterize these two PFTs (Huang et al., 2020). Each parameter that has two values to separate these two PFTs is 
perturbed by up to 10%. We use the Latin Hypercube method for the parameter perturbation. If the perturbations 
induce unrealistic parameter value distributions, such as lower versus higher Vcmax25,top values between the 
light demanding and shade tolerant PFTs, we instead use the perturbation-suggested parameter values for the 
light demanding PFT, and then calculate the perturbed parameter value of the shade tolerant PFT by using a 
fixed difference in parameter values between the two PFTs (Table 1). With this method, we obtain 350 ensemble 
members for the hurricane disturbance simulations. We also apply different hurricane mortality rate combi-
nations between the light demanding and shade tolerant PFTs to the parameter sensitivity tests. This way, the 
mortality rates of the two PFTs can be quantified as another factor regulating the post-hurricane forest recovery. 
As discussed in Section 3.2.1, the hurricane mortality rate of 60% is crucial to both PFTs in terms of the forest 
recovery rates and recovery status for a forest with a nearly equal biomass partition for the two PFTs. Thus, we 
also implement the mortality rates of 60% for both PFTs for the model ensemble simulations. We also use the 
mortality values of 52% and 45% for the light demanding and shade tolerant PFTs, respectively, to better match 
the observed mortality rates (Section 2.4.5). To consider reasonable uncertainty ranges of the mortality values, 
we additionally use four groups of mortality values for the light demanding and shade tolerant PFTs as: 80% 
and 50%, 50% and 80%, 50% and 35%, and 35% and 50%, respectively. With 350 parameter ensemble members 
of each hurricane mortality rate combination, simulations are performed 6 times by using the six mortality rate 
groups (Table S5 in Supporting Information S1). Thus, we have a total of 2100 ensemble members, which can 
be used to quantify the feature importance of the seven parameters and the hurricane mortality rates. Parameter 
sensitivity tests are performed by using the spun-up results of SPINUP2, which tends to be more consistent with 
the observed pre-Hugo biomass composition. These simulations include D-SBreduction.

We explore parameter sensitivity under post-hurricane forest recovery conditions with the Random Forests algo-
rithm. Random Forests (RF) is an ensemble learning method consisting of a set of decision trees (Breiman, 2021). 
RF has been widely applied in the earth and environmental science field (Belgiu & Drăguţ, 2016; Jung et al., 2020; 
Thessen, 2016; Tyralis et al., 2019), including parameter sensitivity analysis (Antoniadis et al., 2021; Huang & 
Boutros, 2016). RF based sensitivity analysis has many advantages including its effectiveness and easy appli-
cation, its ability to implicitly deal with correlation and high dimensional data, and handle interactions between 
variables (Antoniadis et al., 2021).

We train RF surrogate models to emulate the ELM-FATES model behavior and analyze the parameter importance 
by using all the ELM-FATES based ensemble simulations (Hao et al., 2021). As discussed above, 16 variables are 
used as the RF model features, including 14 parameters in Table 1 and two hurricane mortality rates for the two 
PFTs. The ELM-FATES outputs, including both Rrecovery and the PFT-level annual mean biomass across 2008–
2017 are used as the RF model targets. Specifically, we calculate Rrecovery by using the biomass values during 
1951–1960 and use the RF feature importance to quantify the contributions of the parameters and hurricane 
mortality rates to Rrecovery in the first 10 recovery years after the hurricane disturbance. We particularly compare 
Rrecovery between the light demanding and shade tolerant PFTs and quantify the parameter importance related to 
whether the light demanding Rrecovery is larger or smaller than the shade tolerant Rrecovery, represented as RLD ≥ RST 
and RLD < RST, respectively, where RLD represents the Rrecovery of the light demanding PFT and RST represents 
the Rrecovery of the shade tolerant PFT. To evaluate the forest biomass recovery status during 2008–2017, we 
quantify the biomass ratio of each PFT change. In other words, if the biomass ratio between the light demanding 
biomass to total biomass is larger than 29%, the light demanding biomass ratio before the hurricane disturbance, 
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we define  this status as light demanding biomass ratio increase, and vice versa. The same biomass quantification 
method is also applied to the shade tolerant PFT by using the biomass ratio of 71%. The feature importance 
derived from the RF surrogate model measures how important a feature (e.g., parameter) is for predictive perfor-
mance of the model, which can be used as a proxy to quantify parameter sensitivity.

2.6.  Observational Data Used for ELM-FATES Evaluation

Due to the lack of in situ carbon and water flux measurements at Bisley, we use multiple gross primary produc-
tion (GPP) and evapotranspiration (ET) estimates to evaluate the GPP and ET simulations of ELM-FATES. 
The GPP products include (a) FluxCom GPP (Jung et al., 2020), (b) the GPP based on the moderate-resolution 
imaging spectroradiometer (MODIS; Zhao et  al.,  2005), and (c) the Orbiting Carbon Observatory-2 (OCO-
2) Solar-induced chlorophyll fluorescence (SIF) derived GPP (Li & Xiao, 2019). We also use the ET product 
obtained from the MODIS measurements (Mu et al., 2011) and an ET product based on the MODIS measure-
ments and Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2), utilizing 
the ET algorithm of Priestley Taylor-Jet Propulsion Laboratory (PT-JPL; Purdy et al., 2018). Furthermore, we 
process the latent heat flux (J m −2 day −1) from FluxCom (Jung et al., 2020) to obtain another ET product. These 
data sets have different spatial and temporal resolutions, and the detailed information is summarized in Table S6 
in Supporting Information S1. All these data sets are gridded globally, and the values in the grid cells co-located 
with Bisley are selected for the model-data comparison. We use the monthly records of each data product and 
estimate the GPP and ET seasonality based on the multi-year mean. Because of the data variability (Section 3.4), 
we also calculate the arithmetic mean of different data sources.

3.  Results
3.1.  Model Spin-Up

As discussed in Section 2.4.2, we run the model for 300 years of spin-up (Table 2). SPINUP1 uses parameter 
values listed in Table 1. Under this parameterization, the biomass-to-total biomass ratios of the light demanding 
and shade tolerant PFTs are ∼48% and ∼52%. Compared to pre-Hugo field census, which suggests 29% and 71% 
of the AGB from the light demanding and shade tolerant PFTs, respectively (Section 2.1), SPINUP1 represents a 
hypothetical forest with almost equal abundance of shade tolerant and light demanding PFTs. Maintaining these 
two parameters within reasonable ranges, SPINUP2 (Sections 2.3 and 2.4.2) partitions biomass more consist-
ently with observational data, 27% and 73% of the AGB from the light demanding and shade tolerant PFTs, 
respectively.

3.2.  Hurricane Disturbance Simulations

3.2.1.  Hypothetical Hurricane Disturbance Simulations With ELM-FATES

To study the forest recovery associated with hurricane disturbance with different intensities, we implement hurri-
cane disturbance in ELM-FATES. We first use the spun-up result from SPINUP1 to initialize a simulation case 
and perform the defoliation-only simulation, in which defoliation happens on 1 September 1950. We assume 
that the hurricane induces an 100% defoliation. Based on the defoliation-only code, we then implement the 
representation of structural biomass reduction in the model. We name the simulations with both defoliation and 
structural biomass reduction as D-SBreduction (Figure  1). By comparing the monthly output in September and 
October of 1950, the defoliation-only simulation instantaneously induces 1.2% of total biomass reduction for both 
the light demanding and shade tolerant PFTs. Implementing the sapwood and structural organ biomass reduction 
(∼20%) results in more total biomass reduction at rates of 13.9% and 15.0% for the light demanding and shade 
tolerant PFTs, respectively.

We further compare forest succession between the disturbed simulations and the simulation without any hurricane 
induced forest disturbance, and calculate the total biomass of the light demanding and shade tolerant PFTs in the 
last 10 simulation years (2008–2017). During 2008–2017, the defoliation-only simulation (Figures not shown) 
induces 0.5% and −0.1% of total biomass change of light demanding and shade tolerant PFTs, respectively, 
while the simulation of D-SBreduction results in 1.3% and 1.1% of total biomass reductions of the same two PFTs, 
respectively (Figure 1). The defoliation-only simulation causes a minimal AGB change right after  the hurricane 

 19422466, 2024, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S003679 by N
asa Jet Propulsion L

ab, W
iley O

nline L
ibrary on [09/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Advances in Modeling Earth Systems

SHI ET AL.

10.1029/2023MS003679

9 of 20

disturbance (in September 1950), and the forest recovers toward the end of the model simulation period. There-
fore, we do not further analyze the defoliation-only simulation.

In the mortality sensitivity analysis, we analyze the simulation trajectories and calculate the mean total biomass 
of the two PFTs in the last 10 simulation years for the comparison between different simulation groups. In the 
mortality-only (Experiment A1) and defoliation and morality (Experiment A2) simulations, the light demanding 
PFT is favored with relatively larger biomass values among the simulation sub-groups with hurricane mortal-
ity rates of 75% or larger (Table S2 in Supporting Information S1). Experiment A3 has both D-SBreduction and 
hurricane mortality rates implemented, and we find that the biomass divergence between the shade tolerant and 
the light demanding PFTs is the largest when the hurricane mortality rates are 75%, 80%, and 90% (Figure 2c). 
Compared to experiments of A1 and A2, when the mortality rates are 60% or larger, Experiment A3 results in 
the least biomass of the shade tolerant PFT among Experiments A1–A3 (Figure 2b) and the biomass of the light 
demanding PFT tends to increase with the increase in mortality rates among all the three experiment groups 
(Table S2 in Supporting Information S1 and Figure 2a). In Experiment A3, the biomass of the light demanding 
PFT is more than that of the shade tolerant PFT for a difference of 0.77 kgC m −2 between the two PFTs when 
the hurricane mortality rate is 70% (Table S2 in Supporting Information S1 and Figure 2c). In the simulations 
without structural biomass reduction (i.e., A1 and A2), the hurricane mortality rates need to be 75% or larger for 
the biomass of the light demanding PFT to be higher than that of the shade tolerant PFT (Table S2 in Supporting 
Information S1 and Figure 2c). When the mortality rates are 60%–70%, the biomass difference between the two 
PFTs diverge more than that estimated by experiments with other mortality rates among the three simulation 
groups (Figure 2c). Within this mortality range, implementing defoliation as well as structural biomass reduction 
favors the biomass recovery of the light demanding PFT (Figures 2a and 2c). Thus, the experiments with differ-
ent disturbance scenarios suggest a critical range of mortality values between 60% and 70% in determining the 
post-hurricane biomass recovery and the divergence of PFT-level biomass characterized by hurricane disturbance 
of different types (e.g., defoliation, structural biomass reduction).

Similar conclusions can also be obtained from Figure S3 in Supporting Information S1, which is based on Exper-
iment A3. The total biomass trajectories between the two PFTs suggest that model simulated biomass partitions 
between PFTs tend to return to the pre-perturbation status when only defoliation and structural biomass reduc-
tion are implemented in the model (Figure S3 and Table S2 in Supporting Information S1). When the hurricane 
mortality values are 70% and larger for both of the two PFTs, the forests start shifting PFT distributions (Figures 
S3e–S3i in Supporting Information S1). The total biomass trajectories between the two PFTs suggest that the 
light demanding PFT is favored most with the hurricane mortality rate of 90% (Figure S3i in Supporting Infor-
mation S1). In other words, ELM-FATES suggests that with severe hurricane disturbances, the forests tend to 
recover to an ecosystem dominated by the light-demanding trees. When the mortality values are 75% or larger, the 
biomass difference between the different tests starts to decrease. This result indicates that in forests with severe 

Figure 1.  The forest development trajectories of light demanding and shade tolerant PFTs for the simulation without any 
hurricane induced forest disturbance (herein default; solid-line) and simulation with defoliation and structural biomass 
reduction (i.e., D-SBreduction; dashed-line) at Bisley. LD represents the light demanding PFT and ST represents the shade 
tolerant PFT.
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damage (i.e., hurricane mortality rates larger than 75%), other types of forest damage (defoliation and structural 
biomass reduction) could only have limited effects on characterizing the PFT biomass divergency in terms of its 
recovery (Table S2 in Supporting Information S1 and Figure 2c). These simulations are based on a hypothetical 

Figure 2.  The mean biomass in the last 10 years (2008–2017) of the three simulation groups in Table S2 in Supporting 
Information S1. The green triangles indicate the mortality-only simulations (Experiment A1), the navy circles indicate the 
defoliation and mortality simulations (Experiment A2), and the brown squares indicate the defoliation, structural biomass 
reduction and mortality (Experiment A3) simulations.
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PFT distribution (SPINUP1; Section 2.4.4). For comparison, we include the results that are obtained by using the 
initial file from a more realistic PFT distribution SPINUP2 (Table S3 in Supporting Information S1).

The results of the forest recovery show that the Rrecovery of the light demanding PFT increases with the growth of the 
hurricane mortality rates and reaches 0.33 kgC m −2 y −1 when the forest mortality rate is 90% (Figure 3a). In contrast, 
the Rrecovery of the shade tolerant PFT decreases with the mortality rate increase when the mortality rates are 60% or 
larger (Figure 3a). Figure 2 suggests that the 2008–2017 mean biomass of the light demanding and shade tolerant PFT 
starts to increase and decrease, respectively, when the hurricane mortality rates are larger than 60%. The variations of 
Rrecovery with the mortality rates suggest higher biomass recovery rates for the light demanding PFT when hurricane 
mortality is larger than 60%, which can explain why the light demanding PFT is favored in terms of biomass recovery 
when the hurricane mortality rates are ≥60%. This result implies that the ELM-FATES simulated tropical forests at 
Bisley are dominated by light demanding species when the forests experience severe hurricane damage.

We also use the restart file from SPINUP2 to perform the same simulations represented in Table S2 in Supporting 
Information S1 and display results in Table S3 in Supporting Information S1. The simulation results based on 
SPINUP2 and D-SBreduction with varied hurricane mortality rates are also used to calculate Rrecovery (Figure 3b). 
Figure 3b demonstrates that the Rrecovery values of the shade tolerant PFT starts to decrease when the hurricane 
mortality values are equal to or larger than 70%. Here, the Rrecovery values for the hurricane mortality rates 60%, 
65%, 70%, and 75% are 0.31, 0.32, 0.32, and 0.26 kgC m −2 y −1, respectively, indicating that hurricane mortality 
rates higher than 60% did not induce a substantial increase of Rrecovery. The comparisons between Figures 3a and 3b 
and between Tables S2 and S3 in Supporting Information S1 suggest that with the same hurricane disturbance 
intensity forests dominated by shade tolerant species tend to be more resistant to severe hurricane disturbance. This 
conclusion is demonstrated by the relatively higher recovery rates and higher biomass values of the shade tolerant 
PFT in the experiments based on the model restart file of SPINUP2 (Table S3 in Supporting Information S1).

In this study, we use the recovery time frame 1951–1960 to calculate Rrecovery, and we also calculate Rrecovery 
during different recovery time frame to justify the use of the results during 1951–1960. Figure S4 in Supporting 
Information S1 suggests that using a different time frame to calculate Rrecovery will not alter the conclusion; that 
is Rrecovery of the shade tolerant PFT decreases with the mortality rate increase when the hurricane mortality 
rates are 60% or larger (Figures 3a and Figure S4 in Supporting Information S1). The values of Rrecovery tend to 
decrease with the increase of the forest recovery time frame, and this conclusion is obtained from the comparison 
between Figures S4a–S4b and S4c–S4d in Supporting Information S1. Similar to the results based on SPINUP1, 
the Rrecovery values obtained from SPINUP2 vary with the Rrecovery calculation time frame and suggest a same 
conclusion that Rrecovery starts to decline when hurricane mortality values are ≥70% (Figures 3b and Figure S5 
in Supporting Information S1). Therefore, altering the Rrecovery calculation time frame will not fundamentally 
change the research results, and we use the Rrecovery values calculated during 1951–1960 (the first 10 years after 
the simulated hurricane) for the Rrecovery analyses of this study.

3.2.2.  Hurricane Disturbance Simulations With Observed Biomass Composition and Mortality Rates in 
ELM-FATES

We apply D-SBreduction and the above discussed three groups of hurricane mortality rates to perform the model 
simulations (C1, C2, and C3; Section 2.4.5; Figure 4). Here, we note that the simulation with a 100% defoliation, 

Figure 3.  The linear regression coefficient of biomass recovery (Rrecovery) over time (1951–1960) for experiments with D-SBreduction and varied hurricane mortality 
rates. (a) shows the Rrecovery values obtained by using the restart file of SPINUP1 (Experiment A3), and (b) shows the Rrecovery values obtained by using the restart file 
of SPINUP2 (Experiment B3). The Rrecovery of the light demanding PFT is represented by blue triangles, while that of the shade tolerant PFT are represented by the red 
circles.
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20% sapwood and structural organ biomass reduction, and observational-based mortality rates can induce a ∼50% 
AGB reduction. Specifically, the pre-Hugo AGB is 15.4 kgC m −2, and the post-Hugo AGB is 7.3 kgC m −2. 
Figure 4 shows the total forest biomass changes of the two PFTs, which have a similar reduction rate of AGB. 
This result is consistent with the AGB reduction discussed by Drew et al. (2009) and indicates a reasonable exper-
imental design in terms of representing hurricane-Hugo induced forest damage. Table S4 in Supporting Informa-
tion S1 summarizes the model simulated Rrecovery, which is obtained from linear regression coefficient of the total 
biomass during 1951–1960. These three groups of simulations show the same Rrecovery of the light demanding 
PFT, while Rrecovery increases with the mortality rates for the shade tolerant PFT. The Rrecovery comparison between 
C1–3 suggests that C2 has the highest Rrecovery value of the shade tolerant PFT because of the highest hurricane 
mortality rates of the two PFTs (Table S4 in Supporting Information S1 and Figure 4). This change could be asso-
ciated with the high hurricane mortality rates (80%) of the light demanding PFT, which only has 27% of the total 
biomass of the two PFTs before the hurricane disturbance. The shade tolerant PFT is then favored because  of the 
relatively high pre-hurricane biomass ratio (73%) and relatively low hurricane mortality rates compared to  those 
of the light demanding PFT. More detailed analyses are included in Text S2 in Supporting Information S1. We 

conclude that under SPINUP2 conditions, the shade tolerant PFT dominates 
the canopy to start and retains its dominant position.

3.3.  Parameter Sensitivity Tests in ELM-FATES

We conduct a feature analysis using RF models for the response variables 
Rrecovery and the biomass partitions at the end of the experiment (averaged 
biomass by PFTs during 2008–2017; Experiment D in Table 2). For Rrecovery 
with both RLD  ≥  RST and RLD  <  RST, the hurricane mortality difference 
(mor_diff) and the background mortality difference (bmort_diff) are the two 
primary factors influencing Rrecovery. The parameter difference of specific 
leaf area (slatop_diff) is the third most important factor for RLD  ≥  RST, 
while the parameter difference of leaf longevity (leaf_long_diff) is equally 
important to bmort_diff for RLD < RST (Table 3). For the rest of the features, 
their importance is similar, particularly for the simulations with RLD < RST, 
suggesting complicated interactions among different plant traits in terms of 
governing the biomass recovery rates. Overall, Rrecovery status is primarily 
regulated by mor_diff. The divergency of some plant traits is also essential to 
the post-hurricane Rrecovery status, and these plant traits include background 
mortality, specific leaf area, and leaf longevity.

Factor names Meaning RLD ≥ RST RLD < RST

Mor_diff Hurricane mortality difference 0.148 0.284

Bmort_diff Background mortality difference 0.146 0.117

Slatop_diff Specific leaf area difference 0.138 0.099

Leaf_long_diff Leaf longevity difference 0.137 0.118

Vcmax_diff Vcmax25,top difference 0.133 0.104

Wood_den_diff Wood density difference 0.104 0.093

Root_long_diff Root longevity difference 0.098 0.083

Leafnc_diff Leaf N:C ratio difference 0.096 0.103

Note. There were 236 ensemble cases with RLD ≥ RST and 1864 cases with 
RLD < RST.

Table 3 
The Random Forest Importance Quantification of the Difference of Key 
Parameters and Hurricane Mortality Rates Between the Two PFTs For 
the Post-Hurricane Forest Recovery During 1951–1960 Following the 
Hurricane Disturbance Happened on 1 September 1950 (Experiment D)

Figure 4.  The forest development trajectories of SPINUP2 (1–300 years) and recovery trajectories (301–368 years) with 
hurricane disturbance scenarios (C1, C2, and C3; Table S4 in Supporting Information S1) included. All the simulations 
have defoliation and structural biomass reduction implemented. MR represents mortality rate. The light-blue and light-coral 
colors are representing hurricane mortality rates of 52% and 45% for the light-demanding (LD) and shade tolerant (ST) PFTs, 
respectively. The dashed lines represent hurricane mortality rates of 80% and 50% for the LD and ST PFTs, respectively. The 
dot-dashed lines represent hurricane mortality rates of 50% and 35% for the LD and ST PFTs, respectively.
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Similar to the feature importance analysis of Rrecovery, we study the factors 
that determine the average biomass partitions during final 10 years of our 
experiment (2008–2017). Here, mor_diff, bmor_diff, and Vcmaxtop,25 differ-
ence (vcmax_diff) are the three most important parameters contributing to 
LD > 29%, while the first three most important parameters for ST > 71% 
are mor_diff, wood density difference (wood_den_diff), and leafnc_diff 
(Table 4). The feature importance of each factor is discussed in Text S3 in 
Supporting Information  S1. The discussions above suggest that mor_diff 
is the most essential factor in determining Rrecovery and biomass partitions 
during 2008–2017. Furthermore, bmort_diff and vcmax_diff are also impor-
tant factors in determining LD > 29%, while wood_den_diff and leafnc_diff 
are crucial to ST > 71%.

To further study how parameter variations determine forest biomass recovery, 
we analyze the biomass recovery feature of Group 2 of Experiment D, which 
is based on the observed pre-Hugo biomass partition and hurricane mortality 
rates of the two PFTs (Figure S8 in Supporting Information S1). The ensem-
ble mean biomass values in the last 10 simulation years are 3.15 ± 1.46 and 
18.72 ± 2.88 kgC m −2 for the light demanding and shade tolerant PFTs, respec-
tively, where the biomass portion of the light demanding PFT is reduced to 
17%, lower than that before the hurricane (29%). The regression coefficient 

values of biomass development during 2008–2017 are −0.02 and 0.07 for the same two PFTs, respectively. There-
fore, with parameter perturbations, the shade tolerant PFT is still the dominant vegetation type at Bisley after 
hurricane Hugo. Because the parameter perturbation method of different subgroups (Table S5 in Supporting Infor-
mation S1) are identical and the standard deviation values of different subgroups in Table S5 in Supporting Informa-
tion S1 are very similar, we did not include the biomass values of different subgroups. This finding is consistent with 
the RF based analyses that mortality rate difference is the primary factor determining the forest biomass recovery 
for a certain forest represented by ELM-FATES.

3.4.  Quantify ELM-FATES Simulated Forest Status With Existing Observational Data Sets

Bisley does not have an established flux tower to provide continuous carbon and water flux measurements. Thus, 
we use satellite measurement based GPP and ET products (Section 2.6 and Experiment E; Table 2) to evaluate 
whether ELM-FATES reasonably simulates the carbon and water fluxes at Bisley under recovery from hurricane 
disturbance. Some of the data sets are not available until 2017, and they are FluxCom and PT-JPL (Table S6 
in Supporting Information S1); thus, we use the longest possible data record for each product to calculate the 
seasonality. Here, the common period of the three GPP data sets is 2002–2015 while that of the ET data sets is 
2003–2015 (Table S6 in Supporting Information S1).

We use the model ensemble simulations based on SPINUP2 and the hurricane mortality values of D1, which 
has the biomass partitions and hurricane mortality rates based on observations. We estimate the GPP and ET 
seasonality by using the model output during 2002–2015 and furing 2003–2015, respectively, and then calculate 
the ensemble mean of the 350 members with perturbations on the seven parameters of the two PFTs (Section 2.5). 
The seasonality of data products is also calculated.

The model-data comparison shows that the GPP products from different sources have large variability. The GPP 
of model ensemble mean has lower magnitude than the GPP from MODIS and OCO-2, and it has a similar magni-
tude to the GPP from FluxCom (Figure 5a). The annual GPP values of the ELM-FATES ensemble mean and Flux-
CoM are 2.6 and 2.7 kgC m −2 year −1, respectively. The multi-product mean GPP (3.2 kgC m −2 year −1) has higher 
magnitude than that of ELM-FATES. However, the correlation coefficient between the multi-product mean and 
model ensemble mean of GPP is 0.97, which indicates that the GPP seasonality represented by ELM-FATES is 
quite consistent with that represented by the mean of a variety of data products. Thus, ELM-FATES can simulate 
reasonable GPP seasonality but simulated annual GPP is 17% lower than the multi-data mean (Figure 5a).

We also perform a similar model-data comparison for ET. The annual mean ET from PT-JPL is 104.7 mm month −1, 
while that from the model ensemble mean is 93.5  mm  month −1, suggesting similar ET magnitudes between 
PT-JPL and ELM-FATES. The ET from both FluxCom and MODIS show higher magnitude than the model 

Factor names Meaning LD ≥ 29% ST ≥ 71%

Mor_diff Hurricane mortality difference 0.302 0.142

Bmort_diff Background mortality difference 0.148 0.120

Vcmax_diff Vcmax25,top difference 0.113 0.108

Slatop_diff Specific leaf area difference 0.101 0.108

Root_long_diff Root longevity difference 0.090 0.111

Leafnc_diff Leaf N:C ratio difference 0.088 0.137

Wood_den_diff Wood density difference 0.080 0.141

Leaf_long_diff Leaf longevity difference 0.078 0.134

Note. There were 35 ensemble cases with LD ≥ 29% and 1765 cases with 
ST>71%.

Table 4 
The Random Forest Importance Quantification of the Difference of Key 
Parameters and Hurricane Mortality Values Between the Two PFTs For the 
Forest Recovery in the Last 10 Years of a 68-Year Model Simulation, Where 
a Hurricane Disturbance Happened on September 1st of 1950 (Experiment 
D)
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ensemble mean. The multi-product mean ET on an annual basis is 119.5 mm month −1, which is 26 mm month −1 
more than that of the model ensemble mean. The correlation coefficient between the multi-product mean and 
model ensemble mean of ET is 0.88, which also demonstrates that the ET seasonality represented by ELM-FATES 
is quite consistent with that represented by the mean of a variety of data products (Figure 5b).

By using the same data sources, we also study the interannual variability of GPP and ET. The ELM-FATES simu-
lated GPP and ET are lower than the three-product mean of each variable, similar to the seasonal-based analysis 
(Figure 5 and Figure S9 in Supporting Information S1). The ELM-FATES simulated GPP has a similar magnitude 
to FluxCom GPP, while the model simulated ET has a similar magnitude to PT-JPL-ET (Figure S9 in Supporting 
Information S1). Overall, ELM-FATES does a better job in reproducing seasonality than interannual variability in 
terms of the correlation coefficient of both GPP and ET (Figure 5 and Figure S9 in Supporting Information S1).

4.  Discussion
In this study, we refine the parametrization for two PFTs in ELM-FATES to simulate forest recovery following a 
major hurricane in Puerto Rico. We implement defoliation, structural biomass reduction, and various hurricane 
mortality rates in ELM-FATES, and quantify the forest biomass recovery rates and recovery status between the 

Figure 5.  (a) GPP and (b) ET comparison between model ensemble simulations that use the initial condition of SPINUP2 
and the hurricane mortality rates of D1 and observation-based products (Experiment E). R is the correlation coefficient 
between the ensemble mean of ELM-FATES (navy lines) and the mean of different data products (red lines).
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light demanding and shade tolerant PFTs by performing (a) hypothetical simulations, (b) quasi-realistic simu-
lations, and (c) ensemble model simulations with different parameter values (Table 2). This research also uses 
the random forest feature importance estimates to identify model parameters and hurricane mortality rates that 
have larger impacts on the simulations. We analyze Rrecovery during the first decade following the simulated hurri-
cane  (1951–1960) and the forest biomass recovery status during the final decade (2008–2017) of the simulations. 
We focus on biomass because it integrates the effects of multiple processes (e.g., primary production, carbon 
allocation, and respiration), and it is well represented in empirical studies.

Following the example set by Huang et al. (2020), we explored the coexistence of two PFTs in ELM-FATES. 
Coexistence is challenging in FATES, and the model simulated PFT-level biomass can be sensitive to certain 
parameters. By using the Community Land Model with FATES implemented (i.e., CLM-FATES), Huang 
et al. (2020) performed 70 model ensemble simulations, and only had one parameter set (1.4%) selected with 
reasonable fractions of two PFTs and minor errors compared to observations. Small changes in sensitive param-
eters (Vcmax top,25 and specific wood density) led to substantial differences in PFT biomass between SPINUP1 
and SPINUP2. Under the SPINUP1 cases when PFTs have nearly equal biomass, when the hurricane mortality 
rates are ≥60%, the forests at Bisley shift composition toward the light demanding species within 50–70 years of 
disturbance. Due to a relatively higher portion of the pre-hurricane shade tolerant biomass, the forest represented 
by SPINUP2 does not have a tendency developing to a light demanding dominant system when the hurricane 
mortality rates are 60% for the two PFTs (Figure not shown). However, hurricanes inducing forest mortality 
rates 60%–70% can cause relatively highest Rrecovery values (Figure 3b). Thus, pre-hurricane forest composition 
explored via SPINUP1 and SPINUP2 has a strong influence on Rrecovery variations between PFTs (Figure 3).

The random forest feature importance study shows that both the hurricane mortality and the background mortal-
ity differences between the two PFTs are crucial to the PFT-level Rrecovery during the first decade (1951–1960) 
following the simulated hurricane and the biomass values averaged during 2008–2017. Rrecovery is also closely 
related to plant trait divergence determined parameter value difference of specific leaf area and of leaf longevity, 
while biomass composition of the two PFTs during 2008–2017 are sensitive to the parameter value difference of 
Vcmaxtop,25, wood density, and leaf N:C. Thus, the results imply that in a forest with a certain biomass composi-
tion of different PFTs, post-hurricane forest recovery is sensitivity to both the environmental factor (i.e., hurri-
cane mortality rates) and the plant-trait differences (e.g., background mortality, leaf longevity).

In this study, we use three GPP and three ET products to evaluate the GPP and ET simulations of ELM-FATES. 
With observational constrained parameters and observational based pre-Hugo biomass composition and hurri-
cane mortality rates, ELM-FATES can reasonably represent the GPP and ET seasonality but with these two 
fluxes low biased compared to the multi-product mean values at Bisley.

4.1.  Defoliation Representation in ELM-FATES

To implement hurricane disturbance with varied intensity in ELM-FATES, we modify the modules of phenology, 
structural biomass turnover, and mortality. Defoliation is the most common type of damage caused by hurricanes 
in Puerto Rico (Brokaw & Walker, 1991). Walker et al. (1992) estimated post-Hugo defoliation at Bisley and El 
Verde by counting the number of trees that had lost two thirds of their branches with diameter values larger than 
1 cm. Basnet et al. (1992) performed post-Hugo data collection at Bisley by considering defoliation as complete 
loss of foliage from the canopy. The defoliation includes trees that remained standing but were completely defoli-
ated with missing twigs and minor branches. Different measurement criteria can result in very different defo liation 
rate values. For example, Walker et al. (1992) reported defoliation rates for most of the study species as larger 
than 89%, while Basnet et al. (1992) estimated defoliation rates range from 0% to 46% among the study species, 
including the light demanding and shade tolerant species. Given the varied data collection methods corresponding 
to different defoliation rates, we did not further identify the advantages or limitations of different defoliation esti-
mates. Thus, we use the 100% defoliation rate, which results in 1.2% instantaneous total biomass reduction, and 
further address the post-hurricane forest recovery difference induced by using varied hurricane mortality rates.

4.2.  Hurricane Induced Forest Mortality

Hurricane mortality varies among species and depends on the pre-hurricane conditions of the forests. It has 
been demonstrated that pioneer species with low wood density are generally more vulnerable to hurricanes 
than old-growth high wood density species (Canham et  al.,  2010; Zimmerman et  al.,  1994). For example, 
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Zhang, Bra, et al.  (2022) and Zhang, Heartsill-Scalley, and Bras (2022) suggest that the early successional 
PFT, which are defined more inclusively as the light demanding PFT in this study, have the highest mortality 
rates among four PFTs, early , mid-, and late-successional and palm. Furthermore, pre-hurricane soil moisture 
condition is a major controlling factor of hurricane induced forest damage (Xi et  al.,  2008). For example, 
stem breakage is the dominant type of damage in dry soils, while uprooting is more common in wet soils (Xi 
et al., 2008). Therefore, the hurricane intensity, and the pre-hurricane forest status and forest environmental 
conditions are essential factors closely related to hurricane damage intensity. We acknowledge the complex-
ity of forest responses to hurricane disturbance (Bomfim et al., 2022; Uriarte et al., 2019). In this study, we 
did not prescribe the pre-hurricane soil moisture condition in ELM-FATES, because the model is not able to 
represent the impacts of pre-hurricane soil moisture condition on forest damage severity due to hurricane. 
Thus, the main scope of this research is to quantify the sensitivity of post-hurricane forest recovery to the 
hurricane mortality rates, with consideration of the importance of other essential parameters characterizing 
the two PFTs.

In this study, the ELM-FATES simulations suggest a tendency of the tropical forests at Bisley to shift toward 
the light demanding PFT, when hurricane disturbance is severe with hurricane mortality >60% for both the 
light demanding and shade tolerant PFTs with a variety of biomass compositions, from a nearly equal partition 
between these two PFTs to a shade tolerant dominant (i.e., ∼70%) composition. It is likely that hurricane intensity 
will increase over the coming decades (Emanuel, 2005; Knutson et al., 2019; Walsh et al., 2016). Furthermore, 
climate models also predict enhanced hurricane activity in the tropical Atlantic. This enhancement is associated 
with weakened vertical wind shear in the Main Development Region, which can favor more hurricane activity in 
the tropical North Atlantic (Ting et al., 2019). In a future with more severe hurricanes (e.g., Hurricane Hugo, a 
category 4 hurricane), we expect forest compositional shifts, with a tendency for more palms because of the low 
palm mortality in hurricanes compared to other tree species (Uriarte et al., 2019; Zhang, Bra, et al., 2022; Zhang, 
Heartsill-Scalley, & Bras, 2022).

4.3.  Crown Damage Module

We acknowledge that the representation of hurricane disturbance is still limited in ELM-FATES. Thus, we 
perform hypothetical simulations to study the sensitivity of forest recovery to hurricane disturbance with varied 
intensity and to the key model parameters representing plant traits of different PFTs. To advance future studies of 
hurricane disturbance and recovery, we will use ELM-FATES with new model features implemented. For exam-
ple, a crown damage module is implemented into ELM-FATES (Needham et al., 2022). Specifically, the crown 
damage reduces AGB, changes forest structure, increases carbon starvation mortality, reduces growth rates, and 
changes competitive dynamics between PFTs (Needham et al., 2022). As the next step, we will perform a more 
detailed model-data comparison study by using in situ DBH, tree height, and litterfall measurements, and the 
crown damage module.

4.4.  ELM-FATES Simulated Hurricane Impacts on Puerto Rican Forest Recovery

Northeastern Puerto Rico is impacted more than elsewhere in Puerto Rico, due to the typical east-to-west Atlan-
tic hurricane moving direction (Boose et al., 2004). Since 1989, nine hurricanes (including Hugo) have affected 
Bisley. We simulated a single hurricane disturbance. Because multiple disturbances are possible, we intend to use 
ELM-FATES to explore the effect of more frequent intense disturbances. The research results imply that when a 
canopy is dominated by the shade tolerant PFT, the recovery of the shade tolerant PFT will suppress the succes-
sion of light demanding PFT. For example, in Experiment A, when hurricane mortality rates equal 50%, Rrecovery 
of the shade tolerant PFT is 0.2 kgC m −2 year −1 for a nearly even initial biomass partition between the light 
demanding and shade tolerant PFT (Figure 3a) but 0.3 kgC m −2 year −1 when the shade tolerant PFT dominates 
(Figure 3b). This comparison indicates that in the simulation with SPINUP2, the pre-hurricane dominance and 
rapid recovery of the shade tolerant canopy limits regrowth for the light demanding PFT. Only when the hurri-
cane induced damage is severe enough to generate sufficient open canopy areas, the Rrecovery values of the light 
demanding PFT can be larger than that of the shade tolerant PFT (Figure 3b). The RF feature importance analyses 
also suggest that the hurricane mortality rate difference between PFTs may effectively suppress the recovery of 
the light demanding PFT, highlighting the importance of using the observed mortality rates to constrain model 
simulations of post-hurricane recovery.
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4.5.  Using the Global Data Sets to Benchmark ELM-FATES at Bisley

Because Bisley does not have established flux towers, we use different global data products to benchmark 
ELM-FATES at the monthly time scale; all the data sets have different spatial resolutions (Table S5 in Support-
ing Information S1). The comparison shows limited consistency between data sets (Figure 5), implying large 
uncertainties (Anav et al., 2015; Sriwongsitanon et al., 2020; Zhang & Ye, 2022). Rather than perform product 
comparison and generating weighted GPP (e.g., Zhang & Ye, 2022) and ET products, we use the arithmetic 
mean of different data products. We show that the GPP and ET seasonality of ELM-FATES is in good agreement 
with that represented by the data products. This result indicates that with the constrained parameterization and 
reasonable model physics, ELM-FATES can be used to represent the photosynthetic carbon assimilation and 
land-to-atmosphere water exchange at our study site. Here, ELM-FATES simulated ET has a similar magnitude 
to the PT-JPL ET product but lower than the arithmetic mean of the three ET products (Figure 5b), which suggest 
a mean annual ET 119.5 mm month −1 (i.e., 4 mm day −1). As suggested by eddy covariance measurement-based 
studies (Miller et  al.,  2011; Rocha et  al.,  2004), the mean annual ET of tropical forests is usually less than 
4 mm day −1 (i.e., ∼3.5 mm day −1), which implies the uncertainty and high bias of the data products (Table S5 in 
Supporting Information S1; Figure 5b). In this study, the model-data comparison period starts from 2002 to 2003 
for GPP and ET, respectively, since which most of the products are available; while the time span between 1989 
and 2002 is 13 years. Here, we did not try to match the model-data comparison time period, since both GPP and 
ET are ecosystem fluxes, which usually have quicker response and recovery time frame than carbon stocks (e.g., 
total ecosystem carbon). In other words, the comparison time frame of ecosystem fluxes is less concerned than 
that of biomass.

5.  Conclusion
ELM-FATES can represent the hurricane disturbance and recovery of the tropical wet forests of Puerto Rico. 
Model parameterization is essential to the co-existence of the light demanding and shade tolerant PFTs. Simula-
tions with the same mortality rates for the two PFTs show that the light demanding PFT is favored by severe hurri-
cane disturbance with the hurricane mortality value larger than 60%, and this estimated mortality value increases 
with the biomass portion growth of the shade tolerant PFT. With mortality rates closer to those observed in the 
field for light demanding and shade tolerant species, the shade tolerant PFT dominates forest recovery rates. 
Based on the Random Forests feature importance estimates, hurricane mortality and background mortality are 
the two key factors regulating the post-hurricane forest recovery rates and forest biomass composition. The 
research findings of this study imply species shifts in the Puerto Rico tropical forest as a result of climate change 
induced hurricane frequency and intensity increase. To better interpret these changes, some key processes (e.g., 
wind damage on forests) and more plant traits (e.g., palms) are suggested to be implemented in DGVMs. With 
enhanced model capacity and advanced model exploration, which includes thoroughly comparison between the 
model and inventory data, the understanding on the dynamics of Puerto Rico tropical forests could be profoundly 
improved.
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