
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Theory and application of open quantum systems

Permalink
https://escholarship.org/uc/item/6414b3g1

Authors
Chan, Ching-Kit
Chan, Ching-Kit

Publication Date
2012
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6414b3g1
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

Theory and application of open quantum systems

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Physics

by

Ching-Kit Chan

Committee in charge:

Professor Lu Jeu Sham, Chair
Professor Yeshaiahu Fainman
Professor Michael Fogler
Professor Shayan Mookherjea
Professor Oleg Shpyrko

2012



Copyright

Ching-Kit Chan, 2012

All rights reserved.



The dissertation of Ching-Kit Chan is approved, and it

is acceptable in quality and form for publication on mi-

crofilm and electronically:

Chair

University of California, San Diego

2012

iii



DEDICATION

To Shenshen, and our parents.

iv



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Vita and Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The importance of a precise study of quantum noise . . . 1
1.2 Various open quantum system theories . . . . . . . . . . 3
1.3 Application of the environment: entanglement generation 7

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chapter 2 Precision of electromagnetic control of a quantum system in a
non-Markovian environment . . . . . . . . . . . . . . . . . . . 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 TLS-photons interaction dynamics . . . . . . . . . . . . . 14

2.2.1 TLS transformation by coherent photon state . . 14
2.2.2 TLS evolution in terms of photon processes . . . . 16
2.2.3 The key results . . . . . . . . . . . . . . . . . . . 19

2.3 Relaxation and control fidelity . . . . . . . . . . . . . . . 20
2.3.1 Non-markovian relaxation for a Gaussian DOS . . 21
2.3.2 Control fidelity analysis . . . . . . . . . . . . . . . 23

2.4 Error checks . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . 28
2.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7.1 Rotating wave approximation . . . . . . . . . . . 29
2.7.2 Application of the Wick’s theorem . . . . . . . . . 29
2.7.3 Evaluation of control and dissipation . . . . . . . 30
2.7.4 Master Equation Approximations . . . . . . . . . 35

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

v



Chapter 3 Quantum correlation of a quantum system driven by quantum
photon controls . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 TLS under coherent control . . . . . . . . . . . . . . . . 43

3.2.1 Diagrammatic solution . . . . . . . . . . . . . . . 45
3.2.2 Application to a general DOS . . . . . . . . . . . 48

3.3 Comparison with ME approaches . . . . . . . . . . . . . 49
3.3.1 Second order TLS-environment interaction . . . . 49
3.3.2 Higher order terms . . . . . . . . . . . . . . . . . 52

3.4 Control by photon states other than coherent state . . . 52
3.4.1 Squeezed coherent state . . . . . . . . . . . . . . 52
3.4.2 Number state . . . . . . . . . . . . . . . . . . . . 55

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . 59

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Chapter 4 Robust distant-entanglement generation using coherent multi-
photon scattering . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 The entanglement mechanism . . . . . . . . . . . . . . . 64
4.3 Noise analysis . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4 Efficiency study . . . . . . . . . . . . . . . . . . . . . . . 70
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . 72

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Chapter 5 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . 76

vi



LIST OF FIGURES

Figure 1.1: Schematic of the influence-functional path-integral approach. . . 3
Figure 1.2: Schematic of the Master equation description of open quantum

systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 1.3: Schematic of the diagrammatic approach for open quantum sys-

tems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 1.4: Two sides of spontaneous emission. . . . . . . . . . . . . . . . . 7

Figure 2.1: Diagrammatic representations of perturbation terms of the trans-
formation matrix of a two level system. . . . . . . . . . . . . . . 18

Figure 2.2: Relaxation of an initially excited two level system in a non-
Markovian vacuum. . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 2.3: Decoherence of an two level system in a non-Markovian vacuum
with a different correlation time. . . . . . . . . . . . . . . . . . 22

Figure 2.4: Comparison between the Markovian and non-Markovian errors
of a driven two level system. . . . . . . . . . . . . . . . . . . . . 24

Figure 2.5: Relative error of driven a two level system as a function of initial
time of the control. . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 2.6: A comparison study of the results from different theories of a
driven single mode Jaynes-Cummings model. . . . . . . . . . . 26

Figure 2.7: Diagrammatic representations for the coherent Rabi oscillations
and the dissipative vacuum relaxation. . . . . . . . . . . . . . . 31

Figure 2.8: A driven two level system in the Markovian limit. . . . . . . . . 34

Figure 3.1: An illustration of the TLS-multiphoton process conditioned on
a multimode photonic state. . . . . . . . . . . . . . . . . . . . . 45

Figure 3.2: Diagrammatic representations of the Wick’s expansion for a two
level system under a photonic control. . . . . . . . . . . . . . . 47

Figure 3.3: A comparison between the diagrammatic methods and the mas-
ter equation approaches. . . . . . . . . . . . . . . . . . . . . . . 51

Figure 3.4: Higher order diagrams. . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 3.5: A comparison plot of the accuracies of different theories for a

driven two level system. . . . . . . . . . . . . . . . . . . . . . . 54
Figure 3.6: Diagrammatic representations for a two state system in a squeezed

photonic environment. . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 3.7: Decoherence of a two level system driven by a squeezed single

mode coherent photon state. . . . . . . . . . . . . . . . . . . . . 56
Figure 3.8: Relaxation of an initially excited two level system under the

Fock photon states. . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 4.1: Schematic for the entanglement of distant qubits based on mul-
tiphoton scattering. . . . . . . . . . . . . . . . . . . . . . . . . 64

vii



Figure 4.2: Time and Rabi frequency dependences of the distinguishable
resonance fluorescence signals from entangled and unentangled
qubits at a distance. . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 4.3: Noise in the detected fluorescence photons from entangled and
unentangled qubit states. . . . . . . . . . . . . . . . . . . . . . 68

Figure 4.4: Field and time dependence of photon fluctuations for entangled
and unentangled qubit states. . . . . . . . . . . . . . . . . . . . 69

viii



ACKNOWLEDGEMENTS

I would like to start by expressing my deepest gratitude to my supervisor,

Prof. Lu Sham, who brought me into this exciting and rapidly growing field of

quantum information science three years ago. His comprehensive knowledge in

both fundamental and applicable science stimulated and reshaped my basic un-

derstanding of physics. His outstanding insight also provided me a really different

horizon to view and pursue scientific research in a unique manner. I learned from

him how to achieve scientific breakthrough by keep questioning the fundamentals

of science and going beyond any traditional paradigm that was thought to be com-

pletely understood. I really enjoyed the inspiring weekly meeting with Lu. In

particular, I would like to thank Lu and Georgina for inviting me to their thanks-

giving party each year, and many other invitations, making me feel like home in

my PhD study.

I would like to thank Prof. Yeshaiahu Fainman, Prof. Michael Fogler, Prof.

Shayan Mookherjea and Prof. Oleg Shpyrko for being my PhD committee members

and asking inspiring questions. I would also like to thank our group members,

Giuseppe Barbalinardo, Kilhyun Bang, Libo Chen, Shengnan Ji, Xiaofeng Shi,

Tiamhock Tay, Yong Wang and Wen Yang, who have helped me a lot about work

and life in the past years. I learned a lot of interesting new ideas through many

inspiring scientific discussion with them. I am also grateful to Prof. Congjun Wu

for his guidance during my first PhD year at UCSD.

Last but not least, I want to express my grand gratefulness to my wife,

Shenshen, and our parents, who continuously support, encourage and give surprises

during my PhD in US. They make me feel I am never alone. If I get lost in science,

they will always accompany with me and help me pass through.

Chapter 2, in part, is a reprint of the material as it appears in Ching-Kit

Chan and L. J. Sham, “Precision of electromagnetic control of a quantum system”,

Physical Review A 84, 032116 (2011). The dissertation author was the first author

of the paper and the co-author in this publication directed, supervised, and co-

worked on the research which forms the basis of this chapter.

Chapter 3, in part, is a reprint of the material as it appears in Ching-Kit

ix



Chan and L. J. Sham, “Quantum correlation of an optically controlled quantum

system”, Journal of the Optical Society of America B, Feature issue,29, A25,

(2012). The dissertation author was the first author of the paper and the co-

author in this publication directed, supervised, and co-worked on the research

which forms the basis of this chapter.

Chapter 4, in part, is a reprint of the material as it appears in Ching-Kit

Chan and L. J. Sham, “Robust distant-entanglement generation using coherent

multiphoton scattering”, under review of Physical Review Letter. The dissertation

author was the first author of the paper and the co-author in this publication

directed, supervised, and co-worked on the research which forms the basis of this

chapter.

x



VITA

2002-2005 Bachelor of Science in Physics, First class honors, Hong Kong
University of Science and Technology, Hong Kong

2005-2007 Master of Philosophy in Physics, Hong Kong University of
Science and Technology, Hong Kong

2007-2008 Teaching and Research Assistant, Department of Physics,
Columbia University, New York, USA

2008-2012 Research Assistant, Department of Physics, University of Cal-
ifornia, San Diego, USA

2012 Doctor of Philosophy in Physics, University of California, San
Diego, USA

PUBLICATIONS

Ching-Kit Chan and L. J. Sham, “Robust distant-entanglement generation using
coherent multiphoton scattering”, under review of Physical Review Letter.

Ching-Kit Chan and L. J. Sham, “Quantum correlation of an optically controlled
quantum system”, Journal of the Optical Society of America B, Feature issue, 29,
A25, (2012).

Ching-Kit Chan and L. J. Sham, “Precision of electromagnetic control of a quan-
tum system”, Physical Review A 84, 032116 (2011).

xi



ABSTRACT OF THE DISSERTATION

Theory and application of open quantum systems

by

Ching-Kit Chan

Doctor of Philosophy in Physics

University of California, San Diego, 2012

Professor Lu Jeu Sham, Chair

Quantum information science is a rapidly growing research area for that

it provides new insights to the fundamentals of quantum mechanics and offers a

platform for the architecture of novel quantum technologies. The successfulness

and practicality of this important scientific field rely on the controllability of a

quantum system subject to a realistic noisy environment. The environment al-

ways leads to unintended dynamics of the system, and thus destroys its coherence

and limits its applications. It is therefore important to understand these decoher-

ence mechanisms from first principles, in order to minimize, or even remove, its

adverse effect on the quantum system. The study of this open quantum system

problem is usually based on some effective paradigms, where the environment is

assumed to be “large”, such that it can affect the quantum system without any

xii



back action. However, due to the demand for a high precision in quantum compu-

tation, such an approximate framework becomes questionable. We provide a new

theoretical approach to treat this type of open quantum system problem, includ-

ing the correlated dynamics between the system and the environment, by using a

diagrammatic technique in the same spirit as the Keldysh non-equilibrium Green’s

function. In this formalism, both the environment and the photonic control are

quantized. The dynamics of the system can be evaluated accurately for a time

scale of small decoherence, but arbitrary quantum control, relevant to the need

for quantum technologies. This offers a way of precise quantum noise calculations.

We find how fundamental quantum correlations between the quantum control and

quantum environment can arise, and are missing in the existing Master equation

approximations. On the other hand, the study of the environment not only pro-

vides a better understanding of the decoherence, it also allows applicable designs

of quantum operations between different qubit systems. In particular, we engineer

a new protocol to entangle two qubits at a distance by projection measurements

of their environments, the resonance fluorescence photons. We find exceptional

improvements on the probability of success and the rate of entanglement based

on the multiphoton environment approach, in comparison with the existing single

photon entanglement scheme.
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Chapter 1

Introduction

1.1 The importance of a precise study of quan-

tum noise

Since the proposal of quantum computing by Feynman in 1982 [1], tremen-

dous amount of research opportunity has been opened along this direction due to

its broad impact on various subjects, from the fundamental understanding of quan-

tum mechanics to the exponential speedup of computational power. One of the

most famous applications is the Shor’s algorithm [2], by which a quantum computer

can factorize an N -digit number in a polynomial time scale ∼ N2logN log(logN),

being much faster than the best known classical computational time ∼ exp(N1/3).

Such an exponential boost of computational speed has been shown to be important

to quantum cryptography and quantum information processing.

In the last decade, an enormous amount of effort has been put into this

research field by attempts to construct a realistic quantum computer based on var-

ious quantum bit (qubit) protocols. They include the polarization photon qubits,

solid state qubits based on electrons in quantum dot (QD) systems, supercon-

ducting qubits, trapped ions, diamond based nitrogen-vacancy (NV) qubits, etc.

Tremendous amounts of successes have been demonstrated in the controllability of

single qubit systems. More recently, small scale quantum manipulations of qubits

have been realized in experiments including two-qubit algorithm [3], long distance

1
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quantum entanglement [4], quantum teleportation of photons [5], etc.

Yet, a realistically sizable quantum computer has not been manufactured

because of the scalability problem. This can be explained from the view of quan-

tum error correction. Unlike the classical computer, a single qubit cannot be

measured for possible errors during the operation as a measurement would col-

lapse the wavefunction of the qubit. Also, a qubit cannot be cloned either because

of the no-cloning theorem in quantum mechanics, making quantum error correc-

tion extremely difficult. The study of fault tolerant quantum computation has

shown that an arbitrary long quantum computation is possible if the error of each

quantum operation is less than certain threshold ϵ0. Such an error threshold is

as small as ∼ 10−4 [6] and is not reached by any present experiments (in fact,

in existing experimental practice, the ability to even detect such a small error is

very questionable). We are also questioning whether the theory has the accuracy

to predict and thus help design physical processes, which can meet the stringent

threshold requirement.

The main source of error of a qubit is the decoherence as a result of any

correlated dynamics between the qubit and the surrounding environment. Ex-

amples include the spontaneous emission of photons due to the coupling between

an electron qubit and the unavoidable electromagnetic vacuum, the hyperfine in-

teraction between a spin qubit and an environment of 106 nuclear spins, phonon

scattering due to thermal fluctuation, etc. These environmental noise limits the

coherence of a qubit within certain fixed decoherence time. In order to optimize,

or hopefully eliminate, the decoherence of a qubit system, a precise understand-

ing of the decoherence mechanism is necessary. Therefore, an accurate theory to

evaluate the decoherence and quantum noise of an open quantum system, that can

match the high fidelity requirement by the fault tolerant quantum computation, is

particularly important for scalable quantum technologies.

The study of a quantized control has the same importance to quantum

information processing. A quantum control can be treated as a macrosystem that

quantum mechanically couples to the qubits and can cause noise through back

action. A suitable candidate of open quantum system should be able to quantize
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Figure 1.1: The influence-functional path-integral approach includes all possible
trajectories of the total wavefunction of the quantum system and the environment
from an initial time ti to a final time tf . While this method keeps track of all
the quantum correlations of the total system, the influence functional is in general
hard to compute due to the huge Hilbert space of the problem.

both the control and the environment on a equal footing. The joint correlation

effects of the quantum control and the quantum environment form the main subject

of this dissertation.

1.2 Various open quantum system theories

The first theoretical approach to open quantum system problems was based

on the path integral approach by Feynman and Vernon [7]. The idea is to integrate

out all possible quantum trajectories of an initial wavefunction that describes both

the quantum system of interest and the environment as depicted in Fig. (1.1). The

time evolution of the total wavefunction is governed by the underlying interaction

Hamiltonian between of the system and the environment. Since we are only con-

cerned about the system, the environmental degrees of freedom of the total density

matrix is traced out at some final time, resulting in a reduced density matrix of

the system. They relate the initial (ρsys(ti)) and final (ρsys(tf )) density matrix by

the influence-functional J(x, tf ;x
′, ti):

ρsys(x, tf ) =

∫
dx′J(x, tf ;x

′, ti)ρsys(x
′, ti), (1.1)



4

environment

system

control

en

syste

Figure 1.2: In the Master equation framework, an open quantum system interacts
weakly with a large environment. The environment is treated as a reservoir and its
density matrix is assumed to be unaffected by the quantum system. The control
agent is usually described by some external parameters and is also assumed to be
not influenced by the quantum system.

This approach is formally exact and all the quantum correlations between

the system and environment are maintained in the influence-functional. However,

in general, it is a difficult task to evaluate this influence functional as there are

usually too many possible paths to be integrated out. An approximate treatment

to this problem is needed.

One of the successful approximate framework to this quantum mechanical

problem is based on the Master equation formalism (see for example [8, 9]). The

physical picture, as shown in Fig. (1.2), is that an open quantum system is assumed

to interact weakly with a “sufficiently large” environment, so that the effect of the

environment is approximated as an effective potential that dissipates the small

quantum system. This relies on a priori assumption that the quantum system has

no back action to the environment and the density matrix of the environment can

be approximated as being time-independent. Also, the control agent that drives the

quantum system, say laser, is treated as some external parameter on the system,

and again experiences no back action from the quantum system. Based on these

criteria, we can write down an effective Master equation that governs the flow of
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the reduced density matrix of the system:

d

dt
ρsys(t) = −i[HC(t), ρsys(t)] +

∫ t

0

dt′K̂(t− t′)ρsys(t
′), (1.2)

where HC(t) is a time-dependent external control Hamiltonian and K̂ is a suitably

chosen superoperator responsible for the dissipation of the environment. In com-

parison with the path integral approach, the many path nature of this quantum

mechanical problem disappears under the above construction.

The Master equation formalism has been widely utilized in different areas of

research due to its straightforwardness and the fact that many traditional problems

satisfy the assumptions described above. Nevertheless, in the context of quantum

information science, where high accuracy standard is demanded, it is necessary to

carefully reexamine the Master equation formalism. In particular, the following

fundamental questions are essential to be addressed:

• What is the error bound of the approximate theory? How does it compare

with the error threshold requirement by fault tolerant quantum computation?

• What is the physical condition(s) for any stochastic assumption?

• How will the theory be modified, if the system interacts strongly with the

environment?

• How can we go beyond the classical treatment of the control agent and include

back action from the system to the quantum control?

• Is there any quantum correlation among the system, the quantum environ-

ment and the quantum control?

Bearing the above questions in mind, we have developed a new theoretical

framework to go beyond the existing Master equation paradigm. This theoretical

approach is based on a diagrammatic formulation of the open quantum system, in

the same spirit as the Keldysh non-equilibrium Green’s function used in condensed

matter physics. We find that diagrammatic approach is in fact very suitable to
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+
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Figure 1.3: In the diagrammatic approach, the open quantum system has a small
trajectory space. The evolution of the total system is thus described by summing
different diagrams corresponding to different paths of the environment. Partial
summations can be carried out systematically under this construction. This figure
shows a two state system interacting with a photonic environment, in which the
two states are flipped back and forth by the photons.

treat open quantum system, owing to the fact that the system has a small Hilbert

space (see Fig. (1.3)). This approach permits a computationally easy way of partial

summations of the diagrams and leads to a highly accurate calculation of the

decoherence of the open quantum system, where both the environment and the

control are quantized.

In chapter 2, we provide a systematic study of the problem of a two level

system interacting with a non-Markovian photonic environment. Based on some

basic examples, we illustrate how this new diagrammatic approach can lead to a

higher precision than existing Master equation solutions. In chapter 3, we apply

this method to the problem with a quantum photon control. Fundamental and in-

teresting quantum correlations among the system, the control and the environment

are found.
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Qubit

(a) (b)

Figure 1.4: Two sides of an open quantum system coupling to the same photonic
environment. (a) An initially excited quantum system can spontaneously emit a
photon and decay to the ground state. This is simply decoherence of the qubit
as we trace over the emitted photons. (b) The same qubit system can in fact
be entangled with the emitted photons, if we have a complete knowledge of the
internal qubit-photon wavefunction. The figure shows a simple example of how a
qubit entangle with two different polarization modes |H(V )⟩ of the emitted photon.

1.3 Application of the environment: entangle-

ment generation

The study of the environment that coupled to a quantum system does not

only allow a better understanding of the decoherence mechanism discussed above.

As a matter of fact, we can make use of the complete knowledge of the system-

environment wavefunction to design meaningful and practical quantum operations.

To illustrate this point, consider a simple three level system depicted in Fig. (1.4).

It is coupled to the background of electromagnetic vacuum through the light-

matter interaction. If we are not interested in the environment and simply ignore

its information by tracing over the environmental degrees of freedom, an initially

excited three level system simply relaxes to its ground state through spontaneous

emission. This is just a simple decoherence process. On the other hand, however,

provided with the knowledge of the total wavefunction of the system, the three level

system can in principle decay to a superposition of two orthogonal spin ground
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states | + (−)⟩ by emitting a photon with different polarization |H(V )⟩. This

eventually leads to an maximally entangled Bell state between the qubit state and

the emitted photon state, in the form of (|+⟩|H⟩+ |−⟩|V ⟩) /2. [10]
This allows a simple entanglement generation between a matter qubit and a

single photon [10, 11]. Based on similar single photon ideas, it has been shown that

one can perform quantum communication between qubit systems [12], generate

entanglement between atomic ensembles [13], or between qubits at a distance [14],

etc.

Yet, these quantum operation schemes are all based on the interaction

bewtween a qubit and a single photon. The potential usefulness of the multipho-

ton environment has not been really made use of. In chapter 4, we will introduce

a new protocol to generate quantum entanglement between distant qubits based

on their couplings to the multiphoton environment. When the qubits are continu-

ously driven at resonance, they emit fluorescence photons that carries information

of the qubit state. We demonstrate how the qubit entanglement can be achieved

by projection measurements of the fluorescence photons. Large improvements in

entanglement efficiency and average entanglement rate are achieved, in comparison

with the single photon protocol.
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Chapter 2

Precision of electromagnetic

control of a quantum system in a

non-Markovian environment

Coherent control of a quantum system is limited both by the decoherence

due to environment and the quantum nature of the control agent. The high fidelity

of control demanded by fault tolerant quantum computation and the intrinsic in-

terest in nonclassical effects from the interplay between control and dissipation are

motivations for a detailed study of the interaction dynamics between the quantum

system and the macroscopic environment and control agent. In this chapter, we

present a detailed time evolution study of a two-level system interacting with a

laser pulse and the electromagnetic vacuum in the multimode Jaynes-Cummings

model. A diagrammatic formalism allows easy identification of coherent dynamics

and relaxation of the two-level system. We demonstrate a computational method

of dynamics with precise error bounds for fast operations versus slow decoher-

ence, spanning the Markovian and non-Markovian regimes. Comparison against

an exact model solution of our results with existing approximations of the master

equation shows the lack of accuracy in the latter.

11
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2.1 Introduction

An open system, i.e., a small quantum object in the presence of a macro-

scopic environment, presents a fundamental problem in quantum mechanics and

its applications. We wish to address here the problem of the environment with

the dual function of decoherence and control of the quantum object. For practical

purposes, both experiments on coherent processes and quantum technology require

a small parameter t0/T2 in the time scale of the control duration t0 being much

smaller than the decoherence time T2. A paradigmatic system for this problem

is the interaction of a two-level system (TLS) with the quantized electromagnetic

fields.[1] In terms of the TLS-photon interaction strength g in units of frequency,

the controlled TLS process (the Rabi rotation) is a strong coupling process with

g|α|t0 ∼ O(1) using a coherent photon state |α⟩ with a large mean number |α|2

of photons while the long decoherence time is a weak coupling process t0/T2 ≪ 1

within the control time. In particular, the high fidelity of the operation to an error

threshold between 10−3 and 10−4 in fidelity demanded by fault tolerant quantum

computation[2, 3] sets the bar for high accuracy in the theory of the open system.

While the TLS open system problem has been much studied, we posit that the

specific additive problem of the control and decoherence processes remains.

The decoherence problem of a TLS in a spin bath and its suppression un-

der a classical control have been extensively studied,[4, 5] but the noise due to a

quantized optical control was not taken into account. Barnes and Warren demon-

strated the decoherence induced by the back action from the TLS to the electro-

magnetic control.[6] For a Markovian system, this problem can be solved using

the optical Bloch equation[7]. However, in many non-Markovian systems with a

structured environment, say nanocavities[8] and photonic band gap materials[9],

the optical Bloch analysis no longer applies. Because of the large Hilbert space of

the multimode TLS-field Hamiltonian, an exact diagonalization of the problem is

impractical.[10] Therefore, a quantum theory suitable for a non-Markovian open

system with high accuracy set for our problem is needed.

In this chapter, we develop a formalism to solve the multimode Jaynes-

Cummings (JC) model under a coherent light pulse with arbitrary pulse shape in
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the limit t0 ≪ T2, relevant to the problem posed. The exact non-unitary evolution

of the TLS is expressed in terms a time evolution forward and a reverse evolution

backward of emitted and absorbed photons conditioned on the TLS down and up

transitions. The photon dynamics are evaluated by the field theoretic perturbation

series. The diagrammatic structure allows an explicit identification of the photons’

role in coherent dynamics and dissipation process of the TLS. All perturbation

terms in a coherent dynamics segment are summed and the dissipative processes

are expanded in powers of a small parameter (t0/T2)
γ where γ depends on the

photon correlation time τc and ranges between 1 (the Markovian limit) and 2

(the non-Markovian limit). The process gives a practical numerical computation

procedure for a given error limit in powers of the small parameter. We illustrate

the computation for a short-time quantum operation of the TLS by including all

the relevant quantum processes within the first order error bound. We identify the

precise origins of the interference effects between the control and the dissipation

in the evolution processes.

The master equation (ME) approach of treatment of the open quantum

system has been enormously important for quantum optics [11] and for quantum

information.[12] We have made a comparison of our theory with several prominent

approximations extant in the ME approach[13] for a model problem involving the

interference effect between control and decay which has an exact solution and a

semiclassical one. The comparison results show that in the non-Markovian regime,

the driving forces for the coherent control and the dissipation are not additive

and that the ME approximations are closer to the semiclassical results than the

quantum results, not meeting the stringent accuracy requirement. Perhaps, the

comparison results would stimulate effort to refine the ME approximations.

The outline of the rest of the chapter is as follows. In Section 2.2, we

develop a field-theoretic solution for the JC model in the presence of the multi-

mode photonic field, elucidating the coherent and dissipative components from the

diagrammatic structure. In Sec. 2.3, a detailed analysis of the effect of vacuum

decoherence on the control precision of the TLS is given in the non-Markovian

regime. Sec 3.3 compares the diagrammatic solution with the ME approximations.
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Sec. 3.5 summarizes and the appendices add some technical details.

2.2 TLS-photons interaction dynamics

By the field theoretic techniques, we express the evolution operator of the

whole system (the TLS and the photons) as an infinite perturbation series in terms

of the spin and photon operators. Then, we evaluate the matrix elements of the

spin exactly, resulting in a diagrammatic series of the photon operators only. By

the Wick’s theorem on the photon operators, we build a perturbative solution to

the non-equilibrium problem of the dynamics of the laser photons and the TLS in

the bath of the electromagnetic vacuum. We find a controlling small parameter,

(t0/T1)
γ, defined in the Introduction and detailed below, for the perturbation series.

The approach of removing the spin operators first stands in contrast to the standard

ME approach[13] which traces out the photonic environment first and then solves

the equation of motion of the TLS, and which lacks error bounds for most of its

approximations.

2.2.1 TLS transformation by coherent photon state

We start with the canonical multimode JC Hamiltonian:[1, 14]

H = H0 + V, (2.1)

where H0 =
1

2
ω0σz +

∑
k

ωka
†
kak,

V =
∑
k

gk

(
σ+ak + σ−a

†
k

)
. (2.2)

H0 contains the bare Hamiltonian of the TLS of energy splitting ω0 with the Pauli

operator σz and the photons of energy ωk with creation operator a†k. V is the TLS-

photon interaction with the coupling constant gk, presented in the rotating wave

approximation (RWA) which is justified in Appendix 2.7.1. While the single-mode

JC may be used to treat the laser pulse by making the coupling time-dependent

g(t), the multimode extension [7] is more suited for our purpose of investigating

the joint quantum effects of the light control of TLS and the dissipation.
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The composite system of the TLS and photons is given by a product ini-

tial wavefunction, |Ψ(0)⟩ = [
∑

s cs|s⟩] |α⟩, where s = ± denotes the two states of

the TLS and α = (αk1 , αk2 , . . .) denotes the multimode coherent state. The re-

duced density matrix Psf ,s
′
f
(t) is expressed in terms of the transformation matrix

conditioned on the initial photon state:

Psf ,s
′
f
(t) =

∑
s,s′

csc
∗
s′psf ,s′f ;s,s′(t,α) (2.3)

psf ,s′f ;s,s′(t,α) = ⟨α|⟨s′|U †(t)|s′f⟩⟨sf |U(t)|s⟩|α⟩

× ei(s
′
f1−sf1)ω0t/2. (2.4)

In the interaction picture, the time evolution operator and the interaction are:

U(t) = T exp
[
− i

∫ t

0

dt′V (t′)
]
,

V (tl) = σ+Al + σ−A
†
l , (2.5)

where Al =
∑
k

gkake
i∆ktl ,

A†
l =

∑
k

gka
†
ke

−i∆ktl , (2.6)

and ∆k = ω0−ωk is the detuning of the k mode. This form of transformation of the

reduced density matrix visibly retains the quantum nature of the evolution of the

composite system and is easily reduced to the problem of the expectation value of

the electromagnetic field operators for the initial photon state. The initial product

state may be generalized to any composite state |Ψ(0)⟩ =
∑

s

∫
Dαcs,α |s⟩ |α⟩,

where
∫
Dα =

∫ d2αk1

π

d2αk2

π
. . .

In the perturbation series of the evolution operator, the TLS state is flipped

up or down by a series of interaction, leaving only the corresponding photon oper-
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ators,

⟨±|U(t)|±⟩ =
∞∑
n=0

(−i)2n
∫ t

0

D2nt X±
2n, (2.7)

⟨∓|U(t)|±⟩ =
∞∑
n=0

(−i)2n+1

∫ t

0

D2n+1t X±
2n+1, (2.8)

where

∫ t

0

Dnt =

∫ t

0

dtn...

∫ t3

0

dt2

∫ t2

0

dt1,

X+
2n = A2nA

†
2n−1 ... A2A

†
1,

X+
2n+1 = A†

2n+1X
+
2n,

X−
2n = A†

2nA2n−1 ... A†
2A1,

X−
2n+1 = A2n+1X

−
2n. (2.9)

2.2.2 TLS evolution in terms of photon processes

The task is reduced to evaluate the transformation matrix in Eq. (3.5) in

terms of the series expansion of the unitary operator and its inverse in Eq. (2.7)

or (2.8) that consist of photonic components in Eqs. (2.9). The formulation is

exact so far. The evaluation of the series is simplified by the Wick’s theorem

[15] (see Appendix 2.7.2). Each series term in Eq. (2.7) is of the form X±†
m X±

m′

from Eqs. (2.9), a product of several photon operators Ai andA
†
j, which the Wick’s

theorem resolves into a sum of terms composed of a normal product and a number

of pairs of contractions. The matrix element of each normal product between two

coherent states is simply products of scalars from the substitution of ak → αk

acting on the coherent ket vector and a†k → α∗
k acting on the bra vector. The

contractions from Eq. (2.20) are

⟨A†
iAj⟩ = 0, (2.10)

⟨AiA
†
j⟩ = K(ti − tj) =

∑
k

|gk|2ei∆k(ti−tj). (2.11)

Fig. 2.1 illustrates the diagrammatic representation of each term in the

series expansion of the transformation matrix and some partial summations of

subseries. Fig. 2.1(a) shows a typical term. The rules are: (i) the initial and final
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TLS states represented at times 0 and t, (ii) the interactions with the TLS denoted

by dots in the counterclockwise loop for the time-ordered photon operators from

time 0 → t and then in anti-time order back t → 0, (iii) the appropriate TLS states

between dots labeled as ± and (iv) all possible contractions (dashed lines) either on

the same time line or between the opposite time lines. Fig. 2.1(b) shows the only

two possible types of contractions because of Eqs. (2.10,2.11). If the two ends of a

solid line segment have the same (opposite) TLS states, the segment is dressed by

an even (odd) number of photons whose series sum is depicted by a double (triple)

line, see Fig. 2.1(c). Fig. 2.1(d) provides an example of the transformation matrix

p++,++ with a single contraction and dressed states. We stress that these diagrams

are first order in contraction, but infinite order in the coherent interaction.
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Figure 2.1: Diagrammatic representations of perturbation terms of the transfor-
mation matrix psf ,s′f ;s,s′(t, {α}). (a) An example of six photon operators with two
contractions. The two short lines labeled 0, t are the time limits of the integrals.
Each dot labeled with a time variable tn represents one photon operator, the lower
solid arc being time ordered and the upper arc anti-time-ordered. A dashed line
stands for one contraction between two photonic operators. The uncontracted dots
form a normal product of the photon operators for the matrix element of the co-
herent states. The ± sign denotes the state of the TLS at different times. (b) The
only possible contractions drawn between photons on the same or opposite time
lines. (c) The dressed line by a sum of all even or all odd numbers of photons
interacting with TLS without contraction. (d) Three diagrams that contains only
a single contraction for the transformation matrix p++;++. They are the leading
contributions to the control noise.
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2.2.3 The key results

The quantum treatment of the time evolution of the TLS in terms of a series

of photon contractions yields a number of notable results. The series expansion in

the TLS-photon interaction permits identification of the physical processes. Well-

known are the all-dots terms uninterrupted by dotted lines, as in the first term

of Eq. (2.19) whose sum yields the Rabi rotation and the complete contraction

pairs in the last term of the same equation whose sum yields the relaxation due to

the electromagnetic vacuum (see Appendix 2.7.3). In the mixed terms, the dots

between the ends of contractions may still be summed as coherent dynamics of the

TLS. The summation is necessary because along the dressed line, each photon gives

a term of the order g|α|t0 for a pulse of duration t0. These series expressions can be

summed exactly and are given in Appendix 2.7.3. The coexistence of the coherent

dynamics and relaxation yields an effect which is extra to the sum of the two

processes, as will be shown next. This is also clear in the nature of the contraction

between the evolution and its inverse shown in Fig. 2.1(a) and (d). Note how,

without the manual separation of the photon Hamiltonian into a control part and

a bath part, the method produces the dissipation and the Rabi rotation. More

importantly, it contains quite explicitly the interference effects between the two

processes.

A useful result for our stated purpose of studying the fidelity of the control

process to high accuracy is the finding of a small parameter for the expansion. After

the construction of the dressed lines of the coherent processes, the expansion of the

contraction functions is a perturbation series in powers of (t0/T1)
γ in terms of the

operation time t0 and the decay time T1 (see Appendix 2.7.3 for the decoherence

time T2 = 21/γT1). The decay in each contraction line is ∼
∫ ∫

dtidtjK(ti − tj) ∼
O[(t0/T1)

γ], where the parameter γ between (1, 2) depends on the shape of the

photon DOS. Therefore, this method provides an excellent evaluation of the control

noise in the regime t0 ≪ T1, while the area of the pulse ∼ g|α|t0 ∼ O(1). The one-

contraction terms in Fig. 2.1(d) together give the consistent result to the first order

contribution of the control noise which will be evaluated next. The consistency of

the three diagrams comes from the differentiation of a self-energy diagram with
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one contraction resulting in three terms, as in the Ward identity in field theory.

[16]

2.3 Relaxation and control fidelity

The quantum effects between the coherent control and the vacuum deco-

herence depend crucially on the contraction, which, Eq. (2.11) shows, depends on

the materials properties of the TLS and the photon confinement in the form of

the DOS of the photonic field weighed by the interaction mode dependence. To

show explicitly the dependence of the control dynamics on the weighted DOS, it

is convenient to model it as a Gaussian:

ρ(ω) =
∑
k

g2kδ(ω − ωk) =
g2τc
2
√
π
e−τ2c (ω−ω0)2/4, (2.12)

where g is the average coupling strength and τc describes the correlation time of

multimode light in the presence of a TLS. The qualitative results, such as the

concept of the exponent γ in decay, are unchanged for a general DOS that in-

cludes a correct behavior for ω → 0+. When τc → 0, the broadband DOS yields

T1 = 1/
√
πg2τc; while as τc → ∞, the single mode scenario pertains. Under this

Gaussian DOS, Eq. (3.8) shows that the contraction function is also a Gaussian,

i.e., K(t) = g2e−t2/τ2c .

For a broadband DOS, e.g., in free space, the system is Markovian and

the result is equivalent to that from solving the optical Bloch equations.[7] For an

extremely narrow DOS, single-mode cavity quantum electrodynamics dominates.

In this section, we use a Gaussian DOS whose variable width causes the decay of the

upper state of the TLS to have a dependence of lnP++(t) ∝ −(t/T1)
γ characterized

by the exponent γ and use the change of the system from the exponential decay

(γ = 1) in the broad DOS limit to a Gaussian decay (γ = 2) in the narrow

DOS region to show the emergence of the quantum effects of interference between

the laser control and the vacuum decoherence. The interference actually has a

beneficial effect on the fidelity of the quantum operation on the TLS.
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Figure 2.2: Relaxation of an initially excited TLS state in vacuum using a Gaus-
sian photon DOS with gτc = 0.1. The decoherence of the TLS (solid curve) is
different from the purely Gaussian (dashed) or Markovian (dash-dotted) decay.

An example of a relevant physical system is a multimode finite Q cavity

system with bandwidth∼ 1/t0. For a photonic crystal nanocavity[8] withQ ∼ 104–

105 and ω0 ∼ 1015 Hz, the estimated value of τc is ∼ 100 ps and non-Markovian

features could be observable for t0 ∼ τc. Then, the small parameter condition for

a fidelity of 0.9999 could be relaxed from t0/T1 ∼ 10−4 to 10−2.

2.3.1 Non-markovian relaxation for a Gaussian DOS

The short time decoherence behavior of the non-Markovian multimode JC

system in vacuum is given by diagrams with only one contraction (see Fig. 2.7(b)).

For an initially excited TLS, we have

ln[P++(t)] ≈− 2

∫ t

0

dt1

∫ t1

0

dt2K(t1 − t2). (2.13)

An illustration using gτc = 0.1 is presented in Fig. 2.2. The result reveals that for

a finite value of τc, the system evolves from a non-Markovian Gaussian dependence
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Figure 2.3: Plots of log10
[
− lnP++(t)

]
in short time for different values of corre-

lation τc. Crossover between Markovian and non-Markovian relaxation occurs at
t ∼ τc. The inset shows the decay exponent, γ.

(well-known in the onset of the collapse and revival phenomena,[14, 17, 18, 19]),

P++(t) ≈ e−(gt)2 , to the Markovian exponential decay, P++(t) ≈ e−t/T1 . The

crossover takes place at t ∼ τc. For short time, the contraction function is almost

flat and the decay resembles the single mode case. As time increases and exceeds

τc, the Gaussian contraction function approaches the broadband Markovian limit.

Note that both the Markovian and single mode approximations overestimate the

decoherence of the TLS.

Fig. 2.3 depicts the evolution of P++(t) in the log scale for different gτc. It

shows the same crossover from the non-Markovian to Markovian relaxation when

time is comparable to the correlation time. The decay exponent γ, defined by

P++(t) ≈ e−(t/T1)γ can vary from 2 to 1 as time increases. Because of this non-

Markovian dynamics, the fidelity of the TLS under a coherent control also shares

the same feature. We will investigate this more quantitatively in the next subsec-

tion.
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2.3.2 Control fidelity analysis

The control noise problem is solved by the diagrammatic method in Sec. 2.2

with TLS initially in the excited state and under a coherent 2π pulse with truncated

Gaussian shape defined by Ω(t) = Ω e−(t− t0
2
)2/σ2

for 0 < t < t0 and zero otherwise.

The coherent state amplitudes αk is related to Ω(t) by Eq. (3.4). We take σ = t0/4

and use the Gaussian photon DOS given by Eq. (2.12).

We evaluate the single contraction diagrams in Fig. 2.1(d) for decoherence of

∼ O[(t/T1)
γ]. The fidelity is computed by F (t = t0) = Tr [PidealP (t = t0)], where

Pideal is the ideal reduced density matrix. The error, 1− F (t = t0) is plotted as a

function of control duration gt0 in Fig. 2.4 and is compared with the Markovian (i.e.

broadband) approximation. The third diagram in Fig. 2.1(d) gives a contribution

from the contraction between two time lines which tends to be opposite in sign to

the dissipation effect of the two graphs with contractions within the the same line.

This is evidence of quantum interference between control and dissipation. Owing

to the non-Markovian relaxation, the error of the operation goes quadratically

with t0 for small t0 and then becomes linear in t0, which is different from the linear

t0 dependence in the Markovian limit. The crossover occurs at t0 ∼ τc for the

same physical reason in the vacuum relaxation process. The fidelity is in the form,

F = 1− c(t0/T1)
γ, where 1 ≤ γ ≤ 2 and c is a constant.

The relaxation at t > t0 after the pulse finishes is not as simple as the

Markovian limit, and is given by

Pσσ′(t > t0) = Pσσ′(t = t0)− fσσ′ [A(t)]× [(t− t0)/T1]
γ . (2.14)

The renormalization factor fσσ′ [A(t)] is a functional of A(t), depending on the

shape of the pulse. This reflects the history-dependent dynamics of the TLS when

we consider a Gaussian photon DOS. Such a feature stands in contrast with the

Markovian case, where the function fσσ′ [A(t = t0)] only depends on the total area

of the pulse.

The discussion above is based on a pure starting state. Consider the ex-

tension to a mixed starting state. Let the prepared pure state at t = 0 relax to

the mixed state at time ti > 0 when a control operation starts. Then, the TLS is



24

0.05 0.1
gt0

0.002
0.001

0.003

1-FHt=t0L

Gaussian DOS

Markovian

0.0010.001 0.01 0.1 1
gt0

10-2

10-3

10-4

10-5

10-6

10-7

10-8

1-FHt=t0L

Figure 2.4: A plot of error, 1 − F (t = t0) for a TLS driven by a nominal 2π
Gaussian pulse using a Gaussian DOS with gτc = 0.03 (solid blue) and a constant
DOS (dashed red). For the Gaussian DOS, the t0 dependence of error changes
from quadratic to linear when t0 ∼ τc, whereas the error depends linearly on t0 in
the Markovian regime.

driven by the control pulse and influenced by the vacuum decoherence. The theory

is the same except the laser pulse is shifted in time to Ω(t) ̸= 0 in ti ≤ t ≤ tf .

The fidelity of an example is studied, using a 2π pulse, which is Gaussian cut off

at both ends of the same time interval σ from the center as before. The results

are given in Fig. 2.5 for the relative error defined as the proportionate change of

state fidelity between the start and the finish of the pulse, RF = 1− [F (tf )/F (ti)]

of the operation as a function of the initial time of the pulse. For a small and

fixed duration t0 = tf − ti, we observe that the relative error increases linearly

with ti and then saturates to a constant after ti ∼ τc. This can be roughly under-

stood by employing the decoherence crossover picture discussed in subsection 2.3.1.

When the operation is performed inside the non-Markovian region, F ∼ e−(gti)
2

and RF ∼ 2g2t0ti; whereas in the Markovian limit, F ∼ e−ti/T1 and RF ∼ t0/T1.
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Figure 2.5: Relative error, RF = 1 − F (tf )/F (ti) as a function of ti of a TLS
under a 2π Gaussian pulse for fixed gt0 = g(tf − ti) = 0.01 and gτc = 0.01. For a
Gaussian DOS, a change of dependence on ti occurs when the system evolves from
the non-Markovian to Markovian regime.

2.4 Error checks

We check our method against the exact solution, [14] of the driven single-

mode JC model for the non-Markovian effects involving control and decay of the

TLS and compare with approximations in the master equation approach. It is a

limit of the multimode problem for gτc = ∞ and γ = 2. We choose four commonly

used ME approximations, (i) the Born series, (ii) the Nakajima-Zwanzig (NZ)

projection method, (iii) time-convolutionless (TCL) projection[20, 13], and (iv)

the additive assumption.[21] Unlike our error bound, these theories contain none.

Their results are compared with the exact, the diagrammatic and the classical Rabi

solutions. For details of how the first three methods are used in the calculations, see

Appendix 2.7.4. The additive ME, assumes that the driving terms of the equation

of motion by control and by dissipation simply add:

d

dt
ρs(t) = −i[Hcl(t), ρs(t)] + K̂ρs(t), (2.15)
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Figure 2.6: ∆P++(t), the deviation of P++(t) from the exact solution of a driven
single mode JC system using different methods. n̄ = 100π2, corresponding to a 4π
rotation at gt = 0.2. The errors of the ME approximations are as much as that of
the classical solution.

where ρs(t) is the reduced density matrix of the TLS, Hcl(t) the classical control

Hamiltonian, and K̂ an appropriate super-operator on ρs(t) for the population

decay and decoherence effect in the absence of a control (see Appendix 2.7.4).

The TLS is initially in the excited state and driven by a single mode coher-

ent state at resonance with the TLS. The average number of photons, n̄ = 100 π2,

is chosen so that, at gt = 0.2, the area of the classical pulse is 4π. Fig. 2.6 plots

the deviations of the upper state population from the exact solution, ∆P++(t) =

P++(t) − P exact
++ (t), for the six methods above. The diagrammatic method is in-

distinguishable from the exact solution in the small parameter region of gt ≤ 0.2

with a theoretical error bound ∼ O[(gt)4] and the actual computed results within

an error of 10−4. This error can be further improved to O[(gt)2(n+1)] by including

higher order diagrams with n contractions. The Born approximation and the low

order NZ give results close to the classical treatment of the electromagnetic fields

can be interpreted as a lack of quantum content. The agreement between the low

order TCL and the additive approximation might be an indication of the addi-
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tive nature of TCL. All four ME approximations fail to reproduce the quantum

interference effects between control and dissipation which are in the field theo-

retic treatment. Note that the problems of the NZ and TCL methods are not due

to the second order approximation we used because their errors are also of the

same order. The failure of the ME methods to account for the high accuracy of

control fidelity required by quantum information processing is illustrated by this

comparative study.

2.5 Summary

We have developed a rigorous solution of the multimode Jaynes-Cummings

model for a two-level system under the control of a coherent electromagnetic pulse.

It treats the control process exactly within a rigorous error bound for the controlled

dynamics of the entire system of the small quantum object and the photons to

any order in the small parameter in operation time versus the decoherence time,

(t0/T2)
γ where γ varies from 1 to 2 as the density of states of the photons varies

from being flat as in free space to a sharp peak as in high Q cavity. Our theory is

quantum in the sense of no stochastic assumption and treats the entire quantum

system correctly within any given error bound. A diagrammatic representation

provides a simple picture of different physical processes, including the familiar

limiting cases of coherent Rabi oscillation and vacuum decoherence. It pinpoints

the control-dissipation interference as the quantum effects found by works which

precede ours [22]. The effects are relevant to basic quantum phenomena and to

technological applications.

This work shows that vacuum relaxation is not the only physical process

that results in quantum noise in non-Markovian systems. Fundamental quantum

noise due to interference between the control field and relaxation exists and it leads

to a decoherence comparable to the vacuum fluctuations. Moreover, our method

is not restricted to the Markovian limit and is valid for an arbitrary DOS. Thus,

it necessarily goes beyond the optical Bloch analysis.

The time evolution study shows that the relaxation of the TLS can vary
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from a Gaussian decay to an exponential one, depending on the ratio of time

to the correlation time that characterizes the photon DOS. In consequence, the

fidelity of a general single qubit operation on a pure state can be cast in the

form F = 1 − c(t0/T2)
γ for a constant c. The Markovian approximation (γ = 1)

overestimates the decoherence of the TLS. The Gaussian decoherence (γ = 2)

provides a lower bound for the quantum error of a light controlled TLS.

The field theoretic technique provides a completely quantum mechanical

description of a small quantum system interacting with the photonic environment.

The control noise issue, being important in quantum computing, serves as an

concrete example to demonstrate its capability. This approach may also be applied

to other systems under nonclassical photon states. Besides the quantum object, the

field theoretic technique also permits a calculation of the physical quantities of the

environment, e.g. the quantum feedback on the electric field, photon correlation

functions, correlation between the TLS and the photons, etc.

Comparative studies with the existing master equation approximations show

their general lack of the quantum effects due to the control-dissipation interplay,

which is not restricted to the single-mode model tested. We hope that the results

of our rather cursory study of these approximations would stimulate more develop-

ments in rigorously bounded approximations for the master equation and further

understanding of quantum effects by the contrast and complementarity between

the master equation and the field-theoretic approaches.

Our current theory only considers a coherent state with a constant phase.

In future work, this can be generalized to describe an ensemble of coherent states

with a mixture of phases in order to evaluate the phase error as an extension of

previous single mode study.[22]
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2.7 Appendix

2.7.1 Rotating wave approximation

To prove its validity for the control noise problem, we start with the Hamil-

tonian H = H0 + V in Eq. (2.1) with the full interaction term, V =
∑

k gk(a
†
k +

ak)σx. To this, we apply a unitary transformation eS, where, [23]

S =
∑
k

gk
ωk + ω0

(a†k + ak)σx. (2.16)

For g|α|/ω0 ≪ 1, we expand the transformed Hamiltonian H̃ = eSHe−S up to

second order in gk as:

H = H0 + VRWA({g′k}) + V ′, (2.17)

where V ′ =
1

4ω0

σz

[∑
k

g′k(a
†
k − ak)

]2
. (2.18)

VRWA({g′k}) is the TLS-field coupling in RWA with gk replaced by g′k = 2gkω0/(ω0+

ωk). Therefore, the counter-rotating terms leads to an effective perturbation V ′

as a correction to the RWA. It is an order O(gα/ω0) smaller than VRWA. Hence,

in the regime where 1/ω0 ≪ 1/g|α| ∼ t ≪ T1, the effect of the counter-rotating

terms is negligible compared with decoherence.

2.7.2 Application of the Wick’s theorem

The evaluation of the general perturbation term is simplified by the Wick’s

theorem, a general bosonic operator defined byW =
∏

iOi, where Oi =
∑

k(ukibk+
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vkib
†
k) is a linear combination of bosonic operators bk and b†k, and can be rearranged

as: [15]

W = :W : +
∑
(i1,j1)

: Wi1,j1 : ⟨Oi1Oj1⟩

+
∑

(i1,j1 )̸=(i2,j2)

: Wi1,j1,i2,j2 : ⟨Oi1Oj1⟩ ⟨Oi2Oj2⟩

+ . . .

+
∑

(i1,j1)...(in,jn)

⟨Oi1Oj1⟩ .... ⟨OinOjn⟩ , (2.19)

where :W : is the normal ordered form of W , defined by all the creation operators

to the left of the annihilation operators; :Wj,k,l,... : is the normal ordered form

of
∏

i̸=j,k,l,... Oi in which the operators Oj etc. are left out; and the contraction

between Oi and Oj is defined only for i < j by a scalar,

⟨OiOj⟩ = OiOj− :OiOj :, (2.20)

Note that the suffix in the O operator denotes its order in the W expression, rather

than the time index in the photon operator Al.

2.7.3 Evaluation of control and dissipation

This supplements Sec. 2.3 with an analysis of the mathematical structure

of the diagrammatic series, two examples of exactly soluble situations, and more

details of the evaluation of formulas.

The contraction formula

Central to the vacuum decoherence is the contraction function from Eq. (2.11)

given by,

⟨A(t)A(t′)†⟩ ≡ K(t− t′) =

∫
dωρ(ω)ei(ω0−ω)(t−t′), (2.21)

where t and t′ can be on the same or opposite time lines.
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Figure 2.7: (a) gives the diagrams for the classical Rabi solutions for p++,++(t)
and p−+,++(t). (b) and (c) provide all the diagrams in the absence of control for
p++,++(t) and p−+,−+(t) respectively. In the Markovian limit, the two ends of
a dashed line are squeezed to the same point. (b) consists of two lowest order
diagrams while there is only one in (c), implying T1 = T2/2 in the Markovian
regime.

Dressed TLS state lines

A time segment between any two consecutive points chosen from 0, t or

contracted interaction points in a diagram in Fig. 2.1 may be viewed as a dressed

TLS line in which all possible interaction terms for the coherent state matrix

element are summed. An example term is given by:

∫ t2n+j+1

tj

dt2n+j ...

∫ tj+3

tj

dtj+2

∫ tj+2

tj

dtj+1

×⟨{α}| : A2n+jA
†
2n+j−1...Aj+2A

†
j+1 : |{α}⟩ (2.22)
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The normal product in the integrand enables the evaluation of the coherent state

matrix element by putting the creation operator to the left with the substitution

a†k → α∗
k, and the annihilation operator to the right with ak → αk. The control is

given by,

∑
k

(
gke

−iωktαk + c.c
)
=

Ω(t)

2
e−i(ω0t+ϕ) + c.c., (2.23)

which relates αk with the envelope function Ω(t), the resonant frequency ω0 and

the phase ϕ of the driving field. Thus, an infinite series sum of integrals like

Eq. (2.22) can be carried out, leading to even and odd types of dressed photon

lines (represented by Fig. 2.1(c)):

De(t, t
′) = cos

(
A(t)−A(t′)

2

)
Θ(t− t′),

Do(t, t
′) = (±)i sin

(
A(t)−A(t′)

2

)
Θ(t− t′) (e±iϕ), (2.24)

corresponding, respectively, to the double and triple lines that are dressed by an

even and odd number of photons in the control. Note that the dressed function

Do(t, t
′) picks up a + (−) sign, when the triple line is on the upper (lower) time

line, and gains a phase eiϕ (e−iϕ), if the triple line goes from − to + in the clockwise

(anticlockwise) sense. Here, A(t) =
∫ t

0
dt′Ω(t′) gives the area of the pulse at time

t. In the absence of control, De(t, t
′) → Θ(t − t′) and Do(t, t

′) → 0, so that the

double line is reduced to a single line and diagrams that contain any triple line

vanish.

The mathematical expressions representing different diagrams can be ob-

tained by first writing down all the contraction and dressed functions, and then

integrating over all time variables corresponding to the vertices of each contraction

line. The vertex picks up a factor of i (−i) if it is on the upper (lower) time line.

In the following, we will provide some explicit examples.

The classical Rabi solution corresponds to diagrams with no contraction.

The two dressed lines in Fig. 2.7(a) gives the transformation matrices p++;++(t)

and p−+;++(t). Using Eqs. (3.9), we have
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p
(0)
++,++(t) = cos2

[
A(t)

2

]
,

p
(0)
−+,++(t) = −iei(ω0t+ϕ) cos

[
A(t)

2

]
sin

[
A(t)

2

]
. (2.25)

which is the Rabi solution without decoherence.

Vacuum relaxation of TLS

In the absence of control, the photon lines are not dressed. A broadband

DOS yields the Markovian limit,

KM(t− t′) =
1

T1

δ(t− t′). (2.26)

Then all the diagrams in Fig. 2.7(b) and (c) can be summed exactly, yielding

respectively:

pvacuum,M
++,++ (t) = e−t/T1 ,

pvacuum,M
−+,−+ (t) = eiω0t−t/2T1 . (2.27)

This Markovian limit leads to the standard result of spontaneous emission, where

T2 = 2T1. This relation can also be seen from the lowest order terms in that

pvacuum,M
++,++ (t) contains two lowest order diagrams, while pvacuum,M

−+,−+ (t) only one.

Using the same argument, for a non-Markovian system with a general DOS

and the γ parameter defined in Sec. 2.3.1, we have

pvacuum++,++ (t) = 1−
(

t

T1

)γ

+O

[(
t

T1

)2γ
]
,

pvacuum−+,−+ (t) = eiω0t

{
1− 1

2

(
t

T1

)γ

+O

[(
t

T1

)2γ
]}

, (2.28)

so that T2 = 21/γT1.

Exact solution to first order in contraction

Fig. 2.1(d) shows all the diagrams with one contraction with the dressed

lines. By the diagrammatic rules, the transformation matrix is:
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A = 2Π
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Figure 2.8: P++(t) ≈ P
(0)
++(t)+P

(1)
++(t) of an initially excited TLS under a Gaussian

pulse in the Markovian limit. It is in quantitative agreement with the optical Bloch
solution.

p
(1)
++,++(t) = 2Z1(t) + Z2(t), (2.29)

where Z1(t) = −De(t, 0)

∫ t

0

dt̃

∫ t̃

0

dt̃′K(t̃− t̃′)

×De(t, t̃)De(t̃, t̃
′)De(t̃

′, 0), (2.30)

Z2(t) =

∫ t

0

dt̃

∫ t

0

dt̃′K(t̃− t̃′)

×Do(t, t̃)Do(t, t̃
′)De(t̃, 0)De(t̃

′, 0). (2.31)

Z1 and Z2 correspond to the non-crossing and crossing diagrams respectively. This

result is valid for arbitrary photon DOS and thus covers both the Markovian and

non-Markovian regimes. This is the basis for the result in Sec 2.3 using a Gaussian

DOS, Eq. (2.12).

The diagrammatic method can reproduce the Markovian results. By Eq. (2.26)

and (2.29), Fig. 2.8 shows a Markovian example of an initially excited TLS driven

by a Gaussian pulse at resonance (the same physical situation as Sec. 2.3 B).
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Our result not only shows an excellent agreement with the optical Bloch analysis

in this Markovian limit, but also allows an understanding of the underlying pro-

cesses. For instance, the nodes of P++(t) do not reach zero. We note that this

feature has been observed in many experiments,[24, 26, 25, 27] but cannot exclude

other experimental noise sources as the cause of the feature. This theoretical fea-

ture can be understood through our diagrammatic representation in Fig. 2.1(d).

One can show that the non-zero node arises from the crossing contraction term,

which is very different from the vacuum decoherence that contains non-crossing

contractions only (Fig. 2.7(b)).

2.7.4 Master Equation Approximations

The four approximations for the ME approach used in Sec. 3.3 are detailed

here. The standard ME for the TLS up to the second Born approximation is given

by (p. 250 of Ref. [28]):

d

dt
ρBorn
s (t)

=− iTrR
[
V (t), ρBorn

s (0)⊗ ρR
]

−
∫ t

0

dt′TrR
[
V (t),

[
V (t′), ρBorn

s (t′)⊗ ρR
]]
. (2.32)

This equation is derived from a second order expansion of the Liouville equation. In

the single mode JC system, at resonance, the interaction is V (t) = g
(
σ+a+ σ−a

†)
and the reservoir density matrix constant, ρR = |α⟩ ⟨α|.

The Nakajima-Zwanzig (NZ) and time convolutionless (TCL) projective

operator techniques are outlined systematically.[20, 13] The usual assumption of

TrR[V (t) ⊗ ρR] vanishing is unnecessary and is not made in our control problem.

The second order NZ ME, derived by the method of Breuer et al.,[20, 13] is then:
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d

dt
ρNZ
s (t)

=− iTrR
[
V (t), ρNZ

s (t)⊗ ρR
]

+

∫ t

0

dt′TrR
[
V (t),TrR

[
V (t′), ρNZ

s (t′)⊗ ρR
]
⊗ ρR

]
−
∫ t

0

dt′TrR
[
V (t),

[
V (t′), ρNZ

s (t′)⊗ ρR
]]

. (2.33)

The second order TCL ME shares the same structure but ρNZ
s (t′) is replaced by

ρTCL
s (t) in the integrand.

The additive ME assumes that the control and relaxation terms are additive

(see Eq. (3.10)). In the single mode JC system, it becomes:

d

dt
ρadds (t) (2.34)

=− ig|α|[σ+e
−iϕ + σ−e

iϕ, ρadds (t)] + g tan gt

×
{
2σ−ρ

add
s (t)σ+ − σ+σ−ρ

add
s (t)− ρadds (t)σ+σ−

}
,

where α = |α|eiϕ. By neglecting the second term, the first control term leads

to the classical Rabi motion. On the other hand, in the absence of the control

(|α| = 0), the second term will produce the vacuum Rabi oscillations of the single

mode JC system. In the small time regime (gt ≪ 1), it corresponds to a Gaussian

relaxation.

For an initially excited single mode JC system under a coherent control with

a pulse are of the order of one, i.e. A = 2g|α|t ∼ O(1), Eqs. (2.32-2.34) are solved

and compared with the exact, the diagrammatic and the classical methods. The

diagrammatic solution is calculated from Appendix 2.7.3 using the single-mode

contraction function K(t− t′) = g2. The comparison in Sec.3.3 uses the following

resultant solutions:
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P exact
++ (t) =

∑
n

cos2
(
g
√
n+ 1 t

) |α|2n

n!
e−|α|2 ,

P diagram
++ (t) = cos2 g|α|t− (gt)2

4
cos 2g|α|t− 3

8

gt

|α|
sin 2g|α|t+O

[
(gt)4

]
,

P classical
++ (t) = cos2 (g|α|t) . (2.35)
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Chapter 3

Quantum correlation of a

quantum system driven by

quantum photon controls

The controllability of a quantum system relies on an accurate account of the

quantum interference among the system, the quantum control and the quantum

environment. In the previous chapter, we introduce the diagrammatic technique

to precisely calculate this quantum correlation for a fast multimode coherent pho-

ton control against slow relaxation, valid for both Markovian and non-Markovian

photonic environment. Yet, the diagrammatic formalism is not restricted to the

situation that the photon control is the coherent Glauber state. In this chapter, we

extend the diagrammatic formalism and apply it to cases with controls by photon

states that have more quantum mechanical nature.

3.1 Introduction

The study of an open quantum system aims at understanding the under-

lying physical processes between a quantum system and the environment and at

giving a correct account of the system noise due to the environment. Conventional

theories usually assume a weak system-environment interaction. This assump-

tion is no longer valid for a controlled quantum system, where the control, as a

41
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part of the environment, strongly interacts with the system. Quantum interfer-

ence between the system and the control and decoherence environment can modify

the noise in the quantum system. Given the recent advances in the experimental

ultrafast optical techniques, an accurate theory that captures such an quantum

interference effect is needed in the regime t0 ≪ T2, where t0 and T2 are the op-

eration and decoherence times, respectively. Also, the stringent error threshold

requirement (ϵ ∼ 10−4) demanded by fault tolerant quantum computation [1] is

another motivation for a high precision theory for open quantum systems.

The master equation (ME) approach has been successful for Markovian

open quantum systems [2], where the dynamics of the system is history indepen-

dent. For such a Markovian system under a coherent control, the corresponding

MEs are equivalent to the optical Bloch equations [3], where the control and dissi-

pation terms are additive in the equations. However, for systems with a structured

environment [4], e.g. photonic crystal materials [5] and nanocavity systems [6, 7],

the dynamics are non-Markovian and the optical Bloch theory is inapplicable. In

fact, because of the memory effect of these systems, interferences exist between

the control and the environment and the validity of the additive form of the ME

is questionable. Therefore, the challenge remains open in non-Markovian systems.

A precise diagrammatic technique has been formulated to solve the dynam-

ics of a two level system (TLS) under a time-dependent coherent photon control

through the multimode Jaynes-Cummings (JC) interaction in the regime t0 ≪ T2

[8]. It takes into full account of the quantum interference among the TLS, the

control and the electromagnetic vacuum and is applicable for both Markovian and

non-Markovian situations. The idea is to construct the time evolution of the TLS in

terms of a time loop propagation, in the same spirit as the Keldysh non-equilibrium

Green’s function technique [9]. Under this construction, the underlying physical

processes become transparent: dissipations originate from the contraction between

photons at different times; coherent Rabi motions are due to propagators dressed

by the control photons; interferences between these two processes result in the

control noise. For t0 ≪ T2, only diagrams with a small number of contractions are

important and they can be summed exactly, allowing a precise calculation of the
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controlled dynamics of the TLS in this time domain within a given error bound.

Based on a simple non-Markovian model, it has been shown that this diagrammatic

formalism captured quantum correlations of the entire system that was missed in

conventional ME approximations even in the small time limit [8]. The error of the

ME approximations is comparable to that of the classical approximation.

This diagrammatic approach is not restricted to the case where the photon

control is a Glauber state. The control can formally be extended to an arbitrary

photon state. To illustrate this, we extend the theory to the cases of a multimode

squeezed coherent state and a multimode photon number state. Comparisons with

the single mode results indicate the accuracy of these diagrammatic solutions.

The chapter is organized as follows. In Section 3.2, we describe the dia-

grammatic formalism for a TLS under a coherent control and provide rules for the

diagrammatic construction. Section 3.3 performs an explicit comparison with the

standard ME approaches. We also demonstrate the ability of the diagrammatic

approach to systematically improve the accuracy by including higher order dia-

grams. Section 3.4 extends the discussion to non-Glauber photon controls. We

conclude in Section 3.5.

3.2 TLS under coherent control

The central idea of the diagrammatic technique is first to express the time

evolution of the composite system in terms of the spin and photon operators, then

to evaluate the transition matrix in terms of photon operators, which are finally

treated diagrammatically using the Wick’s expansion. The problem of a time-

dependent controlled TLS is governed by the multimode JC Hamiltonian under

a multimode coherent state |α⟩ = |αk1 , αk2 , . . .⟩. Consider first for simplicity, an

initial wavefunction of the product form |Ψ(0)⟩ = [
∑

s cs|s⟩] |α⟩, where s = ± gives

the spin state. The system evolves as |Ψ(t)⟩ = U(t)|Ψ(0)⟩, where the evolution

operator in the interaction picture is given by:

U(t) = T exp
[
− i

∫ t

0

dt′V (t′)
]
, (3.1)
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and the multimode JC interaction is:

V (tl) = σ+Al + σ−A
†
l , (3.2)

with Al =
∑
k

gkake
i(ω0−ωk)tl . (3.3)

with ω0 the energy splitting of the TLS, ωk the photon frequency and gk the TLS-

photon coupling strength. The interaction on the initial coherent photon state

can be viewed as the action of a control pulse, consisting of a modulation of the

resonant frequency mode with the coherent state amplitude satisfying:∑
k

(
gke

−iωktαk + c.c
)
=

Ω(t)

2
e−i(ω0t+ϕ) + c.c., (3.4)

where αk is the eigenvalue of ak on |α⟩, Ω(t) and ϕ are the envelope function

and phase of the pulse, respectively. Note that we have made the rotating wave

approximation which is valid when ω0t ≫ g|α|t ∼ O(1) [8]. The physical quantity

of interest is the transformation matrix:

psf ,s′f ;s,s′(t,α) = ⟨α|⟨s′|U †(t)|s′f⟩⟨sf |U(t)|s⟩|α⟩

× ei(s
′
f1−sf1)ω0t/2, (3.5)

from which we can obtain the reduced density matrix of the TLS at that:

Psf ,s
′
f
(t) =

∑
s,s′

csc
∗
s′psf ,s′f ;s,s′(t,α). (3.6)

It is straightforward to generalize the above formulae to an initial state which is a

linear combination of the product states.

In contrast to the ME methodology which traces out the photonic environ-

ment in the beginning, we evaluate the TLS transition by the spin operators in

the transformation matrix first, leaving a sequence of the corresponding photon

components. An example is given by:

p++;++(t)

=
∞∑

n,n′=0

(−1)n+n′
∫ t

0

D2nt

∫ t

0

D2n′
t

× ⟨α|
(
A1′A

†
2′ ...A2n′−1A

†
2n′

)(
A2nA

†
2n−1...A2A

†
1

)
|α⟩ ,

(3.7)
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Figure 3.1: An illustration of the TLS-multiphoton process conditioned on a mul-
timode coherent state. The ± sign labels the spin state of the TLS. Contractions
among photons (dashed line) correspond to decoherence, while the normal-ordered
control photons (wavy lines) is responsible for the Rabi motion of the TLS.

where
∫ t

0
Dnt =

∫ t

0
dtn...

∫ t3
0

dt2
∫ t2
0

dt1. In the following, we will focus on this ex-

pression for illustration. Other transformation matrices can be obtained similarly

(see [8]). Therefore, the task is now reduced to compute expectation values of the

photon operators for the initial multimode coherent state.

Eq. (3.7) is exact up to now and all the quantum correlations of the whole

system remain intact. The underlying physical processes can be easily identified

using a diagrammatic representation as in Fig. 3.1. We shall see in the next sub-

section how different roles of the photons affect the interaction dynamics, and how

this infinite series expression can be largely simplified and summed to a desirable

accuracy using t/T2 as a small parameter. No stochastic assumption has been

made. We emphasize that this approach is fundamentally different from the ME

method which usually assumes a stationary environment and thus does not account

for the interference effect between the control and the environment of a quantum

system.

3.2.1 Diagrammatic solution

It is instructive to describe Eq. (3.7) as time loop integrals of photon oper-

ators propagating forward and backward between time 0 and t, and depict Fig. 3.1

in a bubble form. Diagrammatic series is constructed using the Wick’s theorem

[10], which expands the product of photon operators in terms of the normal ordered
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form and possible contractions between two photon operators. By doing so, the

expectation value in Eq. (3.7) can be computed easily by the replacement ak → αk

and a†k → α∗
k for normal ordered photons. Physically, the normal ordered photons

coming from the multimode coherent state are responsible for the coherent Rabi

motion of the TLS; while the contraction between photons, being independent of

the control, corresponds to vacuum relaxation of the TLS.

The diagrammatic structure consists of two ingredients: the contraction

between photons and dressed lines due to the coherent control. The contraction

function is given by:

⟨AiA
†
j⟩ = K(ti − tj) =

∑
k

g2ke
i(ω0−ωk)(ti−tj), (3.8)

and is depicted in Fig. 3.2a. Here, ti and tj can be on the same or opposite time

lines. Note that the contraction only depends on the photon density of state (DOS)

ρ(ω) =
∑

k g
2
kδ(ω−ωk). One can show that each contraction line∼

∫ ∫
dtidtjK(ti−

tj) ∼ O[(t/T2)
γ], where 1 ≤ γ ≤ 2 depends on the DOS [8]. Therefore, the Wick’s

expansion in terms of contraction is automatically a perturbative series of the small

parameter (t/T2)
γ. On the other hand, the dressed lines lead to Rabi oscillations

of the TLS and are given by [8]:

De(t, t
′) = cos

(
A(t)−A(t′)

2

)
Θ(t− t′),

Do(t, t
′) = (±i)(e±iϕ) sin

(
A(t)−A(t′)

2

)
Θ(t− t′), (3.9)

corresponding to the double and triple line depicted in Fig. 3.2b. A dressed line

segment between the same (opposite) spin state corresponds to a double (triple)

line. Here, Do(t, t
′) picks the factor +i (−i), when the triple line is on the upper

(lower) time line; and gains a phase eiϕ (e−iϕ), if it goes from − to + in the

clockwise (anticlockwise) sense. A(t) =
∫ t′

0
dt′Ω(t′) gives the area of the coherent

pulse at time t. Physically, De(t) and Do(t) are just the diagonal and off-diagonal

matrix elements of the 2 by 2 propagators of a TLS under a coherent control.
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Figure 3.2: Diagrammatic representations of the Wick’s expansion of the trans-
formation matrix psf ,s′f ;s,s′(t, {α}) for a general photonic control. (a) The two

possible contractions between photons at different times. (b) Two types of dressed
line that represent a sum of even or odd numbers of control photons interacting
with the TLS. (c) A dressed diagram without any contraction represents the driven
oscillations of the two state system from time 0 to t. (d) Vacuum relaxation is
represented by undressed diagrams with contractions only. (e) The leading con-
tribution of control noise to p++;++ comes from three dressed diagrams with only
one contraction.
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The diagrammatic procedure can be summarized as follows: (i) denote the

initial and final state of the transformation matrix on a loop diagram, where the

lower and upper arcs represent forward and backward time evolutions; (ii) draw all

possible contractions according to Fig. 3.2a; and (iii) dress the bare lines according

to the spin flips by the photons. Each diagram can be computed straightforwardly

by integrating over all time variables at the vertices of each contraction line. The

vertex picks up a factor of i (−i) when it is on the upper (lower) time line.

The diagrammatic structure allows an easy identification of the underlying

coherent and dissipative processes. For instance, Fig. 3.2c shows the diagram with

no contraction but infinite series of coherent photons for p++;++(t). Following the

above description, this uninterrupted diagram simply gives the expected coherent

Rabi solution p
(0)
++;++(t) = cos2 [A(t)/2]. On the other hand, in the absence of

control, the vacuum relaxation is represented by a series of undressed diagrams

that involves contractions only, as can be seen in Fig. 3.2d. In the regime t ≪ T2,

the first two diagrams in Fig. 3.2d results in a decoherence of ∼ O[(t/T2)
γ].

One advantage of the diagrammatic method is that summing infinite sub-

series of diagrams is feasible. Fig. 3.2e shows the leading order diagrams for the

control noise problem. Interference between the control (dressed line) and deco-

herence (contraction line) is evident. We stress that these diagrams are first order

in decoherence, but infinite order in the coherent interaction. This explains why

the diagrammatic approach is a suitable candidate to our control noise problem,

in contrast to the ME method that requires a weak system-environment coupling.

3.2.2 Application to a general DOS

The field theoretic approach described above is applicable for an arbitrary

photon DOS and thus valid for both the Markovian and non-Markovian systems.

For a broadband DOS, the contraction function becomes a delta function K(ti −
tj) ∼ δ(ti − tj), meaning that the two ends of a contraction line are squeezed to

the same point. In this limit, the correlation time τc is zero and the decoherence is

linear in t/T2 (i.e. γ = 1), corresponding to a Markovian exponential decay. The

dynamics of the controlled TLS can be alternatively obtained by the optical Bloch
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equation and the diagrammatic solution shows quantitative agreement with it in

the regime t ≪ T2 [8].

Extension to the non-Markovian regime can be performed simply by mod-

ifying the photon DOS and thus the contraction function. The correlation time

τc is characterized by the bandwidth of the DOS. The contraction function is

no longer a delta function, leading to non-exponential decoherence ∼ O[(t/T2)
γ],

where 1 < γ ≤ 2. Furthermore, there is a transition from the non-exponential to

exponential decay as t becomes comparable to τc. All these features remain in the

presence of a coherent control [8]. In the following section, we will investigate the

accuracy of the diagrammatic scheme in comparison with existing ME methods.

3.3 Comparison with ME approaches

Conventional master equation (ME) assumes an additive form [11]:

d

dt
ρs(t) = −i[Hc(t), ρs(t)] +

∫ t

0

dt′L̂(t− t′)ρs(t
′), (3.10)

where Hc(t) describes a control Hamiltonian that only acts on the system and

L̂(t− t′) is a suitably chosen superoperator that only accounts for the dissipative

environment. It is assumed that these two terms are independent on each other. In

this section, we examine the validity of this kind of ME against the field theoretic

solution in Section 3.2.

3.3.1 Second order TLS-environment interaction

We consider two commonly adopted ME approaches based on the pro-

jective operator techniques, namely the Nakajima-Zwanzig (NZ) and the time-

convolutionless (TCL) methods [12, 13]. We now show that they belong to the
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additive ME in Eq. (3.10). The second order NZ ME is given by:

d

dt
ρNZ
s (t)

= −iTrR
[
V (t), ρNZ

s (t)⊗ ρR
]

+

∫ t

0

dt′TrR
[
V (t),TrR

[
V (t′), ρNZ

s (t′)⊗ ρR
]
⊗ ρR

]
−
∫ t

0

dt′TrR
[
V (t),

[
V (t′), ρNZ

s (t′)⊗ ρR
]]
, (3.11)

where ρs(t) is the reduced density matrix of the TLS, ρR = |α⟩⟨α| denotes the

initial multimode photon density matrix and has no time dependence. The non-

vanishing first and second terms are due to fact that TrR[V (t) ⊗ ρR] ̸= 0. Using

the multimode JC interaction in Eq. (3.1) and the relation in Eq. (3.4), we trace

out the photon reservoir and arrive at the NZ ME:

d

dt
ρNZ
s (t)

= −i
Ω(t)

2

[
σ+e

iϕ + σ−e
−iϕ, ρNZ

s (t)
]

−
∫ t

0

dt′K(t− t′)
[
σ+σ−ρ

NZ
s (t′)− σ−ρ

NZ
s (t′)σ+ + h.c.

]
,

(3.12)

where K(t − t′) is just the contraction function in Eq. (3.8). The second order

TCL ME can be obtained simply by the replacement ρTCL
s (t′) → ρTCL

s (t) in the

integrand.

It is clear from Eq. (3.12) that the NZ ME and TCL ME belong to the class

of additive ME in Eq. (3.10), where the corresponding superoperators L̂(t− t′) do

not depend on the control, and thus both of them have neglected the quantum

interference effect between the control and dissipation. This can be explicitly

illustrated by using a simple non-Markovian system, the single mode JC model,

where an exact solution is available. This situation corresponds to a constant

contraction function K(t − t′) = g2, infinite correlation time τc = ∞, γ = 2 and

T2 =
√
2/g. We consider an initially excited TLS under a single mode coherent

drive with n̄ = 100π2, so that the system undergoes a 4π rotation when gt =

0.2. Fig. 3.3 compares the difference between different approaches and the exact
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Figure 3.3: A comparison between the diagrammatic methods and the ME ap-
proaches using a coherently driven single mode JC system with n̄ = 100π2, cor-
responding to a 4π rotation at gt = 0.2. The magnitudes of errors of the ME
approaches and the classical Rabi solution are comparable even in the small time
regime.

solution for P++(t) = p++;++(t). Here, the diagrammatic solution, based on the

three diagrams in Fig. 3.2e, shows an excellent agreement with the exact solution in

the small gt regime. The error of these three diagrams is O[(gt)4]. On the contrary,

these two ME methods, expected to be the same and accurate to the second order

of gt [12, 13], show errors of the same order of magnitude. The error of the NZ

solution is very close to that of the classical Rabi solution (P++(t) = cos2(g
√
n̄t))

which entirely neglects any decoherence effect; while the error of TCL result shows

a phase difference from the NZ and classical solution because of the approximation

ρTCL
s (t′) → ρTCL

s (t) in the integrand of the ME.

The problem of these ME approximations stem from the assumptions of

a stationary environment, which is inappropriate for a quantum system under

a general control. Quantum feedback from the photon environment to the TLS

exists and originates from the quantum interference between the control and the
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environment. In fact, the difference between the field theoretic solution and the

additive ME method can be viewed as the difference between the quantum and

semiclassical correlations. This difference is not limited to the single mode test

above and occurs for a general non-Markovian multimode system.

3.3.2 Higher order terms

The precision of the diagrammatic solution can be further improved by

including higher order diagrams. In general, the inclusion of diagrams with n

contractions would result in an error of O[(t/T2)
(n+1)γ]. Fig. 3.4 provides the next

order diagrams that possess two contractions for p++;++(t). They can be evaluated

by using the same procedure described in Section 3.2.1. As an example, Fig. 3.5

plots the absolute difference of P++(t) between different methods and the exact

solution in log scale under the same physical situation as in Fig. 3.3. It is apparent

that the diagrammatic solution has a well-controlled error bound in the small time

domain.

3.4 Control by photon states other than coher-

ent state

The field theoretic technique can be formulated similarly when the TLS

is initially in the presence of a quantum photon state other than the coherent

state. The Wick’s expansion is still valid, though the diagrammatic rules have to

be modified. Here, we extend this formalism to the multimode squeezed coherent

state and the multimode photon number state. Rather than exploring all possible

scenarios, the purpose of this section is to demonstrate how diagrammatic solutions

can be constructed with different initial photon states.

3.4.1 Squeezed coherent state

A multimode squeezed coherent state takes the form |α, ξ⟩ = D(α)S(ξ) |0⟩,
where D(α) is the multimode displacement operator and we take the multimode
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Figure 3.4: Fifteen dressed diagrams with two contractions for p++;++ under a
coherent control.

squeezing operator to be S =
∏

k exp
(
ξ∗ak̄+kak̄−k − ξa†

k̄+k
a†
k̄−k

)
[14]. k̄ governs

on the squeezing mechanism. The problem is to evaluate Eq. (3.7) using |α, ξ⟩
instead of |α⟩.

Making use of the squeezing transformation, we can rewrite Eq. (3.7) by

the replacement Ai → Ãi = S†AiS, A
†
j → Ã†

j = S†A†
jS and D(α) → D̃(α) =

S†D(α)S, where each photon operator transforms according to

S†akS = ak cosh r − a†
2k̄−k

eiθ sinh r,

S†a†kS = a†k cosh r − a2k̄−ke
−iθ sinh r, (3.13)

and the squeezing parameters satisfy ξ = reiθ. Now, we can proceed the Wick’s

expansion as in Section 3.2.1. The dressed lines are unaffected as the normal

ordered photon operators are just c-numbers. As such, the zeroth order diagram

remains the same. However, four types of contractions are now possible due to the
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Figure 3.5: A plot of absolute errors of different methods under the same physical
situation as in Fig. 3.3. Diagrammatic solution with n contractions has an error
of O

[
(gt)2(n+1)

]
.

squeezing:

⟨ÃiÃ
†
j⟩ = cosh2 r

∑
k

g2ke
i(ω0−ωk)(ti−tj),

⟨Ã†
i Ãj⟩ = sinh2 r

∑
k

g2ke
−i(ω0−ωk)(ti−tj),

⟨ÃiÃj⟩ = −eiθ

2
sinh(2r)

×
∑
k

gkg2k̄−ke
i(ω0−ωk)tiei(ω0−ω2k̄−k)tj ,

⟨Ã†
i Ã

†
j⟩ = ⟨ÃiÃj⟩∗, (3.14)

and they are depicted in Fig. 3.6. The above dependence of the contraction func-

tions on the squeezing parameter θ shows a phase sensitive decoherence of the

TLS.

In brief, the diagrammatic rules in Section 3.2.1 still apply with the ex-

ception that the construction of contractions in Fig. 3.2a is replaced by that in

Fig. 3.6. The leading order contribution to control noise now consists of twelve
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Figure 3.6: Eight possible contractions between photons for a squeezed vacuum.

diagrams which are similar to the three shown in Fig. 3.2e. To demonstrate the

accuracy of the diagrammatic solution, we compare it with an exact solution of a

single mode JC system under a squeezed coherent state [15]. Fig. 3.7 again shows

an excellent precision of the diagrammatic solution. Depending on the squeezing

parameters, the phase sensitive decoherence of the TLS can be greater or smaller

than that without squeezing. We note that since the decoherence time is modi-

fied to ∼ 1/(g cosh r), the small time requirement becomes g cosh(r)t ≪ 1 for the

validity of the perturbative solution.

The above squeezed state analysis works similarly for the more general

linearly transformed coherent state D(α)T |0⟩, where T is any unitary operator

that transforms the photon operators linearly, T †akT =
∑

k′

(
ukk′ak′ + vkk′a

†
k′

)
.

The diagrammatic solution shows that the coherent motion of the TLS remains

the same, while the decoherence can be computed straightforwardly by using the

modified contraction functions similar to Eq. (3.14).

3.4.2 Number state

The dynamics between a TLS and a multimode number state is more com-

plicated. A single photon process can project the photon state to be orthogonal

to the initial state. It is a daunting task to keep track of the time evolution of a

number state with an arbitrary photon number distribution. With the help of the



56

ç ç ç
ç ç

ç

ç

ç
ç

ç

ç
ç

ç

ç

ç

á á á
á

á á
á

á
á

á

á

á á

á

á

ó ó
ó

ó ó

ó

ó

ó

ó

ó

ó ó

ó

ó

ó

r = 0,   2Φ+Θ = 0

r = 0.5, 2Φ+Θ = 0

r = 0.5, 2Φ+Θ = Π/2

0.05 0.10 0.15 0.20
g t

-0.02

-0.01

0.00

0.01

P++HtL-P++
classical

HtL

Figure 3.7: P++(t) − P classical
++ (t) of an initially exited TLS under a single mode

squeezed coherent state with n̄ = 100π2 for various squeezing parameters. ϕ is the
phase of α∗ and θ is the phase of squeezing. The curves and symbols correspond
to the diagrammatic and exact solutions, respectively.

diagrammatic technique, we shall see below how it is possible to tackle a number

state of the form |N, {0}⟩, where {0} is a multimode vacuum.

The idea is again to make use of the Wick’s expansion of the photon opera-

tors in Eq. (3.7), where the coherent state is replaced by |N, {0}⟩ here. We assume

the N -mode of the number state has zero detuning. The zeroth order term has all

the photon operators being normal ordered, so that each photon operator can only

annihilate or create photons in the N -mode. Thus, the time integrals in Eq. (3.7)

can be performed and the resultant expression is:

p
(0)
++;++(t) = 1−N(gt)2 +

∞∑
n,n′=1

(−1)n+n′ (gt)2n+2n′

(2n)!(2n′)!

×N(N − 1)...(N − n− n′ + 1), (3.15)

which is already different from the classical Rabi solution. The coherent photon

dressing described in Section 3.2.1 no longer applies and one has to perform an

infinite sum as in Eq. (3.15).
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Figure 3.8: Relaxation of an initially excited TLS under different initial photon
states. N = |α|2 = 103. The case with a non-dissipative single mode number state
(|N⟩) gains decoherence when a degenerate vacuum mode is added (|N, 0⟩). In the
small time region, the amount of dissipation is the same as that of a single mode
coherent state (|α⟩).

The contraction line remains as a good small parameter. The first contrac-

tion terms can be calculated as in the way to obtain Eq. (3.15). Fig. 3.8 shows the

relaxation, defined by P++(t)−P
drive(t)
++ , of a TLS driven by different initial photon

states. For simplicity, we consider the vacuum mode to be degenerate with the

N -mode, so that the contraction function is time independent. We define the driv-

ing term P drive
++ (t) = cos2(g

√
N + 1 t) and cos2(g|α|t) for the number and coherent

states, respectively. In the case of a single mode number state |N⟩, no relaxation is

seen as expected. However, when we consider a number state with one degenerate

vacuum mode |N, 0⟩, dissipation is observed due to the interference between the

control photon and the vacuum. The amount of decoherence increases linearly

with the number of degenerate vacuum modes present. It is also interesting to

observe that the decoherence of |N, 0⟩ is equal to that of a single mode coherent

state |α⟩ in the small time regime.

The diagrammatic approach serves as a first step towards a precise treat-
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ment of this multimode number state problem. The generalization to deal with

states having a general photon number distribution remains as a challenge. The

ME approximation schemes are even worse at accounting for the decoherence ef-

fect of this problem compared to their efficiencies in coherent state case. Following

the discussion in Section 3.3, one can show that for an initial photon state |N, 0⟩,
the NZ ME leads to a non-dissipative oscillations of the TLS, where P++(t) can be

negative even in the small time regime gt ≪ 1. The TCL ME results in a Gaussian

decay (P TCL
++ (t) ≈ [1 + exp (−2Ng2t2)]/2, for N ≫ 1), where the Rabi oscillations

are lost. Their failures again originate from the inability to capture the coupled

dynamics between the control and the environment.

3.5 Summary

The diagrammatic formalism provides a new platform to understand and

compute the interaction dynamics among the quantum system, the control photon

and the environment. Its high accuracy is attributed by the full account of the

unitary evolution of the wavefunction of the whole system without any stochastic

assumption. The revelation of underlying physical processes by the diagrammatic

structures enables a perturbative computation scheme for systems under fast pho-

ton control versus slow relaxation, with well-defined error bounds. It also serves as

an extension of the standard field theoretic techniques in quantum electrodynamics

and many-body problems to systems far from equilibrium.

The ME approach has been a good phenomenology to provide qualitative

understandings of open quantum systems. Given the recent advances in high

precision quantum technologies, there is a need to reexamine and improve the ac-

curacies of the existing theories. The diagrammatic solution indicates the absence

of quantum interference between the control and the environment in current ME

approximations. This general effect is not restricted to a TLS interacting with a

single mode photon state. We believe that the diagrammatic results can motivate

improvements of conventional ME studies and stimulate the developments of other

novel quantum theories. There is hope that more quantum mechanical effects of
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open quantum systems will be uncovered in the future.
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Chapter 4

Robust distant-entanglement

generation using coherent

multiphoton scattering

In this chapter, we describe a protocol to entangle two qubits at a distance

by using resonance fluorescence. The scheme makes use of the postselection of large

and distinguishable fluorescence signals corresponding to entangled and unentan-

gled qubit states, and has the merits of both high success probability and high

entanglement fidelity owing to the multiphoton nature. Our result shows that

the fluorescence statistics are, respectively, sub-poissonian and super-poissonian

for entangled and unentangled pairs of electronic spin, and do not affect the ro-

bustness of entanglement generation. Based on current experimental efficiencies

of photon collection and detection, we demonstrate that this new protocol has an

average entanglement duration within the decoherence time of corresponding qubit

systems.

4.1 Introduction

The generation and controllability of entanglement between distant quan-

tum states have been the heart of quantum computation and quantum information

processing. Since the early proposal of entanglement generation in atomic ensemble

62
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systems [1], many theoretical ideas have been put forward [2, 3, 4, 5] and exper-

imental demonstrations of distant entanglement have been recently performed in

trapped ion systems [6, 7, 8], with an average entanglement fidelity being up to

90%. These existing approaches to generate entanglement is based on postselec-

tion using single-photon measurement [1, 2, 3], and have the merit of high fidelity

entanglement creation. However, due to the inefficiency of single-photon detection,

these protocols have a rather low success probability in practice (∼ twenty billionth

in trapped ion experiments [5]). This limitation leads to the average entanglement

time being longer than the decoherence time of the qubit. To counter this difficult,

much experimental effort has been devoted to improve the single-photon collection

efficiency in various qubit systems [9, 10, 11].

Alternative theoretical proposals to generate entanglement make use of Ra-

man transitions of qubit systems embedded in a cavity [12, 13]. This scheme

utilizes bright coherent light and thus is expected to be more efficient than the

single-photon protocols, but at the expense of a moderate entanglement fidelity

due to the cavity loss and spontaneous emission. Solution to overcome the sen-

sitivity to spontaneous emission has been suggested replacing the coherent input

light by either the Fock or the NOON states [14], which is experimentally more de-

manding. Therefore, there exists a dichotomy in the architecture of entanglement

generation that is either based on a low rate, high fidelity single-photon measure-

ment, or a more effective, coherent photon protocol that has comparatively less

fidelity.

To tackle such a dilemma, in this chapter we introduce a robust and cavity-

free distant entanglement protocol using resonance fluorescence. By coupling the

laser photons with the qubits in a Mach-Zehnder type interferometer, the outgoing

fluorescence signals can have very different number of photons depending on the

entanglement status of the qubits. We can thereby achieve entanglement between

these distant qubits through the postselection of the detected many-photon states.

This multiphoton method does not require any single-photon detector, or sensitive

phase measurement, thus have a higher rate of success without sacrificing the

entanglement fidelity. Fluorescence is highly effective for its detection [15] and for
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Figure 4.1: (a) Schematic for the entanglement of distant qubits based on mul-
tiphoton scattering. Two circularly polarized laser modes split from a laser by
the first beam splitter (BS-1) are directed to excite two qubit systems at reso-
nance. The scattered fluorescence signals are collected to interfere at the second
beam splitter. Due to the optical selection rule, the fluorescence signal serves as
a fingerprint of the state of the electronic spin such that its detection at b1 would
postselectively project the two qubits state to an entangled state. (b) provides an
example of energy levels in the QD qubit system, where the laser only selectively
couples the −3/2 trion state |Tz−⟩ and the −1/2 spin state |−⟩.

this reason, has been used in the proposal of entanglement distribution in quantum

repeaters once entanglement is created [16]. Our scheme takes the same advantage

of fluorescence and only involves the detection and distinguishabilty of the many-

photon fluorescence signals, feasible using current experimental technology.

4.2 The entanglement mechanism

Fig. 4.1(a) shows our setup to entangle two distant qubits. For illustrative

purpose, we consider the singly charged quantum dot (QD) as our qubit systems

[17, 18], where each dot consists of four energy levels as shown in Fig. 4.1(b).

Direct generalization to other qubit systems, such as the diamond nitrogen-vacancy

center, is straightforward. The two electronic spin states |±⟩ form the qubit states,
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while only the |−⟩ state would be optically coupled to the spin −3/2 trion state

|Tz−⟩ through the right-handed circularly polarized laser due to the selection rules.

In our scheme, we first split the circularly polarized laser pulse by a polarization-

independent beam splitter (BS-1) [19], and then direct the outgoing beams to drive

the two distant qubit systems. The resonance fluorescence signals scattered from

the qubit systems are collected, say by optical lenses and then pass through another

beam splitter (BS-2). Owing to the state dependence of the resonance fluorescence,

the scattered multiphoton state is entangled with the entire qubit system. Consider

each qubit is initially prepared in the state |x+⟩ = (|+⟩+ |−⟩) /
√
2, the qubit-

photon wavefunction after the second beam splitter is given by:

UBS

2

[
|++⟩ |0; 0⟩+ |−+⟩ |β; 0⟩+ |+−⟩ |0;−iβ⟩+ |−−⟩ |β;−iβ⟩

]
, (4.1)

where UBS represents the beam splitter transformation and |β;−iβ⟩ denotes the

multiphoton state scattered from the qubits. We note that the resonance fluores-

cence photon state is not a coherent Glauber state and the effect of UBS on it is

not just a simple photon amplitude transformation. We shall see below that the

multiphoton states associated with |+−⟩ and |−+⟩ share the same mean number

of photons, but are macroscopically different from the remaining two states. In

consequence, a detection of the final photon state would project the qubit system

to an entangled state with a probability of 1/2. Such a postselection scheme shares

the same high entanglement fidelity as in the single-photon protocol, but exponen-

tially boosts up the entanglement efficiency as only multiphoton measurement is

involved.

The many-photon resonance fluorescence establishes a robust entanglement

between the photons and the qubits. The photon dynamics is governed by:

as,k(t) = e−iωktas,k(0)− igk

∫ t

0

dt′σs,−(t
′)e−iωk(t−t′), (4.2)

where ωk and gk are respectively the photon frequency and dipole-electric cou-

pling, σ− = |−⟩ ⟨Tz−|, and s = 1, 2 denotes the upper or lower channel of the

interferometer. The first term provides the laser input route, while the second
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Figure 4.2: Time and Rabi frequency dependences of the average number of
photon detected at b1 for η = 1. Apart from the signal corresponding to the |++⟩
state, the fluorescence signals increase linearly with time when t ≫ T1 and are
distinct, except in the field regime ΩT1 ∼ 0.7.

term corresponds to the scattered photons through resonance fluorescence and is

further transformed by the second beam splitter. For our process, the entangle-

ment is heralded by the photons arriving at detector b1, different from the double

click scenario in the single-photon scheme.

The state-selective number of photons being detected at b1 can be evaluated

by the optical Bloch equation [20] as:

nb1;++(t) = 0,

nb1;+−(−+)(t) =
η

4T1

∫ t

0

dt′
⟨
σ2(1),z(t

′) + 1
⟩
, (4.3)

nb1;−−(t) =
η

2T1

∑
s,s′

∫ t

0

dt′(−1)s+s′ ⟨σs,+(t
′)σs′,−(t

′)⟩ ,

Here, T1 is the relaxation time for the transition |−⟩ ↔ |Tz−⟩, and η is the efficiency
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of both photon collection and detection. Fig. 4.2 plots the maximum number of

detected photons (i.e. η = 1) as a function of time and Rabi frequency, Ω of the

qubit. Large numbers of photons are generated conditioned on the qubit states and

increase linearly with time when t ≫ T1. The distinguishability between nb1;+−(−+)

and the other two numbers of photons in most of the region allows a probabilistic

entanglement generation by postselection with an ideal probability of 1/2, com-

pared to 1/4 in the single-photon protocol. We note that the dark transitions due

to the hole mixing in QD system [21], which would lead to an estimated 1% of

fluorescence photons, are negligible in this many-photon entanglement scheme.

The field dependence of the detected photons divides the entanglement

scheme into two regimes. For low driving field (ΩT1 ≪ 0.7), the entangled state

has fluorescence photon number being much larger than that of the unentangled

one. This resembles a Glauber state situation. If we approximate the fluorescence

photon state |β⟩ in Eq. (4.1) as the Glauber state, then the second beam splitter

will simply transform |β; 0⟩ to
∣∣iβ/√2;β/

√
2
⟩
and |β;−iβ⟩ to

∣∣0;√2β
⟩
, so that

no photon would be available in the detector b1 for the |−−⟩ state. The fact

that there is a finite but small signal in nb1;−− reflects the non-Glauber nature

of the fluorescence signal. On the other hand, for large Rabi frequency (ΩT1 >

0.7), nb1;−− exceeds nb1;±∓ and the Glauber characteristics of the photon state

entirely disappears. In both regimes, entanglement generation is feasible, though

the high field region would be more effective due to its larger number of fluorescence

photons.

4.3 Noise analysis

We now analyze the noise of our entanglement scheme. Unlike the single-

photon protocol whose fidelity is limited by dark counts in the experiment, our

multiphoton entanglement approach is not sensitive to the background noise, but

relies on a clear distinction between large fluorescence signals. The study of photon

statistic in resonance fluorescence has been well studied since Mandel [22] and has

been verified in atomic experiments [24]. We make use of the same approach by
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Figure 4.3: Fluctuations in the number of detected fluorescence photons for var-
ious field strengths. Shaded areas refer to the region of nb1 ± ∆nb1 . Signals cor-
responding to entangled and unentangled states can be easily separated with a
fidelity larger than 95% in both the low and high field domains.

Mandel in our entanglement process and compute the fluctuations in the number

of detected photons by [22]:

∆nb1(t)
2 = nb1(t) +

η2

2T 2
1

∑
s1,s2,s3,s4

∫ t

0

dt2

∫ t2

0

dt1

×(−1)s1+s2+s3+s4 ⟨σs1,+(t1)σs2,+(t2)σs3,−(t2)σs4,−(t1)⟩ .

(4.4)

The four-point correlation functions can be evaluated using the quantum regression

theorem [20], being applicable for our qubit system.

Fig. 4.3 illustrates how the noise of the maximally detected fluorescence

photons depends on the qubit state. It is clear that the many-photon fluorescence

signals are differentiable in both the low and high field regimes, even in the presence

of photon number fluctuation. A long time operation is necessary for increasing

the number of fluorescence photons as well as suppressing the signal to noise ratio.
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(a) 

(b) 

(c) 

Figure 4.4: (a) and (b) show the field dependence of photon fluctuations for
entangled and unentangled states at t/T1 = 103. Dotted lines represent poissonian
noises. ∆nb1;±∓ and ∆nb1;−− are sub-poissonian and super-poissonian respectively.
(c) provides the corresponding Mandel parameters. The super-poissonian statistics
is not significant enough to destroy the distinguishability of fluorescence signals.

High field is preferred for the same reason. The fluorescence signal saturates at

ΩT1 ∼ 3 and approaches the asymptotic values nb1;±∓(t) → t/4T1 and nb1;−−(t) →
t/2T1 at larger field strength.

Fig. 4.4 details the field dependence of the noise statistic of photons for

the entangled and unentangled states for η = 1. At large time (t/T1 = 103), the

photon signal corresponding to the entangled state demonstrates a sub-poissonian

statistics as shown in Fig. 4.4(a). This result is just the same as that of the stan-

dard resonance fluorescence, since the entangled state only consists of fluorescence

photon from either one of the qubit. By contrast, the photons associated with

the unentangled state |−−⟩ exhibits super-poissonian behavior in the entire field

domain. Fig. 4.4(c) shows that the Mandel parameter, Q = (∆nb1)
2/nb1 − 1,

for the unentangled state can be as large as 1 in the low field regime and ap-

proaches to the asymptotic value of 1/3 in the large field limit, in agreement with

the non-Glauber character of the photon state described above. We remark that
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the Mandel parameter is limited by the photon collection and detection efficiency,

so that |Q| ∼ η ≪ 1 and the measured photon statistics will be very close to

poissonian in the realistic experimental situation.

4.4 Efficiency study

An important aspect of all the entanglement mechanism is the average

entanglement rate. The low efficiency of the entanglement protocol using single-

photon detection severely limits the rate of each successful operation. For instance,

in the existing trapped ions experiment [5], the success probability is as low as

∼ 2.2× 10−8, leading to an average entanglement time around 600 s, longer than

the decoherence time of the trapped ion qubit. This posts a dramatic restriction to

the scalability of the corresponding qubit systems. While experimental technique

is advancing to increase the efficiency of single-photon collection and detection, our

entanglement generation scheme based on the many-photon resonance fluorescence

signal does not possess such a problem and can have a success probability close

to unity. We discuss our entanglement rate in the following. Our entanglement

scheme depends on the distinction of fluorescence signals corresponding to entan-

gled and unentangled states (Fig. 4.3). In the large field region (ΩT1 > 3), these

two signals are already well separated with a confidence level (or fidelity) being

more than 95%, when η × t/T1 ≈ 100. In other words, we can easily reach the

ideal success probability (i.e. 1/2) using a “long” operational time, depending on

η. Taking the same trapped ion example, the collection and detection efficiencies

are 2% and 15% respectively, so that η = 3× 10−3. This corresponds to our aver-

age entanglement time being ∼ 6.7 × 104 T1 ≈ 530 µs (T1 being the spontaneous

emission time for the 2P1/2 to 2S1/2 transition in the trapped ion qubit), which is

six orders less than that of the single-photon protocol and more importantly, much

shorter than the decoherence time of the trapped ion system. Similarly, for the

nitrogen-vacancy center qubit system with a typical spontaneous emission time

∼ 10 ns [23], an average entanglement time of several hundred microseconds can

be achieved with the same order of η, and is below its millisecond coherence time
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scale.

The same is true for the QD qubits in spite of the relatively less decoher-

ence time. In the singly charged QD system, the upper trion state roughly has the

relaxation time T1 ≈ 0.1 ns [17]. Taking realistic collection (6.7%) and detection

(15%) efficiencies in the resonance fluorescence experiments [24], our multiphoton

entanglement scheme has an average entanglement time ∼ 2 µs, which is within

the electron coherence time achieved in the spin echo experiment of a single QD

[25]. Such a coherence time scale can also be reached by using the coherent dark-

state spectroscopy [26, 27]. This many-photon entanglement scheme has to be

contrasted with the single-photon protocol that would instead result in an esti-

mated time to entangle two distant QDs to be of the order of ten milliseconds

on average, based on the existing physical parameters. In other words, unlike the

single-photon entanglement protocol that requires a sharp improvement in the ex-

perimental performance of single-photon measurements, the multiphoton approach

is more suitable for a scalable qubit entanglement under the current experimental

condition.

Another advantage of this multiphoton entanglement method is its insen-

sitivity to the mismatch of the optical characters of the two qubits. The single-

photon protocol is based on the Hong-Ou-Mandel interferometry that relies on

a good frequency matching of the spontaneously emitted photons from two dif-

ferent qubits. Slight discrepancy in the resonant frequency of qubits in QD sys-

tem would lead to a wrong double click signal even though the qubits are not

entangled, thereby depress the overall entanglement fidelity in the single-photon

mechanism. Our scheme is more robust in this aspect. Consider two qubit sys-

tems having different resonant frequencies (ω0, ω
′
0), Rabi frequencies (Ω,Ω′) and

relaxation times (T1, T
′
1), but the same photon collection and detection efficiency.

According to Eq. (4.3), the large field behaviors of the fluorescence signals in

this situation are that nb1;++ = 0, nb1;+− ≈ η t/4T1, nb1;−+ ≈ η t/4T ′
1 and

nb1;−− ≈ (η t/4)(1/T1 + 1/T ′
1). This means that our entanglement method is

insensitive to frequency mismatch, and the |−−⟩ state is still differentiable from

the other states for a moderate difference in T1. In order to maintain the coherence
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of the entangled state, the difference in the corresponding fluorescence signals can-

not be too large, i.e. |nb1;+− − nb1;−+| < ∆nb1;±∓. For ηt/T1 ≈ 100, this roughly

corresponds to a ten percent relative discrepancy in the relaxation rate. In this

regime, a high rate and fidelity entanglement is still feasible.

4.5 Summary

In summary, we have introduced a new entanglement generation scheme

using postselection of coherent multiphoton signals. It improves on the single-

photon protocols by increasing the success probability and the average entangle-

ment rate by several orders of magnitude, while maintaining the high fidelity of

entanglement. Without significant enhancement in single-photon measurement

efficiency, nor surrounding the qubit by an optical cavity, this proposed multipho-

ton protocol already allows an average entanglement of two distant qubits before

their decoherence based on current experimental technologies, while experimen-

tal improvements would further reduce the operational duration. We believe this

would open a new direction in the design of hybrid multiphoton-qubit network in

quantum information processing.
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Chapter 5

Conclusion and outlook

In this chapter, we summarize the main results of this dissertation. Relevant

future directions will also be discussed.

Owing to the need of a high accuracy standard in quantum technology, we

have reexamined existing open quantum system theories and have developed a new

theoretical framework to evaluate the interaction dynamics of a quantum system

under a quantum photonic control and photonic environment. We have demon-

strated how this approach is particularly suitable for solving the open quantum

system problem. This new theoretical direction goes beyond the traditional Master

equation paradigm in several ways. It is precise, has a well-controlled error bound

and is suitable for calculating the quantum decoherence and quantum noise in the

time scale of a fast quantum operation versus slow decoherence, which is relevant

to the quantum information technology. This technique does not require any a pri-

ori stochastic assumption and is applicable to both Markovian and non-Markovian

environments. It is not restricted to deal with semiclassical photonic control and

is applicable to a general photonic control state. All quantum correlations among

the system, the quantum control and the environment are maintained under this

new methodology.

The diagrammatic approach developed so far can have a lot of possible

extension. One important direction is to go beyond the small decoherence time

regime. The long time behavior of an open quantum system becomes important

when we attempt to prolong the decoherence time, say by the dynamical decoupling
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scheme, where a sequence of pre-designed photon pulses are applied to the system,

in a way to try to effectively decouple the system from the environment and extend

the decoherence time. In this scenario, the time regime longer than the intrinsic

decoherence time scale would be of interest. While the long time behavior of

the open quantum system is a challenging question to all open quantum system

theories, the diagrammatic approach could provide a better way to tackle this

problem by performing partial summations of the long time diagrams, similar to

the Bethe-Salpeter approximation well-known in condensed matter physics and

high energy physics. The advantage of using diagram is that an error bound can

always be well defined.

Another interesting generalization of the current diagrammatic theory is to

apply it to systems with a spin environment. This is important to quantum dot and

diamond nitrogen vacancy center qubit systems, as their decoherence mechanisms

are mainly due to the surrounding nuclear spin environment. For this spin bath

problem, a possible application of the diagrammatic approach is to first transform

the nuclear spin into either Schwinger boson or Holstein-Primakoff boson, so that

the Wick’s expansion can be easily applied. We believe this novel approach can

provide some new insights to the spin bath problem.

On the other hand, we have also made use of the photonic environment to

engineer quantum entanglement between distinct qubit systems. The driven qubits

emit large and different fluorescence photons that allow the distinguishability of

entangled and unentangled qubit states. Therefore, based on the detection of flu-

orescence signals, one can postselectively project the qubit states to the entanlged

states, even though they have no local interaction. This entanglement generation

scheme based on multiphoton scattering shows a remarkable improvement in en-

tanglement efficiency, compared to the single photon approach. An interesting

extension of this work is to employ a non-Markovian photonic environment. One

possible scenario is the Jaynes-Cummings qubit-photon system, where interesting

phenomena, like the collapse and revival of the qubit, can occur due to the non-

Markovian nature of the environment. It will be interesting to see whether we can

utilize this effect for entanglement generation.




