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Microbiome

Discovery of robust and highly specific 
microbiome signatures of non-alcoholic fatty 
liver disease
Emmanouil Nychas1†, Andrea Marfil-Sánchez1†, Xiuqiang Chen1, Mohammad Mirhakkak1, Huating Li3, 
Weiping Jia3, Aimin Xu4,5,6, Henrik Bjørn Nielsen7, Max Nieuwdorp8, Rohit Loomba9, Yueqiong Ni1,3,10* and 
Gianni Panagiotou1,2,5,10* 

Abstract 

Background The pathogenesis of non-alcoholic fatty liver disease (NAFLD) with a global prevalence of 30% is mul-
tifactorial and the involvement of gut bacteria has been recently proposed. However, finding robust bacterial signa-
tures of NAFLD has been a great challenge, mainly due to its co-occurrence with other metabolic diseases.

Results Here, we collected public metagenomic data and integrated the taxonomy profiles with in silico generated 
community metabolic outputs, and detailed clinical data, of 1206 Chinese subjects w/wo metabolic diseases, includ-
ing NAFLD (obese and lean), obesity, T2D, hypertension, and atherosclerosis. We identified highly specific microbiome 
signatures through building accurate machine learning models (accuracy = 0.845–0.917) for NAFLD with high port-
ability (generalizable) and low prediction rate (specific) when applied to other metabolic diseases, as well as through a 
community approach involving differential co-abundance ecological networks. Moreover, using these signatures cou-
pled with further mediation analysis and metabolic dependency modeling, we propose synergistic defined microbial 
consortia associated with NAFLD phenotype in overweight and lean individuals, respectively.

Conclusion Our study reveals robust and highly specific NAFLD signatures and offers a more realistic microbiome-
therapeutics approach over individual species for this complex disease.

Keywords NAFLD, Gut microbiota, Metabolic diseases, Machine learning, Network analysis, Metabolomics, Microbial 
consortia
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Background
Up to 40% of the general population in the western world 
has non-alcoholic fatty liver disease (NAFLD), making 
it the most frequent cause of chronic liver disease [1]. 
Despite numerous studies into NAFLD, its pathophysi-
ology is still poorly understood and entails complicated 
interactions between variations in genetic susceptibility, 
environmental variables, insulin resistance, and the gut-
liver axis [2]. Gut microbiota plays an essential role in the 
disruption of the gut–liver axis and the pathogenesis of 
NAFLD [2]. Based on the composition, functionality, and 
metabolic output of intestinal microbiota, we and oth-
ers have developed microbiome-augmented models for 
the diagnosis of advanced fibrosis [3] and cirrhosis [4] 
and for the risk assessment for the development of liver 
disease [5] and NAFLD [6]. In addition, targeting the gut 
microbiota as a possible therapeutic avenue for NAFLD 
has been widely investigated, including manipulation of 
the microbiota by antibiotic therapy, prebiotics, probiot-
ics, and synbiotics [2, 7].

Although NAFLD-associated microbial changes have 
been detected across various studies, suggesting robust 
and specific microbiome signatures for NAFLD remains a 
challenge, due to clinical, biological, and methodological 
reasons. First, metabolic diseases such as type 2 diabetes 
(T2D), hypertension, and cardiovascular diseases, usu-
ally co-occur with NAFLD creating obstacles in differen-
tiating NAFLD-specific microbiome signatures from the 
other diseases [8]. Second, obesity is a well-recognized 
risk factor for and is inexorably related to NAFLD. How-
ever, around 20% of the patients with NAFLD are lean or 
non-overweight (BMI < 25), whom nevertheless exhibit 
similar cardiovascular- and cancer-related mortality 
compared to overweight (BMI > 25) NAFLD individuals 
and increased all-cause mortality risk [9]. Growing data, 
mostly based on 16S rRNA, suggests that lean people 
with NAFLD have a unique gut microbiome composition 
compared to overweight individuals with NAFLD, which 
is associated with clinical indices of NAFLD progression 
such as ALT, AST, GGT, and more [9, 10]. Third, multi-
ple confounding factors of the study cohorts (age, gender, 
geographical location), drug intake, sequencing technol-
ogies, diet, and heterogeneity of analytic pipelines affect-
ing the microbiome composition and annotation must be 
considered [8].

In addition, compared with individual species, resolv-
ing the complexity of NAFLD would benefit more from 
the investigation of the combinatorial effects of mul-
tiple microbial species in the context of a community, 
as shown before [11, 12]. Even though there might be 
species that are de facto beneficial or detrimental for 
a disease, the impact of others can be conditional and 
dependent of the particular microbiome constellation. 

The therapeutic potential of one individual species, even 
being backed up with preclinical models [13, 14], could 
be difficult to be replicated in humans. Indeed, though 
supplementation of, e.g., Akkermansia muciniphila has 
improved several metabolic parameters in a randomized 
controlled trial [15], such studies influencing the host 
phenotype using individual microbes are still scarce 
compared to the whole fecal microbiota transplantation 
(FMT) [16, 17]. Nevertheless, considering the recent risks 
associated with FMT [18, 19], moving to well-defined 
microbial consortia represents an attractive alternative 
[20].

Changes in the gut microbiota composition can lead 
to an alteration of the microbes-derived molecules and 
metabolites that influx in the systemic circulation [2]. 
Moreover, through the production of metabolites such as 
bile acids (BA) and short-chain fatty acids (SCFAs), gut 
microbiota impacts fat absorption in the liver and thus 
the development of a steatotic condition [2]. While the 
impact of the functional potential and especially the met-
abolic output of the microbiome on the development and 
progression of the disease is increasingly appreciated, the 
large variation in different metabolomics platforms and 
the challenges with cross-study integration have also hin-
dered the identification of consistent microbiome-associ-
ated metabolic signatures related to NAFLD.

To understand the unique changes of gut microbiota in 
NAFLD compared to other metabolic diseases, we per-
formed a large-scale meta-analysis of gut microbiota for 
1206 subjects (same ethnicity: Chinese) with or without 
NAFLD or other metabolic diseases often co-occurring 
(obesity, T2D, hypertension, atherosclerosis) who had 
well-characterized clinical profiles. We analyzed shotgun 
metagenomics data generated using similar sequencing 
methodologies to reduce technical bias, and character-
ized in silico the metabolic output of all the microbiome 
communities involved to allow for the first time com-
parisons of these metabolic diseases at the microbial 
metabolite level. With a unified analytical framework, we 
proposed robust and highly specific NAFLD microbial 
signatures and microbial consortia with a potential role 
in driving or preventing disease development.

Methods
Study cohorts
In this study, we collected publicly available shotgun 
metagenomic sequencing data from 7 microbiome stud-
ies, together with one additional study for validation, 
which were all processed through the same pipeline. The 
studies related to NAFLD included (i) a NAFLD cohort 
diagnosed with MRS (N = 100) [7], (ii) a biopsy-proven 
cohort containing NAFLD (N = 81) and non-NAFLD 
(N = 10) subjects (BioProject ID: PRJNA732131), (iii) a 



Page 3 of 21Nychas et al. Microbiome           (2025) 13:10  

non-NAFLD cohort diagnosed with ultrasound (N = 204) 
[6], and (iv) a biopsy-proven cirrhosis cohort (used for 
ML validation) containing NAFLD-Cirrhosis patients 
(N = 27) and non-NAFLD subjects (N = 54) [4]. The sam-
ples from the cirrhosis cohort with BMI < 25 (N = 30), 
and samples with T2D (N = 24) were excluded from the 
study, in an attempt to keep in the ML validation cohort 
the samples that exclusively had NAFLD. A combination 
of NAFLD diagnosis methods (biopsy and MRI-PDFF) 
has previously been used to shed light on associations 
between microbial species or metabolites with fibrosis 
[21, 22]. The studies related to other metabolic diseases 
included (i) a cohort related to hypertension with hyper-
tension, pre-hypertension, and non-hypertension sub-
jects (N = 185) [23], (ii) a cohort related to type 2 diabetes 
with obese and lean subjects along with their respective 
controls (N = 178) [24], (iii) a cohort containing predia-
betic subjects (N = 69) [25], and (iv) an atherosclerosis 
cohort with atherosclerotic and non-atherosclerotic 
subjects (N = 405) [26]. Lastly, for the validation of spe-
cies interaction, we used 928 samples from a population-
based Health Professionals Follow-up Study (HPFS) [27], 
with their taxonomic data available in the R package 
curatedMetagenomicData (v3.6.2) [28]. For the cohorts 
that are not associated with a published study, ethics 
approvals were obtained by the Shanghai Jiao Tong Uni-
versity Affiliated Sixth People’s Hospital (approval no: 
2015–65-(1)) and the University of Hong Kong/Hospital 
Authority Hong Kong West Cluster (approval no: UW 
20–700) following the principles of the Declaration of 
Helsinki. Written informed consent was obtained from 
all participants.

Subjects diagnosed with NAFLD from the first 
2 cohorts were categorized as NAFLD overweight 
(NAFLD-O) and NAFLD lean (NAFLD-L), based on 
BMI (overweight ≥ 25, lean < 25). The clinical data of the 
non-NAFLD subjects, from the NAFLD-related cohorts, 
were further evaluated. Therein, participants were sepa-
rated into overweight and lean, based on the BMI criteria 
detailed above, with the overweight samples categorized 
as Control-NAFLD Overweight (CTRL-NAFLD-O). The 
lean participants were assessed against exhibiting any 
metabolic disease based on their metadata, specifically 
for hypertension (SBP ≥ 140 or DBP ≥ 90), pre-hyper-
tension (SBP = 125–139 or DBP = 80–89) [29], or type 
2 diabetes (HbA1c ≥ 6.5 or FBG ≥ 7) [24, 30], using the 
same diagnostic criteria as in the original studies. The 
participants that proved negative for all the above were 
categorized as Control-NAFLD Lean (CTRL-NAFLD-L). 
Participants who were found to exhibit only hyperten-
sion or pre-hypertension without diabetes were trans-
ferred to the hypertension and pre-hypertension cohort. 
The remaining participants who were diabetic with or 

without any form of hypertension were transferred to the 
type 2 diabetes lean group from the diabetic cohort.

Upon re-evaluating the diabetic cohort, participants 
initially categorized into the lean (T2D or non-T2D lean) 
or overweight groups (T2D or non-T2D overweight) that 
did not meet the BMI criteria were transferred to the 
relevant group. Participants from the cohorts of athero-
sclerosis and prediabetes remained unchanged and were 
subsequently categorized as atherosclerosis, control-
atherosclerosis, and prediabetes. The number of samples 
and characteristics of each group, as well as the sample 
distribution per study, were shown in Tables 1 and S1–S3.

For each disease, the same exclusion criteria were 
used as in the original study except for 4 samples from 
the control-atherosclerotic cohort, which were excluded 
due to having a BMI < 17 (severe thinness). Importantly, 
the analyzed cohorts are all free of antibiotics usage and 
almost medication-free except for 33 subjects, including 
19 atherosclerotic patients who had used metoprolol, 10 
T2D-L, and 4 Control-NAFLD-O who had taken anti-
diabetic medication. The majority of the studies shared 
additional exclusion criteria namely heart failure, renal 
insufficiency, acute infectious disease, probiotics usage, 
and cancer.

Sequencing, quality control, and taxonomic profiling
Details on sample collection and sequencing can be 
found in publications describing the original studies. For 
the quality control of the raw reads, the Sunbeam pipe-
line (v2.1) [31] was used. Human DNA contaminations 
were removed using BWA (v0.7.17) mem [32] against 
the human reference genome ucsc.hg19 and adaptors, 
low-quality reads, and bases were filtered using Trim-
momatic (v 0.36) [33]. Samples above 20 million reads 
were subsampled to 20 million. The high-quality reads 
were taxonomically profiled at different taxonomic lev-
els using MetaPhlAn 3.0 [34] with default settings, gen-
erating taxonomic relative abundances (total sum scaling 
normalization).

Functional profiling
Microbial gene family abundances were estimated using 
HUMAnN 3.0 [34] and were further mapped to the 
MetaCyc metabolic pathway database [35] and the KEGG 
database [36] to obtain the MetaCyc pathway abundances 
and KEGG Orthology (KO) abundances with species 
contribution. Tables of pathway and gene family abun-
dances were normalized to copies per million (CPM), 
including unmapped and unintegrated read mass.

Microbiome alpha and beta diversity
Alpha diversity (Shannon index) for each sample was 
calculated at the species-level with R package vegan 
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(v2.6–2) [37]. Wilcoxon rank-sum tests were used to 
test for significant differences. Weighted UniFrac and 
Bray–Curtis distances were used to calculate the beta 
diversity for species and functions, respectively. Can-
berra distance was used to calculate the beta diversity 
for metabolites. To analyze the overall change of each 
disease against its control, we normalized each disease 
group in the space of NMDS by calculating first the 
centroid of each respective control and then deducing 
it from the coordinates of relevant diseased samples. 
PERMANOVA was used for statistical comparison 
of beta diversity with adonis function in the R pack-
age vegan. Correction for multiple hypotheses test-
ing was performed with the false-discovery rate (FDR) 
approach [38].

In silico metabolomic profiling of microbiota
The in silico approach MAMBO was used to profile the 
primary metabolic output of each individual sample, 
taking microbiota taxonomic profiles as input. In brief, 
MAMBO optimizes a high correlating metabolic profile 
to a given microbiota taxonomic relative abundance pro-
file based on bacterial GEMs associated with the given 
metagenomic sample. We opted for using only GEMs 
associated with species from the metagenomics samples 
and downloaded 799 matching bacterial GEMs from the 
AGORA (https:// vmh. life) [39] and CarveMe collection 
(https:// github. com/ cdani elmac hado/ embl_ gems/ tree/ 
master/ models) [40]. Optimizations were run in a Python 
environment (v3.7) using a high-performance cluster 
(192 cores, 1 TB RAM). The samples that produced very 
low prediction scores (less than 0.3) were excluded from 

Table 1 Summary of sequencing, microbiome, clinical, and anthropometric characteristics of NAFLD and control groups

P value < 0.0005 = ***, P value < 0.005 = **, P value < 0.05 = *, P value > 0.05 = NS

Groups NAFLD-lean Control-NAFLD-lean P-value 
(Wilcoxon 
test)

NAFLD-overweight Control-NAFLD-
overweight

P-value 
(Wilcoxon 
test)

Sequencing information

Average read counts 17,230,333 19,256,681  ~ 16,752,361 19,012,027  ~ 

Library preparation 150 read length 150 read length  ~ 150 read length 150 read length  ~ 

Sequencing platform Illumina Illumina  ~ Illumina Illumina  ~ 

Company Novogene Novogene  ~ BGI, Novogene BGI, Novogene  ~ 

DNA extraction kits PSP Spin Stool DNA PSP Spin Stool DNA  ~ PSP Spin Stool DNA PSP Spin Stool DNA  ~ 

Taxonomic and functional annotation

Metaphlan 3 67.61 ± 12.38 98.1 ± 17.63  ~ 72.45 ± 19.78 91.27 ± 18.81  ~ 

Kegg pathways 154.39 ± 10.92 162.92 ± 5.71  ~ 156.53 ± 12.11 159.39 ± 7.26  ~ 

Anthropometric and clinical characteristics

Number of subjects 18 39  ~ 163 84  ~ 

Ethnicity Chinese (Han) Chinese (Han)  ~ Chinese (Han) Chinese (Han)  ~ 

Age 39.11 ± 8.41 62.45 ± 3.88 *** 34.8 ± 9.08 58.74 ± 11.44 ***

BMI (kg/m) 23.75 ± 1.22 23.29 ± 1.01 NS 34.48 ± 7.5 27.86 ± 3.04 ***

Fasting blood glucose 
(mmol/L)

5.22 ± 0.65 5.75 ± 0.39 ** 5.73 ± 1.88 6.14 ± 1.14 ***

Systolic blood pressure 
(mm Hg)

117.56 ± 12.03 116.72 ± 5.92 NS 125.48 ± 13.79 130.71 ± 13.84 ***

Diastolic blood pressure 
(mm Hg)

79.28 ± 8.39 78 ± 3.4 NS 81.72 ± 10.49 81.19 ± 6.66 NS

ALT (U/L) 31.72 ± 25.85 16.03 ± 5.9 * 53.82 ± 45.86 17.38 ± 6.68 ***

AST(U/L) 24.5 ± 10.14 22.36 ± 5.97 NS 33.01 ± 23.36 21.42 ± 4.5 ***

DBIL (μmol/L) 4.16 ± 1.4 NA  ~ 3.66 ± 1.51 NA  ~ 

TBIL (μmol/L) 13.46 ± 5.19 11.93 ± 3.98 NS 13.37 ± 5.1 11.41 ± 4.33 ***

ASTALT 0.96 ± 0.28 1.44 ± 0.25 *** 9.17 ± 107.64 1.33 ± 0.34 ***

GGT (U/L) 35.11 ± 26.8 22.92 ± 24.97 ** 46.08 ± 36.5 24.52 ± 16.86 ***

TBA (μmol/L) 2.84 ± 1.76 NA  ~ 3.57 ± 2.97 NA  ~ 

Triglycerides (mmol/L) 1.83 ± 0.66 1.2 ± 0.61 ** 2.27 ± 2.26 1.56 ± 1.28 ***

FLI 37.59 ± 17.61 14.73 ± 9.59 *** 80.16 ± 20.78 38.6 ± 21.68 ***

HOMAIR 3.06 ± 1.18 1.28 ± 0.51 *** 6.25 ± 5.84 2.14 ± 1.82 ***

Liver fat (%) 3.95 ± 2.85 1.71 ± 0.69 *** 11.23 ± 10.57 3.6 ± 6.41 ***

https://vmh.life
https://github.com/cdanielmachado/embl_gems/tree/master/models
https://github.com/cdanielmachado/embl_gems/tree/master/models
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further metabolites analysis. After removing metabolites 
that appeared in less than 80% of the samples, missing 
values of metabolite abundance were imputed with the R 
package miceRanger (v1.4.0) [41] using m = 1 and max-
iter = 100 resulting in a final list of 510 metabolites.

Data integration
Our study consists of 8 disease groups originating from 
7 distinct studies. While completely eliminating any 
potential cohort biases is challenging, we made efforts to 
minimize heterogeneity in the overall batch effects in our 
study, both within disease cohorts and throughout the 
analysis. During the study selection, we specifically chose 
to include only Chinese Han to ensure that any poten-
tial variations among different races were accounted for. 
When designing the disease-control groups we consid-
ered cohorts with comparable sequencing depth, read 
lengths, DNA extraction method, and sequencing plat-
forms used, especially for NAFLD with it being the pri-
mary group of analysis. In addition, PERMONOVA was 
used in order to ascertain that there are no significant 
differences (P > 0.05) between the NAFLD participants in 
the MRS and biopsy cohorts (Fig. S4). To detect disease 
microbiome signatures reliably, we paired each disease 
with its corresponding control. In order to avoid biases 
in the results of different original studies due to various 
technologies, we processed all collected samples using a 
unified pipeline.

While our approach is not flawless, and in general 
meta-analysis methods have drawbacks, such as dimin-
ished statistical power, they have been widely employed 
to mitigate batch effects when combining genomic 
data from different studies, and have recently demon-
strated their utility in microbiome studies [42, 43]. This 
is a proof-of-concept study that can offer the analytical 
framework for future study where all samples will be col-
lected from subjects in the same region, then processed 
and sequenced using the same technology, together with 
detailed metadata that could be considered in a cross-
disease analysis.

Random forest models for NAFLD prediction
We build Random Forest classifiers using R package caret 
(v6.0–93) [44] to discriminate NAFLD patients from con-
trol based on taxonomic, functional, and metabolic pro-
files. Firstly, we randomly split the data into 80% training 
set and 20% test set. Then, the training set was used to 
perform 100 random splits of 90% feature selection set 
and 10% validation set. For each split, feature selection 
was performed using the R package Boruta (v8.0.0) [45] 
on the feature selection set, then a Random Forest model 
was trained using the top 20 features and further tested 
on the corresponding 10% validation set. The receiver 

operating characteristic (ROC) curve and AUROC value 
for each of the 100 splits were calculated using the R 
package pROC (v1.18.0). From the 10 models with the 
highest AUROC values, the 20 features that were most 
frequently selected were then used to build a final Ran-
dom Forest model on the initial 80% training set. Lastly, 
the final model was evaluated on the unseen 20% test 
set and the final AUROC was reported. Feature impor-
tance in the final model was calculated using the func-
tion varImp from R package caret and feature prediction 
was determined by computing Shapley values using 
R package fastshap (v0.0.7) [46]. The final model was 
then validated on an external biopsy-proven cohort that 
included NAFLD-Cirrhosis patients (N = 27) and non-
NAFLD subjects (N = 54) [1]. To ensure the validation 
cohort focused solely on NAFLD, we excluded samples 
with BMI < 25 (N = 30) and those with type 2 diabetes 
(N = 24). Confusion matrices were built using function 
predict from R package caret (v6.0–93) and ROC curves 
and are under the curve (AUC) confidence intervals were 
calculated using the function roc from R package pROC 
(v1.18.0).

Portability and prediction rate analyses
Cross-study portability and prediction rate analyses 
were performed as described previously [47]. Briefly, we 
first computed the AUROC between the prediction vec-
tors for cases in the test set and controls in the external 
data set and calculated cross-study portability as (|0.5—
AUROC|)*2, obtaining a value ranging from 0 (indicating 
a complete loss of discriminatory power between cases 
and external controls) to 1 (meaning that the model can 
be used in another data set without losing discriminatory 
power). We then calculated the model’s prediction rate 
by assessing the percentage of samples from other meta-
bolic diseases that were incorrectly classified as NAFLD-
O when using a threshold set to maintain a 10% false 
positive rate (FPR) in the NAFLD-O vs. CTRL-NAFLD-
O comparison. Specifically, after evaluating the model on 
NAFLD-O and CTRL-NAFLD-O samples, we identified 
the prediction score at which only 10% of CTRL-NAFLD-
O samples were misclassified as NAFLD-O. This value 
served as our 10% FPR threshold, which we then applied 
when testing the model in other metabolic diseases. The 
prediction rate indicates the percentage of diseased sam-
ples with prediction scores above the threshold, showing 
how many were incorrectly predicted as NAFLD-O.

Differentially correlated species network
The R package MEGENA (v1.3.7) [48] was used to build 
correlation networks (module compactness P < 0.05) 
from differentially correlated species in NAFLD-O 
relative to CTRL-NAFLD-O and NAFLD-L relative to 
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CTRL-NAFLD-L. Differential correlations were calcu-
lated using the R package DGCA (v1.0.2) [49] with the 
method of Spearman with 1000 permutations. Only spe-
cies pairs with significant differential correlation (empiri-
cal P < 0.01) were included for analyses.

Associating species modules with NAFLD-related clinical 
data
Mantel test using the partial Spearman correlation coef-
ficient, adjusting for age, gender, and BMI, with 9999 
permutations from R package vegan was used to analyze 
the associations between species modules with clini-
cal data related to NAFLD (AST, ALT, GGT, FLI, liver 
fat, TGs) and to determine whether the pairs of datasets 
were significantly correlated. FLI and liver fat values were 
computed as described previously [50, 51]. Bray–Curtis 
dissimilarity matrices based on species relative abun-
dance and Euclidean distance matrices based on clinical 
data were computed to perform the test. Sparse canoni-
cal correlation analysis (sCCA) was then performed for 
each of the significant species modules against the clini-
cal data using the R package PMA (v1.2.1) [52]. The CCA.
permute function was used to select the L1 penalties for 
both datasets independently. The highest possible com-
bination of penalties that lead to significant associations 
(P < 0.05) was selected, in order to gain insights into the 
associations for as many features as possible.

Mediation analysis
On a multivariate level, the R package MODIMA [53] 
was used to infer the mediation effects of the DA metab-
olites of NAFLD-O and NAFLD-L, for the interactions of 
NAFLD modules and NAFLD-related clinical parameters 
(P < 0.05). For individual microbial features, metabolites, 
and clinical parameters, we firstly checked whether spe-
cies and metabolites were associated using a linear model 
using the lm function (P < 0.05) from the R package stats 
(v3.6.3). Next, we conducted mediation analysis using 
metabolites as mediators to assess their impact on the 
species-NAFLD clinical parameters relations using the 
mediate function from the R package mediation (v4.5.0) 
(P < 0.05) [54].

Bacterial synergistic communities
Genome-scale metabolic models (GSMMs) were down-
loaded from https:// github. com/ cdani elmac hado/ embl_ 
gems/ tree/ master/ models. All possible communities of 
bacterial species with two, three, four, and five members 
were considered. Next, the SMETANA (v1.2.0) approach 
[55] with Academic IBM CPLEX solver (v12.8.0.0) on the 
complete medium was applied to the communities using 
the downloaded GSMMs as input. Metabolic interac-
tion potential (MIP)/metabolic resource overlap (MRO) 

scores were calculated and normalized by the size of each 
community, in order to account for the bias in the num-
ber of supporting metabolites detected due to commu-
nity sizes.

Statistical analysis
Statistical analyses of clinical data, metagenomics data 
including taxonomy and functionality, and in silico 
metabolomics data were performed in R software version 
3.6.3. Clinical data were statistically compared with the 
Wilcoxon rank-sum test. Spearman correlations were cal-
culated using the R package stats.

Metagenomic data, including taxonomy and func-
tional data were transformed into pseudo-count data 
by multiplying with  106 and analyzed using ANCOM-
II (v2.1), without using th estructural zeroes option. 
Clinical data adjustments were used according to the 
dataset comparison: NAFLD-O and NAFLD-L (age-gen-
der-BMI-HOMA-IR-SBP), ATH, T2D-O, PRE-T2D-O 
and T2D-L (age-gender), HYP and PRE-HYP (age-gen-
der-BMI). Microbial features were considered statistically 
significant at the cutoff of 0.6.

Statistical comparison of metabolites followed three 
steps. Firstly, candidate metabolites were selected from 
the Wilcoxon rank-sum test using P < 0.1 as a cut-off. 
Secondly, the identified metabolites in the first step were 
investigated with an adaptive Lasso statistical design with 
a binomial distribution, adjusting for clinical data accord-
ing to the dataset comparison, using R package glmnet 
[56] (v4.1) to identify important metabolites. Finally, we 
used a fixed Lasso design using R package selectiveInfer-
ence (v1.2.5) [57] as post-selection inference method to 
identify the significance for each of the important metab-
olites (P ≤ 0.05).

Partial Spearman correlation was used to link sig-
nificantly different metabolites in each comparison with 
liver-related clinical data, adjusting for age, gender, and 
BMI, using the function pcor.test from the R package 
ppcor (v1.1) [58]. For the metabolites found significantly 
different in non-NAFLD comparisons, due to lack of clin-
ical data, the NAFLD (NAFLD-O + NAFLD-L) and Con-
trol (CTRL-NAFLD-O + CTRL-NAFLD-L) datasets were 
used to calculate the correlation.

All statistical analyses were performed with the R soft-
ware and P value < 0.05 was deemed significant unless 
otherwise stated. Correction for multiple hypotheses 
testing was performed with the false-discovery rate 
(FDR) approach [38].

Data visualization
All figures were generated by R software (v3.6.3), 
using the R packages ggplot2 (v3.3.6) [59] and 

https://github.com/cdanielmachado/embl_gems/tree/master/models
https://github.com/cdanielmachado/embl_gems/tree/master/models
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ComplexHeatmap (v2.2.0) [60], except the network plots 
that were made using Cytoscape software (v3.9) [61].

Results
Characteristics of the study cohorts
To investigate the NAFLD-specific gut microbiota 
changes in the context of other metabolic diseases, 
we collected publicly available shotgun metagenomics 

datasets covering NAFLD overweight (NAFLD-O), 
NAFLD lean (NAFLD-L), prediabetes overweight 
(PRE-T2D-O), T2D overweight (T2D-O), T2D lean 
(T2D-L), as well as cohorts with prehypertension (PRE-
HYP), hypertension (HYP), and atherosclerosis (ATH), 
which were all at the overweight borderline (Fig.  1A). 
Their corresponding control subjects were also retrieved, 
and a wide range of clinical characteristics was further 

Fig. 1 Study design overview and structure differences in microbiome among NAFLD and closely associated diseases. A A graphical representation 
summarizing the cohort information, collected data, and analysis performed in 1206 samples. Detailed criteria on the group formation can be found 
in the methods section. Created with Biorender.com. B High interconnection between NAFLD-related clinical data and other clinical measures 
representative of different cardiometabolic diseases. Spearman’s rank-based correlations were used. C Comparison of bacterial species profiles, 
KEGG pathway profiles, and metabolite profiles among all disease groups adjusted by their respective controls, using non-metric multidimensional 
scaling (NMDS) of weighted UniFrac, Bray Curtis, and Canberra distances, respectively. The error bars indicate the mean and standard errors 
of the mean. Significant differences were determined using PERMANOVA and were considered significant if P < 0.05
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obtained to decipher the association between gut micro-
biota changes and disease-related clinical parameters 
(Tables 1, S1, S2). To avoid the confounding effect of eth-
nicity/country, we initially analyzed subjects from Chi-
nese cohorts for defining the NAFLD signatures, which 
we further validated in a cohort of different ethnici-
ties. After careful evaluation of the original clinical data 
(detailed in Methods), 1206 subjects were used to gener-
ate well-defined disease groups (Table S3), for the subse-
quent comparative analyses.

The diagnosis of NAFLD in our patient group was 
based on liver biopsy (44% of individuals), or magnetic 
resonance spectroscopy (MRS) (56%). We first examined 
the associations between NAFLD-related parameters and 
the clinical parameters characterizing the other meta-
bolic diseases using all available subjects. Alanine ami-
notransferase (ALT), aspartate aminotransferase (AST), 
gamma-glutamyl transpeptidase (GGT), serum triglycer-
ides (TGs), fatty liver index (FLI) [50], and liver fat per-
centage index [51] showed significant correlations with 
clinical data related to adiposity, blood pressure, glucose 
metabolism, lipid metabolism and kidney function, fur-
ther demonstrating that NAFLD and other cardiometa-
bolic diseases are highly interconnected (Fig. 1B).

To avoid technical biases [62, 63], the NAFLD groups 
(NAFLD-O [n = 163] and NAFLD-L [n = 18]) were 
matched with their respective controls (CTRL-NAFLD-
O [n = 84] and CTRL-NAFLD-L [n = 39]) in both the 
DNA extraction method and the sequencing platform 
(Illumina paired-ended 150  bp), as well as in sequenc-
ing depth (Table  1). Compared with the non-NAFLD 
control subjects, the NAFLD patients, as expected, had 
significantly higher values of ALT, AST, GGT, TGs, FLI, 
and estimated liver fat percentages (Wilcoxon rank-sum 
test, P < 0.05). As for other clinical data, insulin resist-
ance measured by the homeostatic model assessment of 
insulin resistance (HOMA-IR) was significantly higher 
in the two NAFLD groups compared to their respective 
controls; systolic blood pressure (SBP) was significantly 
different only in the overweight groups (slightly higher 
in CTRL-NAFLD-O) (Table  1). Since the two control 
groups had higher age than the corresponding NAFLD 
groups, and the NAFLD-O had a significantly higher BMI 
than the CTRL-NAFLD-O, these factors were considered 
and adjusted in downstream statistical analyses.

Comparative analysis reveals differences in the gut 
microbiome composition and metabolic output in NAFLD 
and other metabolic diseases
The collected shotgun metagenomics data were pro-
cessed with MetaPhlAn3 and HUMANn3 [34], leading 
to the detection of in total of 751 microbial species and 
5973 KEGG orthologs (KOs) across the entire cohort. 

At the community level, we found significantly lower 
alpha diversity (Shannon index) in both NAFLD-O and 
NAFLD-L groups than their respective controls (Wil-
coxon rank-sum test, P < 0.05), but not between the 
two NAFLD groups (Fig. S1). Using weighted UniFrac 
distance for measuring microbiota species-level beta 
diversity, we revealed significantly different microbi-
ota composition between each NAFLD group against 
their respective controls (PERMANOVA, adjusting 
for age, gender and BMI, P < 0.05, R2 = 0.02–0.05), but 
not between NAFLD-O and NAFLD-L, which might 
be related to the limited sample size of the NAFLD-L 
group (Fig. S2, Table S4). Interestingly, when comparing 
the changes of microbiome taxonomic profiles against 
the corresponding controls, the two NAFLD groups 
were clearly distinguished from other metabolic dis-
eases (Fig. 1C). We then used KEGG pathways to evalu-
ate and compare the microbiota functional diversity 
(Bray–Curtis dissimilarity). Unlike the species, the beta 
diversity of the KEGG pathways for the NAFLD groups 
against their respective controls was not found signifi-
cantly different, nor was the comparison of NAFLD-O 
against NAFLD-L (PERMANOVA adjusting for age, 
gender, and BMI, P > 0.05) (Fig. S2, Table S4).

Given the current difficulty in integrating untar-
geted metabolomics data from multiple studies and 
in order to perform a large-scale comparative analy-
sis of our cohorts at the microbial metabolites level, 
we used an in silico approach, namely MAMBO [64], 
to profile the primary metabolic output of each indi-
vidual microbiota. Such metagenomics-predicted 
metabolomics has facilitated the identification of dis-
tinct microbial signatures for different types of colonic 
adenomas [65]. Taking taxonomic profiles as input and 
based on genome-scale metabolic modeling, MAMBO 
estimates the metabolic output of the whole microbial 
community without the confounding factors of human 
metabolism or food remnants as in experimental stool 
metabolomics. With this approach, we estimated the 
levels of 510 microbial metabolites for the 1098 sub-
jects that generated reliable metabolite prediction 
scores. Similarly to the functional potential, the over-
all predicted metabolomic profiles of the two NAFLD 
groups showed no significant differences with their 
respective controls nor between them (PERMANOVA 
adjusting for age, gender, and BMI, P > 0.05) (Table S4). 
Despite this, the metabolites-based comparison of 
community changes from respective controls indicated 
different patterns than those of taxonomy- or func-
tions-based, e.g., the two clusters formed for the T2D 
(T2D-O, T2D-L, PRE-T2D-O) and hypertension (HYP, 
PRE-HYP) groups in the species and pathway analysis, 
were distorted in the metabolite analysis (Fig. 1C).
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In summary, by using a unified computational pipeline 
we revealed both similarities and differences in the over-
all microbiome structure, function, and metabolic output 
between NAFLD overweight and lean subjects and non-
NAFLD controls or other metabolic diseases.

Machine learning identifies highly specific microbial 
signatures for NAFLD
We next examined whether microbial features could be 
integrated into a machine learning (ML) model, which 
takes into account microbial interactions and the non-
linear relationship with phenotypes, in order to identify 
key discriminative features associated to NAFLD. We 
focused on discriminating the NAFLD-O versus CTRL-
NAFLD-O groups since the number of patients in the 
NAFLD-L group was low for the purpose of developing 
a reliable ML model. We first developed a random for-
est [66] classifier using either only microbial species or 
KEGG pathways, with accuracies being 0.824 and 0.588, 
respectively (Fig. S3). We proceeded in integrating spe-
cies and KEGG pathways which greatly improved the 
accuracy to 0.998 (Fig.  2A, Table  S5). Subsequently, 
the portability and prediction rate [47] of our model 
was evaluated against the other metabolic diseases. 
We first investigated whether the separation between 
NAFLD-O and CTRL-NAFLD-O would be maintained 
when using control samples from the different meta-
bolic disease cohorts. We compared the true-positive 
rate (TPR) from our constructed model to the exter-
nal false-positive rate (FPR) via a modified area under 
the receiver operating curve (AUROC) analysis, which 
was rescaled to range between 0, meaning a complete 
loss of separation, and 1, meaning that the model can 
be used in a different data set without losing discrimi-
natory power. A low portability (portability = 0–0.412) 
was observed for the majority of data sets, indicating 
that the model would not be able to classify NAFLD-O 
subjects when using a different set of presumably non-
NAFLD controls. The only exceptions were when the 
CTRL-NAFLD-L (portability = 0.983) and CTRL-ATH 
(portability = 0.813) subjects were used (Fig. 2B), which 
was in accordance with their similarities observed in 
the beta diversity analysis with the CTRL-NAFLD-O 
(Fig.  1C). Secondly, we estimated the prediction rate 
of the model by quantifying the percentage of sam-
ples from the other metabolic diseases that would be 
misclassified as NAFLD-O when a cut-off adjusted to 
maintain a FPR of 10% in our model was applied. A 
high prediction rate (prediction rate: 0.564–0.955) was 
found in most data sets suggesting a very low specific-
ity for NAFLD-O of the constructed model (Fig.  2B). 
The only notable exception was the classification of the 
ATH subjects (prediction rate = 0.243), which could 

again be explained by the unique microbiome compo-
sition of ATH as shown in the beta diversity analysis 
(Fig. 1C). Taken together, our results suggest that there 
is a high similarity in terms of species and pathways 
that renders the discrimination between NAFLD-O and 
other metabolic diseases challenging.

In an attempt to explore whether we can increase the 
specificity of microbiome-based models and the involved 
microbial signatures for NAFLD-O, we built a RF classi-
fier using species and in silico estimated metabolite abun-
dances and we achieved an accuracy of 0.917 (Fig.  2A, 
C). Following the same approach as above, we observed 
a high portability (portability: 0.994–1) (the ML model 
is generalizable) and a low prediction rate (prediction 
rate: 0–0.056) (the ML model is specific for NAFLD-O 
and not generic for discriminating healthy from diseased 
subjects), suggesting that metabolites may provide a bet-
ter discrimination between NAFLD-O and non-NAFLD-
O samples (Fig.  2B). Interestingly, the prediction rate 
for NAFLD-L is very low (prediction rate = 0.056), indi-
cating notable differences between overweight and lean 
NAFLD subjects in the microbiome metabolic output. 
Lastly, to rule out the possibility of overfitting during the 
ML development, we validated our hybrid model (species 
plus metabolites) in an external US cohort [4] consisting 
of healthy individuals and NAFLD patients and achieved 
an accuracy of 0.845, demonstrating that the model is 
highly accurate in a different ethnicity despite the most 
severe form of the disease (cirrhosis) in the external 
cohort (Fig. 2A).

Among the selected features in the ML hybrid model 
(13 species, 7 metabolites) we found that 12 species were 
significantly different in abundance (DA) in NAFLD-
O compared to CTRL-NAFLD-O (ANCOM-II, cut-
off = 0.6). However, only 5 of them were found DA in 
NAFLD-L compared to CTRL-NAFLD-L (ANCOM-II, 
cutoff = 0.6). Furthermore, out of the 12 species, 10 were 
also DA in other metabolic diseases (vs their respective 
controls), even though not always with the same direc-
tionality of change as in NAFLD-O (Fig.  2D). Eubacte-
rium hallii, the top important feature in the ML model 
(Fig. 2C) and significantly higher in both CTRL-NAFLD 
groups compared to the NAFLD groups (Table  S6, 
Fig. 2D), has been reported to alter the bile acid metabo-
lism [67] and has been suggested as a potential probiotic 
candidate for treating dysbiosis-associated diseases [68]. 
Another species selected in the ML model as predictive 
of CTRL-NAFLD-O is  Blautia obeum (Fig.  2C), which 
was only DA in NAFLD-O but not in any other metabolic 
diseases (Fig. 2D). This species has been previously found 
to have a lower abundance in subjects with steatosis and 
has been identified as a highly important feature in ML 
models classifying steatosis patients [10].



Page 10 of 21Nychas et al. Microbiome           (2025) 13:10 

Fig. 2 Random forest model based on gut microbiota species and metabolites accurately and specifically predicts NAFLD-O. A Receiver operating 
characteristic (ROC) curves and confusion matrices evaluating the ability of random forest models to predict NAFLD. Each color represents 
the model performance using as features species and pathways (purple), or species and metabolites (red and blue). Blue indicates the model 
performance when being validated in an external US cohort. B Evaluation of model cross-study portability and prediction rate on NAFLD-L 
and other metabolic diseases. Models using species plus metabolites or species plus pathways as features were used. C Feature importance 
for the random forest model built with species and metabolites. The color indicates feature prediction as evaluated by Shapley values: blue 
for Control-NAFLD-O and red for NAFLD-O. D Abundance comparison between each disease and its control for the species selected in the model 
built with species and metabolites. ANCOM-II was used for statistical comparisons. Circle size corresponds to the mean difference, with a higher 
size/value indicating a stronger difference. Full circle: higher in control; empty circle: higher in disease. CLR: centered log ratio
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Selected features in the ML model also include several 
metabolites that have been previously associated with 
NAFLD (Fig.  2C), such as L-isoleucine, which has been 
found at a higher level in NAFLD patients compared to 
healthy individuals [69] and has been previously incor-
porated in models to predict NAFLD [70]. Moreover, 
riboflavin (vitamin B2), iron, and L-methionine all have 
been previously associated positively or negatively with 
NAFLD and fat accumulation in the liver [71–74].

In summary, by coupling microbial species and metab-
olites instead of the low-resolution functional potential 
of pathways, we were able to identify NAFLD microbi-
ome signatures with high specificity and generalisabil-
ity against other metabolic diseases. Its incapability for 
NAFLD-L diagnosis, together with the different distri-
butions of model feature abundances in NAFLD-L and 
NAFLD-O, highlighted again the differences in the com-
position and metabolism of gut microbiome for the two 
NAFLD entities, which we explored below.

Gut ecological networks reveal structural differences 
of NAFLD-O and NAFLD-L patients
To reveal microbial consortia involved in the patho-
genesis of NAFLD-O and NAFLD-L patients, we first 
performed DA species analysis. Using ANCOM-II 
(adjusting for age, gender, BMI, HOMA-IR and SBP, 
cutoff = 0.6), we found 55 DA species (32 increased, 23 
decreased) in NAFLD-O compared to CTRL-NAFLD-O, 
and 29 (21 increased, 8 decreased) in NAFLD-L against 
CTRL-NAFLD-L, with 17 species in common (with 
same direction of change) (Fig. 3A, Table S6). From the 
38 DA species found uniquely in NAFLD-O but not 
in NAFLD-L, 29 remained as NAFLD-O specific even 
when considering the complete pool of DA species from 
the comparisons of the other metabolic disease groups 
against their controls (Table  S6). Similarly, 8 out of 12 
NAFLD-L unique species (not DA species in NAFLD-
O) were not found as DA in the other metabolic disease 
groups against their controls. Moreover, a set of 13 DA 
species shared between NAFLD-O and NAFLD-L were 
not found significant in the same direction (Table  S6), 
in any of the other metabolic diseases and appear to be 
BMI-independent NAFLD-associated microbial changes. 
Among those, we found Intestinibacter bartlettii and 
Dialister sp. CAG 357, both selected in the ML model 
(Fig.  2C) and with previous evidence supporting their 
association with NAFLD [10].

We subsequently investigated using interaction net-
works whether defined microbial consortia with syner-
gistic roles to NAFLD pathogenesis could be retrieved. 
An approach involving DGCA [49] and MEGENA [48] 
was employed to construct differential correlation net-
works between NAFLD subjects and controls and then to 

identify well-interconnected network modules. Applying 
this approach to both NAFLD-O and NAFLD-L com-
parisons (against their controls) generated 3 significant 
modules (module compactness P < 0.05) for each group. 
We subsequently examined the association of each mod-
ule with NAFLD-related clinical parameters (ALT, AST, 
GGT, FLI, liver fat, and TGs) using a partial Mantel test 
adjusting for age, gender, and BMI. This revealed one 
NAFLD-O-related and one NAFLD-L-related species 
modules (partial Mantel test, P < 0.05) that are poten-
tially associated with disease pathophysiology (Fig.  3B, 
Table  S7). Sparse canonical correlation analysis (sCCA) 
was further used to identify subgroups of linear combi-
nations of microbial species and NAFLD-related clini-
cal parameters that are maximally correlated with each 
other, and to provide disease-association information 
for each individual species in the context of the micro-
bial interaction network. This analysis showed that both 
NAFLD-O and NAFLD-L modules have significant spe-
cies subgroups with associations (sCCA, P < 0.05) to most 
of the NAFLD clinical parameters (Fig. 3B and Table S8).

The module of NAFLD-O contains mostly species that 
were negatively associated to NAFLD-related param-
eters as inferred by sCCA. Most of the significant DA 
species involved in the module had higher abundance in 
the control and were uniquely found in the NAFLD-O 
vs CTRL-NAFLD-O comparison rather than being also 
DA in other metabolic diseases. We also observed that 
the beneficial species negatively associated to NAFLD in 
this cluster were mostly linked with light green (“0/ + ”) 
or light blue (“ + /0”) connections, indicating that either 
these species were concurrently reduced in NAFLD-O 
(thus positively correlated), or their interactions in the 
CTRL-NAFLD-O were disturbed and lost in NAFLD-
O (Fig.  3B and C). Furthermore, the module contains 
a group of beneficial species negatively-associated to 
NAFLD (Gordonibacter pamelaeae, Eggertheila lenta, 
E. hallii, B. obeum, and Blautia wexlerae), among which 
four were predictive towards control subjects in the ML 
model (Fig. 2C). These species were connected by either 
‘ + /0” suggesting disturbed interactions between these 
beneficial species from CTRL-NAFLD-O to NAFLD-O, 
or “ + + / + ” indicating weakened interactions between 
them in NAFLD-O. Moreover, their interactions with 
Dialister sp CAG 357 followed the same pattern from 
control to NAFLD-O (“ − /0″) (Fig. 3B and C).

Unlike NAFLD-O, the module of NAFLD-L represents 
a mixture of species that were both positively and nega-
tively associated with NAFLD. The NAFLD-L module 
was larger (number of nodes) and contained a higher 
number of significantly changed microbial correlations 
(Fig.  3B). Two hub (highly connected) species, Asac-
charobacter celatus, and Clostridium aldenense, were 
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both negatively associated with NAFLD clinical indexes. 
A. celatus was connected with NAFLD-negatively-
associated species in two ways: (1) weaker or disturbed 
connections, including Adlercreutzia equalifacies (“ + 
+ / + ”), Coprococcus comes and Paraprevotella xylaniph-
ila (“ + /0); (2) interactions suggestive of a concurrent 
reduction, involving Parabacteroides gordonii (“0/ + ”), 
Clostridium stercoris, Clostridium symbiosum, E. lenta 
and C. aldenense (“ − / + ”) (Fig.  3B and C). Notably, its 

negative correlation with Flavonifractor plautii, a species 
significantly higher and uniquely DA in NAFLD-L, was 
lost (“ − /0”) in the disease state.

In summary, employing differential correlation eco-
logical networks, combined with DA species and 
ML, enabled us to disclose the coordinated structural 
changes in the gut microbiome of overweight and 
lean individuals with strong associations to NAFLD 
phenotype.

Fig. 3 Signature modules of species networks associated with NAFLD phenotype for NAFLD-O and NAFLD-L. A Venn diagram of significantly 
different in abundance species using ANCOM-II (cutoff = 0.6) adjusted by age gender BMI HOMA-IR and SBP for the comparisons of NAFLD-O vs 
CTRL-NAFLD-O and NAFLD-L vs CTRL-NAFLD-L. The amount of common significantly different species of each case, with other metabolic disease 
comparisons is displayed as a percentage under the Venns circles with arrows. Differentially abundant species analysis for metabolic diseases 
was done using ANCOM-II adjusting for a set of clinical data depending on the disease-control comparison (Methods). B Multiscale embedded 
correlation network analysis illustrates the differential correlation of species in NAFLD-O vs CTRL-NAFLD-O and NAFLD-L vs CTRL-NAFLD-L. Only 
species pairs with significant differential correlations (empirical P < 0.01) were included. The color of the link indicates the type of correlation 
change in control/NAFLD. Sparse canonical correlation analysis (sCCA) was used to evaluate the contribution of each species to the correlation 
between the module and NAFLD-related clinical parameters (P < 0.05), which is displayed by the color of the nodes (blue: negative, red: 
positive). ANCOM-II was used to find a significant difference in abundance species (cutoff = 0.6) adjusting for a set of clinical data depending 
on the disease-control comparison (Methods). Species found significantly different in abundance uniquely in NAFLD comparisons are marked 
with a triangle whereas a diamond is used if the species also appears significant in the comparison of any other metabolic diseases. The size 
of the node indicates the magnitude of the W statistic generated by ANCOM-II. C Table summarizing the numbers for each type of correlation 
change for the two modules in B. The types are depicted as from control to NAFLD (control/NAFLD) and colored differently as in B 
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Mediation analysis reveals potential mechanistic links 
between species module signatures and NAFLD
We next investigated the metabolic output of the micro-
biota communities and performed DA analysis for 
NAFLD-O, NAFLD-L, and each of the other metabolic 
diseases against their corresponding control group. 
We identified 23 significant microbial metabolites (5 
increased, 18 decreased) in NAFLD-O compared to 
CTRL-NAFLD-O and 31 (15 increased, 16 decreased) 
in NAFLD-L against CTRL-NAFLD-L (Wilcoxon rank-
sum test and fixed Lasso after adjusting for age, gender, 
BMI, HOMA-IR and SBP, P < 0.05) (Fig. S3A, Table S6). 
Only 5 of those DA microbial metabolites were com-
mon between NAFLD-O and NAFLD-L groups (with 
abundance changes in the same direction; four higher 
in control and one higher in NAFLD), namely sulfate, 
potassium, protoheme, dihydroxyacetone, and L-histi-
dine. When comparing with the DA microbial metabo-
lites observed in other metabolic diseases, 21 out of the 
23 were DA only in the NAFLD-O subjects and 23 out of 
the 31 were DA only in NAFLD-L subjects.

Following the DA analysis of the microbial metabolic 
output, we further attempted to consolidate them with 
microbial gene abundances (ECs). We initially used 
ANCOM-II (adjusting for age, gender, BMI, HOMA-
IR, and SBP, cutoff = 0.6) to find DA ECs between the 
NAFLD groups and their corresponding controls and 
then linked them with the DA metabolites (Table  S6) 
using the KEGG database [36]. Overall, the in silico esti-
mated microbial metabolic output appears to be highly 
associated with the metagenomic functional data (ECs, 
KEGG Pathways). We successfully linked 18 DA micro-
bial metabolites from the NAFLD-O and NAFLD-L 
groups, including 3,4-dihydroxyphenylacetate, dihy-
droxyacetone, and D-mannose-1-phopshate, with 101 
unique DA ECs (Fig. S3B).

We then examined the possible biological implications 
of the DA microbial metabolites in NAFLD by analyzing 
their associations with NAFLD-related clinical param-
eters. We found 10 microbial metabolites significantly 
correlated (partial Spearman’s correlation adjusted by 
age, gender, and BMI; P < 0.05) with at least one of the 
clinical parameters in the NAFLD-O group (Fig. S3A). 

Notably, 3,4-dihydroxyphenylacetate and protoheme 
were found significantly higher in the CTRL-NAFLD-
O group, and both negatively correlated with FLI, ALT, 
and TGs. Four DA microbial metabolites had significant 
correlations with the relevant clinical parameters in the 
NAFLD-L group. Specifically, adenine and 4-hydroxy-
proline showed negative correlations with FLI or TGs, 
whereas D-tartrate and meso-2,6-diaminoheptanedioate 
(a precursor in the lysine biosynthesis pathway) were 
positively associated with liver enzymes (GGT and ALT, 
respectively).

The analyses above resulted in microbial modules and 
metabolites that could be linked to either NAFLD-O or 
NAFLD-L using the liver-associated clinical parameters. 
We subsequently applied mediation analysis to investi-
gate whether the groups of DA metabolites can mediate 
the impact of microbial modules (Fig.  3B) on the levels 
of NAFLD-related clinical parameters. Our analysis sug-
gests that for both NAFLD-O and NAFLD-L, the DA 
metabolites significantly intercede the influence of the 
species modules on the NAFLD phenotypes (media-
tion P < 0.05) (Fig. 4A). Following the group level analy-
sis, we examined, again with mediation analysis, which 
individual species from the microbial modules are asso-
ciated with the levels of the clinical parameters through 
individual DA mediator metabolites. A total 130 linkages 
between 23 species from the NAFLD-O module and 13 
DA metabolites were found, with most of them involv-
ing species negatively associated with clinical parameters 
in the module analysis (Figs.  4B and 3B). Notably, spe-
cies such as I. bartelettii, E. hallii, G. pamelaeae, Dorea 
longicatena, E. lenta, Rombroutsia ilealis, and B. obeum 
were all selected as key features in the ML model and 
had the most links in the mediation analysis (Figs.  2C 
and 4B). Moreover, mediator metabolites, which were all 
higher in CTRL-NAFLD-O, such as S-3-methyl-2-oxo-
pentanoate [75], protoheme [76], dihydroacetone [77], 
thiamin [78], and 3,4-dihydroxyphenylacetate [79] have 
all been previously associated negatively with NAFLD. 
On the contrary, only 15 linkages between species from 
the NAFLD-L modules and clinical parameters through 
the DA metabolites were significant. Species associated 
negatively with NAFLD were again the most prevalent 

(See figure on next page.)
Fig. 4 Specific microbial metabolites mediate the associations between gut microbiota species modules and NAFLD. A Analysis of the significant 
(P < 0.05) effect of species modules on NAFLD-related clinical data mediated by the DA metabolites for NAFLD-O and NAFLD-L. B Parallel 
coordinates charts showing the 133 mediation effects of in silico estimated metabolites that were significant at P < 0.05. Upper chart: NAFLD-O; 
lower chart: NAFLD-L. Within each chart, it shows individual species from network modules (left), DA metabolites (middle), and NAFLD clinical data 
(right). The curved lines connecting the panels indicate the mediation effects, with line colors corresponding to different metabolites. The colors 
of feature names represent positive (red) or negative (blue) associations with NAFLD, as determined by sCCA for species and DA for metabolites 
and clinical data. C A graphical representation of bacterial synergistic communities generated from SMETANA for NAFLD-O and NAFLD-L. 
Metabolites exchanged with smetana score ≥ 1 are displayed. Created with Biorender.com
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Fig. 4 (See legend on previous page.)
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(6) compared to those with positive (3) or no association 
(2). This result is in accordance with the profile of the 
NAFLD-L module (Fig. 3B), which consists of a mixture 
of species correlated positively or negatively with liver 
parameters. Phosphate and 2′,3′-cyclic UMP are two 
mediator metabolites found higher in NAFLD and have 
both been linked previously with NAFLD pathogenesis 
[80, 81].

Identification of beneficial microbial consortia 
for NAFLD-O and NAFLD-L
Lastly, by integrating the different analytical steps above, 
we attempted to derive small synergistic bacterial consor-
tia with potential value as therapeutics in NAFLD-O and 
NAFLD-L. We applied the SMETANA [55] method to 
identify small cooperative communities of species associ-
ated negatively with NAFLD. In brief, using genome-scale 
metabolic modeling (GSMM), SMETANA calculates how 
cooperative and competitive a target community is and 
the likelihood of exchanging metabolites between a pair 
of microbes in a community. The ability of SMETANA to 
successfully identify interspecies metabolite exchanges 
has been proved by the reproduction of experimentally 
mapped interactions within bacterial species communi-
ties in the lab [55]. Using species derived from the media-
tion analysis (Fig.  4C), we generated in total of 4928 
possible species communities with up to 5 members for 
NAFLD-O and 352 for NAFLD-L, from which we uncov-
ered 2 consortia of species that create a non-competitive 
and synergistic environment for each other. For NAFLD-
O, a group of 4 species including E. hallii, I. bartlettii, E. 
lenta, and Clostridium disporicum was selected as the 
best community. Specifically, this consortium’s normal-
ized metabolic interaction potential (MIP)/metabolic 
resource overlap (MRO) score (7.232) was 1.5 fold greater 
than the mean score of randomly generated communities 
and was the highest out of all beneficial species commu-
nities in our dataset (Fig.  4C) (Table  S9). This commu-
nity has in total 42 different metabolites being exchanged 
between its members (Table  S9). The first 3 bacteria 
were all found significantly higher in CTRL-NAFLD-O 
subjects and were top features in the ML model con-
tributing to CTRL-NAFLD-O (Table S6, Fig. 2C). In the 
differential correlation network analysis these 4 species 
were involved in 10 changes during the structural reshap-
ing of the gut microbiota from the CTRL-NAFLD-O to 
NAFLD-O status. Moreover, all 4 species had negative 
associations with NAFLD clinical parameters (Fig.  3B) 
that were mediated by microbial metabolites (Fig.  4B). 
Lastly, both E. halli and I. bartlettii have previously been 
reported as species that can protect from the develop-
ment of NAFLD [82–84]. Regarding the NAFLD-L, a 
set of 3 species was selected from SMETANA analysis, 

which included Clostridium bolteae, Roseburia intesti-
nalis, and, as in NAFLD-O, E. lenta (Fig. 4C). In this con-
sortium, 28 different metabolites are being exchanged 
(Table  S9) making it a synergistic and non-competitive 
community even though the normalized MIP/MRO 
score (1.98) was lower than the one in NAFLD-O. None 
of the species was found in DA; however, the latter two 
had higher abundance in CTRL-NAFLD-L even though 
they did not reach statistical significance (possibly due 
to the small cohort size). Moreover, all 3 were associ-
ated negatively with NAFLD clinical parameters through 
sCCA (Fig. 3B) and were linked to DA metabolites from 
the mediation analysis (Fig. 4B). Interestingly, R. intesti-
nalis is a thoroughly studied bacterial species, which has 
shown its beneficial activities against metabolic diseases 
and NAFLD specifically [85].

In order to validate the predicted potential of these 
bacteria to cooperate as a collective unit and establish 
co-abundance patterns with one another, we conducted a 
Spearman correlation analysis among the suggested spe-
cies using 928 healthy samples in the population-based 
Health Professionals Follow-up Study (HPFS), which 
has been utilized previously to study the stability of the 
human fecal microbiome [27]. Notably, in both microbial 
consortia, the selected bacteria showed mostly signifi-
cant positive correlations and synergistic trends (lower 
and upper quartile: ρ [0.04, 0.13], P [0.00003–0.049]) 
(Table S10). Moreover, we aimed to consolidate the asso-
ciations of bacterial consortium with NAFLD-related 
clinical data by adding up the relative abundance of the 
NAFLD-O community members and correlating it with 
the metadata, both in our cohort and in an external 
cohort [4]. Overall, in both cohorts the selected microbial 
consortium was significantly correlated negatively with 
NAFLD clinical data, further reinforcing its NAFLD-
alleviating potential (Table  S10). The analysis described 
above was performed only in NAFLD-O community as 
there was no publically available dataset with detailed 
metadata for NAFLD-L.

In summary, by combining species interaction net-
works, DA analysis, interpretable machine learning, 
sCCA, and GSMM, we could reveal cooperative micro-
bial consortia that consist of species specifically and 
negatively associated with NAFLD pathophysiology. Such 
small bacterial consortia hold the potential and feasibility 
to be further investigated for usage as novel microbiome-
based therapeutics for NAFLD-O or NAFLD-L.

Discussion
Due to its close relationship with metabolic dysfunction, 
NAFLD often co-occurs with other metabolic diseases 
with typical examples being T2D, obesity, and in gen-
eral cardiovascular conditions [8]. Hence, it is of great 
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challenge to find which microbial changes are highly 
specific for NAFLD and which are shared with other 
metabolic diseases. To reveal robust and highly specific 
NAFLD microbiota signatures, we collected shotgun 
metagenomics data from both NAFLD patients and other 
metabolic diseases (including prediabetes, T2D, prehy-
pertension, hypertension, and atherosclerosis), together 
with matched control groups for each corresponding 
disease, which summed up to > 1200 samples. The avail-
ability of well-characterized clinical profiles not only 
facilitated the identification of microbes associated with 
NAFLD, but also allowed to minimize the effect of con-
founding factors. Moreover, statistical adjustment (age, 
gender, BMI, HOMA-IR, and SBP) was performed to find 
specific NAFLD signatures accounting for the effect of 
T2D and hypertension. It is worth to note that our cohort 
is free of antibiotics and almost free of major medication 
usage except 33 subjects; 19 patients with atherosclero-
sis who had taken metoprolol, 10 T2D-L, and 4 Control-
NAFLD-O who had taken antidiabetic medication. The 
non-negligible effect of medication on gut microbiome 
has been demonstrated [86, 87], including metoprolol 
[26, 88]. The majority of the studies shared additional 
exclusion criteria namely heart failure, renal insuffi-
ciency, acute infectious disease, and cancer.

Gut microbiota has been investigated for potential use 
as non-invasive diagnostic or prognostic tools for a wide 
variety of diseases, such as T1D [89] natural killer/T-cell 
lymphoma [90] and a multi-disease panel covering 8 dis-
eases (colorectal cancer, Crohn’s disease, cardiovascular 
disease, etc.) [91]. Regarding NAFLD, analysis based on 
shotgun metagenomic sequencing revealed its poten-
tial for diagnosis of advanced fibrosis [3] and cirrhosis 
[4], while we utilized previously microbiome-derived 
features for early-stage risk assessment of NAFLD [6]. 
Despite their high predictive performance, the develop-
ment and assessment of the machine learning models 
usually involve only the particular diseases being stud-
ied, where the model specificity has seldom been inves-
tigated. Recent studies have highlighted the existence of 
both disease-specific and shared microbe-disease associ-
ations [42] and host gene-microbiome associations [43]. 
Thus, from a clinical translational point of view, it is nec-
essary to evaluate the model specificity for the diagnosis 
of target disease against other closely relevant diseases. 
Towards this direction, recently Wirbel et  al. [47] and 
Kartal et al. [92] have identified microbial signatures that 
are specific for colorectal cancer and pancreatic cancer, 
respectively. Here we applied cross-disease portability 
and specificity evaluations, first described by Wirbel et al. 
[47], to our NAFLD ML models to identify NAFLD-spe-
cific microbial signatures. Using the metagenomics data, 
we found microbial taxonomic and functional signatures 

that are either specific to NAFLD-O or shared among dif-
ferent metabolic diseases and constructed an ML model 
with very high predictive performance but poor specific-
ity. In contrast, when we coupled the metagenome with 
the in silico-predicted metabolome, the ML model not 
only reached an accuracy of 0.917 for the diagnosis of 
NAFLD-O, but also demonstrated much-enhanced spec-
ificity when being evaluated against the other metabolic 
diseases in the study. Notably, the metabolomic data used 
in this study were derived from in silico predictions as it 
is infeasible to integrate data from multiple studies and 
conduct a large-scale comparative analysis. In addition, 
the metabolic output provided by MAMBO is derived 
solely from microbial communities, independent of the 
human organism. Due to the limited number of patients 
in the NAFLD-L group, we focused only on building a ML 
model for NAFLD-O and its controls. Importantly, our 
model derived solely from the Chinese cohort in order 
to limit potential biases was validated in an independent 
US cohort with biopsy-confirmed NAFLD, reaching an 
accuracy of 0.845. Notably, the inability of the ML model 
to accurately predict NAFLD in lean individuals (Fig. 2B, 
prediction rate = 0.056) prompt our interest to conduct a 
more detailed investigation into microbiome variations 
in the two disease groups (NAFLD-O and NAFLD-L), at 
the level of both taxonomy and metabolic output.

By analyzing shotgun metagenomics data separately 
for NAFLD-O and NAFLD-L, our study reaches consist-
ent findings with previous 16S rRNA-based studies [93, 
94] that overweight and lean/non-overweight NAFLD 
differ in the gut microbiome composition, but further 
reveals species-level signatures and network modules 
specific to overweight or lean NAFLD. However, in the 
human gut, it is the interaction of different microbial spe-
cies rather than individual microorganisms themselves 
that is responsible for maintaining the community struc-
ture and function and providing a stable habitat [95–97]. 
Therefore, the quantity of single bacteria, as most studies 
analyze, cannot characterize the ecosystem as a whole, 
let alone the shift from health to disease. Network analy-
sis has been extensively utilized in numerous biological 
systems, and co-occurrence and correlation networks in 
particular, have contributed to our knowledge of the link 
between various species [98–100]. Thus, in our analysis, 
we attempted to focus on how the microbiome structural 
changes from healthy control to NAFLD are associated 
with NAFLD pathophysiology. Using DGCA, we found in 
the NAFLD-O group one network cluster of species asso-
ciated with liver-related clinical parameters. This module 
was dominated by bacteria with a negative association to 
NAFLD, either by being significantly lower in abundance 
or being important features in the ML model. Their inter-
actions were altered in NAFLD by either disturbing their 
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positive correlations (+ /0) in healthy conditions or form-
ing positive correlations due to the concurrent reduction 
of abundance in NAFLD (0/ +). Similarly, considerable 
changes in co-abundance patterns were also observed 
in the network module in the NAFLD-L group. Moreo-
ver, through a mediation analysis, we identified various 
in silico metabolites for NAFLD-O and NAFLD-L, that 
can mediate the impact of these network modules on the 
NAFLD phenotype.

Probiotics are living microorganisms that modify the 
intestinal microbiota and have positive health benefits 
for humans. In particular, they exert their effects through 
modulating the structural and functional composition 
of gut microbiota, generating antimicrobial compounds, 
enhancing epithelial barrier function, suppressing intes-
tinal inflammation, and have demonstrated efficacy in 
preventing the development of NAFLD [101]. By sum-
marizing all the information above, through metabolic 
modeling, we attempted to form two small synergistic 
microbial consortia that hold potential as microbiome 
therapeutics for NAFLD. Indeed, Eubacterium hallii, 
Eggerthela lenta, Clostridium bolteae, Intestinibacter bar-
tlettii, and Roseburia intestinalis have been associated 
negatively with the onset of NAFLD [2–5], but also have 
been thoroughly established as producers of short-chain 
fatty acids (SCFAs) [2, 6–10]. SCFAs are a class of metab-
olites, produced by probiotics, which exhibit anti-inflam-
matory properties, promote a better gut flora, improve 
intestinal permeability, and regulate metabolism [11–14]. 
Their regulation of the inflammation effects has directly 
been associated with reduced levels of inflammation-
related enzymes AST and ALT [11, 15].

Our analytical approach to investigating the differ-
ences between NAFLD and other metabolic diseases, 
even though it offers valuable insight, does not come 
without limitations. The metabolomics data used are 
based on in silico metabolic modeling with an emphasis 
on primary metabolism. Future studies may benefit from 
methodological advances in the integration of metabo-
lomics data from different studies and get even stronger 
in the diagnosis or mechanistic understanding of NAFLD 
compared to other metabolic diseases. Moreover, infor-
mation such as NAFLD status (in non-NAFLD studies), 
diet, and other metadata were not available, which pre-
vented us from taking into account their confounding 
effects during group building and microbiome analysis. 
Furthermore, for the NAFLD Lean group, we had a rela-
tively low sample size (18), compared to its lean controls 
(39) and the NAFLD overweight counterpart (163), even 
though no direct comparisons were made between the 
two NAFLD groups. Both the microbial signatures and 
metabolic signatures identified from our computational 

analyses warrant further experimental investigation in 
animal models of NAFLD.

Conclusion
In conclusion, this study integrated metagenomic data, 
detailed metadata, and an in silico metabolic output 
in order to identify specific microbiome signatures for 
NAFLD compared to other metabolic diseases. Moreo-
ver, we proposed synergistic microbial communities 
related to NAFLD phenotype in overweight and lean 
individuals, respectively. Ultimately, the goal is to provide 
further direction to the current research on creating live 
biotherapeutic products designed to counter the progres-
sion of NAFLD and provide beneficial conditions to sal-
vage a dysbiotic state.
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