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Dynamic Regulation of T Cell Priming in Cancer and Infection

Kamir J. Hiam

Abstract

An immunological challenge initiates cascades of migration, activation, and interactions
between diverse immune cell subsets that ultimately lead to protection of the host. Previous
technological limitations have favored reductionist experimentation and hindered experimental
and analytical assessment of the full breadth of immunological responses. Therefore, many
emergent properties of pan-lineage dynamic immune responses have remained elusive. The
present body of work addresses this gap in fundamental immunology by leveraging high-
dimensional single-cell technologies and in vivo mouse models of immune responses to dissect
the dynamic regulation of T cell priming in both cancer and infection. Generation of immune
organization maps in eight tumor models showed that the global immune macroenvironment in
cancer is significantly dysregulated as shown by gross alterations in cell frequencies and
phenotypes. Orthogonal pathogen challenges in tumor-burdened mice revealed peripheral
defects in CD8 T cell differentiation that were caused by impaired dendritic cell (DC) activation.
To further profile natural immunity to bacterial challenges, mass cytometry was adapted to profile
metabolic enzymes during an in vivo bacterial immune response. We revealed a highly transient
early activated CD8 T cell state characterized by peak utilization of oxidative phosphorylation and
glycolysis. Assessing all splenic immune lineages during an antibacterial immune response
uncovered a DC activation zenith at two days post-infection. Peak DC activation functioned as a
temporal regulator of T cell fate as late arriving T cells acquired memory T cell fate exclusively.
Taken together these studies reveal transient functionally significant stages of regulation during

cancer and infection.
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Chapter 1 Introduction
1.1 Overview
The precise coordination of all immune cells throughout immune responses has not
been thoroughly investigated. Recent work has begun to show that virtually all immune
cells respond to an immunological insult such as an infection or tumor. Therefore. it is
critical to understand the full scale of immune cell dynamics at critical stages of the
immune response to identify how the immune system collectively makes decisions. By
leveraging high-dimensional single-cell cytometry, in vivo challenges, and targeted
perturbation experiments, the aims of this thesis were as follows:
1) Determine the consequences of tumor development on peripheral immune organization
and function, described in chapter 2.
2) Map the metabolic differentiation trajectory of CD8 T cells at single cell resolution,
described in chapter 3.
3) Identify how the entire splenic immune landscape rapidly responds to acute infection,

described in chapter 4.



1.2 Systemic Perturbations to Immune Organization by Tumor Burden

Cancer is a systemic disease and prolonged inflammation is hallmark of cancer'. Whether
this inflammation initiates tumorigenesis or supports tumor growth is context dependent, but
ultimately the global immune landscape beyond the tumor is significantly altered. Despite
systemic perturbations to the immune system, immunotherapy has revolutionized cancer therapy.
However, immunotherapy remains ineffective in most clinical contexts?. Further progress towards
more broadly effective immunotherapeutic strategies requires a deeper understanding of the
organism-wide immunological relationships between tumor and host.

The tumor immunology field has focused heavily on local immune responses in the tumor
microenvironment, yet immunity is coordinated across tissues. For example, many myeloid cells
are frequently replenished from hematopoietic precursors in the bone marrow?, and critical T cell
priming events occur in lymphoid tissues as opposed to non-lymphoid organs such as a tumor®.
The localized antitumor immune response cannot exist without continuous communication with
the periphery. Furthermore, virtually every subset of immune cell has been implicated in cancer
biology®. Therefore, studying immune responses to cancer must also focus on all the immune
lineages within the peripheral immune system beyond the tumor microenvironment.

Many human cancers and mouse models of cancer drive extensive disruption of
hematopoiesis. This manifests most prominently in an expansion of immature neutrophils and
monocytes in the periphery of tumor-burdened hosts, which then also traffic to the tumor
microenvironment and contribute to the local immunosuppression®®. Hematopoietic stem and
progenitor cells are mobilized into proliferation and differentiation towards the monocytic and
granulocytic lineages, resulting in peripheral expansion and intratumoral accumulation of
immunosuppressive neutrophils, monocytes, and macrophage lineages®'3. Several factors
have been implicated in driving this process including G-CSF'*'* GM-CSF'> [L-17"3,

oxysterol'’, IL-8"8, CCL2'"?, and IL1-B'°. The vast majority of research that highlights peripheral



immune perturbations has focused on this increase in immature and immunosuppressive
myeloid populations; however, this expansion does not occur in isolation.

Beyond excessive production of monocytic and neutrophilic cells through aberrant
hematopoiesis, bone marrow-derived dendritic cell (DC) perturbations have long been observed
in the periphery of tumor-burdened hosts. This has important implications for the development
of antitumor immune responses as DCs are critical orchestrators of CD8 and CD4 T cell
differentiation and proliferation in many contexts including cancer®. The frequency of DC
subsets is decreased in the peripheral blood of human ovarian?', prostate??, breast®*, HNSCC?,

melanoma?®, lung®, and renal®’

cancers when compared to healthy individuals. In pancreatic
and breast cancer patient and mouse models, decreased peripheral DC frequency was driven
through tumor-derived GCSF downregulating IRF8 in DC precursors, which reduced
differentiation of mature DCs?®. An alternative mechanism for DC paucity in a mouse model of
pancreatic cancer was shown to be mediated by serum IL-6 driving increased DC apoptosis®.
In human and mouse pancreatic cancer peripheral DCs obtain a semi-mature state
characterized by moderate increases in costimulatory and coinhibitory receptors®-3',
Transcriptomics revealed that these semi-mature DCs upregulated genes involved in
proteasomal degradation but failed to upregulate T cell polarizing cytokines®, suggesting that
like semi-mature DCs in other contexts, they possess the capacity to provide only partial
stimulation to T cells.

Substantially less is known about the organization of other major immune lineages in the
tumor macroenvironment. Lymphopenia is common in breast cancer, lymphoma, and sarcoma

I*® cancer patients have decreased

patients®. Interestingly, human breast®, lung®, and cervica
diversity of their circulating TCR repertoire. As larger TCR diversity is associated with better
tumor control*®, an improved understanding of TCR repertoire fluctuations driven by cancer is

warranted. Peripheral T cells are also functionally perturbed as polyclonal memory CD4 and

CD8 T cells from the peripheral blood have decreased capacity to produce IL-2 and IFNy in



response to stimulation with PMA and ionomycin in human breast cancer patients®. Peripheral
naive CD4 T cells also exhibitied decreased responses to IL-6 stimulation as measured by
phosphorylation of STAT1 and STAT3 in human breast cancer patients®. The most well studied
perturbation of T cells in cancer is the expansion of suppressive regulatory CD4 T cells (Tregs)
in the periphery and infiltration into the tumor®. Recent work has now shown that Tregs present
in the blood of human cancer patients share phenotypic and TCR repertoires with intratumoral T
cells, suggesting that a significant proportion of intratumoral suppressive Tregs are derived from
naturally occurring thymic Tregs rather than through tumor-induced differentiation of naive CD4
T cells*®*'. NK cells are yet another important component of antitumor immunity than can
directly kill tumor cells, as well as influence antitumorigenic behavior of other immune cells*2.
Similar to the many other cell types described previously, peripheral NK cells from human
breast cancer patients also have altered phenotype characterized by decreased expression of
activating receptors including NKp30, NKG2D, and 2B4, as well as exhibiting impaired capacity
to directly kill target cells and degranulate in vitro**. Altogether, data overwhelming support the
systemic corruption of immune organization in diverse tumor types. Further work is needed to
fully characterize distinct new types of immune state based on tumor tissue of origin, stage of
development, and patient demographics in order to inform therapeutics and future mechanistic
studies of the causes for systemic disruptions.
1.3 Peripheral Inmune Coordination of Antitumor Immunity

Immune cells from the periphery of tumor-burdened hosts are required for natural and
therapeutically induced tumor control. Chemotherapeutic depletion of peripheral immune cells
impedes the therapeutic benefit by PD-1 blockade, causing systemic lymphodepletion and
abrogating long-term immune memory*. However, local use of chemotherapy spares peripheral
immune cells and synergizes with PD-1 blockade to induce DC infiltration into the tumor and
clonal expansion of tumor-specific effector T cells. A specialized subset of CD103+ DCs

transport tumor antigen to the peripheral immune system by CCR7-dependent migration from



the tumor to the draining lymph node where the priming of tumor specific CD8 T cells occurs*>™
48 Newly primed T cells then traffic from the lymph node to the tumor and this cycle is an
essential process in natural and therapeutically induced antitumor immunity. As further
evidence of continuous systemic reliance, blockade of lymphocyte egress from lymphoid organs
using FTY720 or surgical resection of tumor-draining lymph nodes nullifies efficacy of
immunotherapy***.

Productive antitumor responses predominantly utilize effector CD8 T cells within the
tumor microenvironment to directly kill tumor cells. However, recent studies demonstrate that
intratumoral T cells acquire a terminally dysfunctional state in which cells are no longer
amenable to therapeutic reinvigoration®'. Additional studies have identified the transcription
factor TOX as the master regulator of exhaustion through driving transcriptional and epigenetic
reprogramming in response to chronic TCR stimulation®*3, To overcome local immune
dysfunction, effective immunotherapies drive de novo peripheral immune responses through the
priming of naive CD8 T cells that proliferate, differentiate, and infiltrate the tumor. Several recent
studies show that PD-1 and PD-L1 blockade drive the recruitment of new T cell clones into the
tumor microenvironment that were not present locally prior to therapy®***%®. Together, these
results demonstrate the importance of peripheral immunity in antitumor immunity.

1.4 Systemic Coordination of Inmune Responses to Pathogens

Immune responses are remarkably dynamic and require coordinated interactions
between many functionally distinct immune lineages, orchestrated across tissues and time.
Previous work studying immune responses has been technologically limited to studying only
small fragments of the immune response. However, recent work sampling peripheral blood to
profile the human immune response to influenza H1N1 and primate responses to Ebola
demonstrated that all immune cell lineages are engaged during an immune response and
undergo dramatic shifts in cell phenotype and frequency®”*8. Within this multi-lineage response,

the most critical interaction for mediating adaptive immune responses occurs through dendritic



cell priming of T cells. CD8 T cells are primed primarily by BAT3-dependent CD8" type 1 classic
dendritic cells (cDC1s), whereas CD4 T cells are primed primarily by CD11b* type 2 classic
dendritic cells (cDC2s)°. Effective priming requires recognition of peptide antigen loaded into
Major Histocompatibility Complex (MHC) proteins, costimulatory molecule engagement such as
CD86 and CD28, and proinflammatory cytokines to support proliferation?®. Once CD8 T cells
have been primed by cDC1s they undergo rapid proliferation and differentiation into multiple
effector fates including short-lived cytotoxic cells that directly kill infected cells, and long-lived
memory cells that persist after resolution of an infection and are able to initiate a faster and
more potent secondary response to future challenges®. Elegant lineage tracing studies have
shown that single T cells make very early decisions about the fate that they will ultimately
acquire®'%2. Yet the precise mechanisms for these early decisions remain unclear. Furthermore,
the full scope of immune interactions, phenotypes, and frequency shifts that occur within a
lymphoid organ during a response have not been studied.

The prior experience and state of the immune system dramatically shapes future
responses to challenges. Altered basal cytokine levels or cellular composition and activation
states are known to drive distinct secondary responses in models of chronic infection and
coinfection®-%, Because the systemic immune state is significantly reorganized in tumor-
bearing individuals, this may have functional consequences on the orchestration of new immune
responses. Indeed, cancer patients often exhibit increased susceptibility to infection compared
to healthy individuals®®*®”. During the ongoing 2020 SARS-CoV-2 pandemic, infected cancer
patients are more likely to develop severe symptoms and ultimately death®®%°. These
observations suggest that the substantial pan-lineage phenotypic and compositional changes to
the systemic immune landscape ultimately led to impaired immune responses to a secondary
challenge beyond the tumor microenvironment. As an intact functional peripheral immune

system is critical to the development of new antitumor immune responses as described in the



previous section, it is imperative to understand how immunological decisions are made within
the context the tumor-burdened state.

Recent work has begun to mechanistically dissect why the tumor-burdened immune
state drives weakened peripheral secondary immune responses by using challenges that share
no antigens with the initial tumor. The splenic CD8 T cell response to Listeria monocytogenes
(Lm) in Pan02 pancreatic tumor-bearing mice also showed perturbed differentiation
characterized by the acquisition of an exhausted fate’®. Suppressed splenic expansion of CD8 T
cells has also been observed in response to lymphocytic choriomeningitis virus (LCMV) with
pre-existing B16 melanoma’ . Vaccination of PanIN and pancreatic tumor-bearing mice with
ovalbumin (OVA) and CpG also led to impaired OVA-specific CD8 T cell proliferation and
differentiation in the spleen, which was linked to DC dysfunction and could be rescued by
combined treatment with FLT3L and CD40 agonism to both increase DC numbers and
activation, respectively®. In a PyMT-B6 mouse model of breast cancer, a matrigel plug
containing poly I:C and OVA was used as an immunogenic secondary challenge without shared
antigens to the primary tumor. Pre-existing malignancy drove significantly decreased frequency
of cDC1s within the plug and the plug-draining lymph node, which then led to a reduced number
OVA-specific CD8 T cells infiltrating the plug®®. Taken together, these studies show that the
innate and adaptive arms of immune responses, and specifically dendritic cell and CD8 T cell

interactions do not proceed optimally in tumor-bearing mice.
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2.3 Abstract

Our understanding of the factors governing immune responses in cancer remains
incomplete, limiting patient benefit. Here, we use mass cytometry to define the systemic immune
landscape in response to tumor development across five tissues in eight mouse tumor models.
Systemic immunity was dramatically altered across models and time, with consistent findings in
the peripheral blood of breast cancer patients. Changes in peripheral tissues differed from those
in the tumor microenvironment. Mice with tumor-experienced immune systems mounted
dampened responses to orthogonal challenges, including reduced T cell activation during viral or
bacterial infection. Antigen-presenting cells (APCs) mounted weaker responses in this context,
while promoting APC activation rescued T cell activity. Systemic immune changes were reversed
with surgical tumor resection, and many were prevented by IL-1 or G-CSF blockade, revealing
remarkable plasticity in the systemic immune state. These results demonstrate that tumor
development dynamically reshapes the composition and function of the immune

macroenvironment.
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2.4 Introduction

Immunotherapy has rapidly expanded our toolkit against cancer, but a broader
understanding of factors governing immune responses in cancer is required to extend clinical
efficacy to all patients. Intratumoral CD8 T cells have been the main focus of cancer
immunotherapies, yet recent studies demonstrate that cytotoxic T cells within the TME are

|51

irreversibly dysfunctional®'. Several studies have shown that a systemic anti-tumor immune

44,49.5472-76  However, we lack a

response is essential for immunotherapeutic efficacy

comprehensive definition of how cancer development impacts the systemic immune state.
Several lines of evidence suggest that systemic immune perturbations occur with cancer.

Peripheral granulocytic and monocytic expansion and impaired differentiation accompany tumor

1077 along with a reduction in conventional dendritic cells®®. Systemic effects on

progression
lymphocytes remain poorly understood. Most studies have explored anti-tumor immune
responses at a single, static time point, leaving the dynamicity of the immune system during
cancer development an open question. Prior immune experiences can impact responses to new
stimuli by shifting basal cytokine levels, innate immune activation states, and cellular
composition®*®5®  While many immunotherapies and vaccines seek to elicit new immune
responses in cancer patients, it remains uncertain how tumor burden impacts these processes. It
is also unclear whether there are lasting immune impacts after successful primary tumor
clearance, though studies have associated tumor resection with a reduction in myeloid-derived
suppressor cells’*®. Defining the functional capacity and stability of the tumor-experienced
immune macroenvironment is critical for improving immunotherapies.

We used high content single-cell analysis and corresponding analytical methods to
characterize the systemic immune landscape across eight commonly used mouse tumor models.
These data, which are publicly available, provide a rich resource. While each tumor has unique

immunological consequences, we found that three distinct breast cancer models converged on

similar systemic changes. Tumors drove dynamic shifts in the organization and functional capacity

11



of immune cells across the organism, culminating in attenuated responses to new immune
challenges, while tumor resection was sufficient to revert the systemic immune landscape. These
findings have implications for how and when we apply immunomodulatory agents in cancer,
emphasizing the importance of strategies that are informed by preexisting alterations in the
immune macroenvironment.

2.5 Results

2.5.1 Systemic immune organization is altered across multiple tumor types

We began by examining the TME across several common mouse tumor models, including
genetically-engineered and transplantable syngeneic models across different mouse strains with
different mutational loads, metastatic potential, variability and latency in tumor growth®'34 We
characterized well-established, but pre-terminal tumor stages to reflect the patient populations
most often treated with immunotherapies, but also to avoid the confounding impact of end-of-life
processes. We utilized mass cytometry to quantify the abundance and activity state of immune
cell subsets in the tumor as well as the blood, spleen, bone marrow and tumor-draining lymph
nodes (Table 2-1and Figure 2-1).

The immune composition of the TME was distinct between models, varying in the degree
of immune infiltration and diversity (Figure 2-2a and Figure 2-3). The predominant immune cell
types were tumor-associated macrophages and other CD11b"9" myeloid subsets, particularly in
the transplantable MC38 colorectal cancer and SB28 glioblastoma models, with relatively fewer
adaptive immune cells as reported in many human tumors®®. Both transplantable LMP pancreatic
cancer and genetically induced BrafPten melanoma models showed extensive eosinophil
infiltration. B16-F10 syngeneic melanoma and three models of breast cancer (transplantable cell
lines 4T1 and AT3 and autochthonous MMTV-PyMT) showed less relative abundance but greater
diversity in local immune cells, including B, T, and NK cell infiltration (Figure 2-2a and Figure
2-3a). Unique immune profiles were apparent across tumor types (Figure 2-2b and Figure 2-39).

We next asked whether these tumor models also resulted in altered systemic immune

12



states. The immune compositions of the tumor draining lymph node, bone marrow, blood, and
spleen were indeed altered, with nuance in the extent of alteration and immune cell types affected
(Figure 2-2c and Figure 2-3g). There was striking concordance among different models of the
same tumor type (breast cancer and melanoma), shifting together across principal components.
Surprisingly, SB28 glioblastoma extensively altered systemic immunity despite localization in the
brain. Reporter protein expression was not responsible for systemic immune remodeling, as both
the AT3 parental cell line and a derivative expressing GFP and luciferase exhibited strongly
correlated systemic alterations (Figure 2-3h, r = 0.9, p = 2.2e-16). Systemic alterations also
occurred in mice both with and without metastases (Figure 2-4a-e) and were tightly correlated
with primary tumor size in the MMTV-PyMT model (r = 0.8527, p < 0.0001). While the majority of
systemic immune remodeling could be explained by primary tumor size (78.4%), the residual
values were correlated with both lung and lymph node metastases (r = 0.5794, p = 0.0207 for
lung, and r = 0.5882, p = 0.0185 for lymph node). Compositional alterations in these peripheral
sites did not correspond with the local immune infiltrate. Thus, tumor burden drives distinct
changes in peripheral immune organization, dependent on the identity of the tumor.

We next performed Statistical Scaffold Analysis*®®® to interrogate the impact of tumor
burden in a more detailed manner, focusing initially on the spleen as a secondary lymphoid organ
distal from the tumor (Figure 2-2d and Figure 2-3b-f, Methods). All models exhibited expansions
in the splenic myeloid compartment, which was dominant in some, such as the three breast cancer
models (Figure 2-2d and Table 2-2) but less dramatic in others, such as the two melanoma models
(Figure 2-3e-f). Splenic remodeling in breast cancer was specifically characterized by increases
in frequencies of neutrophils, eosinophils, and monocytes and reductions in B and T cells (Figure
2-2d). Consistency was observed across breast cancer models, which span three mouse strain
backgrounds (BALB/c for 4T1, C57BL/6 for AT3, and FVB/N for MMTV-PyMT), orthotopic and
autochthonous models, and a range of metastatic potential (AT3 — weakly metastatic, MMTV-

PyMT — moderately metastatic, 4T1 — highly metastatic). Consistency despite model differences
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argues for a tumor and/or site-specific bias in systemic immune responses. Gene expression
analysis of whole blood from untreated breast cancer patients and matched controls from the
Norwegian Women and Cancer Study also demonstrated a marked shift in the immune state (PC1
Wilcoxon rank-sum p-value = 5.0 x 1072, PC2 p-value = 1.6 x 10¥°) (Figure 2-2e). Cellular
enrichment analysis demonstrated increased neutrophils and decreased Th1 and CD8 T cells
(Figure 2-2f). Altogether, these data suggest that tumor burden broadly disrupts immune
macroenvironments, providing context to inform therapeutic manipulations designed to activate
local versus systemic responses.
2.5.2 Tumor growth drives non-linear changes in immune cell frequencies over time
Tumors develop gradually, yet tumors are sampled at one developmental point in the clinic
to provide prognostic information related to the immune response. We explored the dynamics of
global immune remodeling during breast tumor growth, beginning with the predictable orthotopic
4T1 model before confirming results in an unrelated spontaneous model (MMTV-PyMT). Absolute
cell counts of tumor-infiltrating leukocytes positively correlated with tumor size, supporting a
progressive immune response (Figure 2-4f, r = 0.6, p = 0.0256). Absolute spleen cell counts also
increased, but cell frequencies as a percent of total leukocytes were comparable to absolute
numbers per milligram of spleen (Figure 2-4g). Deep profiling of both the tumor and splenic
immune compositions by mass cytometry revealed nonparametric correlations in individual
cluster frequencies with time (Figure 2-5a-b), demonstrating at the single cell level that immune
changes are indeed progressive. PCA of immune cell frequencies showed progressive changes
across tissues over tumor growth in both 4T1 (Figure 2-5¢c-d) and MMTV-PyMT tumors (Figure
2-4h). Importantly, the immune profile within the TME remained distinct from those observed in
peripheral sites. The draining lymph node immune composition was unique, while the spleen,
blood, and bone marrow were more coordinated. Neutrophil expansion in the spleen and bone
marrow, culminating in elevated circulation in blood, but lack of accumulation within the lymph

node or tumor, is one feature contributing to these unique profiles (Figure 2-5d).
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Progressive systemic immune responses to tumor burden were not strictly linear. The
magnitude of change was non-uniform between each time point as evident by the PCA (Figure
2-5¢ and Figure 2-4h). While some population changes were relatively continuous, such as
increasing neutrophils or decreasing CD4" T cells, many others were dynamic, like CD8" T cells
and Tregs, which reciprocally expanded and contracted at distinct times in the tumor and draining
lymph node (Figure 2-5d). In the spleen, myeloid expansion began by day 7 and continued to day
14, preceding the progressive decline in the T and B cells that began by day 14 (Figure 2-4i). The
lymph node also changed most dramatically by day 14 (Figure 2-6a), while changes in blood were
more continuous (Figure 2-6b). The bone marrow and tumor contained less mature and clearly
defined cell types, with many more inter-cluster connections and individualized patterns of change
over tumor growth (Figure 2-6¢-d). These data demonstrate that the tumor immune response is
a highly dynamic process.

2.5.3 Immune cell states are dynamically altered across immune organs with tumor growth

To understand the extent of systemic impacts on T cells, we leveraged unsupervised cell
clustering to identify changes in T cell subsets, cell states, and potential cross-organ coordination
of responses during tumor growth. Indeed, the T cell compartment was dramatically reorganized
over both 4T1 and MMTV-PyMT tumor development (Figure 2-7a, Figure 2-8a-b). Tissues
contained both unique and shared T cell subsets shifting with tumor growth (Figure 2-7b-c, Figure
2-8c-e). Blood and spleen profiles were more similar, dominated by CD4" T cells. In contrast, the
tumor T cell pool had more shared subsets with the bone marrow, including an increasing double
negative population and a decreasing NKT cell population (Figure 2-7c).

Demonstrating the breadth of immune reorganization in cancer, all T cell clusters changed
in abundance across multiple tissues between early and late disease time points (Figure 2-7d).
Of particular interest, tumor-infiltrating CD103" Tregs, described as potent suppressors of effector
T cells®”, were abundant at day 7 but decreased with tumor progression (Figure 2-7e). This Treg

subset expanded in the draining lymph node, suggesting that distal suppressive mechanisms may
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support local changes to maintain a tumor-promoting systemic state. Anti-correlated changes
extended to conventional CD4" T cells, where CD44* CD90"9" activated CD4 T cells decreased
in the tumor but expanded in the lymph node (Figure 2-7f). The spleen showed the greatest
change in CD44" CD27*" memory CD4 T cells, which decreased with disease progression (Figure
2-7g). The blood showed increases of activated CD44" CD4" T cells expressing the CD31
adhesion receptor, which can promote T cell survival in settings of inflammation (Figure 2-7h)®.
CD44+ CD8+ T cells expanding in the lymph node expressed Ly6C (Figure 2-7j), which can
support lymph node homing of central memory T cells®®. CD8* T cells generally expanded in the
tumor, but the most dominant cluster expressed high levels of PD-1 and CD69 previously
associated with T cell dysfunction (Figure 2-7i)°*°'. To explore the extent of dysfunction, we
interrogated intratumoral and splenic T cells for their expression of CD101 and CD38, two markers
recently identified as evidence of permanent T cell dysfunction®'. Late-stage tumor burden led to
accumulation of CD38"CD101* CD8" T cells in the tumor as expected; however, this phenotype
did not emerge in the spleen (Figure 2-7k), suggesting that CD8" T cells are altered differently in
the TME and periphery. Similar changes in T cell composition were observed in the MMTV-PyMT
model (Figure 2-8c-h).

A similar pan-organ clustering analysis for the mononuclear phagocyte subsets, including
macrophages and dendritic cells (Figure 2-9), revealed correlated and anti-correlated systemic
changes in cell states with tumor progression. As expected, the tumor-infiltrating subsets were
distinct from peripheral subsets and expressed high levels of PD-L1.

We specifically interrogated protein expression dynamics of PD-1 and PD-L1 , the most
commonly manipulated immune checkpoints by cancer immunotherapies to facilitate T cell
responses®. While expression of these molecules is used clinically for patient stratification, it
remains unclear whether they are expressed consistently or modulated dynamically over time.
We indeed found dynamic PD-1 and PD-L1 expression on infiltrating immune cells (CD45") and

non-immune cells (CD45 CD31°) in the TME and in the periphery of both 4T1 and AT3 breast
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cancer models (

Figure 2-10a- c). In fact, while the overall amount of PD-L1 expression was significantly
less in the blood compared to the tumor, median leukocyte signal intensity was positively
correlated between these tissues (

Figure 2-10d, r=0.7487, p = 0.001). Both PD-1 and PD-L1 were promiscuously expressed
across immune cell types, particularly within the TME (

Figure 2-10e). The most prominent cells expressing PD-L1 in the periphery were non-
classical monocytes®® and cDCs, while PD-1 was abundantly expressed on T cells, neutrophils
and eosinophils. Dynamicity in PD-1 and PD-L1 expression suggests the potential for differential
sensitivity to checkpoint blockade over the course of tumor development.

Changes in cellular proliferation or death rates are potential mechanisms contributing to
immune composition alterations. We discovered that immune proliferation fluctuated systemically
in a pattern unique to each site but was coordinated across all immune subsets within that site
(Figure 2-11a-d). Changes in Ki67 and cleaved caspase-3 expression corresponded poorly with
clusters that were increasing or decreasing in frequency in the spleen (Figure 2-11e). Thus, while
tumor burden systemically alters proliferation and death, these processes alone likely do not
account for the systemic immune alterations observed.

2.5.4 De novo T cell responses are impaired by pre-existing malignancy

Having established that tumor development drives an altered immune macroenvironment,
we next examined whether immune responses to new challenges were affected. Type 1 immune
responses are associated with strong cellular immunity and are generally thought to provide
optimal anti-tumor immunity. To understand how type 1 immune responses might take place in
the context of cancer, we challenged healthy or AT3 tumor-bearing mice with two well-described
pathogens that induce potent type 1 immunity, lymphocytic choriomeningitis virus (LCMV) and
Listeria monocytogenes (Lm)*9°. Tumor-burdened mice still cleared the pathogens from the

spleen (Figure 2-12a-b), consistent with the lack of complete immunosuppression in solid tumor
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patients. However, the cellular immune response to infection was dramatically altered. The
differentiation of effector CD8" T cells, the magnitude of CD8" T cell proliferation, and expression
of the cytolytic mediator granzyme B were all significantly impaired in tumor-bearing mice after
infection (Figure 2-12c-e and Figure 2-13a). These results demonstrate an unappreciated
impairment of new cellular immune responses in the context of cancer.

We previously found that CD8+ T cells with markers of terminal dysfunction were only
observed in the TME and not in the spleen (Figure 2-7k). Consistent with this hypothesis, splenic
CD8" T cells harvested from either control or tumor-burdened animals were equally capable of
producing the key effector cytokines IFNy, TNFa, and IL-2 in vitro (Figure 2-13b). To test their
functionality after infection, CD8" T cells from OT-I transgenic mice expressing a T cell receptor
specific for ovalbumin (SIINFEKL) were isolated from control or tumor-bearing mice and
transferred into recipient mice, which were infected with Lm-expressing ovalbumin (Lm-OVA).
AT3 tumors still drove systemic changes in TCR transgenic mice (Figure 2-13c). OT-I CD8" T
cells from control and tumor-bearing mice proliferated equivalently in control recipients at day 7

post-infection, the peak of the CD8 T cell response®° (

Figure 2-14a). However, when OT-I T
cells were transferred into tumor-bearing recipients prior to infection, they expanded poorly, failed
to induce T-bet expression associated with differentiation into effector cells, and expressed higher
levels of PD-1 (Figure 2-14b). Similar results were also observed when polyclonal CD8 T cells
from control or tumor-burdened mice were competitively transferred (Figure 2-14c). We found that
antigen-specific central memory, effector memory, and short-lived effector CD8" T cells were less
abundant in tumor-bearing mice at day 10 as well, suggesting that defects extend beyond peak
proliferation and represent a fundamental impairment of de novo CD8" T cell responses (Figure
2-14d). Together, these results demonstrate that cell extrinsic mechanisms suppress systemic T
cell function in the tumor context.

Since tumor experienced CD8" T cells in the periphery were not dysfunctional, we

hypothesized that impaired APC activity earlier during infection contributes to decreased
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peripheral CD8" T cell activation. Dendritic cells (DCs) play a key role in orchestrating CD8" T cell
responses to Lm®, and evidence suggests that circulating DCs in breast cancer patients have
reduced antigen presentation capacity®®. Therefore, we quantified costimulatory molecule
expression on splenic DCs 2 days post-infection. DCs from AT3 tumor-bearing animals expressed
lower levels of key costimulatory molecules CD80 and CD86 and the activation marker CD83
when compared to tumor-free controls (Figure 2-14e and Figure 2-13d). DCs from tumor-bearing
mice also exhibited suboptimal activation at day 7 of infection, expressing lower levels of CD80,
the adhesion molecule CD54 (ICAM-1) and PD-L1 (Figure 2-13e). This result suggests that the
PD-1/PD-L1 axis does not cause the T cell response impairment and indicates that alternative
strategies are likely required to induce new systemic T cell activity. We therefore sought to
pharmacologically boost APC activation as a plausible strategy for achieving this goal. Anti-CD40
treatment drives potent and systemic APC activation as shown by elevated CD86 and PD-L1 on
splenic DCs (Figure 2-14f and Figure 2-13f). In the context of infection, anti-CD40 treatment
rescued CD8" T cell proliferation in tumor-burdened animals 7 days post-infection (Figure 2-14g).
We also observed significantly higher levels of activation markers CD80, CD54 and PD-L1 on
DCs after treatment (Figure 2-13e), consistent with enhanced APC stimulation. In contrast, high
doses of IL-12 or treatment with anti-CTLA-4 failed to rescue T cell proliferation (Figure 2-14g and
Figure 2-13g), suggesting that T cell targeted interventions alone are not sufficient. These
experiments demonstrate that APCs fail to drive optimal new T cell responses in the context of
tumor burden.
2.5.5 Tumor resection reverses changes in systemic immune organization and
responsiveness

Given that defects in T cell activity were reversed after removal from a tumor-burdened
context, we asked whether tumor clearance was sufficient to revert changes in systemic immunity.
We surgically resected tumors when systemic changes were evident across sites and allowed

mice to recover from surgery for 14 days to mitigate immune confounders from wound healing.
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We carefully tracked both local recurrence and metastatic outgrowth by bioluminescent imaging.
Successful tumor resection reversed changes in systemic immunity in the AT3 and 4T1 breast
cancer and the MC38 colorectal cancer models (Figure 2-15a). Splenic immune cluster
frequencies and proliferative behavior became comparable to control animals (Figure 2-15b and
¢, and Figure 2-16a-c). Successful resection restored compositional changes in spleen immune
frequencies and T cell clusters; however, local recurrence in the AT3 model and overt lung
metastasis in the 4T1 model led to intermediate phenotypes in the systemic immune state (Figure
2-15d and e, and Figure 2-16d and f-g). Local recurrence induced changes in the spleen
comparable to primary tumors, but the composition of T cells was less dramatically altered. Lung
metastasis induced more moderate changes, suggesting that systemic immune perturbations are
not primarily the consequence of disseminated metastases. Finally, we interrogated DC and T
cell responses 7 days after Lm-OVA infection and observed higher CD86 and PD-L1 expression
on DCs in successfully resected mice (Figure 2-16h), and both T cell proliferation and Granzyme
B production were restored (Figure 2-15f-g). Local recurrence mitigated this rescue. Thus,
changes in the immune macroenvironment, unlike those of T cells in the TME, are highly
dependent on ongoing tumor burden and are reversible upon effective tumor clearance.

Finally, we investigated circulating cytokine levels to define potential mediators of tumor-
driven systemic immune remodeling. We reasoned that candidate factors would be elevated in
the serum of AT3 tumor-burdened mice, reduced in successfully resected animals, and elevated
again with local recurrence, or vice versa. We found that levels of the inflammatory cytokines IL-
1o and G-CSF followed this pattern (Figure 2-16i). Notably, recent studies have implicated G-
CSF as a driver of myeloid-derived suppressor cell and neutrophil expansion in preclinical models
and cancer patients'®'*%°_While IL-1p has been shown to promote tumor development locally in
the TME, the role of IL-1a is less well understood, though it is elevated human breast cancers'*®-

192 Consistent with the hypothesis that tumor-secreted factors contribute to systemic immune
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remodeling, G-CSF and IL-1a, but not IL-183, were produced by AT3 cancer cells in vitro (Figure
2-16j). We next treated mice with IL-1 and G-CSF blocking antibodies starting 5 days after tumor
initiation, prior to most systemic immune changes. We also investigated the potential systemic
impacts of TGFp, a pleiotropic cytokine known to play key roles in shaping the TME, including
immune cell exclusion and immunosuppression'®1%_ Both IL-1 and G-CSF blockade significantly
abrogated systemic immune remodeling while TGFf blockade had no effect (Figure 2-15h and
Figure 2-16e). IL-1 and G-CSF blockade reduced splenic neutrophils and less mature CD11b+
myeloid cells (Figure 2-15i). Notably, IL-1 blockade also significantly reduced circulating levels of
G-CSF, suggesting that IL-1 may act upstream to promote G-CSF production (Figure 2-16k),
consistent with in vitro data from human tumor cell lines'®. IL-1 blockade was additionally
sufficient to reduce tumor effects on the splenic T cell composition, preventing the observed
reductions in naive and central memory CD8 T cells (Figure 2-15j-k). Thus, circulating IL-1a. and

G-CSF are critical mediators of tumor-driven systemic immune remodeling in this context.
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2.6 Discussion

This study constructs a comprehensive landscape of the immune macroenvironment in
cancer, revealing a systemic immune context to consider when targeting immune behavior
therapeutically._Strong pre-existing T cell activity is associated with clinical benefit from currently
available immunotherapies, but many cancer patients likely require the priming of new antitumor
immune responses. However, the ability of a tumor-burdened immune system to establish new
responses is poorly defined’"'%'%”  Cancer patients are more susceptible to opportunistic
infections and mount less effective responses to vaccines'*®'%, though the relative contributions
of tumor driven systemic disruption and cytotoxic cancer therapies are debated. Here, we show
that systemic immunity is disrupted to varying degrees across tumor types. Systemic immune
alterations in breast cancer impair new immune responses, even to highly immunogenic
pathogens that do not share tumor antigens. This challenges the idea that T cell dysfunction in
cancer is limited to tumor-specific T cells experiencing chronic antigen exposure. Our data reveal
impairment in the initial coordination of a T cell response by APCs, impacting T cell proliferation
and differentiation. Impaired type 1 immune responses represent a fundamental, but previously
unappreciated, obstacle for effective immunotherapy. These results, alongside promising clinical
results of CD40 agonism in pancreatic cancer''’, strongly support combinatorial therapeutic
strategies that include APC activation.

This work further reveals remarkable plasticity in the systemic immune state, as successful
tumor resection largely reverted systemic immune disruptions. Influenced by physiological
context, immunotherapies may have different consequences when applied pre- or post-
operatively. These studies show that the immune macroenviornment in cancer is highly
manipulatable, warranting further studies in cancer patients. Prior studies have connected
systemic changes with relapse in breast cancer patients, showing altered immune gene
signatures in uninvolved lymph nodes and blood of patients with metastatic versus non-metastatic

disease'" and that circulating CD45RA Foxp3"9" Tregs predict future relapse*'. In breast tumor

22



models, we show that the primary tumor is a primary driver of systemic immune reorganization,
but that lung and lymph node metastasis are also associated with additional subtle changes.
Future work to understand systemic immune alterations across cancer patients could inform
prognosis and optimal therapy.

Our study lays the foundation for detailed studies of specific tumor macroenvironments to
match our detailed understanding of tumor microenvironments in mouse tumor models and
patients. Building a complete understanding of systems-level immunity in cancer should further
our ability to drive effective and rationally-designed anti-tumor immune responses in all cancer

patients.
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Figure 2-1: Main mass cytometry gating strategy
a, Main gating strategy for identifying major immune cell populations from mass cytometry
datasets.
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Figure 2-2: The systemic immune landscape is remodeled across tumor models.

a, Composition of tumor immune infiltrates across late stage mouse models, identified by manual
gating (n = 3 independent animals for 4T1; n =6 AT3; n =7 MMTV-PyMT; n = 6 B16; n = 6 Braf-
Pten; n =4 LMP; n = 6 MC38; n = 1 SB28; n = 30 Controls). b-c, Principal component analysis
(PCA) and corresponding vector plot of individual contributions for the tumor infiltrating immune
frequencies (b), and the log2 fold change of immune frequencies for the tumor draining lymph
node, bone marrow, blood, and spleen (c) identified manually (n = 3 for SB28, otherwise as in
panel (a)) d, Scaffold maps of spleen immune frequencies in breast tumor models (4T1, AT3, and
MMTV-PyMT). Black nodes represent canonical cell populations identified manually. Other nodes
reflect unsupervised clustering of leukocytes. Nodes are arranged by similarity using a force-
directed graphing algorithm (see Methods). Red denotes populations significantly higher in
frequency in tumor-burdened animals compared to controls; blue denotes significantly lower
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frequency. For significant nodes (q < 0.05 by significance analysis of microarrays), the degree of
coloring reflects log2 fold change (n as in panel (a)). e-f, PCA (e) and significant immune changes
by cellular enrichment analysis (f) from human whole blood gene expression, comparing breast
cancer patients (n = 173) and matched controls (n = 281), p*** <0.001 by two-sided Wilcoxon
rank-sum test with Benjamini-Hochberg correction. Box plots: center line, median; box limits,
upper and lower quartiles; whiskers, 1.58x interquartile range / sqrt(n); points, outliers.
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Figure 2-3: Systemic immunity is distinctly remodeled across tumor types.

a, Relative abundance of total leukocytes infiltrating the TME across eight tumor models. b-f,
Scaffold maps of spleen cell frequencies across five distinct tumor models, SB28 glioblastoma
(b), MC38 colorectal (c), LMP pancreatic (d), B16 melanoma (e), and Braf-PTEN melanoma (f),
comparing late stage tumor burden to their respective health littermate controls. g, Heatmaps of
the log2 adjusted fold change in bulk immune cell frequencies across all five tissues, where
relevant, across all models. h, Heatmaps of the log2 adjusted fold change in bulk immune cell
frequencies comparing the parental AT3 and engineered AT3 expressing reporters GFP and
Luciferase, with cell labels in g. Lower inset shows linear correlation between these systemic
immune features.
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Figure 2-4: Systemic immunity is distinctly remodeled over tumor development.
a, Pearson correlation between MMTV-PyMT primary tumor size and change in systemic immune
composition, measured as Aitchison distance. b, Degree of systemic immune change by Aitchison
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distance over tumor growth (left) and after removing the contribution of primary tumor size by
linear regression (right). ¢, Percent of PyMT expressing metastatic cancer cells in the lung (green)
and primary draining lymph node (blue). d, Pearson correlation between lung or lymph node
metastasis and the residual changes in systemic immune composition after regressing out
primary tumor burden. e, Heatmap of the log2 adjusted fold change in bulk spleen immune cell
frequencies for each 400mm2 tumor-bearing mouse, ranging from 0 to high metastatic disease.
f, Pearson correlation between tumor mass and absolute number of infiltrating leukocytes in 4T1
breast tumors. g, Spleen immune absolute cell counts, adjusted absolute cell counts per mg of
tissue, and unadjusted immune frequencies at each time point for neutrophils, B cells and T cells
of the 4T1 breast tumor model. h, PCA of relative immune cell frequencies from each major
immune tissue over time in the MMTV-PyMT breast tumor model. Vectors designate progression
from control (first point) to 25 mm2, 50mm2, 125mm2, and 400mm2 (last point, arrowhead). i,
Scaffold maps of immune cell frequencies in the spleen at each time point of 4T1 tumor burden,
colored by log2 fold change in frequency compared to the previous time point.
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Figure 2-5: The systemic immune landscape is remodeled progressively with tumor
development.

a-b, Scaffold maps of 4T1 tumor (a) and spleen (b) cell frequencies colored by significant
Spearman correlation with time (across day 0, 7, 14, 21 and 35), p < 0.05 by two-sided t-test with
Benjamini-Hochberg correction. Green denotes positive correlation, and brown denotes negative
correlation. ¢, PCA and corresponding vector plot of contributions for immune cell frequencies
from each immune tissue over 4T1 breast tumor growth. Vectors designate progression from
control day O (first point) to day 7, 14, 21, and 35 (last point, arrowhead). d, Curves of mean cell
frequencies across time from a subset of immune cell types contributing to ¢, colored by tissue
corresponding with c. All panels from one experiment, n = 3 independent animals for day 21 and
n = 4 for all other timepoints.
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previous time point.
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Figure 2-7: Tumor burden progressively changes the systemic T cell composition.

a-d, CD3+ CD11b- leukocytes from all tissues from healthy and 4T1 tumor-burdened animals at
progressive time points. a, Scaffold maps of the T cell cluster frequencies in the spleen at each
disease stage, all colored by log2 fold change in frequency. Clusters with significant change over
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time are highlighted in red in the first map, g < 0.05 by multiclass significance analysis of
microarrays. b, Heatmap of the protein expression defining each T cell cluster, column
normalized to each protein’s maximum positive expression. ¢, Heatmap of each T cell cluster
frequency, by row, in each site and across the individual 3-4 animals per time point. d, Stacked
bar plot of the log2 fold change in cluster frequency between early (day 7) and late (day 35)
disease stage, colored by tissue. e-j, Representative scatter plots of key proteins defining T cell
clusters that change in frequency in the designated tissues between early and late disease stage
for Tregs (e), CD4 T cells (f-h), and CD8 T cells (i-j). k, Representative scatter plots and
quantification of CD101+ CD38+ dysfunctional CD8 T cells in the spleen and tumor of health or
day 21 tumor-burdened animals. All panels from one experiment, n = 3 independent animals for
day 21 and n = 4 for all other timepoints. Barplot: centre, mean; whiskers, standard deviation.
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Figure 2-8: Tumor growth shifts the systemic T cell composition across models.

a-b, PCA of T cell cluster frequencies across lymphoid tissues over tumor development for the
4T1 (a) and MMTV-PyMT (b) breast tumor models. Vectors designate directional progression
from control (first point) to late stage disease (last point, arrowhead). In a, tumor time points
include day 7, 14, 21, and 35 after 4T1 cancer cell transplant. In b, tumor time points include
tumor sizes of 25 mm?, 50 mm?, 125 mm?, and 400 mm?. c-e, CD3+ CD11b- leukocytes from all
tissues clustered together from healthy and MMTV-PyMT tumor-burdened animals at progressive
tumor sizes. ¢, Heatmap of each T cell cluster frequency, by row, in each site and across the
individual 2-3 animals per time point. d, Stacked bar plot of the log2 fold change in cluster
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frequency between early (25 mm?) and late (400 mm?) disease time points, colored by tissue. e,
Heatmap of the protein expression defining each T cell cluster, column normalized to each
protein’s maximum positive expression. f-h, Representative scatter plots of key proteins that
define T cell clusters changing in frequency in the designated site between early and late disease
stage for CD8 T cells (f), Tregs (g), and CD4 T Cells (h).
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Figure 2-9: Tumor growth shifts the systemic mononuclear phagocyte composition.

a, CD3- CD19- leukocytes from all tissues clustered together from healthy and 4T1 tumor-
burdened animals at progressive time points. Left, stacked bar plot of the log2 fold change in
cluster frequency between early (day 7) and late (day 35) times points, colored by tissue. Right,
heatmap of the protein expression defining each cluster, column normalized to each protein’s
maximum positive expression. b, Curves of the mean cell frequencies over time in the 4T1 breast
tumor model from designated mononuclear phagocyte cell types, colored by tissue. ¢, PCA of the
mononuclear phagocyte cell frequencies from each tissue over time in the 4T1 breast tumor
model. Vectors designate progression from control (first point) to day 7, 14, 21, and 35 (last point,
arrowhead). Coloring of tissues for a-c corresponds to labels in c.
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Figure 2-10: PD-1 and PD-L1 expression is dynamic over tumor growth.

a, Distribution of PD-1 and PD-L1 signal intensities on tumor infiltrating leukocytes over time in
the 4T1 or AT3 breast tumor models. Coloring of time points for a-d corresponds to legend in a.
b, Percent of total infiltrating leukocytes (left of dashed line) or CD45-, non-endothelial cells (right
of dashed line) with high PD-1 or PD-L1 expression in the 4T1 or AT3 tumor models. ¢, Percent
of leukocytes with high PD-1 or PD-L1 expression over time and across tissues, 4T1 model. d,
Pearson correlation between median PD-L1 signal intensity on blood versus tumor infiltrating
leukocytes, 4T1 model. e, Percent of each major immune cell subset expressing high PD-1 or
PD-L1 in the tumor, blood, and spleen, identified manually. Cell subsets below 0.2% of total
leukocytes were not included, X. Bars ordered by time point, beginning at healthy control. Double
positive PD-1/PD-L1 expression was rare and not illustrated. p*<0.05, One-Way ANOVA, with
Tukey correction versus control tissue or healthy mammary fat pad (blue in b-c, fill corresponding
to bar color in e), or versus day 7 (green in b-c).
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Figure 2-11: Tumor burden induces tissue-specific changes in immune cell cycling.

a-b, Log2 fold change in bulk Ki67 expressing leukocytes in each tissue tissues for 4T1, AT3 and
MMTYV breast tumors (a), and over 4T1 tumor progression (b). p*< 0.05, One-Way ANOVA, with
Tukey correction versus control. c-d, Statistical Scaffold maps of Ki67 expression in immune cells
of the tumor draining lymph node comparing control to day 21 (c) and the spleen over time (d) in
4T1 tumor burdened animals. e, Percent of increasing clusters (red, total of 56), decreasing
clusters (blue, total of 90), or unchanged cluster that have corresponding changes in cell cycle
markers Ki67 and cleaved caspase-3.
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Figure 2-12: Tumor burden leads to impaired T cell responses to secondary infection.

a-b, Fold change in body weight after Listeria monocytogenes (Lm) infection (n = 11 independent
animals for control groups and n = 9 for AT3 groups) (a), and quantification of Lm bacterial burden
(b) in control and AT3 tumor-burdened animals (n = 5 for day 3 groups, n = 4 for control day 8,
and n = 2 for AT3 day 8). ¢, Scaffold map of CD8 T cell frequencies in the spleen in AT3 tumor-
burdened mice after 7 days of Lm infection, colored by fold change in frequency compared to
infected control mice (n = 3 uninfected, n = 3 Lm infected), q < 0.05 by significance analysis of
microarrays. d-e, Quantification and representative scatter plots of splenic CD8+ T cell
proliferation (d) and granzyme B production (e) in response to LCMV Armstrong or Lm in healthy
or AT3 tumor-burdened animals (n = 3 uninfected, n = 4 LCMV, and n = 3 Lm-infected). For all
barplots: p* <0.05, p** <0.01 by two-sided t-test; center, mean; whiskers, standard deviation.
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Figure 2-13: Tumor driven deficits in T cell responses are cell-extrinsic.

a, Quantification of CD8" T cell populations in the spleen of healthy or AT3 tumor-burdened mice
after 7 days of Lm infection, Two-Way ANOVA with Bonferroni correction. b, Expression of
infammatory cytokines, Ifng, IL-2, and TNFa in splenic CD8 T Cells isolated from control or AT3
tumor-burdened mice after in vitro differentiation with CD3, CD28, and IL-2, and re-stimulation
with brefeldin A and PMA and ionomycin. ¢, Scatter plots of CD11b and Ly6G showing expected
neutrophilia in OT-I TCR transgenic mice with AT3 tumor burden. d, Histograms of CD80, CD86,
and CDB83 signal intensity on cDCs from healthy or AT3 tumor-burdened mice at day 2 of Lm-
OVA infection. e, Median signal intensity of CD80, PD-L1 and CD54 activation markers on splenic
cDCs from healthy or AT3 tumor-burdened mice compared to IL-12p70 or CD40 treatment at day
7 of Lm-OVA infection. f, Median signal intensity of PD-L1 on splenic cDCs from untreated or
CD40 treated AT3 tumor-burdened (day 21) mice. g, Quantification of splenic CD8+ T cell
proliferation in healthy, untreated or CTLA-4 treated AT3 tumor-burdened animals in response to
7 days of Lm-OVA infection. p*<0.05, two-tailed t-test.
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Figure 2-14: Tumor burden attenuates dendritic cell activation during secondary infection.
a, OT-I T cell proliferation from control or tumor-burdened animals transferred into control
recipients, and analyzed at 72, 96, and 144 hours post-Lm-Ova infection (n = 3 independent
animals per group). Quantification of 96 hours. b, Transferred OT-l T cell counts and median
signal intensity of T-bet and PD-1 at day 6 of Lm-OVA infection (n = 3 for control, and n = 4 for
AT3 hosts). ¢, Competitively transferred polyclonal CD8 T cell counts from congenic (CD45.1+
AT3 tumor-burdened or CD45.1+CD45.2+ control) donors into CD45.2 control (n = 5) or AT3
tumor-burdened recipients (n = 4), after 7 days of Lm infection. d, CD8+ T cell subtype counts
from transferred CD45.1+ OT-I T cells at day 10 of Lm-OVA infection (n = 5 for control, and n = 4
for AT3 hosts). e, Median signal intensity of CD80, CD86, and CD83 on splenic classical dendritic
cells (cDCs) from healthy (n = 4) or AT3 tumor-burdened (day 28, n = 6) mice, at day 2 of Lm-
OVA infection (n = 2 for uninfected groups). f, Median signal intensity of CD86 on splenic cDCs
from untreated (n = 3) or CD40-treated (n = 4) AT3 tumor-burdened (day 21) mice. g,
Quantification of splenic CD8+ T cell proliferation in healthy versus untreated, IL-12p70-treated,
or anti-CD40-treated AT3 tumor-burdened animals at day 7 of Lm-OVA infection (n = 2 control
uninfected, n = 4 control Lm, and n = 5 for AT3 groups). For all barplots: p* <0.05, p** <0.01, p***
<0.001 by two-sided t-test; center, mean; whiskers, standard deviation.
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Figure 2-15: Tumor resection completely resets the systemic immune landscape.

a, Heatmaps of log2 fold changes in peripheral immune frequencies from tumor-burdened (T) or
resected (R) mice. b-c, Scaffold maps of spleen immune frequencies (b) and proliferation (c) after
AT3 resection compared to control (n = 3 per group). Insets show resected compared to tumor-
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burden (n = 4), q < 0.05 by significance analysis of microarrays. d-e, Compositional Aitchison
distances in spleen immune frequencies (d) or T cell cluster frequencies (e) from control (n = 3
for AT3, 8 for 4T1, and 5 for MC38), tumor-burdened (n = 6, 8, and 4), resected (n = 3, 6 and 6),
or locally recurrent mice for AT3 and distal lung metastasis for 4T1 (n = 3 for both)(2 independent
experiments for 4T1 and 1 experiment for AT3 and MC38). f-g, Quantification and representative
scatter plots of splenic CD8+ T cell proliferation (f) and granzyme B production (g) after Lm
infection in control (n =4 and n = 7), AT3 tumor-burdened (n = 4), resected (n = 17), or recurrent
mice (n = 4), 3 independent experiments. h-k, Compositional Aitchison distances of spleen
immune frequencies (h), spleen frequencies of neutrophil (top) and undefined CD11b+ cells
(bottom) (i), compositional Aitchison distances of T cell subset frequencies (j), and splenic CD8"
T cell frequencies (k) from control, or tumor-burdened mice untreated or with IL-1, G-CSF, or
TGFp antibody blockade (n = 5 per group, from 1 experiment). All box plots: center line, median;
box limits, upper and lower quartiles; whiskers, 1.58x interquartile range / sqrt(n); points, outliers.
All barplots: p* <0.05, p** <0.01, p*** <0.001 by two-sided t-test; centre, mean; whiskers, standard
deviation.
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Figure 2-16: Tumor resection resets systemic immune organization and function.

a-c, Statistical scaffold maps of spleen immune cell frequencies (a) and proliferation by Ki67
expression (b) in 4T1-resected mice, and of spleen immune cell frequencies in MC38-resected
mice (c) compared to healthy control. Insets show resected mice compared to tumor-burdened
mice. d-e, Heatmap of the log2 fold changes in splenic immune cell frequencies for local or lung
recurrences from control mice (d), and for IL-1, G-CSF, or TGFp blockade from untreated AT3
tumor-burdened mice (e). f-g, Heatmaps of T cell cluster expression profiles and log2 fold change
from control for AT3 (f) and 4T1 (g) for the spleen and draining lymph node. h, Median signal
intensity of CD86 and PD-L1 on splenic cDCs from healthy, AT3 tumor-burdened, resected, or
resected mice with local recurrence at day 7 of Lm-OVA infection. i, Concentration of circulating
cytokines, IL-1a and G-CSF from healthy, AT3 tumor-burdened, resected, or resected mice with
local recurrence. j, Concentration of circulating G-CSF in control or AT3 tumor burdened mice left
untreated or after 1L-1 or G-CSF blockade. k, Concentration of cytokines, IL-1a, IL-1B and G-
CSF from in vitro cell culture media conditioned with AT3 cancer cells. p*<0.05, two-tailed t-test.

47



Table 2-1: Antibody panel used for mass cytometry experiments.

MAIN
Channel Metal Protein Concentration (ug_/ml) Clone Vendor Catalogue # Lot #
113 In Terll9 3 TER119 Biolegend 116202 B250339
115 In CD45 6 30-F11 Biolegend 103102 B253429
139 La Ly6G 1.5 1A8 Biolegend 127602 B265459
140 Ce 1gD 3 11-26¢.2a Biolegend 405702 B165867
141 Pr CD16/32 3 2.4G2 BD 553142 8130843
142 Nd CD4%b 0.75 HMa2 Biolegend 103501 -
143 Nd CD11c 0.75 N418 Biolegend 117302 B191075
144 Nd CD49d 3 R1-2 BioLegend 103610 B254009
145 Nd CD27 0.75 LG.3A10 Biolegend 124202 B233065
146 Nd CD138 0.1875 281-2 Biolegend 142502 B233106
147 Sm PD-L1 3 10F.9G2 Biolegend 124302 B220492
148 Nd CD103 3 2E7 Biolegend 121402 B249116
149 Sm SiglecF 1.5 E50-2440 BD 552125 7264727
150 Nd PDCA-1 0.75 129c1 Biolegend 127102 B188381
151 Eu Ly6C 0.75 HK1.4 Biolegend 128002 B253176
152 Sm Ki67 6 SolA15 BD 556003 6280947
153 Eu CD11b 3 M1/70 Biolegend 101202 B261558
154 Sm cKit 15 2B8 Biolegend 105802 B241900
155 Gd CD8 3 53-6.7 Biolegend 100702 B237234
156 Gd CD4 0.75 RM4-5 Biolegend 100506 B251707
157 Gd CD3 0.75 17A2 Biolegend 100202 B241388
158 Gd B220 1.5 RA3-6B2 Biolegend 103202 B170375
159 Th PD-1 0.75 29F.1A12 Biolegend 135202 B196019
160 Gd NK1.1 1.5 PK136 Biolegend 108702 B187819
161 Dy T-bet 6 04-46 BD 561263 3032551
162 Dy TCRgd 3 GL3 Biolegend 118101 -
163 Dy CD62L-FITC 3 MEL-14 Biolegend 104443 B235113
164 Dy CD86 0.375 GL-1 Biolegend 105002 B244244
165 Ho CD69 0.75 Polyclonal R&D AF2386 UIU011808A
166 Er FcERla 1.5 MAR-1 Biolegend 134321 B243579
167 Er Foxp3 3 NRRF-30 eBioscience 14-4771-80 1972297
168 Er RORgt 6 B2D eBioscience 14-6981-82 -
169 Tm F4/80 1.5 BM8 Biolegend 123102 B226029
170 Er CD115 1.5 AFS98 Biolegend 135521 -
171 Yb CD64 6 X54-5/7.1 Biolegend 139302 B270355
172 Yb GATA3 3 16E10A23 Biolegend 653802 B201420
173 Yb CD19 0.75 6D5 Biolegend 115502 B166684
174 Yb IgM 6 RMM-1 Biolegend 406502 B256697
175 Lu CD44 0.375 IM7 Biolegend 103002 B246298
176 Yb CD90 0.75 G7 Biolegend 105202 B187334
209 Bi MHCII 0.1875 M5/114.15.2 Biolegend 107602 B141287
Other Substitutes
Channel Metal Protein Concentration (lg;/ml) Clone Vendor Catalogue # Lot #
89 Y Terll9 6 TER119 BioLegend 116202 B250339
113 In CD45.2 3 104 BioLegend 109802 B269632
115 In CD45.1 3 A20 BioLegend 110702 B237865
140 Ce H2KB 3 AF6-88.5 BioLegend 116501 -
140 Ce KLRG1 0.75 2F1 BD 562190 8113778
141 Pr GranzymeB 3 QA16A02 BioLegend 372202 --
144 Nd CD43 6 S7 BD 553268 8268962
160 Gd CD31 6 MEC13.3 BioLegend 102512 B226133
161 Dy CD80 3 16-10A1 BioLegend 104702 B237237
162 Dy CD83 3 Michel-19 BioLegend 121502 B253543
163 Dy CD62L 3 95218 R&D MAB5761 -
168 Er CD25 3 PC61 BioLegend 102014 B235231
172 Yb cCaspase3 1 SA1E Fluidigm 3172023A 0391807
174 Yb CD127 4 A7R34 BioLegend 135002 B168578
174 Yb GranzymeB 1.5 GB11 BioRad MCA2120 --
176 Lu CD54 3 YN1/1.7.4 BioLegend 116102 B197852
163 Dy a-FITC Polyclonal  Pouthern Biotech 6400-01 L1217-QES8
FITC NA CD62L 3 MEL-14 Biolegend 104406 B233014
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Table 2-2: Change in spleen immune cell frequencies with tumor burden.

two-sided Wilcoxon rank tests with Benjamini-Hochberg correction
4™ AT3 MMTV-PyMT

Immune Cell Type raw pVal adjusted pVal Immune Cell Type raw pVal adjusted pVal Immune Cell Type raw pVal adjusted pVal
ClassicalMonocytes 5.28E-05 0.000686167 ClassicalMonocytes 8.73E-05 0.00122275 ClassicalMonocytes 0.014248 0.170976956
Neutrophils 5.28E-05 0.000686167 Neutrophils 0.000115  0.001489942 NKCells 0.014248  0.170976956
Bcells 6.55E-05 0.000785893 Eosinophils 0.000253  0.003031765 nonClassicalMonocytes  0.014248 0.170976956
Tregs 8.11E-05 0.000891661 nonClassicalMonocytes  0.000419 0.004611308 Neutrophils 0.022494  0.247436983|
gdTCells 0.000123 0.001232678 Macrophages 0.000869 0.008688611 CD8TCells 0.034611  0.311495018,
nonClassicalMonocytes ~ 0.000186 0.001670571 Beells 0.001384  0.012454788 pDCs 0.034611  0.311495018
CD8TCells 0.00072  0.004320097 CD8TCells 0.005073 0.040583301 Eosinophils 0.051913  0.415303719
NKCells 0.000598 0.004320097 pDCs 0.007574 0.053018294| cDCs 0.075927  0.531488741
PlasmaCells 0.00072  0.004320097 cDCs 0.019242  0.096212185 Bcells 0.150786 0.799846106
Eosinophils 0.001481 0.007403936 NKCells 0.016096 0.096212185 Macrophages 0.271899  0.799846106
CDA4TCells 0.006514  0.026055191 CD4TCells 0.037797 0.151188336 CDA4TCells 0.446873  0.799846106
pDCs 0.011825 0.035476343 gdTCells 0.156288 0.468863135 PlasmaCells 0.672604  0.799846106
cDCs 0.779707 0.779706761 PlasmaCells 0.488718  0.921212055| Tregs 0.672604  0.799846106
Macrophages 0.460883  0.779706761 Tregs 0.921212__0.921212055| gdTCells 0.799846 _ 0.799846106

Number of Animals Number of Animals Number of Animals
Controls 8 Controls 10 Controls
Tumor 17 Tumor 12 Tumor 7
p<0.05
P<0.1

nonsignificant
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Table 2-3: Antibody panel used for flow cytometry experiments.

Fluorophore Protein Ratio Clone Vendor Catalogue # Lot #
PE-Dazzle594 CD3 1:100 17A2 Biolegend 100246 B246894
PacificBlue CD4 1:100 RM4-5 BD 558107 56828
BV786 CD8 1:100 53-6.7 BD 563332 --
APC-Cy7 CD45 1:100 30-F11 Biolegend 103116 B266564
APC CD38 1:50 90 Biolegend 102712 B259441
PE CD101 1:50 Moushil01 | eBioscience| 12-1011-80| 1911703
PE-Cy7 PD-1 1:100 29F.1A12 Biolegend 135215 --
BVvV421 TCRb 1:100 H57-597 Biolegend 109229 B264324
PE IFNg 1:100 XMG1.2 Biolegend 505808 B265789
BV711 IL-2 1:100 JES6-5H4 Biolegend 503837 B264812
FITC TNFa 1:100 MP6-XT22 BD 554418 68325
BV650 CD8 1:100 53-6.7 Biolegend 100741 B253266
BV510 KLRG1 1:100 2F1/KLRG1 | Biolegend 138421 --
BVvV421 CD62L 1:100 MEL-14 Biolegend 104435 --
FITC CDA45.2 1:100 104 Biolegend 109805 --
APC CD8 1:100 53-6.7 Biolegend 100711 --
PE-Cy7 MHC I 1:200 AF6-120.1 | Biolegend 116419 --
PE CD45.1 1:100 A20 Biolegend 110708 B262097
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2.7 Materials and Methods
Animals:

All mice were housed in an American Association for the Accreditation of Laboratory
Animal Care—accredited animal facility and maintained in specific pathogen-free conditions.
Animal experiments were approved and conducted in accordance with Institutional Animal Care
& Use Program protocol number AN157618. Wild-type female BALB/c, C57BL/6, and B6x129 F1
mice between 8-10 weeks old were purchased from The Jackson Laboratory and housed at our
facility. 4T1 (1X10° cells / 100ul) or AT3 (5x10° cells / 100ul) breast cancer cells were transplanted
into the fourth mammary fat pad. SB28 glioblastoma cells (1x10° cells / 2ul) were transplanted
into the right cerebral hemisphere by stereotactic injection. MC38 colon cancer cells (1x10° cells
/ 100pl), B16-F10 melanoma cancer cells (1x10° cells / 100ul), or LMP pancreatic cancer cells
(2x10° cells / 100pl) were transplanted into the subcutaneous region of the flank. Female MMTV-
PyMT mice were bred at Stanford University. Tyr::CreER; Braf'®®¥* Pten'™'** mice were
purchased from Jackson Laboratory and housed at our facility. Tumors were considered well-
established when they reached approximately 1 cm® in volume. TCR Transgenic OT-lI CD45.1
mice and heterozygous CD45.2,CD45.1 mice were bred at our facility. Animals were housed
under standard SPF conditions with typical light/dark cycles and standard chow.

Cell Lines:

4T1 cells were gifted from Dr. Mary-Helen Barcellos-Hoff (UCSF). AT3 cells were gifted
from Dr. Ross Levine (MSKCC). For in vivo experiments tracking tumor growth and recurrence
after resection, we used 4T1 cells expressing mCherry-Luciferase and AT3 cells expressing GFP-
Luciferase. SB28 cells, derived from a NRasV12;shp53;mPGDF transposon-induced glioma''?,
were gifted from Dr. Hideho Okada (UCSF). LMP cells, derived from the Kras®'?"*;LSL-
Trp53R172"*-Pdx-1-Cre model of pancreatic cancer''®, were gifted from Dr. Edgar Engleman
(Stanford University). MC38 cells and B16-F10 cells gifted from Dr. Jeffrey Bluestone (UCSF).

4T1, MC38, B16 and SB28 cells were cultured in RPMI-1640, and AT3 and LMP cells were
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cultured in DMEM, all supplemented with 10% fetal calf serum (FCS), 2 mM L-glutamine,100
U/mL penicillin and 100 pug/mL penicillin and streptomycin.
Infectious Agents:

Listeria monocytogenes strain 10403s expressing OVA (Lm-OVA) was originally kindly
provided by Dr. Shomyseh Sanjabi (UCSF).""* Lm-OVA stocks frozen at -80 © C were grown
overnight at 37 ° C in BHI broth supplemented with 5 ug/ml erythromycin. Then, overnight cultures
were sub-cultured by diluting into fresh BHI broth supplemented with 5 ug/ml erythromycin and
grown for 4 hours. Bacteria CFU was then quantified by measuring optical density at 600 nm.
Bacteria were then diluted to 5X10* CFU / 100yl in sterile PBS and 100 ul was injected per mouse
i.v. via the retro-orbital vein.

Lymphocytic choriomeningitis virus (LCMV) was kindly provided by Dr. Jason Cyster
(UCSF) and mice were infected with pre-titered and aliquoted stocks stored in PBS at -80° C and
diluted with sterile PBS. Mice were infected with 2x10° PFU by intraperitoneal injection.

Mass Cytometry Antibodies:

All mass cytometry antibodies and concentrations used for analysis can be found in
Supplementary Table1. Primary conjugates of mass cytometry antibodies were prepared using
the MaxPAR antibody conjugation kit (Fluidigm) according to the manufacturer’'s recommended
protocol. Following labeling, antibodies were diluted in Candor PBS Antibody Stabilization solution
(Candor Bioscience GmbH, Wangen, Germany) supplemented with 0.02% NaN3 to between 0.1
and 0.3 mg/mL and stored long-term at 4°C. Each antibody clone and lot was titrated to optimal
staining concentrations using primary mouse samples.

Cell Preparation:

All tissue preparations were performed simultaneously from each individual mouse, as

previously reported*®. After euthanasia by CO2 inhalation, peripheral blood was collected via the

posterior vena cava prior to perfusion of the animal and transferred into sodium heparin-coated
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vacuum tubes prior to dilution in PBS with 5 mM EDTA and 0.5% BSA (PBS/EDTA/BSA). Spleens
and lymph nodes were homogenized in PBS/EDTA at 4° C. Bone marrow was flushed from femur
and re-suspended in PBS/EDTA at 4°C. Tumors were finely minced and digested in RPMI-1640
with 4 mg/ml collagenase IV, and 0.1 mg/ml DNase |. After digestion, re-suspended cells were
quenched with PBS/EDTA at 4° C. All tissues were washed with PBS/EDTA and re-suspended
1:1 with PBS/EDTA and 100 mM cisplatin (Enzo Life Sciences, Farmingdale, NY) for 60 s before
quenching 1:1 with PBS/EDTA/BSA to determine viability as previously described®. Cells were
centrifuged at 500 x g for 5 min at 4°C and re-suspended in PBS/EDTA/BSA at a density between
1-10 x 10° cells/ml. Suspensions were fixed for 10 min at RT using 1.6% paraformaldehyde (PFA)
in PBS and frozen at -80° C.

Mass-Tag Cellular Barcoding:

Mass-tag cellular barcoding was performed as previously described''. Briefly, 1 x 10°
cells from each animal were barcoded with distinct combinations of stable Pd isotopes in 0.02%
saponin in PBS. Samples from any given tissue from each mouse per experiment group were
barcoded together. Cells were washed once with cell staining media (PBS with 0.5% BSA and
0.02% NaN3), and once with 1X PBS, and pooled into a single FACS tube (BD Biosciences).
After data collection, each condition was deconvoluted using a single-cell debarcoding
algorithm™?.

Mass Cytometry Staining and Measurement:

Cells were resuspended in cell staining media (PBS with 0.5% BSA and 0.02% NaN2) and
metal-labeled antibodies against CD16 and CD32 were added at 20 pg/ml for 5 min at room
temperature (RT) on a shaker to block Fc receptors. Surface marker antibodies were then added,
yielding 500 uL final reaction volumes and stained for 30 min at RT on a shaker. Following
staining, cells were washed 2 times with cell staining media, then permeabilized with methanol

for at 10 min at 4° C. Cells were then washed twice in cell staining media to remove remaining
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methanol, and stained with intracellular antibodies in 500 pL for 30 min at RT on a shaker. Cells
were washed twice in cell staining media and then stained with 1mL of 1:4000 191/193Ir DNA
intercalator (Fluidigm) diluted in PBS with 1.6% PFA overnight. Cells were then washed once with
cell staining media and then two times with double-deionized (dd) H20. Care was taken to assure
buffers preceding analysis were not contaminated with metals in the mass range above 100 Da.
Mass cytometry samples were diluted in dd H2>O containing bead standards (see below) to
approximately 10° cells per mL and then analyzed on a CyTOF 2 mass cytometer (Fluidigm)
equilibrated with dd H20. We analyzed 1-5 x 10° cells per animal, per tissue, per time point,
consistent with generally accepted practices in the field.

Mass Cytometry Bead Standard Data Normalization:

Data normalization was performed as previously described*. Briefly, just before analysis,
the stained and intercalated cell pellet was resuspended in freshly prepared dd H2O containing
the bead standard at a concentration ranging between 1 and 2 x 10* beads/ml. The mixture of
beads and cells were filtered through a filter cap FACS tubes (BD Biosciences) before analysis.
All mass cytometry files were normalized together using the mass cytometry data normalization
algorithm'®, which uses the intensity values of a sliding window of these bead standards to correct
for instrument fluctuations over time and between samples.

Mass Cytometry Gating Strategy:

After normalization and debarcoding of files, singlets were gated by Event Length and
DNA. Live cells were identified by Cisplatin negative cells. All positive and negative populations
and antibody staining concentrations were determined by titration on positive and negative control
cell populations.

Scaffold Map Generation:
Statistical scaffold maps were generated using the open source Statistical Scaffold R

package available at github.com/SpitzerLab/statisticalScaffold with modifications detailed below.
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Statistical scaffold analysis combines unsupervised clustering to identify immune cell subsets with
dimensionality reduction using a force-directed graph to visualize the organization of immune cells
within a tissue. Regions of the graph are easy to identify due to the incorporation of canonical
immune cell types defined manually as ‘landmarks’ in the graph. As previously described*®%¢ cells
from each tissue for all animals were clustered together and then deconvolved into their
respective samples. Cluster frequencies or the Boolean expression of specific proteins for each
cluster were passed into the Significance Analysis of Microarrays algorithm'’ (using a g-value
cutoff of 0.05), and the fold change results were reported (rather than the binary significance cutoff
as originally implemented in Spitzer et al., 2017). Cluster frequencies were also correlated with
the time from tumor inoculation using Spearman’s rank-ordered correlation. All results were
tabulated into the Scaffold map files for visualization through the graphical user interface, with
coloring modifications to graph the spectrum of fold change or correlation strength. The fold
change was log2 normalized and graphed with an upper and lower limit of a four-fold difference,
unless otherwise indicated. Cluster frequencies were calculated as a percent of total live
leukocytes or parentimmune subset as indicated. The spleen data from the 4T1 model were used
to spatialize the initial Scaffold map because all major, mature immune cell populations are
present in that tissue.
Cell Frequency Heat Map Generation:

Specified subsets, i.e. T cells and mononuclear phagocytes, were manually gated from
each tissue for all animals and clustered together. Cluster frequencies were calculated as a
percent of total live nucleated cells within that subset (excluding erythrocytes). T cells were
identified as CD3*, CD11b". Mononuclear phagocytes were defined as CD11b*, CD19", CD3,
Ly6G . Heatmaps of the resulting cluster frequencies were generated in R.
Human Gene Expression Analysis:

Whole blood microarray data was generated by The Norwegian Women and Cancer

(NOWAC) study and is deposited in the European Genome-Phenome Archive under accession
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number EGAS00001001804 as previously reported''®. Principal component analysis of centered
and scaled data was performed in R using the prcomp function. xCell cell type enrichment
analysis''® was performed in R using the xCell package (https://github.com/dviraran/xCell) using
a customized list of cell populations known to exist in peripheral whole blood (B-cells, Basophils,
CD4" memory T-cells, CD4" naive T-cells, CD4" T-cells, CD4" central memory T-cells (Tcm),
CD4" effector memory T-cells (Tem), CD8" naive T-cells, CD8" T-cells, CD8" Tcm, CD8" Tem,
DC, class-switched memory B-cells, eosinophils, erythrocytes, megakaryocytes, memory B-cells,
Monocytes, naive B-cells, neutrophils, NK cells, NKT, pDC, plasma cells, platelets, Tgd cells, Th1
cells, Th2 cells, and Tregs).

In vitro CD8 T cell Differentiation and cytokine production:

Mice bearing 21-day AT3 tumors were euthanized and their spleens harvested and
dissociated. CD8 T cells were enriched using the EasySep Streptavidin Negative Selection Kit
with the following biotinylated markers: CD11b, MHCII, CD11c, Gr1, B220, CD4, CD44, and
Ter119. Isolated CD8 T cells were then stimulated with plate-bound anti-CD3 (1ug/mL) and
suspended in anti-CD28 (0.5ug/mL) containing T cell media for 3 days. The cells were then
removed from CD3/CD28 stimulation and rested for 1 day. Cells were then restimulated with PMA
and ionomycin (2uL/mL) or left unstimulated for 4 hours with brefeldin A and analyzed by flow
cytometry.

Adoptive T Cell Transfer:

For OT1 and polyclonal adoptive transfers, CD8 T cells were isolated from spleens of
CD45.1 OT1 TCR transgenic or CD45.1,CD45.2 heterozygote wildtype or CD45.1 BoyJ mice by
enrichment with EasySep Streptavidin Negative Selection Kit with the following biotinylated
markers: CD11b, MHCII, CD11c, Gr1, B220, CD4, and Ter119. Cells were stained with CFSE or
Cell Trace Violet and 1x10° cells were then adoptively transferred into each recipient mouse via

the retroorbital vein.
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Quantifying Bacterial Burden:

To quantify bacterial burden, spleens were harvested and dissociated. Cells from each
mouse were lysed in 0.5% Triton-X 100 in PBS and cells were serially diluted in duplicate and
aliquots were then added to BHI agar and incubated overnight at 37° C. Colonies grown were
then counted to quantify bacterial CFU present.

Treatments:

For infection studies, in vivo antibody treatments were given i.p. starting on day 0 of Lm-
Ova infection: 200 ug of agonistic anti-CD40 (FGK4.5, BioXCell) on day 0, 225 ug of recombinant
IL-12p70 (BioLegend) daily, and 200 ug of anti-CTLA-4 (9H10, BioXCell) on day 0 and day 3. For
cytokine inhibition studies, in vivo antibody treatments were given i.p. starting on day 5 after
injection of AT3 cells: 10ug of blocking anti-GCSF (67604, R&D Systems) daily, and 200 ug of
both blocking anti-IL-1a (ALF-161, BioXCell) and blocking anti-IL-1R (JAMA-147, BioXCell) every
3 days. We observed compensatory elevations in circulating IL-1a with anti-IL-1a treatment, so
we added anti-IL-1R to ensure sufficient blockade of this pathway.

Tumor Resection:

Mice bearing 14-day 4T1 tumors or 16 to 21-day AT3 or MC38 tumors (between 350-
550mm?) were anesthetized by intraperitoneal (i.p) injection with a mixture of ketamine and
xylazine, and titrated to effect with isoflurane from a precision vaporizer. The surgical site was
shaved and sterilized with 70% ethanol and 10% povidone iodine. An incision was made
subcutaneously at the anterior midline and along the flank of the side with the tumor, using
surgical scissors, to reveal the inguinal mammary tumor. The tumor was teased away using
forceps and the surgical wound closed with wound clips. Wound clips were removed after 7 days.
20-30% of AT3- or 4T1-resected mice had tumor recurrence due to incomplete removal of primary
tumors or outgrowth of micro-metastases. These mice were separated from successful resection

analyses.
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Cytokine Quantification:

For in vivo circulating plasma cytokines, mice were bled via the retroorbital vein using
heparinized capillary tubes. Blood was then centrifuged at 1000 x g for 10 minutes and the
supernatant plasma was removed for analysis. For tissue culture supernatants, cells were grown
for 48 hours in fresh media, then supernatant was removed, centrifuged at 3000g for 10 minutes
to remove debris. Plasma and tissue culture supernatant samples were sent to Eve Technologies

(Calgary, AB), and analyzed using a multiplex cytokine array.

Flow Cytometry:

Cells were stained for viability with Zombie-NIR stain. Cell surface staining was performed
in cell staining media (PBS with 0.5% BSA and 0.02% NaN3) for 15 minutes at room temperature.
Intracellular staining was performed after fixing cells with BioLegend FluoroFix Buffer and
permeabilizing cells with BioLegend’s Intracellular Staining Perm Wash Buffer. The following anti-
mouse antibodies were used: (PE-Dazzle594) — CD3 (clone 17A2), (Pacific Blue) — CD4 (clone
RM4-5), (BV786) — CD8 (clone 53-6.7), (APC-Cy7) — CDA45 (clone 30-F11), (APC) — CD38 (clone
90), (PE) — CD101 (clone Moushi101) , (PD1) — PE-Cy7 (clone 29F.1A12), (BV421) — TCRb
(clone H57-597), (PE) — IFNy (clone XMG1.2), (BV711) — IL2 (clone JES6-5H4), (FITC) —
TNFalpha (clone MP6-XT22), (BV650) — CD8 (clone 53-6.7), (BV510) — KLRG1 (clone 2F1-
KLRGH1), (BV421) — CD62L (clone MEL-14), (FITC) — CD45.2 (clone 104), (APC) — CD8 (clone
53-6.7), (PE-Cy7) — MHC | (clone AF6-120.1), (PE) — CD45.1 (clone A20). All antibodies were
purchased from BioLegend, Inc., BD Biosciences, or Thermo Fisher Scientific. Stained cells were
analyzed with a CytoFLEX flow cytometer (Beckman Coulter) or an LSR Il flow cytometer (BD
Biosciences).Singlets were gated by forward scatter area (FSC-A) and forwards scatter width
(FSC-W), as well as by side scatter area (SSC-A) and side scatter width (SSC-W). All positive
and negative populations were determined by staining on positive and negative control

populations.
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Quantification and statistical analysis:

Comparison of cell frequencies and protein expression in Statistical Scaffold was
performed using Significance Analysis of Microarrays as described above and in Bair and
Tibshirani, 2004 and Bruggner et al., 2014. Features with q <0.05 were considered statistically
significant. Comparison of cell frequencies was performed using Wilcoxon rank-Sum test with
Benjamini-Hochberg correction in R. Analysis of principle components for human gene expression
was performed using two-sided Wilcoxon rank-sum test in R. Analysis of cell correlation with time
was performed using Spearman correlation with Benjamini-Hochberg correction. All comparisons
over 4T1 tumor growth were performed by one-way ANOVA with Tukey correction in Prism.
Unless otherwise states, all other comparisons after infection, treatment, or resection were made
using two-sided t tests in Prism. All tests with p <0.05 were considered statistically significant.
Unless otherwise stated in the figure legends, n = 3 to 6 independent mice for each experimental
condition.

Data availability:
All mass cytometry data are publicly available by request to the senior author without

restrictions or at https://premium.cytobank.org/cytobank/projects/2433/.

Code availability:
The updated Statistical Scaffold package is available at

https://qgithub.com/SpitzerLab/statisticalScaffold.
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3.3 Abstract

Memory T cells conventionally rely on oxidative phosphorylation and short-lived effector T cells
on glycolysis. Here, we investigate how T cells arrive at these states during an immune
response. In order to understand the metabolic state of rare, early activated T cells, we adapted
mass cytometry to quantify metabolic regulators at single-cell resolution in parallel with cell
signaling, proliferation, and effector function. We interrogated CD8 T cell activation in vitro as
well as the trajectory of CD8 T cells responding to Listeria monocytogenes infection, a well-
characterized in vivo model for studies of T cell differentiation. This approach revealed a unique
metabolic state in early activated T cells characterized by maximal expression of glycolytic and
oxidative metabolic proteins. Peak utilization of both pathways was confirmed by extracellular
flux analysis. Cells in this transient state were most abundant five days post-infection before
rapidly downregulating metabolic protein expression. This approach should be useful for

mechanistic investigations of metabolic regulation of immune responses.

3.4 Introduction

Understanding the regulatory mechanisms underlying immune responses is crucial to
developing more rationally designed treatment strategies for acute and chronic infections,
autoimmune diseases, and malignancy '?°. CD8 T cells, when activated, expand and
differentiate into potent short-lived effector cells (SLECs) as well as long-term memory cells,
which confer durable protection against re-infection and cancer relapse '#'-'2%. The former
mediate primary adaptive immune responses against pathogens through the release of
cytotoxic granules and pro-inflammatory cytokines '?*'%°, In contrast, long-lived memory cells
remain quiescent until re-encountering antigen, upon which they rapidly mediate secondary
immune responses '?°. The field of immunometabolism has provided critical insight into these
processes, revealing a complex regulatory interplay of signaling, metabolic, and epigenetic

127,128

adaptations during CD8 T cell differentiation
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Upon activation, effector CD8 T cells undergo clonal expansion, necessitating as many
as 20 replication cycles to generate sufficient daughter cells to clear pathogens '23. This process
is energetically costly and requires rapid ATP production for the biosynthesis of essential
building blocks '?". Previous studies suggest that the exit from quiescence is supported by a
dramatic metabolic shift from oxidative phosphorylation (OXPHOS) in naive cells, fueled by
beta-oxidation of long chain fatty acids (LCFA), to aerobic glycolysis in SLECs, characterized by

129-131 This metabolic conversion permits

lactate production in the setting of adequate oxygen
continued cycling through the pentose phosphate pathway and thus generation of intermediates
necessary for nucleic acid and lipid biosynthesis. This adaptation also circumvents negative
feedback induced by the accumulation of pyruvate and acetyl-CoA 27132 Additional feed-
forward mechanisms supporting this process include the activation of transcription factors
downstream of phosphoinositide 3-kinase (PI13K) signaling. For instance, hypoxia inducible
factor 1 (HIF1a) mediates the upregulation of nutrient receptors including glucose transporter 1
(Glut1), the main point of entry for glucose into T cells '%°.

Meanwhile, the transition to the memory T cell fate is associated with the inhibition of
PIBK/mTORC1 signaling and silencing of aerobic glycolysis by AMP-activated protein kinase

125133135 \which is mediated

(AMPK). Instead, AMPK favors mitochondrial biogenesis and fusion
by peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1a) %', This
tightly regulated metabolic shift results in an LCFA-fueled oxidative program characterized by
increased mitochondrial mass . This property of memory cells confers additional oxidative
potential, known as spare respiratory capacity (SRC), to permit more rapid recall during
secondary immune responses '

While many previous studies using polyclonal and multicellular T cell populations

suggest that a reciprocal, tightly regulated relationship exists between OXPHOS and glycolysis

and the signaling cascades that regulate these pathways, their precise interactions in individual
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cells have yet to be elucidated. Moreover, the regulation of metabolic machinery in rare, early
activated T cells remains poorly understood. The early stages of infection lead to antigen
specific CD8 T cells acquiring transient cell states preceding differentiation into effector subsets,
but precisely how these intermediate stages of differentiation metabolically orchestrate rapid
proliferation and differentiation has remained technically challenging **-'*°. Recently,
considerable advances in single-cell analysis have enabled studies of signaling and effector
programs in T cells at high resolution '*"'*2. Analogous studies of T cell metabolic regulation
would likely provide new insights. For instance, a recent study utilizing stable isotope tracing in
activated T cells has found that OXPHOS may be more prominent in effector T cells in vivo than
was previously thought 3. However, in the absence of single-cell resolution, it remains unclear
whether the same cells are responsible for both OXPHOS and glycolysis, or alternatively,
whether individual cells already differentiate and preferentially use one pathway versus the
other during the effector phase. Many of the regulatory mechanisms that govern cellular
metabolism are post-transcriptional and are not directly measurable by RNA-sequencing .
Therefore, a single-cell proteomic approach provides unique opportunities.

Mass cytometry uses metal-tagged antibodies to directly measure up to 45 proteins
simultaneously in individual cells "', This approach has permitted characterization of various
aspects of cellular behavior including phenotype, signaling "¢, proliferation '*’, and chromatin
state 8. Here, we have further adapted this platform to measure expression levels of enzymes
and transporters involved in metabolic checkpoints. We have integrated direct quantitative
evaluation of the signaling cues thought to mediate their regulation along with proteins indicative
of CD8 T cell fate and function. In this study, we used this approach to interrogate key inflection
points of the CD8 T cell response to Listeria monocytogenes infection (Lm-OVA), a well-

characterized model of CD8 T cell differentiation '*°.
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3.5 Results

3.5.1 Mass cytometry permits high-dimensional quantification of metabolic
regulators in single CD8 T cells

T cell differentiation requires the coordinated interplay of signaling and metabolic
pathways, including the upregulation of rate-limiting enzymes and regulatory switches. The
transition to aerobic glycolysis in SLECs is mediated by co-stimulatory signaling through CD28
via the AKT/PI3K pathway '**'%°: therefore, we measured the downstream intermediates mTOR,
pS6, p4EBP1, and HIF1a (Fig. 3-1A). Signaling through this pathway promotes glucose uptake
through the Glut1 receptor and the transcription of glycolytic enzymes ', including
glyceraldehyde-3-phosphate dehydrogenase (GADPH) (Fig. 3-1B), a critical metabolic switch
implicated in glycolytic activity, which we also quantified.

To investigate how the TCA cycle is regulated in activated T cells, we evaluated the
expression of citrate synthase (CS) (Fig. 3-1B), the first step of the cycle, which is directly
regulated by the NAD+/NADH ratio, ADP/ATP ratio, and succinyl-coA levels 2. As branched
chain amino acid metabolism has been demonstrated to be critical for effective T cell activation
133 we sought to understand this process by measuring the large neutral amino acid transporter
(LAT1) chaperone CD98 (Fig. 3-1A), a key mediator of the import of these essential nutrients
154—156.

Previous work has described a reciprocal relationship between aerobic glycolysis and
OXPHOS, the latter of which is associated with memory T cell differentiation. Therefore, we
sought to understand this regulation at the single-cell level by measuring CPT1a, an enzyme
that catalyzes the transport of LCFA from the cytoplasm to the mitochondria and that is critical
for memory T cell function '*". Additionally, we measured the mitochondrial trifunctional
complex, also known as hydroxyacyl-CoA dehydrogenase (HADHA), which catalyzes the final
three steps of LCFA oxidation to acetyl-CoA in the mitochondria '*". As the role of B-oxidation of

d 158

medium-chain fatty acids in T cell function has not been extensively evaluate , we also
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measured the expression of medium-chain acyl-CoA dehydrogenase (ACADM), an essential
enzyme that catalyzes the initial step of this process (Fig. 3-1B). Moreover, we measured key
components of the electron transport chain, including cytochrome C (CytoC) and ATP synthase
(ATP5a) (Fig. 3-1B). To understand the counterregulatory processes governing OXPHOS
activity and overall energy, we measured voltage-dependent ion channel 1 (VDAC1), a critical
regulator controlling cytoplasmic-mitochondrial cross-talk (Fig. 3-1B)"%%'6°,

The cell signaling pathways that mediate mitochondrial fusion and biogenesis include
MAP kinase and NF«kB, which are activated during T cell priming 3%1¢".152 therefore, we
measured the levels of phosphorylated (p) ERK and p-p38 MAP kinases in addition to the total
levels of NF«B inhibitor alpha (IkBa). Calcium signaling, triggered by TCR ligation, has also
been implicated in this process '*'%*. Therefore, we additionally measured pCREB levels (Fig.
3-1A).

It has been proposed that the activity of metabolic pathways induces the activity
epigenetic regulators such as Ezh2, which directly impact T cell fate and function %165,
Therefore, we included a full range of well-characterized surface markers and transcription
factors to subset T cells into naive, central memory, effector memory, and terminal effector
populations. Finally, to measure the impact on all of these factors on T cell proliferation during

clonal expansion, we measured expression of cyclinB1 and Ki67. To assess production of

cytotoxic mediators, we also measured granzyme B (Fig. 3-1A).

3.5.2 Mass cytometry recapitulates metabolic phenotypes of CD8 T cell
differentiation in vitro

In order to query the metabolic program underlying antigen-specific CD8 T cell activation
in vitro, we first stimulated TCR transgenic OT-1 splenocytes in the presence of their cognate
antigen (the SIINFEKL peptide from ovalbumin) and IL-2 for 72 hours. After this initial priming
period, antigen was removed, and cells were polarized in IL-2 or IL-7 for an additional 4 days to

generate effector (OT-1er) or central memory cells (OT-1mem), as described previously 125137167,
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We analyzed the resulting cells by mass cytometry and real-time metabolic profiling by
Seahorse assay (Fig. 3-1C, 3-2B-D). In keeping with prior studies >3, OT-1¢ exhibited
higher rates of extracellular acidification associated with glycolytic activity, while OT-1mem
possessed marked spare respiratory capacity (Fig. 3-1C).

Consistent with these results, OT-1e expressed elevated levels of glycolytic proteins at
day 7 of activation, as evidenced by robust upregulation of Glut1 and GAPDH (Fig. 3-1D, Fig 3-
2A), suggestive of active glucose uptake and utilization. The expression of targets of the
PIBK/mTORC1 pathway, including p4EBP1 and HIF1a, were likewise elevated in OT 1 (Fig.
1D), consistent with the promotion of aerobic glycolysis. Also in keeping with previous data '*,
the amino acid transporter CD98 was more highly expressed in OT1e relative to OT-1mem (Fig.
3-1D). In contrast to their effector counterparts, OT-1mem did not demonstrate this glycolytic

profile, but instead upregulated CPT1a (Fig. 3-1D, 3-2A), which promotes OXPHOS in memory

T cells ¥,

3.5.3 Dynamic metabolic changes in canonical subsets of activated CD8 T cells in
vivo

To understand the metabolic changes during CD8 T cell differentiation in a more
physiologic context, we next evaluated the trajectory of the response to acute infection in vivo.
C57BL/6 mice were infected with Listeria monocytogenes expressing whole cytoplasmic
ovalbumin (Lm-OVA), a well-characterized model of CD8 T cell differentiation and metabolism
125133137 Splenocytes were harvested daily over the first nine days post-infection for analysis by
mass cytometry. We began by identifying canonical T cell differentiation states and investigating
changes in metabolic enzyme and transporter expression over the course of the immune
response (Fig.3-3A, 3-4A). Unsupervised clustering analysis revealed considerable
heterogeneity and dynamic functional changes across all major canonical T cell subsets over

the course of the primary immune response to Listeria monocytogenes (Fig. 3-3A-B).
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At baseline, most naive cells were predominantly contained within cluster Naive 1,
characterized by the expression of ACADM, pCREB, p-p38, NRF1, and weak expression of
GAPDH (Fig. 3-3C). However, three new clusters, Naive 2 and Naive 3, emerged at days 1 and
2 post-infection (p.i.) (Fig. 3-3D-E), all characterized by the downregulation of all of the above
metabolic and signaling markers (Fig. 3-3C, 3-4A). Interestingly, these clusters demonstrated
low IkB expression, suggestive of signaling through NFxB pathway (Fig. 3-3C, 3-3F, 3-4A-B).
While most naive T cells were contained within the Naive 2 cluster at day 1 post-infection (p.i.)
(Fig. 3-3D-E), this gave way to a predominance of the Naive 3 cluster and days 2 and 3 p.i. (Fig.
3-3D-E). By day 4 p.i., all these new clusters as well as an additional cluster, Naive 4, were
present in similar proportions (Fig. 3-3D-E). Notably, the Naive 1 cluster began to re-emerge at
day 6 p.i., and ultimately dominated the naive pools from day 7 p.i. onwards (Fig. 3-3D-E). This
predominance was associated with the involution of clusters Naive 2, Naive 3, and Naive 4,
which became nearly undetectable by day 7 p.i. (Fig. 3-3E). These findings are consistent with
activation of both bystander and antigen specific T cells in the early stages of acute infection
168169 hut reveal the metabolic adaptations that these cells undertake. Overall, these data
support previous reports of a metabolically quiescent profile of naive T cells, but they suggest
heterogeneity and transitions within even these cells.

Evaluation of the central memory cells over the course of infection revealed a similar
pattern, starting with cluster Tcu1, characterized by intermediate expression of expected
markers of LCFA and OXPHOS including p-p38, pCREB, ACADM, HADHA, NRF1, and dim
expression of ATP5a, CPT1a, pErk, and CytoC (Fig. 3-3C). Interestingly, this cluster also
expressed GAPDH and pS6, but dimly expressed HIF1a. compared to effector subsets (Fig 3-
3C, 3-4A). However, days 1-2 p.i., were marked by emergence of cluster Tcu2 (Fig. 3-3D-E),
which downregulated all of these metabolic and signaling factors, with only weak expression of

HADHA and pS6 and upregulation of ATP5a (Fig. 3-3C, 3-3G, 3-4C). This cluster predominated
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at days 2 through 4 p.i. Notably, day 2 p.i. was also marked the emergence of cluster Tcu3 (Fig.
3-3D-E), defined by expression of enzymes of fatty acid oxidation (FAO), including CPT1a.,
HADHA, ACADM, along with oxidative proteins, such as CS, ATP5a, VDAC1, and CytoC (Fig.
3-3C, 3-4A). These cells also expressed less pS6 and GAPDH, suggestive of a state
predominantly fueled by FAO (Fig. 3-3C). Commensurate with this oxidative profile, cells in this
cluster also expressed p-p38, pErk, and pCREB (Fig. 3-3C, 3-4A). While cells in Tcu3 also
demonstrated expression of downstream intermediates of the PI3K cascade, such as p4EBP1
and pS6, along with transcription factors associated with aerobic glycolysis, such as HIF1a,
these were associated with lower GADPH expression (Fig. 3-3C, 3-4A). This metabolically
active Tcwm cluster was transient, completely regressing by day 7 p.i. (Fig. 3-3D-E). Notably Tcu1
reemerged at day 5 p.i. and remained the predominant Tcwm cluster from days 6 through 9 p.i.
(Fig. 3-3D). These data confirm the previously oxidative profile of central memory cells, but also
reveal dynamic metabolic changes within these subsets over the course of an immune
response.

Effector memory cells (Tem) uniformly constituted cluster Tem1, which emerged at day 5
p.i. and maintained stable frequency through day 9 p.i. (Fig. 3-3D-E). These cells demonstrated
a more glycolytic metabolic profile, with upregulation of GAPDH, Glut1, and HIF1a, and dim
oxidative and FAO marker expression (Fig. 3-3C, 3-4A). Meanwhile, SLECs comprised clusters
SLEC1 and SLEC2 and emerged at days 5 and 6 p.i., respectively (Fig. 3-3D-E). These two
clusters demonstrated distinctive metabolic phenotypes. The first population to appear, SLEC1,
demonstrated expression of p4EBP1, pS6, HIF1a, Glut1, and GAPDH suggestive of a glycolytic
profile (Fig. 3-3C, 3-3H, 3-4A, 3-4D). Recent studies have demonstrated that early effector cells
continue TCA cycle engagement fueled by the uptake of amino acids and LCFA '%37°;
consistently, cells in this cluster also expressed HADHA, CD98, CS, and VDAC1 (Fig. 3-3C, 3-

3H, 3-4A, 3-4D). However, ATP5a and CPT1a levels in this cluster were lower than those
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observed in the more active Tcwm clusters, such as Tcu3, distinguishing them from these more
classically oxidative pools (Fig. 3-3C, 3-4A). In comparison, cluster SLEC2 demonstrated a
more muted metabolic profile, downregulating expression of all metabolic mediators except
HIF1a, GAPDH, and CS, taking on the terminal glycolytic state observed in previous studies
(Fig. 3-3C, 3-3H, 3-4A, 3-4D). As expected, the more metabolically active cells in cluster SLEC1
expressed higher levels of Ki67 and granzyme B compared to cluster SLEC2 (Fig. 3-3C, 3-4A).
Taken together, these findings agree with previous reports of a predominantly glycolytic terminal

effector state.

3.5.4 Early activated T cells exhibit maximal expression of glycolytic and
oxidative proteins

In addition to these well-characterized cell subsets, unsupervised high-dimensional
analysis also revealed a group of early activated T cells that emerged at day 4 post-infection
(Fig. 3-3D-E). These cells had high expression of Ki67, indicative of proliferation, and expressed
high levels of CD44, CD27, and ICOS, but low levels of CD62L (Fig. 3-3C, 3-4A). This early
activated cluster was most abundant at day 5, when it comprised nearly 20% of the CD8 T cell
population, and it nearly completely disappeared by day 7 (Fig. 3-3D-E). As ICOS has been
found to signal through the PI3K cascade """, we anticipated that this population would be
glycolytic. Indeed, these early activated cells expressed the highest levels of Glut1 and GAPDH
across all CD8 T cells (Fig. 3-3C). However, these cells simultaneously exhibited peak
expression of oxidative markers, including CPT1a, HADHA, ACADM, and ATP5a (Fig. 3-3C, 3-
4A). Commensurate with this observation, the signaling program of this population was marked
by maximal expression of both pS6 and pCREB as well as minimal expression of IkB, reflecting
simultaneous activity of both the PISK/mTORC1 and NF«B pathways (Fig. 3-3C, 3-4A). In
contrast to SLEC and memory cells, these early activated cells also expressed maximal

expression of the amino acid transporter CD98 (Fig. 3-3C, 3-4A).
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Given the unique metabolic expression profile of these early activated cells, we sought
to confirm these observations through direct inspection of the primary data. We undertook
further phenotypic analysis of these cells, which identified the high-affinity IL-2 receptor subunit,
CD25, as another surface marker co-expressed by this population of interest, consistent with
their recent activation (Fig. 3-5A). Consistent with the clustering analysis, we found that these
manually gated cells peaked in frequency at day 5 followed by a rapid decline in abundance
(Fig. 3-5B). Moreover, in comparison to all other CD8 T cells present in the animals at day 5,
these cells clearly expressed elevated levels of both glycolytic and oxidative proteins (Fig. 3-5C,
3-6A). Therefore, early activated T cells exhibited peak expression of metabolic mediators of

oxidative and glycolytic pathways.

3.5.5 Early activated T cells demonstrate peak glycolytic activity and increased
mitochondrial activity and mass

Because these early activated T cells were distinguished by simultaneously elevated
levels of glycolytic and oxidative enzymes, we posited that this expression profile would
translate to greater metabolic activity along these pathways when compared to their SLEC
counterparts. To assess real-time bioenergetic flux through oxidative and glycolytic pathways,
we sorted naive, early activated, and SLEC T cells for analysis by Seahorse assay (Fig 3-6B).
As expected, SLECs demonstrated significantly higher baseline and maximum ECAR compared
to their naive counterparts (Fig. 3-5D), confirming a predominantly glycolytic program driving the
terminal effector state in vivo. However, in accordance with their enzymatic expression profile by
mass cytometry, early activated T cells exhibited significantly higher basal and maximal ECAR,
even compared to SLECs (Fig. 3-5D).

Moreover, baseline and maximal OCR did not significantly differ between the SLEC and
naive pools, as described previously ¥ (Fig. 3-5E-F). However, early activated T cells did
indeed exhibit significantly higher oxidative activity compared to both the SLEC and naive cells

(Fig. 3-5E-F). Since these cells exhibited maximal expression of CPT1a and electron transport
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complexes, we hypothesized that that this population would possess SRC, in keeping with
previous reports studying memory T cells that upregulate these enzymes '*'. Indeed, while
neither the naive or SLEC pools were capable of surpassing their baseline OCR upon FCCP
administration, the OCR of early activated T cells nearly doubled (Fig. 3-5E-F). As SRC has
been associated with greater mitochondrial mass '**, we sought to quantify the mitochondrial
content of these cells using MitoTracker Deep Red, a fluorescent dye staining mitochondria in
live cells. Consistent with our mass cytometry and Seahorse data, the early activated T cells
contained significantly more mitochondrial mass than the SLEC or naive pools based on
MitoTracker staining (Fig. 3-5G). Overall, these observations confirmed the unique,

simultaneously oxidative and glycolytic profile in early activated T cells.

3.5.6 Antigen-specific CD8 T cells transit through the early activation state
commensurate with the onset of proliferation

In order to query the antigen-specificity of these metabolic adaptations of early T cell

activation, we adoptively transferred OT-1 T cells into congenic hosts, which were then infecte

d

with Lm-OVA. Splenocytes were analyzed daily from days 3 through 7 p.i. for metabolic analysis

by mass cytometry (Fig. 3-7A-B, 3-8A). Indeed, unsupervised clustering analysis of adoptively
transferred OT-1 T cells revealed early activated cells with an analogous state of metabolic
activity, arising in small numbers at day 3 p.i. and peaking at day 4 before rapidly regressing b
day 5 (Fig. 3-7A-B, 3-8A). The kinetics of the emergence of this cluster were slightly earlier
compared to the previously characterized endogenous cells, perhaps a result of higher TCR
affinity or increased frequency of antigen-specific precursor cells. Consistent with our findings

endogenous CD8 T cells (Fig. 3-3C, 3-5C), cells comprising this cluster exhibited simultaneou

y

in

S

peak expression of markers of glycolysis, OXPHOS, and LCFA oxidation (Fig. 3-7C, 3-8A). We

hypothesized that these metabolic adaptations were undertaken in support of clonal expansion

of antigen-specific populations. Therefore, we assessed the proliferation of CFSE-labeled

adoptively transferred OT-1 T cells on days 3 through 7 p.i. by flow cytometry. Commensurate
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with the emergence of this early activated metabolic state, the first antigen-specific T cells to
divide did so at day 4 p.i. (Fig. 3-7D). By day 5 p.i., all adoptively transferred cells had divided
multiple times (Fig. 3-7D). Consistent with this finding, the total number of OT1 T cells only
modestly increased between days 3 and 4 p.i., but they subsequently rapidly expanded between
days 4 and 5 p.i. before plateauing thereafter (Fig. 3-7E). These observations collectively
suggest that early activated antigen-specific CD8 T cells undergo a transition to a metabolic
state characterized by peak OXPHOS and glycolytic activity at the same time as they begin
blasting, supporting the dramatic expansion of these cells during productive immune responses.
3.5.7 Transient expression of metabolic proteins in early activated T cells

As early activated CD8 T cells with peak metabolic protein expression were highly transient,
only detectable for a few days during the immune response, we investigated the changes that
take place in these cells thereafter. We sorted early activated T cells and transferred them into
congenic hosts before isolating splenic T cells four days later (Fig. 3-7F). At the end of this
period of time, the transferred early activated cells had given rise to a mixture of cells with
phenotypes consistent with SLECs (CD44" KLRG1%), as well as memory cells (CD44" KLRG1").
Given the transient, elevated expression of cell cycle markers by the early activated cells (Fig.
3-3C), we hypothesized that these cells would proliferate briefly upon adoptive transfer. Indeed,
these cells expanded, but lost expression of Ki67 over the course of the four days (Fig. 3-7H, 3-
8B). These early activated T cells also downregulated expression of CD25 and ICOS, as well as
granzyme B by this later time point (Fig. 3-7H, 3-8C). Consistent with a transient burst of
metabolic activity, these cells exhibited markedly lower expression of both glycolytic and
oxidative markers compared to the early activated T cells from which they originated (Fig. 3-7H,
3-8C). Collectively, these data indicate that during CD8 T cell differentiation, early activated

antigen-specific T cells undergo a transient period of peak metabolic activity. Thereafter,
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downregulation of glycolytic and oxidative pathways takes place coordinate with differentiation

into short-lived or memory cells.

3.6 Discussion

Mass cytometry permits broad-spectrum characterization of immune responses in
healthy and diseased states 2. To date, this approach has been used to query the phenotypic
and signaling adaptations undertaken by cells during differentiation '*'74. However, until now,
the coordinated downstream metabolic cues supporting these programs have remained
incompletely understood at the single-cell level. Here, we directly measured the expression
levels of essential nutrient receptors, enzymes, signaling intermediates, and markers of cellular
differentiation and effector function at the proteomic level. This allowed us to more thoroughly
characterize CD8 T cell responses during acute infection, highlighting the metabolic adaptations
of canonical T cell subsets and capturing a unique metabolic state in rare, early activated T
cells.

Previous models of the naive-to-effector transition based on polyclonal population data
have proposed a process in which OXPHOS is repressed to promote aerobic glycolysis 2175,
However, a recent study of intracellular flux in activated T cells has reported that effector T cells
may use oxidative phosphorylation in vivo '*3. Additionally, it has been observed that effector T
cells engage in more active LCFA uptake than their memory cell counterparts, which instead

78 1t is, therefore,

have been shown to mobilize these substrates from lysosomal triglycerides
feasible that fatty acid uptake may provide additional substrate for OXPHOS early in the course
of T cell activation. Our data unify these observations, supporting a coordinated program in
which glycolysis and OXPHOS are maintained simultaneously in individual cells during an
earlier stage of T cell activation.

Our approach to metabolic profiling by mass cytometry affords investigators the

opportunity to functionally characterize the metabolic adaptations of rare cellular populations,
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such as antigen-specific T cells. These cells would be otherwise difficult to analyze by current
standard metabolomics assays due to the prohibitively large number of cells and extensive
processing and ex vivo culture techniques required for these studies '8, Here, we were able
to characterize the metabolic, signaling, and phenotypic progeny of adoptively transferred cells
with single-cell resolution. This approach revealed a diversification during CD8 T cell
differentiation in the context of acute infection, with a highly metabolically active and proliferative
state in T cells early in the course of their response, which later give rise to cells with both
memory and terminal effector phenotypes.

The maximal expression of metabolic proteins early after T cell activation suggests a
potential role for TCR ligation and/or co-stimulation during CD8 T cell priming. Notably 4-1BB
ligation during co-stimulation has been shown to induce mitochondrial fusion via TRAF2-

mediated signaling through p38 and PGC1a "*%'®". Similarly, CD28 ligation has been

demonstrated to induce CPT1a. expression in vitro '™

. Whether these signals potentiate the
observed spare respiratory capacity and increased mitochondrial mass in early activated T cells
will be important to determine. As Drp1-mediated mitochondrial fission has been described in

effector cells during metabolic reprogramming to the aerobic glycolytic program

, it is possible
that the absence of co-stimulation and loss of IL-2 signaling upon pathogen clearance may
result in mitophagy and/or mitochondrial fission, repressing oxidative activity in terminal effector
subsets.

As the importance of metabolism to immune cell fate and function is increasingly
appreciated, methods to evaluate these pathways in models of productive and dysregulated
immune responses will be critical. The approach presented here may be adapted to any cell
type of interest, including both immune cells and non-immune cells, such as interacting

epithelial tissues or tumors. This methodology should enable investigators to query the

functional programs underlying the development of the full spectrum of immune cell lineages
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and their compromised state in the context of autoimmunity or malignancy. Additionally,
integrated functional analysis of rare cellular subsets will permit simultaneous evaluation of the
effects of various treatments on rare populations, such as tumor-infiltrating lymphocytes or

neoantigen-specific T cells.
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Figure 3-1: Querying the integrated functional program of CD8 T cell activation
Panel schematic depicting signaling, metabolic, effector and phenotypic targets
interrogated by mass cytometry. Cell surface, cytosolic and nuclear markers are depicted
n (A) and mitochondrial markers are denoted in (B). Markers directly measured by mass
cytometry are demarcated by an asterisk (*). OT-1 transgenic CD8 T cells were stimulated
with cognate peptide (SIINFEKL) in the presence of IL-2 (100 U/ml) for 72 hours, followed
by 3 washes to remove antigen and polarization in IL-2 or IL-7 (both 10 ng/mL) to generate
OT-1ef or OT-1mem. Samples were harvested at day 7 for metabolic analysis by mass
cytometry and Seahorse assay analysis by Mitochondrial Stress Test. (C) Mass cytometry
expression profiles of day 7 OT1er and OT1mem for key metabolic enzymes as depicted
by histograms. (D) Extracellular acidification rate and oxygen consumption rate by
Seahorse Assay depicted in bar plots and with significance analysis by student’s t-test
(p<.001 ****). Error bars represent standard error of the mean (SEM). Data are
representative of 3 independent experiments.
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Figure 3-2: Assessing the integrated functional program of antigen specific CD8 T

cell activation in vitro

A) OT-1 transgenic CD8 T cells were stimulated with cognate peptide (SIINFEKL) in the
presence of IL-2 (100 U/ml) for 72 hours, followed by 3 washes to remove antigen and
polarization in IL-2, IL-7, or IL-15 (all 10 ng/mL) to generate OT-1effor OT-1mem. Samples were
fixed for mass cytometry at all time points depicted and cells were harvested at day 7 for
Seahorse assay analysis by Mitochondrial Stress Test. Mass cytometry expression data for key
metabolic, signaling and effector markers of interest.(B) OCR tracings as quantified by
Seahorse. (C) Basal and maximal OCR readings and (D )basal and maximal ECAR readings as
quantified by Seahorse. Significance analysis by paired two-tailed student’s t-test (p<0.05 *,
p<0.01 **, p=0.0001***, p<0.0001****). Error bars represent SEM. Data are representative of at

least 2 independent experiments.
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Figure 3-3: Single-cell analysis of the CD8 T cell effector program in vivo.

(A) Pooled CD8 T cells from mice at days 0 to 9 of Lm-OVA infection (n=2-3 mice per time
point) clustered by Phenograph and visualized by a force-directed graph. (B) Force-directed
graphs indicating cellular distribution by time point. (C) Functional and phenotypic median
expression profiles for each CD8 T cell cluster. (D) Cluster proportion by time point (E)
Individual cluster frequency profiles at days 0 to 9 p.i. (F) Expression profiles of metabolic and
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signaling in naive clusters between days 0 and 1 p.i. (G) Histograms depicting the expression of
functional markers in central memory cells between days 0 and 2 p.i. (H) Metabolic expression
profiles of SLEC clusters between days 5-6 and 8-9 p.i. Significance analysis of all medians by
two-tailed student’s t-test (p<0.05 *, p<0.01 **) is displayed.
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Figure 3-4: Single-cell metabolic analysis of the primary CD8 T cell response in
vivo.

(A)Pooled CD8 T cells from mice at days 0 to 9 of Lm-OVA infection (n=2-3 mice per time point)
clustered by Phenograph and visualized by force-directed graphs. Force-directed graphs of
single-cell expression profiles of individual markers are depicted. Box plots of marker
expression of (B) naive, (C) central memory, and (D)SLECs at specified time points post-
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infection with Listeria monocytogenes. Significance analysis by paired two-tailed student’s t-test.
Whiskers represent 1.5 * IQR.
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Figure 3-5: Early activated T cells exhibit a distinctive metabolic profile
characterized by peak oxidative and glycolytic activity.

(A) Biaxial scatter plots indicating surface marker expression profile of the early activated T cell

pool. (B) Frequency of early activated cells during days 0 to 9 p.i. (C) Metabolic expression

profiles of metabolic and signaling markers in early activated T cells in comparison to all other

CD8 T cells during days 0 to 9 p.i. as depicted by histograms. Significance analysis of all
medians by paired two-tailed student’s t-test (p<0.05 *, p<0.01 **) is displayed. CD8 T cell
subsets of interest were sorted at days 5 (including, naive cells, early activated cells) and 8
(SLECS) p.i. and analyzed by Mitochondrial Stress Test (n=5 mice per time point). (D) Basal
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ECAR and maximal ECAR measured upon oligomycin administration. (E) OCR over time. (F)
Basal and maximal OCR readings obtained upon FCCP administration. (G) MitoTracker signal
in each subset (n=5 mice per subset). Significance analysis by paired two-tailed student’s t-test
(p<0.05 *, p<0.01 **). Error bars represent SEM. Data are representative of at least 2
independent experiments.
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Figure 3-6: Single-cell metabolic analysis by mass cytometry reveals the unique

i 12.85%

CD62L (450/50 Violet F-A)

CD25High Transitional
Pool

€025 (530/30 Blue C-A)

TCRb (670/14 Red C-A)

D8 Postinfection

CD8 (582/15 YG D-A)

CD44 (780/60YG A-A)

CD8T Cells

KLRG1 (695/40 Blue A-A)

SLE

i

Ll
' N
N
)

u

KLRG1 (695/40 Blue A-A)

CD62L (450/50

Cs

Violet F-A)

metabolic profile of early activated CD8 T cells
(A) Box plots of marker expression of early activated T cells compared to all other CD8 T cells
at day 5 p.i. with Listeria monocytogenes. Significance analysis by paired two-tailed student’s t-
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test. Whiskers represent 1.5 * IQR.(B)Sorting strategy for isolation of naive
(CD62LniCD4410wKLRG110wCD2510), transitional effectors(CD62LiowCD44nCD25hi) at day 5 post-

infection and SLECs (CD62LiowCD44nKLRG1hCD2510w) and day 8 post-infection is depicted by
biaxial plots.
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Figure 3-7: The early activated metabolic state is antigen specific and transient.
OT-1 T cells were adoptively into congenic hosts, which were then infected with 5 x 10* CFU
Lm-OVA. Splenocytes were harvested daily on days 3 through 7 p.i. for metabolic analysis by
mass cytometry. (A) Pooled OT1 cells from mice at days 3 to 7 of Lm-OVA infection (n=3 mice
per time point except day 3 (n=1)) clustered by Phenograph and visualized by a force-directed
graph. (B) Force-directed graphs indicating cellular distribution by time point. (C) Functional and
phenotypic median expression profiles for each CD8 T cell cluster. (D) Proliferation of adoptively
transferred OT1s as measured by CFSE dilution at days 3-5 p.i. and (E) absolute cell counts at
days 3-7 p.i. (F) Early activated T cells were sorted from CD45.1* mice at day 5 p.i. and
transferred into infected CD45.2" hosts at day 5 p.i. (n=2 per group) and sacrificed 4 days later
for analysis by mass cytometry (G) Differentiation state of the transitional subset determined by
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CD44 and KLRG1 expression at day 9 p.i. (H) Metabolic and signaling marker profiles before
and after transfer at days 5 and 9 p.i. are represented by histograms. Significance analysis of
the medians by two-tailed student’s t-test (p<0.05 *, p<0.01 **) is displayed.
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3.7 Materials and Methods

Animals

All mice were housed in an American Association for the Accreditation of Laboratory Animal
Care—accredited animal facility and maintained in specific pathogen-free conditions. Animal
experiments were approved and conducted in accordance with AN157618. Wild-type female
C57BL/6 mice and BoyJ CD45.1 between 8-10 weeks old were purchased from The Jackson
Laboratory and housed at our facility. TCR Transgenic OT-1 CD45.1 mice and heterozygous
CD45.2,CD45.1 mice were bred at our facility. Animals were housed under standard SPF
conditions with typical light/dark cycles and standard chow.

Infectious Agents

Listeria monocytogenes strain 10403s expressing OVA (Lm-OVA) was kindly provided by
Shomyseh Sanjabi (UCSF). Lm-OVA stocks frozen at —80 C were grown overnight at 37°C in
BHI broth supplemented with 5 ug/ml erythromycin (Bio Basic, Amherst, New York). Then,
overnight cultures were sub-cultured by diluting into fresh BHI broth supplemented with 5 ug/ml
erythromycin and grown for 4 hours. Bacteria CFU was then quantified by measuring optical
density at 600 nm. Bacteria were then diluted to 5x10* CFU / 100l in sterile PBS and 100
was injected per mouse i.v. via the retroorbital vein.

Mass Cytometry Antibodies

Primary conjugates of mass cytometry antibodies were prepared using the MaxPAR antibody
conjugation kit (Fluidigm, South San Francisco, CA) according to the manufacturer’s
recommended protocol sourcing metals from Fluidigm (Fluidigm, South San Francisco, CA) or
Trace Sciences International (Richmond Hill, Canada). Following labeling, antibodies were
diluted in Candor PBS Antibody Stabilization solution (Candor Bioscience GmbH, Wangen,
Germany) supplemented with 0.02% NaNs to between 0.1 and 0.3 mg/mL and stored long-term

at 4°C. Each antibody clone and lot was titrated to optimal staining concentrations using primary
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mouse samples with all appropriate positive and negative controls: polyclonal murine CD8 T
cells purified by positive selection kit (Stem Cell Technologies, Vancouver, Canada) stimulated
with PMA/lonomycin via eBioscience Cell Stimulation Cocktail (ThermoFisher Scientific,
Waltham, Massachusetts) for 15 minutes, 3 hours and 6 hours or plate-bound anti-CD3 (145-
2C11) and soluble anti-CD28 (37.51) antibodies (UCSF Monoclonal Antibody Core, San
Francisco) for 3 days, OT-1 splenocytes at day 7 of IL-2 or IL-7 polarization as below, and
appropriate CD8 T cell subsets (Naive, Short-lived Effector and Central Memory) at day 8 of
Lm-OVA infection. Titration results were cross-referenced to the literature as described in the
text.

In vitro OT1 Stimulation and Polarization

OT-1 polarizations were carried out as previously described (Carrio et al., 2004). Briefly,
splenocytes from OT-1 mice were cultured at 1*10° cells/mL in 24 well-plates of complete RPMI-
1640 (UCSF Media Core facility) supplemented with 10% FBS (Omega Scientific, Tarzana,
California), 100 U/mL penicillin-streptomycin (Fisher Scientific, Hampton, New Hampshire), 2
mM L-glutamine (Sigma-Aldrich, St. Louis, Missouri) and 50 uM B-mercaptoethanol (Thermo
Fisher Scientific, Waltham, Massachusetts ) and 10 mM HEPES (UCSF Media Core Facility) in
the presence of OVA2s7.264 peptide (0.1 nM) (InVivoGen, San Diego, California) and IL-2 (100
U/ml) (Teceleukin) kindly provided by NCI, Frederick, MD. After 3 days in culture, activated cells
were washed 3 times with RPMI-1640 and re-cultured in T25 culture flasks at 1 x 10° cells/mL in
the presence of either IL-7, IL-15 (BioLegend, San Diego, California), or IL-2 (Teceleukin) kindly
provided by NCI, Frederick, MD (all cytokines 10 ng/ml). After 2 additional days in culture, cells
were passaged and re-cultured under the same conditions without peptide for an additional two
days for total of 7 days in culture. Viability was confirmed by trypan blue exclusion (Thermo

Fisher, Waltham, Massachusetts) or mass cytometry as described below.
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Cell Preparation

All tissue preparations were performed simultaneously from each individual mouse, as
previously reported (Spitzer et al. 2017). After euthanasia by CO- inhalation, spleens were
collected and homogenized in PBS + 5mM EDTA at 4° C. All tissues were washed with
PBS/EDTA and re-suspended 1:1 with PBS/EDTA and 100mM Cisplatin (Enzo Life Sciences,
Farmingdale, NY) for 60 s before quenching 1:1 with PBS/EDTA + 0.5% BSA to determine
viability as previously described (Spitzer et al., 2015). Cells were centrifuged at 500 x g for 5
min at 4° C and re-suspended in PBS/EDTA/BSA at a density between 1-10 x 10° cells/ml. Care
was taken to maintain all samples at 4° C during all phases of tissue harvest and preparation
except viability staining and fixation. Suspensions were fixed for 10 min at RT using 1.6% PFA
in PBS (Fisher Scientific, Hampton, New Hampshire) and frozen at -80° C.

For experiments with adoptively transferred OT1 T cells, immunomagnetic enrichment was
performed to facilitate the detection of extremely rare cells before proliferation. Following lysis of
red blood cells with ACK lysis buffer (ThermoFisher Scientific, Waltham, Massachusetts),
EasySep Streptavidin Negative Selection was used with the following biotinylated antibodies
against: MHCII (AF6-120.1), CD11c (N418), Ly6C (RB6-8C5), B220 (RA3-6B2), CD4 (GK1.5),
and Ter119 (TER-119).

Mass-Tag Cellular Barcoding

Mass-tag cellular barcoding was performed as previously described (Zunder et al., 2015).
Briefly, 1 x 10° cells from each animal were barcoded with distinct combinations of stable Pd
isotopes in 0.02% saponin in PBS. Samples from any given tissue from each mouse per
experiment group were barcoded together. Cells were washed once with cell staining media
(PBS with 0.5% BSA and 0.02% NaN3), and once with 1X PBS, and pooled into a single FACS
tube (BD Biosciences, San Jose, California). After data collection, each condition was

deconvoluted using a single-cell debarcoding algorithm (Zunder et al., 2015).
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Mass Cytometry Staining and Measurement

Cells were resuspended in cell staining media (PBS with 0.5% BSA and 0.02% NaNs), and
antibodies against CD16 and CD32 (BioLegend, San Diego, California) were added at 20 ug/ml
for 5 min at RT on a shaker to block Fc receptors. Surface marker antibodies were then added,
yielding 500 uL final reaction volumes and stained for 30 min at RT on a shaker. Following
staining, cells were washed 2 times with cell staining media, then permeabilized with methanol
for at 10 min at 4°C. Cells were then washed twice in cell staining media to remove remaining
methanol, and stained with intracellular antibodies in 500 uL for 1 hour at RT on a shaker. Cells
were washed twice in cell staining media and then stained with 1 mL of 1:4000 191/193Ir DNA
intercalator (Fluidigm, South San Francisco, CA) diluted in PBS with 4% PFA overnight. Cells
were then washed once with cell staining media, once with PBS and once with Cell Acquisition
Solution (Fluidigm, South San Francisco, CA). Care was taken to assure buffers preceding
analysis were not contaminated with metals in the mass range above 100 Da. Mass cytometry
samples were diluted in Cell Acquisition Solution containing bead standards (see below) to
approximately 10° cells per mL and then analyzed on a Helios mass cytometer (Fluidigm, South
San Francisco, CA) equilibrated with Cell Acquisition Solution. We analyzed 1-5 x 10° cells per
animal per time point, consistent with generally accepted practices in the field. For adoptive
transfer experiments, 1-4 x 10° cells per animal were analyzed.

Mass Cytometry Bead Standard Data Normalization

Data normalization was performed as previously described (Spitzer et al., 2017). Briefly, just
before analysis, the stained and intercalated cell pellet was resuspended in freshly prepared
Cell Acquisition Solution containing the bead standard at a concentration ranging between 1
and 2 x 10* beads/ml. The mixture of beads and cells were filtered through a filter cap FACS
tubes (BD Biosciences) before analysis. All mass cytometry files were normalized together

using the mass cytometry data normalization algorithm (Finck et al., 2013), which uses the

91



intensity values of a sliding window of these bead standards to correct for instrument
fluctuations over time and between samples.

Adoptive T Cell Transfer

For adoptive transfer of transitional cells and SLECs, T cells were sorted by flow cytometry from
splenocytes harvested from WT CD45.2 C47BI/6 mice or CD45.1 BoyJ mice 5 days post-
infection. Then, viable sorted cells were counted by hemocytometer and trypan blue staining,
resuspended in sterile PBS and transferred into infection-matched congenic mice intravenously
via the retroorbital vein.

For adoptive transfer of pathogen specific T cells to validate the antigen specificity of transitional
cells, CD8 T cells were immunomagnetically enriched from the spleens of CD45.1 OT1 TCR
transgenic mice with EasySep Streptavidin Negative Selection using the following biotinylated
antibodies against: MHCII (AF6-120.1), CD11c (N418), Gr1 (RB6-8C5), B220 (RA3-6B2), CD4
(GK1.5), Ter119 (TER-119). Viable cells were quantified by counting on a hemocytometer with
Trypan blue staining. 1 x 10° cells were then resuspended in sterile PBS and transferred into
naive WT CD45.2 mice intravenously via the retroorbital vein.

Flow Cytometry and Cell Sorting

Cells were stained for viability with Zombie-NIR dye. Cell surface staining was performed in cell
staining media (PBS with 0.5% BSA and 0.02% NaN3) for 30 minutes at room temperature. The
following anti-mouse antibodies were used: TCRp — APC (H57-597), CD8 — PE (53-5.8), CD62L
- BV421 (MEL-14), KLRG1 — BV510 (2F1/KLRG1), CD44 — PE-Cy7 (IM7), CD25 — FITC (3C7),
CD19 — APC-Cy7 (1D3/CD19), and F480 APC-Cy7 (BM8). Stained cells were analyzed with an
LSR 1l flow cytometer (BD Biosciences). MitoTracker Deep Red (Thermo Fisher, Waltham,
Massachusetts) staining was performed per manufacturer’s instructions and as previously
(Scharping et al., 2016). For MitoTracker Deep Red experiments, Zombie-UV dye was used

(BioLegend, San Diego, California).
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For sorting experiments, cells were prepared as described for flow cytometry and then sorted
into media (RPMI-1640, 20% FBS, 1% HEPES, 100 ug/mL penicillin/streptomycin) using a
FACSAria Il (BD Biosciences).

Seahorse Assays

Seahorse Assays were carried out using an Agilent Mitochondrial Stress Test kit as previously
(van der Windt et al., 2012) and per the manufacturer’s instructions. Oxygen consumption rates
(OCR) and extracellular acidification rates (ECAR) were measured in XF media (non-buffered
RPMI-1640 containing 10 mM glucose, 2 mM L-glutamine, and 1 mM sodium pyruvate) under
basal conditions and in response to 1 uM oligomycin, 1 uM fluoro-carbonyl cyanide
phenylhydrazone (FCCP), and 100 nM rotenone + 1 yM antimycin A (all from Agilent, Santa
Clara, California) using a 96-well XF Extracellular Flux Analyzer (EFA) (Agilent, Santa Clara,
California).

Statistical Analysis

All significance analysis of Seahorse data and cellular frequency was performed by paired two-
sided student’s t-test with error bars representing SEM in Prism v8. (GraphPad, San Diego,
California). Analysis of median protein expression was performed by paired or unpaired (as
indicated) two-sided student’s t-test in R.

Unsupervised Clustering Analysis

Cell clusters were identified using the Phenograph algorithm as implemented in the ‘cytofkit’
package in R. Standard settings were used (with k = 30 for endogenous CD8 T cells and k =
100 for OT1 T cells).

Data Visualization

Unsupervised force-directed graphs were generated as previously reported (Spitzer et al., 2015)
with the following modifications. Single cells were down-sampled to n = 1,000 cells from each
condition. All cells were combined in a single graph with edge weights defined as the cosine

similarity between the vectors of marker values of each cell. All the pairwise distances were
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calculated and for each node only the 10 edges of highest weight were retained. The graph was

then laid out using the ForceAtlas2 algorithm in Gephi.

Data Availability
Mass cytometry data will be made publicly available as a report on Cytobank

(www.cytobank.org) with linked flow cytometry standard (.fcs) files upon acceptance of the

manuscript.
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4.3 Abstract

Immune responses to infection are dynamic, yet the precise coordination of all immune
cell states and fates throughout the course an infection remain poorly defined. Using
mass cytometry, we mapped the cellular dynamics of all immune lineages during acute
infection with Listeria monocytogenes (Lm). We identified highly transient dendritic cell
activation 2 days post-infection that functions as a critical time window for priming
effector T cells. Regulation of this transient state was mediated by dendritic cell (DC)
extrinsic IFNy provided by T cells. Furthermore, antigen-specific T cells that arrive late
to the site of priming and miss peak DC activation acquire only memory T cell fates.
This temporal regulation of fate is recapitulated by CD8 DCs ex vivo suggesting shifts in
activation state of a single antigen presenting cell population alter T cell fates. These
results uncover a novel mechanism for temporal regulation of T cell differentiation

during a dynamic immune response to infection.

97



4.4 Introduction

One of the most important cellular interactions mediating protective adaptive
immune responses is the priming of CD8 T cells by DCs. Upon recognition of cognate
antigen presented on Major Histocompatibility Complex class | (MHCI) by DCs, CD8 T
cells rapidly divide and differentiate into multiple mature effector populations®®. Early
decisions in T cell fate lead to the acquisition of functionally distinct differentiation states
including memory and cytotoxic effector phenotypes®. Intriguingly, single cells are
committed to specific fates very early after priming by DCs®'62. Because strength of
signaling during priming dramatically alters fate acquisition'38, this suggests
stochasticity in the strength of signals received by T cells during the priming process.

Previous studies have shown that CD8 T cells that are primed after the onset of a
chronic viral infection divide less and acquire memory fates®%18%, Similar results have
also been observed for CD4 T cells in a vaccination model'®'. An elegant study
transferring CFSE-labeled TCR transgenic T cells at 12 hour intervals of acute Listeria
monocytogenes (Lm) infection showed striking differences in level of proliferation when
cells were removed 48 hours after transfer'®?. These data led us to hypothesize that
CD8 T cells might receive dramatically different strength of signals through changing
antigen abundance at different timepoints early in infection, which we sought to test
experimentally.

Here we used mass cytometry to generate a comprehensive map of immune cell
activation in the spleen over the first 9 days of infection with Lm. Unsupervised analysis
of these data allowed for the identification of highly transient cell states across lineages.

DC activation transiently peaked at day 2 post-infection and was rapidly downregulated
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thereafter, a process supported by T cell-derived IFNy. T cells primed after day 2 post-
infection acquired memory fate very early during differentiation. This finding was
recapitulated by DCs from different days of infection ex vivo, suggesting that rapid
temporal changes in DC activation state are sufficient to drive alternative T cell fate
acquisition. These findings have important implications for how natural immune
responses induce the differentiation of diverse T cell fates and how this might be

therapeutically manipulated in different contexts.
4.5 Results

4.5.1 Acute infection drives rapid phenotypic and frequency shifts across all
immune lineages in the spleen

To map the complete immune response to acute infection with Lm expressing the
model antigen ovalbumin (LmOVA), wild type C57BL/6 mice were infected
intravenously, and spleen tissue was harvested every day for the first 9 days of
infection. Mass cytometry was then performed using an antibody panel optimized to
detect all major mature immune cell lineages, as well as their activation states.
Unsupervised clustering revealed distinct cell states across all immune lineages (Figure
4.1 A-B). Frequencies and phenotypes of all immune lineages shifted dramatically every
single day of infection, which was characterized by early increases in neutrophil and B
cell populations and decreases in many T cell populations, ultimately leading to T cell
expansions (Figure 4.1 C-D, Figure 4.2 E). Immune landscapes were defined in each
sample as a composite of unsupervised cluster frequencies. Principal component
analysis and clustering of the samples identified 4 distinct phases of immune activation

that we deemed as a Baseline cluster (DO, D1), Innate Activation cluster 1 (D2, D3),
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Innate Activation cluster 2 (D4, D5), and T Cell Activation cluster (D6, D7, D8, D9)
(Figure 4.1 E-F). Early increases in neutrophil frequencies coincided with increased
circulating G-CSF, which peaked at 2 days post-infection (Figure 4.2 A). A second wave
of neutrophil expansion that exceeded the initial wave in cell frequency peaked at day 5
post-infection and coincided with another increase in circulating G-CSF (Figure 4.2 A).
The key antigen-presenting cells for priming CD8 T cell responses, DC1s, reached a
transient peak activation at 2 days post-infection, as indicated by expression of CD80,
CD86, PDL1, and CDG69, before rapidly downregulating the expression of these proteins
(Figure 4.2 B). Macrophages and cDC2s also exhibited a peak in activation at day 2
post-infection, but underwent more variable activation as indicated by subsequent
increases in CD86 and CD80 after this time point. Macrophages in particular continued
increased CD80 expression until reaching a dramatic decrease 6 days post-infection
(Figure 4.2 B). Early evidence of T cell activation was observed at the end of the Innate
Activation cluster 2, as a unique differentiation state of CD8 T cells expressing CD25
and ICOS reached a transient peak on day 5 post-infection (Figure 4.2 C). Early T cell
activation preceded a large expansion of KLRG1+ short lived effector cells (SLECs) that
peaked at 7 days post-infection (Figure 4.2 D).
4.5.2 Peak dendritic cell activation occurs 2 days post-infection and is regulated
by T cell derived IFNy

CD8+ cDC1s are the critical DC subset required for priming CD8 T cells in
response to many challenges including Lm'83. To validate previous findings, we infected
wild type and Batf3”- mice which lack cDC1s. At 7 days post-infection, the frequency of

KLRG1+granzymeB+ CD8 T cells was significantly reduced in Batf3”- mice (Figure 4.3
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A). To further assess the activation of cDC1s over time, we calculated a composite
activation score based on the expression of 8 molecules associated with activation
(CD54, CD80, CD83, CD86, MHCII, CD69, PDL1, and PDCA1). This score identified
that cDC1s acquire a peak activation state 2 days post-infection that is significantly
higher than any other day of infection, including the day preceding and following this
state, highlighting the transient nature of cDC1 activation (Figure 4.3 B). To identify
potential cell extrinsic regulators of cDC1 activation, we quantified cytokines from
spleen tissue homogenate over the first 3 days of infection and found that IFNy levels
followed a pattern strikingly similar to cDC1 activation, with a peak at 2 days post-
infection (Figure 4.3 C). The STAT1 signaling pathway is a prototypically activated by
IFNy'84. We, therefore, quantified levels of phosphorylated STAT1 (pSTAT1) at 2 days
post-infection and found that cDC1s showed the highest fold-change in pSTAT1,
suggesting that IFNy signaling was acting directly on cDC1s (Figure 4.3 D). In order to
identify the cellular source of IFNy, we depleted either NK cells or T cells (Figure 4.3 E).
We found that splenic IFNy was significantly reduced by T cell depletion, but not NK cell
depletion (Figure 4.3 F). Furthermore, peak cDC1 activation at 2 days post-infection
was significantly decreased when T cells or IFNy was depleted (Figure 4.3 G).
Together, these results demonstrate that peak DC activation at day 2 post-infection is
regulated in a cell extrinsic manner through T cell-derived IFNy.
4.5.3 Late primed T cells acquire memory fate

To assess the functional consequences of the peak cDC1 activation state at 2
days post-infection, we adoptively transferred TCR transgenic OT1 T cells at 0, 1, 2, 3,

or 4 post-infection LmOVA and then harvested cells for analysis 7 days after adoptive
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transfer (Figure 4.4 A). CD8 T cells underwent significantly less proliferation when
transferred in 2-4 days post-infection and also underwent significant alterations in fate.
We saw a decreased proportion of KLRG1+CDG62L- cytotoxic effector cells when cells
were transferred at 1 or 2 days post-infection compared to cells transferred at the onset
of infection. Strikingly, cells transferred after 2 days post-infection failed to acquire
KLRG1+CD62L- fate and differentiated almost exclusively into CD62L+KLRG1- central
memory cells (Figure 4.4 B).

To further assess the mechanistic underpinnings of memory fate acquisition in
late primed cells, we adoptively transferred CFSE-labeled OT1 T cells at O (Early) or 3
(Late) days post-infection and sorted cells for RNA sequencing 72 hours post-adoptive
transfer. Intriguingly, we found that late-primed cells had proliferated more at this time
point (Figure 4.4 C). This may be because priming occurred immediately as the cells
entered the host, whereas priming may not occur immediately for early-primed cells.
Nonetheless, we found that late-primed cells began to re-express CD62L after 5
divisions whereas early-primed cells did not (Figure 4.4 D). Furthermore, RNA-seq
confirmed that early- and late-primed cells have divergent transcriptional programs that
match cytotoxic effector and memory states, respectively (Figure 4.4 E). Late-primed
cells expressed higher levels of prototypical memory genes including Ccr7, Tcf7, and
Sell whereas early-primed cells expressed higher levels of canonical effector genes
such as Ifng, Gzmb, Pdcd1, and Fasl (Figure 4.4E).

To further test the mechanisms of late-primed memory differentiation, we sorted
cDC1s from D1 or D2 post LmOVA infection, co-cultured them ex vivo with naive OT1

CD8 T cells for 3 days, and then assessed T cell fate (Figure 4.4 F). Consistent with our
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previous data, we found that DCs from later in infection primed significantly more
memory T cell fates, as indicated by expression of CD62L by activated CD8 T cells

(Figure 4.4 G).

4.6 Discussion

This study is, to the best of our knowledge, the first high-dimensional single-cell
time course of a response to acute infection in a lymphoid organ. Recent research in
other contexts includes studies assessing immune cells in peripheral blood in response
to infection and whole organ transcriptomics in response to vaccination®”-85, While
these studies also suggest that immune responses are highly dynamic in nature, they
did not identify the transient activation of antigen-presenting cells described here, likely
because the studies sampling peripheral blood did not capture antigen presentation that
occurs in lymphoid organs, and whole tissue transcriptomics does not have the single-
cell resolution to determine the activation state of extremely rare DC populations.
Transient DC activations states have also been described in the response of mice to
infection with acute and chronic LCMV'8, as well as MCMV'®7, suggesting that this
state is a hallmark of acute infection, though these studies did not investigate the
consequences for T cell priming. This study is the first to mechanistically link temporal
changes in DC activation to regulation of T cell differentiation. Importantly, our data
suggest that memory fate is acquired very early during the differentiation trajectory of
late-primed cells and is due to the temporal shifts in signals received from DCs rather
than through clonal competition. We envision this study as a conceptual framework for
studying immune responses as rapid time courses of high-dimensional single-cell data

that can reveal novel mechanistic insights for how the immune system makes decisions.
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Figure 4-1: Unsupervised clustering identifies dramatic shifts in immune cell
frequencies and phenotypes during infection.

(A) Unsupervised clusters from all major lineages are plotted as a frequency of total live
CD45+ splenic immune cells at all days of infection. (B) All live CD45+ cells are plotted
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in UMAP dimensionality reduced space and colored by major cell type, as well as
unsupervised cluster. (C) Heatmap for median expression in each unsupervised cluster.
(D) Density of cells in UMAP dimensionality reduced space overlaid on the entire
immune landscape at each timepoint. (E) Fold-change in frequency (as percent of live
CD45+) of each unsupervised cluster compared to frequency in uninfected mice. (F)
Principal component analysis of single mice as a composite of unsupervised cluster
frequency and k-means clusters of samples are circled. (G) Heatmap of all
unsupervised cluster frequencies in each mouse.
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Figure 4-2: Neutrophil, antigen-presenting cell, and CD8 T cell dynamics during
infection

(A) Circulating plasma G-CSF levels and neutrophil frequencies across infection time.
(B) Expression of CD80, CD86, PDL1, and CD69 on cDC1s, cDC2s, and macrophages
from all days throughout infection. (C) Transitional CD25+ICOS+ CD8 T cells that peak
at 5 days post-infection. (D) KLRG1+ SLEC frequency over the course of infection.
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Figure 4-3: Peak dendritic cell activation is supported by T cell-derived IFNg
(A) Frequency of cytotoxic CD8 T cells in the spleen of WT and Batf3’- mice infected
with LmOVA at D7 post-infection. (B) Composite activation score (CD80, CD86, CD83,
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CD54, CD69, PDCA1, and PDL1) in single cDC1s plotted at each time point over
activation (C) Cytokine quantification from the spleen homogenate on D0-D3 post-
infection. Significance p<0.01. (D) PhosphoSTAT1 quantification in all major immune
lineages with fold-change calculated from the median of uninfected mouse samples. (E)
Antibody-mediated depletion of T cells by anti-Thy1 or NK cells by anti-NK1.1. (F)
Quantification of IFNg from the spleen homogenate at D2 post-infection in mice
depleted of T cells or NK cells. (G) Heatmap showing expression of key proteins in
splenic cDC1s from uninfected, D2 isotype-matched control Ig treated mice, D2 anti-
Thy1-treated mice, or anti-IFNg treated mice. Activation score calculated for cDC1s
from each condition. Significance p<0.01.
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Figure 4-4: Late-arriving T cell acquire memory fate
(A) Schematic of experimental design to transfer OT1 T cells at different stages of
infection with LmOVA and to analyze cells 7 days after transfer. (B) SLEC and Central
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Memory cell gating and quantification of antigen specific cells 7 days after adoptive
transfer. (C) CFSE dye dilution in OT1 T cells transferred at DO (Early) or D3 (Late) and
sorted 72 hours later. (D) Quantification of CD62L MFI| on cells at specific numbers of
divisions gated through CFSE dye stain. Significance p<0.01. (E) Heatmap of RNA-seq
in early- and late-primed cells highlighting differentially expressed genes associated
with memory and cytotoxic effector fates. (F) Schematic of experimental design to sort
cDC1s from D1 or D2 post-infection, coculturing with naive OT1 CD8 T cells and
analyzing 3 days later. (G) Gating of CD44 and CDG62L in representative divided OT1 T
cells and quantification of CD62L* and CD62L" divided OT1 T cells.
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4.7 Materials and Methods

Animals

All mice were housed in an American Association for the Accreditation of Laboratory Animal
Care—accredited animal facility and maintained in specific pathogen-free conditions. Animal
experiments were approved and conducted in accordance with AN157618. Wild-type female
C57BL/6 mice and BoyJ CD45.1 between 8-10 weeks old were purchased from The Jackson
Laboratory and housed at our facility. TCR Transgenic OT-1 CD45.1 mice and heterozygous
CD45.2,CD45.1 mice were bred at our facility. Animals were housed under standard SPF
conditions with typical light/dark cycles and standard chow.

Infectious Agents

Listeria monocytogenes strain 10403s expressing OVA (Lm-OVA) was kindly provided by
Shomyseh Sanjabi (UCSF). Lm-OVA stocks frozen at —80° C were grown overnight at 37° C in
BHI broth supplemented with 5 ug/ml erythromycin (Bio Basic, Amherst, New York). Then,
overnight cultures were sub-cultured by diluting into fresh BHI broth supplemented with 5 ug/ml
erythromycin and grown for 4 hours. Bacteria CFU was then quantified by measuring optical
density at 600 nm. Bacteria were then diluted to 5x10* CFU / 100l in sterile PBS and 100
was injected per mouse i.v. via the retroorbital vein.

Mass Cytometry Antibodies

Primary conjugates of mass cytometry antibodies were prepared using the MaxPAR antibody
conjugation kit (Fluidigm, South San Francisco, CA) according to the manufacturer’s
recommended protocol sourcing metals from Fluidigm (Fluidigm, South San Francisco, CA) or
Trace Sciences International (Richmond Hill, Canada). Following labeling, antibodies were
diluted in Candor PBS Antibody Stabilization solution (Candor Bioscience GmbH, Wangen,

Germany) supplemented with 0.02% NaN3 to between 0.1 and 0.3 mg/mL and stored long-term
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at 4° C. Each antibody clone and lot was titrated to optimal staining concentrations using
primary mouse samples with all appropriate positive and negative controls.

Cell Preparation

All tissue preparations were performed simultaneously from each individual mouse, as
previously reported (Spitzer et al. 2017). After euthanasia by CO- inhalation, spleens were
collected and homogenized in PBS + 5 mM EDTA at 4° C. All tissues were washed with
PBS/EDTA and re-suspended 1:1 with PBS/EDTA and 100 mM cisplatin (Enzo Life Sciences,
Farmingdale, NY) for 60 s before quenching 1:1 with PBS/EDTA + 0.5% BSA to determine
viability as previously described (Spitzer et al., 2015). Cells were centrifuged at 500 x g for 5
min at 4° C and re-suspended in PBS/EDTA/BSA at a density between 1-10 x 10° cells/ml. Care
was taken to maintain all samples at 4° C during all phases of tissue harvest and preparation
except viability staining and fixation. Suspensions were fixed for 10 min at RT using 1.6% PFA
in PBS (Fisher Scientific, Hampton, New Hampshire) and frozen at -80° C.

Mass-Tag Cellular Barcoding

Mass-tag cellular barcoding was performed as previously described (Zunder et al., 2015).
Briefly, 1 x 10° cells from each animal were barcoded with distinct combinations of stable Pd
isotopes in 0.02% saponin in PBS. Samples from any given tissue from each mouse per
experiment group were barcoded together. Cells were washed once with cell staining media
(PBS with 0.5% BSA and 0.02% NaN3), and once with 1X PBS, and pooled into a single FACS
tube (BD Biosciences, San Jose, California). After data collection, each condition was
deconvoluted using a single-cell debarcoding algorithm (Zunder et al., 2015).

Mass Cytometry Staining and Measurement

Cells were resuspended in cell staining media (PBS with 0.5% BSA and 0.02% NaNs), and
antibodies against CD16 and CD32 (BioLegend, San Diego, California) were added at 20 ug/ml
for 5 min at RT on a shaker to block Fc receptors. Surface marker antibodies were then added,

yielding 500 uL final reaction volumes and stained for 30 min at RT on a shaker. Following
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staining, cells were washed 2 times with cell staining media, then permeabilized with methanol
for at 10 min at 4° C. Cells were then washed twice in cell staining media to remove remaining
methanol, and stained with intracellular antibodies in 500 uL for 1 hour at RT on a shaker. Cells
were washed twice in cell staining media and then stained with 1 mL of 1:4000 191/193Ir DNA
intercalator (Fluidigm, South San Francisco, CA) diluted in PBS with 4% PFA overnight. Cells
were then washed once with cell staining media, once with PBS and once with Cell Acquisition
Solution (Fluidigm, South San Francisco, CA). Care was taken to assure buffers preceding
analysis were not contaminated with metals in the mass range above 100 Da. Mass cytometry
samples were diluted in Cell Acquisition Solution containing bead standards (see below) to
approximately 10° cells per mL and then analyzed on a Helios mass cytometer (Fluidigm, South
San Francisco, CA) equilibrated with Cell Acquisition Solution. We analyzed 1-5 x 10° cells per
animal per time point, consistent with generally accepted practices in the field. For adoptive
transfer experiments, 1-4 x 10° cells per animal were analyzed.

Mass Cytometry Bead Standard Data Normalization

Data normalization was performed as previously described (Spitzer et al., 2017). Briefly, just
before analysis, the stained and intercalated cell pellet was resuspended in freshly prepared
Cell Acquisition Solution containing the bead standard at a concentration ranging between 1
and 2 x 10* beads/ml. The mixture of beads and cells were filtered through a filter cap FACS
tubes (BD Biosciences) before analysis. All mass cytometry files were normalized together
using the mass cytometry data normalization algorithm (Finck et al., 2013), which uses the
intensity values of a sliding window of these bead standards to correct for instrument
fluctuations over time and between samples.

Adoptive T Cell Transfer

For adoptive transfer of pathogen specific T cells to validate the antigen specificity of transitional
cells, CD8 T cells were immunomagnetically enriched from the spleens of CD45.1 OT1 TCR

transgenic mice with EasySep Streptavidin Negative Selection using the following biotinylated
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antibodies against: MHCII (AF6-120.1), CD11c (N418), Gr1 (RB6-8C5), B220 (RA3-6B2), CD4
(GK1.5), and Ter119 (TER-119). Viable cells were quantified by counting on a hemocytometer
with trypan blue staining. 1x10° Cells were then resuspended in sterile PBS and transferred into
naive WT CD45.2 mice intravenously via the retroorbital vein. In some cases cells were also
stained with CFSE.

Flow Cytometry, Cell Sorting

Cells were stained for viability with Zombie-NIR dye. Cell surface staining was performed in cell
staining media (PBS with 0.5% BSA and 0.02% NaN3) for 30 minutes at room temperature. The
following anti-mouse antibodies were used: TCRB — APC (H57-597), CD8 — PE (53-5.8), CD62L
- BvV421 (MEL-14), CD45.2 — PE-Cy7 (104), CD45.1 — FITC (A20), and CD19 — APC-Cy7,.
(1D3/CD19). Stained cells were analyzed with an LSR |l flow cytometer (BD Biosciences).

For sorting experiments, cells were prepared as described for flow cytometry and then sorted
into lysis buffer (1X Takara single-cell lysis buffer) using a FACSAria Il (BD Biosciences).
Statistical Analysis

All significance analysis was performed by paired or unpaired (as indicated) two-sided student’s
t-testin R.

Unsupervised Clustering Analysis and Data Visualization

Cell clusters were identified using the CLARA algorithm with 100 clusters as implemented in the
‘cluster’ package in R.

Data Availability

Mass cytometry data will be made publicly available as a report on Cytobank

(www.cytobank.org) with linked flow cytometry standard (.fcs) files upon acceptance of the

manuscript.
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Chapter 5 Closing and Future Directions

Establishing that the peripheral immune macroenvironment is significantly perturbed in
cancer has opened many potential new areas of investigation. Because Type 1 immune
responses are blunted in the spleen of AT3 tumor-bearing mice, it would be prudent to evaluate
these responses in other tumor models. Another essential question is to assess how Type 1
immune responses develop in non-lymphoid organs of tumor-bearing mice such as the
response to Lm infection in the liver, lung, and tumor itself. Furthermore, it is important to
continue deciphering the emergent properties of the tumor-burdened immune system by driving
tumor de novo immune responses to a diverse range of challenges including vaccines,
parasites, allergens, and commensals. Finally, the precise mechanisms that drive impaired DC
activation remain elusive. ldentifying whether this defect is intrinsic to precursor and mature
DCs or rather driven by a secondary interaction is a sensible next step.

Single-cell metabolic analysis has also provided a new experimental toolset for many
new potential areas of investigation'®. The early-activated CD8 T cell state that uses oxidative
phosphorylation and glycolysis simultaneously should be assessed in other diverse contexts
such as in antiviral as well as natural and therapeutically induced antitumor responses.
Furthermore, preliminary data suggest that CD4 T cells undergo a similar metabolic transition
that requires experimental validation through orthogonal metabolic assays. This general
technique of measuring metabolic state through antibodies targeting key metabolic mediators
may also be applied to recent multimodal single cell technologies such as ASAP-seq, which
combines single cell chromatin accessibility and intracellular quantification of antibody targets.

The precise timing of priming during infection and how infectious dose alters this also
warrants further investigation. Preliminary data suggest that transient DC activation is not driven
through transcriptional regulation ;therefore, this transient state may be regulated post-

transcriptionally. Manipulating DC transience may provide a therapeutic approach to tune the
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type of T cell response elicited. Future studies may use chemokines or treatments to modulate
T cell migration to optimize T cell responses to vaccines. Alternatively, vaccination through the
implantation of synthetic antigen-loaded discs could be paired with migration modulators to
facilitate memory T cell responses to cancer'®®.

Together, these studies each interrogate key aspects of immunological coordination
across diverse contexts. While immune responses have been studied at the single-cell level by
flow cytometry for decades, the majority of previous studies have been technologically limited to
only measuring fractions of immune cells, processes, and interactions. To advance basic and
translational immunology, we must develop comprehensive maps of immune responses that
delineate the full breadth and chronology of dynamic immune coordination. These three studies
establish new experimental and computational frameworks for studying the development of
multi-lineage immune responses over time. These frameworks can be applied to any complex
immunological context to continue deciphering mysteries of basic immunology and informing
rational design of therapeutics. Combining recent advances in single-cell multimodal
(RNA+ATAC or Protein+ATAC or Protein+RNA) measurements with these frameworks will

provide an unprecedented new window into the regulation of dynamic immune responses.
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