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Dynamic Regulation of T Cell Priming in Cancer and Infection 

Kamir J. Hiam 

 

Abstract 

 An immunological challenge initiates cascades of migration, activation, and interactions 

between diverse immune cell subsets that ultimately lead to protection of the host. Previous 

technological limitations have favored reductionist experimentation and hindered experimental 

and analytical assessment of the full breadth of immunological responses. Therefore, many 

emergent properties of pan-lineage dynamic immune responses have remained elusive. The 

present body of work addresses this gap in fundamental immunology by leveraging high-

dimensional single-cell technologies and in vivo mouse models of immune responses to dissect 

the dynamic regulation of T cell priming in both cancer and infection. Generation of immune 

organization maps in eight tumor models showed that the global immune macroenvironment in 

cancer is significantly dysregulated as shown by gross alterations in cell frequencies and 

phenotypes. Orthogonal pathogen challenges in tumor-burdened mice revealed peripheral 

defects in CD8 T cell differentiation that were caused by impaired dendritic cell (DC) activation. 

To further profile natural immunity to bacterial challenges, mass cytometry was adapted to profile 

metabolic enzymes during an in vivo bacterial immune response. We revealed a highly transient 

early activated CD8 T cell state characterized by peak utilization of oxidative phosphorylation and 

glycolysis. Assessing all splenic immune lineages during an antibacterial immune response 

uncovered a DC activation zenith at two days post-infection. Peak DC activation functioned as a 

temporal regulator of T cell fate as late arriving T cells acquired memory T cell fate exclusively. 

Taken together these studies reveal transient functionally significant stages of regulation during 

cancer and infection. 
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Chapter 1 Introduction 
 
1.1 Overview 

The precise coordination of all immune cells throughout immune responses has not 

been thoroughly investigated. Recent work has begun to show that virtually all immune 

cells respond to an immunological insult such as an infection or tumor. Therefore. it is 

critical to understand the full scale of immune cell dynamics at critical stages of the 

immune response to identify how the immune system collectively makes decisions. By 

leveraging high-dimensional single-cell cytometry, in vivo challenges, and targeted 

perturbation experiments, the aims of this thesis were as follows: 

1) Determine the consequences of tumor development on peripheral immune organization 

and function, described in chapter 2. 

2) Map the metabolic differentiation trajectory of CD8 T cells at single cell resolution, 

described in chapter 3. 

3) Identify how the entire splenic immune landscape rapidly responds to acute infection, 

described in chapter 4. 
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1.2  Systemic Perturbations to Immune Organization by Tumor Burden 

Cancer is a systemic disease and prolonged inflammation is hallmark of cancer1. Whether 

this inflammation initiates tumorigenesis or supports tumor growth is context dependent, but 

ultimately the global immune landscape beyond the tumor is significantly altered. Despite 

systemic perturbations to the immune system, immunotherapy has revolutionized cancer therapy. 

However, immunotherapy remains ineffective in most clinical contexts2. Further progress towards 

more broadly effective immunotherapeutic strategies requires a deeper understanding of the 

organism-wide immunological relationships between tumor and host.  

The tumor immunology field has focused heavily on local immune responses in the tumor 

microenvironment, yet immunity is coordinated across tissues. For example, many myeloid cells 

are frequently replenished from hematopoietic precursors in the bone marrow3, and critical T cell 

priming events occur in lymphoid tissues as opposed to non-lymphoid organs such as a tumor4. 

The localized antitumor immune response cannot exist without continuous communication with 

the periphery. Furthermore, virtually every subset of immune cell has been implicated in cancer 

biology5. Therefore, studying immune responses to cancer must also focus on all the immune 

lineages within the peripheral immune system beyond the tumor microenvironment.  

Many human cancers and mouse models of cancer drive extensive disruption of 

hematopoiesis. This manifests most prominently in an expansion of immature neutrophils and 

monocytes in the periphery of tumor-burdened hosts, which then also traffic to the tumor 

microenvironment and contribute to the local immunosuppression6–8. Hematopoietic stem and 

progenitor cells are mobilized into proliferation and differentiation towards the monocytic and 

granulocytic lineages, resulting in peripheral expansion and intratumoral accumulation of 

immunosuppressive neutrophils, monocytes, and macrophage lineages9–13. Several factors 

have been implicated in driving this process including G-CSF10,14, GM-CSF15,16, IL-1713, 

oxysterol17, IL-818, CCL212, and IL1-β19. The vast majority of research that highlights peripheral 
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immune perturbations has focused on this increase in immature and immunosuppressive 

myeloid populations; however, this expansion does not occur in isolation.  

Beyond excessive production of monocytic and neutrophilic cells through aberrant 

hematopoiesis, bone marrow-derived dendritic cell (DC) perturbations have long been observed 

in the periphery of tumor-burdened hosts. This has important implications for the development 

of antitumor immune responses as DCs are critical orchestrators of CD8 and CD4 T cell 

differentiation and proliferation in many contexts including cancer20. The frequency of DC 

subsets is decreased in the peripheral blood of human ovarian21, prostate22, breast23, HNSCC24, 

melanoma25, lung26, and renal27 cancers when compared to healthy individuals. In pancreatic 

and breast cancer patient and mouse models, decreased peripheral DC frequency was driven 

through tumor-derived GCSF downregulating IRF8 in DC precursors, which reduced 

differentiation of mature DCs28. An alternative mechanism for DC paucity in a mouse model of 

pancreatic cancer was shown to be mediated by serum IL-6 driving increased DC apoptosis29. 

In human and mouse pancreatic cancer peripheral DCs obtain a semi-mature state 

characterized by moderate increases in costimulatory and coinhibitory receptors29–31. 

Transcriptomics revealed that these semi-mature DCs upregulated genes involved in 

proteasomal degradation but failed to upregulate T cell polarizing cytokines29, suggesting that 

like semi-mature DCs in other contexts, they possess the capacity to provide only partial 

stimulation to T cells.  

 Substantially less is known about the organization of other major immune lineages in the 

tumor macroenvironment. Lymphopenia is common in breast cancer, lymphoma, and sarcoma 

patients32. Interestingly, human breast33, lung34, and cervical35 cancer patients have decreased 

diversity of their circulating TCR repertoire. As larger TCR diversity is associated with better 

tumor control36, an improved understanding of TCR repertoire fluctuations driven by cancer is 

warranted. Peripheral T cells are also functionally perturbed as polyclonal memory CD4 and 

CD8 T cells from the peripheral blood have decreased capacity to produce IL-2 and IFNγ in 
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response to stimulation with PMA and ionomycin in human breast cancer patients37. Peripheral 

naïve CD4 T cells also exhibitied decreased responses to IL-6 stimulation as measured by 

phosphorylation of STAT1 and STAT3 in human breast cancer patients38. The most well studied 

perturbation of T cells in cancer is the expansion of suppressive regulatory CD4 T cells (Tregs) 

in the periphery and infiltration into the tumor39. Recent work has now shown that Tregs present 

in the blood of human cancer patients share phenotypic and TCR repertoires with intratumoral T 

cells, suggesting that a significant proportion of intratumoral suppressive Tregs are derived from 

naturally occurring thymic Tregs rather than through tumor-induced differentiation of naïve CD4 

T cells40,41. NK cells are yet another important component of antitumor immunity than can 

directly kill tumor cells, as well as influence antitumorigenic behavior of other immune cells42. 

Similar to the many other cell types described previously, peripheral NK cells from human 

breast cancer patients also have altered phenotype characterized by decreased expression of 

activating receptors including NKp30, NKG2D, and 2B4, as well as exhibiting impaired capacity 

to directly kill target cells and degranulate in vitro43. Altogether, data overwhelming support the 

systemic corruption of immune organization in diverse tumor types. Further work is needed to 

fully characterize distinct new types of immune state based on tumor tissue of origin, stage of 

development, and patient demographics in order to inform therapeutics and future mechanistic 

studies of the causes for systemic disruptions. 

1.3  Peripheral Immune Coordination of Antitumor Immunity 

Immune cells from the periphery of tumor-burdened hosts are required for natural and 

therapeutically induced tumor control. Chemotherapeutic depletion of peripheral immune cells 

impedes the therapeutic benefit by PD-1 blockade, causing systemic lymphodepletion and 

abrogating long-term immune memory44. However, local use of chemotherapy spares peripheral 

immune cells and synergizes with PD-1 blockade to induce DC infiltration into the tumor and 

clonal expansion of tumor-specific effector T cells. A specialized subset of CD103+ DCs 

transport tumor antigen to the peripheral immune system by CCR7-dependent migration from 
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the tumor to the draining lymph node where the priming of tumor specific CD8 T cells occurs45–

48. Newly primed T cells then traffic from the lymph node to the tumor and this cycle is an 

essential process in natural and therapeutically induced antitumor immunity.  As further 

evidence of continuous systemic reliance, blockade of lymphocyte egress from lymphoid organs 

using FTY720 or surgical resection of tumor-draining lymph nodes nullifies efficacy of 

immunotherapy49,50.  

Productive antitumor responses predominantly utilize effector CD8 T cells within the 

tumor microenvironment to directly kill tumor cells. However, recent studies demonstrate that 

intratumoral T cells acquire a terminally dysfunctional state in which cells are no longer 

amenable to therapeutic reinvigoration51. Additional studies have identified the transcription 

factor TOX as the master regulator of exhaustion through driving transcriptional and epigenetic 

reprogramming in response to chronic TCR stimulation52,53. To overcome local immune 

dysfunction, effective immunotherapies drive de novo peripheral immune responses through the 

priming of naïve CD8 T cells that proliferate, differentiate, and infiltrate the tumor. Several recent 

studies show that PD-1 and PD-L1 blockade drive the recruitment of new T cell clones into the 

tumor microenvironment that were not present locally prior to therapy54,5556. Together, these 

results demonstrate the importance of peripheral immunity in antitumor immunity. 

1.4  Systemic Coordination of Immune Responses to Pathogens 

Immune responses are remarkably dynamic and require coordinated interactions 

between many functionally distinct immune lineages, orchestrated across tissues and time. 

Previous work studying immune responses has been technologically limited to studying only 

small fragments of the immune response. However, recent work sampling peripheral blood to 

profile the human immune response to influenza H1N1 and primate responses to Ebola 

demonstrated that all immune cell lineages are engaged during an immune response and 

undergo dramatic shifts in cell phenotype and frequency57,58. Within this multi-lineage response, 

the most critical interaction for mediating adaptive immune responses occurs through dendritic 
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cell priming of T cells. CD8 T cells are primed primarily by BAT3-dependent CD8+ type 1 classic 

dendritic cells (cDC1s), whereas CD4 T cells are primed primarily by CD11b+ type 2 classic 

dendritic cells (cDC2s)59. Effective priming requires recognition of peptide antigen loaded into 

Major Histocompatibility Complex (MHC) proteins, costimulatory molecule engagement such as 

CD86 and CD28, and proinflammatory cytokines to support proliferation20. Once CD8 T cells 

have been primed by cDC1s they undergo rapid proliferation and differentiation into multiple 

effector fates including short-lived cytotoxic cells that directly kill infected cells, and long-lived 

memory cells that persist after resolution of an infection and are able to initiate a faster and 

more potent secondary response to future challenges60. Elegant lineage tracing studies have 

shown that single T cells make very early decisions about the fate that they will ultimately 

acquire61,62. Yet the precise mechanisms for these early decisions remain unclear. Furthermore, 

the full scope of immune interactions, phenotypes, and frequency shifts that occur within a 

lymphoid organ during a response have not been studied.  

The prior experience and state of the immune system dramatically shapes future 

responses to challenges. Altered basal cytokine levels or cellular composition and activation 

states are known to drive distinct secondary responses in models of chronic infection and 

coinfection63–65. Because the systemic immune state is significantly reorganized in tumor-

bearing individuals, this may have functional consequences on the orchestration of new immune 

responses. Indeed, cancer patients often exhibit increased susceptibility to infection compared 

to healthy individuals66,67. During the ongoing 2020 SARS-CoV-2 pandemic, infected cancer 

patients are more likely to develop severe symptoms and ultimately death68,69. These 

observations suggest that the substantial pan-lineage phenotypic and compositional changes to 

the systemic immune landscape ultimately led to impaired immune responses to a secondary 

challenge beyond the tumor microenvironment. As an intact functional peripheral immune 

system is critical to the development of new antitumor immune responses as described in the 
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previous section, it is imperative to understand how immunological decisions are made within 

the context the tumor-burdened state. 

 Recent work has begun to mechanistically dissect why the tumor-burdened immune 

state drives weakened peripheral secondary immune responses by using challenges that share 

no antigens with the initial tumor. The splenic CD8 T cell response to Listeria monocytogenes 

(Lm) in Pan02 pancreatic tumor-bearing mice also showed perturbed differentiation 

characterized by the acquisition of an exhausted fate70. Suppressed splenic expansion of CD8 T 

cells has also been observed in response to lymphocytic choriomeningitis virus (LCMV) with 

pre-existing B16 melanoma71 . Vaccination of PanIN and pancreatic tumor-bearing mice with 

ovalbumin (OVA) and CpG also led to impaired OVA-specific CD8 T cell proliferation and 

differentiation in the spleen, which was linked to DC dysfunction and could be rescued by 

combined treatment with FLT3L and CD40 agonism to both increase DC numbers and 

activation, respectively29. In a PyMT-B6 mouse model of breast cancer, a matrigel plug 

containing poly I:C and OVA was used as an immunogenic secondary challenge without shared 

antigens to the primary tumor. Pre-existing malignancy drove significantly decreased frequency 

of cDC1s within the plug and the plug-draining lymph node, which then led to a reduced number 

OVA-specific CD8 T cells infiltrating the plug28. Taken together, these studies show that the 

innate and adaptive arms of immune responses, and specifically dendritic cell and CD8 T cell 

interactions do not proceed optimally in tumor-bearing mice. 
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Chapter 2 Systemic dysfunction and plasticity of the immune 
macroenvironment in cancer models 
 

Breanna M. Allen1,2,6, Kamir J. Hiam1,2,6, Cassandra E. Burnett1,2, Anthony Venida1,3, Rachel 

DeBarge1,2, Iliana Tenvooren2, Diana M. Marquez2, Nam Woo Cho2,4, Yaron Carmi5, and 

Matthew H. Spitzer1,2* 

 

1Graduate Program in Biomedical Sciences, University of California, San Francisco, San 

Francisco, CA, USA 

2Departments of Otolaryngology and Microbiology & Immunology, Helen Diller Family 

Comprehensive Cancer Center, Parker Institute for Cancer Immunotherapy, Chan Zuckerberg 

Biohub, University of California, San Francisco, San Francisco, CA, USA 

3Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA 

4Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 

USA 

5Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel. 

6Co-First Author 

 

Chapter 2 is reprinted as it appears in: Allen, B.M., Hiam, K.J., et al. Nature Medicine 26, 1125–

1134 (2020). https://doi.org/10.1038/s41591-020-0892-6  
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2.3 Abstract 

Our understanding of the factors governing immune responses in cancer remains 

incomplete, limiting patient benefit. Here, we use mass cytometry to define the systemic immune 

landscape in response to tumor development across five tissues in eight mouse tumor models. 

Systemic immunity was dramatically altered across models and time, with consistent findings in 

the peripheral blood of breast cancer patients. Changes in peripheral tissues differed from those 

in the tumor microenvironment. Mice with tumor-experienced immune systems mounted 

dampened responses to orthogonal challenges, including reduced T cell activation during viral or 

bacterial infection. Antigen-presenting cells (APCs) mounted weaker responses in this context, 

while promoting APC activation rescued T cell activity. Systemic immune changes were reversed 

with surgical tumor resection, and many were prevented by IL-1 or G-CSF blockade, revealing 

remarkable plasticity in the systemic immune state. These results demonstrate that tumor 

development dynamically reshapes the composition and function of the immune 

macroenvironment. 
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2.4 Introduction 

Immunotherapy has rapidly expanded our toolkit against cancer, but a broader 

understanding of factors governing immune responses in cancer is required to extend clinical 

efficacy to all patients. Intratumoral CD8 T cells have been the main focus of cancer 

immunotherapies, yet recent studies demonstrate that cytotoxic T cells within the TME are 

irreversibly dysfunctional51. Several studies have shown that a systemic anti-tumor immune 

response is essential for immunotherapeutic efficacy44,49,54,72–76. However, we lack a 

comprehensive definition of how cancer development impacts the systemic immune state.  

 Several lines of evidence suggest that systemic immune perturbations occur with cancer. 

Peripheral granulocytic and monocytic expansion and impaired differentiation accompany tumor 

progression1,10,77 along with a reduction in conventional dendritic cells28. Systemic effects on 

lymphocytes remain poorly understood. Most studies have explored anti-tumor immune 

responses at a single, static time point, leaving the dynamicity of the immune system during 

cancer development an open question. Prior immune experiences can impact responses to new 

stimuli by shifting basal cytokine levels, innate immune activation states, and cellular 

composition64,65,78. While many immunotherapies and vaccines seek to elicit new immune 

responses in cancer patients, it remains uncertain how tumor burden impacts these processes. It 

is also unclear whether there are lasting immune impacts after successful primary tumor 

clearance, though studies have associated tumor resection with a reduction in myeloid-derived 

suppressor cells79,80. Defining the functional capacity and stability of the tumor-experienced 

immune macroenvironment is critical for improving immunotherapies. 

We used high content single-cell analysis and corresponding analytical methods to 

characterize the systemic immune landscape across eight commonly used mouse tumor models. 

These data, which are publicly available, provide a rich resource. While each tumor has unique 

immunological consequences, we found that three distinct breast cancer models converged on 

similar systemic changes. Tumors drove dynamic shifts in the organization and functional capacity 
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of immune cells across the organism, culminating in attenuated responses to new immune 

challenges, while tumor resection was sufficient to revert the systemic immune landscape. These 

findings have implications for how and when we apply immunomodulatory agents in cancer, 

emphasizing the importance of strategies that are informed by preexisting alterations in the 

immune macroenvironment. 

2.5 Results 

2.5.1 Systemic immune organization is altered across multiple tumor types 

We began by examining the TME across several common mouse tumor models, including 

genetically-engineered and transplantable syngeneic models across different mouse strains with 

different mutational loads, metastatic potential, variability and latency in tumor growth81–84. We 

characterized well-established, but pre-terminal tumor stages to reflect the patient populations 

most often treated with immunotherapies, but also to avoid the confounding impact of end-of-life 

processes. We utilized mass cytometry to quantify the abundance and activity state of immune 

cell subsets in the tumor as well as the blood, spleen, bone marrow and tumor-draining lymph 

nodes (Table 2-1and Figure 2-1). 

The immune composition of the TME was distinct between models, varying in the degree 

of immune infiltration and diversity (Figure 2-2a and Figure 2-3). The predominant immune cell 

types were tumor-associated macrophages and other CD11bhigh myeloid subsets, particularly in 

the transplantable MC38 colorectal cancer and SB28 glioblastoma models, with relatively fewer 

adaptive immune cells as reported in many human tumors85. Both transplantable LMP pancreatic 

cancer and genetically induced Braf-Pten melanoma models showed extensive eosinophil 

infiltration. B16-F10 syngeneic melanoma and three models of breast cancer (transplantable cell 

lines 4T1 and AT3 and autochthonous MMTV-PyMT) showed less relative abundance but greater 

diversity in local immune cells, including B, T, and NK cell infiltration (Figure 2-2a and Figure 

2-3a). Unique immune profiles were apparent across tumor types (Figure 2-2b and Figure 2-3g). 

We next asked whether these tumor models also resulted in altered systemic immune 
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states. The immune compositions of the tumor draining lymph node, bone marrow, blood, and 

spleen were indeed altered, with nuance in the extent of alteration and immune cell types affected 

(Figure 2-2c and Figure 2-3g). There was striking concordance among different models of the 

same tumor type (breast cancer and melanoma), shifting together across principal components. 

Surprisingly, SB28 glioblastoma extensively altered systemic immunity despite localization in the 

brain. Reporter protein expression was not responsible for systemic immune remodeling, as both 

the AT3 parental cell line and a derivative expressing GFP and luciferase exhibited strongly 

correlated systemic alterations (Figure 2-3h, r = 0.9, p = 2.2e-16). Systemic alterations also 

occurred in mice both with and without metastases (Figure 2-4a-e) and were tightly correlated 

with primary tumor size in the MMTV-PyMT model (r = 0.8527, p < 0.0001). While the majority of 

systemic immune remodeling could be explained by primary tumor size (78.4%), the residual 

values were correlated with both lung and lymph node metastases (r = 0.5794, p = 0.0207 for 

lung, and r = 0.5882, p = 0.0185 for lymph node). Compositional alterations in these peripheral 

sites did not correspond with the local immune infiltrate. Thus, tumor burden drives distinct 

changes in peripheral immune organization, dependent on the identity of the tumor. 

We next performed Statistical Scaffold Analysis49,86 to interrogate the impact of tumor 

burden in a more detailed manner, focusing initially on the spleen as a secondary lymphoid organ 

distal from the tumor (Figure 2-2d and Figure 2-3b-f, Methods). All models exhibited expansions 

in the splenic myeloid compartment, which was dominant in some, such as the three breast cancer 

models (Figure 2-2d and Table 2-2) but less dramatic in others, such as the two melanoma models 

(Figure 2-3e-f). Splenic remodeling in breast cancer was specifically characterized by increases 

in frequencies of neutrophils, eosinophils, and monocytes and reductions in B and T cells (Figure 

2-2d). Consistency was observed across breast cancer models, which span three mouse strain 

backgrounds (BALB/c for 4T1, C57BL/6 for AT3, and FVB/N for MMTV-PyMT), orthotopic and 

autochthonous models, and a range of metastatic potential (AT3 – weakly metastatic, MMTV-

PyMT – moderately metastatic, 4T1 – highly metastatic). Consistency despite model differences 
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argues for a tumor and/or site-specific bias in systemic immune responses. Gene expression 

analysis of whole blood from untreated breast cancer patients and matched controls from the 

Norwegian Women and Cancer Study also demonstrated a marked shift in the immune state (PC1 

Wilcoxon rank-sum p-value = 5.0 x 10-12, PC2 p-value = 1.6 x 10-6) (Figure 2-2e). Cellular 

enrichment analysis demonstrated increased neutrophils and decreased Th1 and CD8 T cells 

(Figure 2-2f). Altogether, these data suggest that tumor burden broadly disrupts immune 

macroenvironments, providing context to inform therapeutic manipulations designed to activate 

local versus systemic responses. 

2.5.2 Tumor growth drives non-linear changes in immune cell frequencies over time 

Tumors develop gradually, yet tumors are sampled at one developmental point in the clinic 

to provide prognostic information related to the immune response. We explored the dynamics of 

global immune remodeling during breast tumor growth, beginning with the predictable orthotopic 

4T1 model before confirming results in an unrelated spontaneous model (MMTV-PyMT). Absolute 

cell counts of tumor-infiltrating leukocytes positively correlated with tumor size, supporting a 

progressive immune response (Figure 2-4f, r = 0.6, p = 0.0256). Absolute spleen cell counts also 

increased, but cell frequencies as a percent of total leukocytes were comparable to absolute 

numbers per milligram of spleen (Figure 2-4g). Deep profiling of both the tumor and splenic 

immune compositions by mass cytometry revealed nonparametric correlations in individual 

cluster frequencies with time (Figure 2-5a-b), demonstrating at the single cell level that immune 

changes are indeed progressive. PCA of immune cell frequencies showed progressive changes 

across tissues over tumor growth in both 4T1 (Figure 2-5c-d) and MMTV-PyMT tumors (Figure 

2-4h). Importantly, the immune profile within the TME remained distinct from those observed in 

peripheral sites. The draining lymph node immune composition was unique, while the spleen, 

blood, and bone marrow were more coordinated. Neutrophil expansion in the spleen and bone 

marrow, culminating in elevated circulation in blood, but lack of accumulation within the lymph 

node or tumor, is one feature contributing to these unique profiles (Figure 2-5d). 



 15 

 Progressive systemic immune responses to tumor burden were not strictly linear. The 

magnitude of change was non-uniform between each time point as evident by the PCA (Figure 

2-5c and Figure 2-4h). While some population changes were relatively continuous, such as 

increasing neutrophils or decreasing CD4+ T cells, many others were dynamic, like CD8+ T cells 

and Tregs, which reciprocally expanded and contracted at distinct times in the tumor and draining 

lymph node (Figure 2-5d). In the spleen, myeloid expansion began by day 7 and continued to day 

14, preceding the progressive decline in the T and B cells that began by day 14 (Figure 2-4i). The 

lymph node also changed most dramatically by day 14 (Figure 2-6a), while changes in blood were 

more continuous (Figure 2-6b). The bone marrow and tumor contained less mature and clearly 

defined cell types, with many more inter-cluster connections and individualized patterns of change 

over tumor growth (Figure 2-6c-d). These data demonstrate that the tumor immune response is 

a highly dynamic process.  

2.5.3 Immune cell states are dynamically altered across immune organs with tumor growth 

To understand the extent of systemic impacts on T cells, we leveraged unsupervised cell 

clustering to identify changes in T cell subsets, cell states, and potential cross-organ coordination 

of responses during tumor growth. Indeed, the T cell compartment was dramatically reorganized 

over both 4T1 and MMTV-PyMT tumor development (Figure 2-7a, Figure 2-8a-b). Tissues 

contained both unique and shared T cell subsets shifting with tumor growth (Figure 2-7b-c, Figure 

2-8c-e). Blood and spleen profiles were more similar, dominated by CD4+ T cells. In contrast, the 

tumor T cell pool had more shared subsets with the bone marrow, including an increasing double 

negative population and a decreasing NKT cell population (Figure 2-7c). 

Demonstrating the breadth of immune reorganization in cancer, all T cell clusters changed 

in abundance across multiple tissues between early and late disease time points (Figure 2-7d). 

Of particular interest, tumor-infiltrating CD103+ Tregs, described as potent suppressors of effector 

T cells87, were abundant at day 7 but decreased with tumor progression (Figure 2-7e). This Treg 

subset expanded in the draining lymph node, suggesting that distal suppressive mechanisms may 
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support local changes to maintain a tumor-promoting systemic state. Anti-correlated changes 

extended to conventional CD4+ T cells, where CD44+ CD90high activated CD4 T cells decreased 

in the tumor but expanded in the lymph node (Figure 2-7f). The spleen showed the greatest 

change in CD44+ CD27+ memory CD4 T cells, which decreased with disease progression (Figure 

2-7g). The blood showed increases of activated CD44+ CD4+ T cells expressing the CD31 

adhesion receptor, which can promote T cell survival in settings of inflammation (Figure 2-7h)88. 

CD44+ CD8+ T cells expanding in the lymph node expressed Ly6C (Figure 2-7j), which can 

support lymph node homing of central memory T cells89. CD8+ T cells generally expanded in the 

tumor, but the most dominant cluster expressed high levels of PD-1 and CD69 previously 

associated with T cell dysfunction (Figure 2-7i)90,91. To explore the extent of dysfunction, we 

interrogated intratumoral and splenic T cells for their expression of CD101 and CD38, two markers 

recently identified as evidence of permanent T cell dysfunction51. Late-stage tumor burden led to 

accumulation of CD38+CD101+ CD8+ T cells in the tumor as expected; however, this phenotype 

did not emerge in the spleen (Figure 2-7k), suggesting that CD8+ T cells are altered differently in 

the TME and periphery. Similar changes in T cell composition were observed in the MMTV-PyMT 

model (Figure 2-8c-h). 

A similar pan-organ clustering analysis for the mononuclear phagocyte subsets, including 

macrophages and dendritic cells (Figure 2-9), revealed correlated and anti-correlated systemic 

changes in cell states with tumor progression. As expected, the tumor-infiltrating subsets were 

distinct from peripheral subsets and expressed high levels of PD-L1.  

We specifically interrogated protein expression dynamics of PD-1 and PD-L1 , the most 

commonly manipulated immune checkpoints by cancer immunotherapies to facilitate T cell 

responses92. While expression of these molecules is used clinically for patient stratification, it 

remains unclear whether they are expressed consistently or modulated dynamically over time. 

We indeed found dynamic PD-1 and PD-L1 expression on infiltrating immune cells (CD45+) and 

non-immune cells (CD45- CD31-) in the TME and in the periphery of both 4T1 and AT3 breast 
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cancer models ( 

Figure 2-10a- c). In fact, while the overall amount of PD-L1 expression was significantly 

less in the blood compared to the tumor, median leukocyte signal intensity was positively 

correlated between these tissues ( 

Figure 2-10d, r = 0.7487, p = 0.001). Both PD-1 and PD-L1 were promiscuously expressed 

across immune cell types, particularly within the TME ( 

Figure 2-10e). The most prominent cells expressing PD-L1 in the periphery were non-

classical monocytes93 and cDCs, while PD-1 was abundantly expressed on T cells, neutrophils 

and eosinophils. Dynamicity in PD-1 and PD-L1 expression suggests the potential for differential 

sensitivity to checkpoint blockade over the course of tumor development.   

Changes in cellular proliferation or death rates are potential mechanisms contributing to 

immune composition alterations. We discovered that immune proliferation fluctuated systemically 

in a pattern unique to each site but was coordinated across all immune subsets within that site 

(Figure 2-11a-d). Changes in Ki67 and cleaved caspase-3 expression corresponded poorly with 

clusters that were increasing or decreasing in frequency in the spleen (Figure 2-11e). Thus, while 

tumor burden systemically alters proliferation and death, these processes alone likely do not 

account for the systemic immune alterations observed.   

2.5.4 De novo T cell responses are impaired by pre-existing malignancy 

Having established that tumor development drives an altered immune macroenvironment, 

we next examined whether immune responses to new challenges were affected. Type 1 immune 

responses are associated with strong cellular immunity and are generally thought to provide 

optimal anti-tumor immunity. To understand how type 1 immune responses might take place in 

the context of cancer, we challenged healthy or AT3 tumor-bearing mice with two well-described 

pathogens that induce potent type 1 immunity, lymphocytic choriomeningitis virus (LCMV) and 

Listeria monocytogenes (Lm)94,95. Tumor-burdened mice still cleared the pathogens from the 

spleen (Figure 2-12a-b), consistent with the lack of complete immunosuppression in solid tumor 
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patients. However, the cellular immune response to infection was dramatically altered. The 

differentiation of effector CD8+  T cells, the magnitude of CD8+ T cell proliferation, and expression 

of the cytolytic mediator granzyme B were all significantly impaired in tumor-bearing mice after 

infection (Figure 2-12c-e and Figure 2-13a). These results demonstrate an unappreciated 

impairment of new cellular immune responses in the context of cancer.  

We previously found that CD8+ T cells with markers of terminal dysfunction were only 

observed in the TME and not in the spleen (Figure 2-7k). Consistent with this hypothesis, splenic 

CD8+ T cells harvested from either control or tumor-burdened animals were equally capable of 

producing the key effector cytokines IFNγ, TNFα, and IL-2 in vitro (Figure 2-13b). To test their 

functionality after infection, CD8+ T cells from OT-I transgenic mice expressing a T cell receptor 

specific for ovalbumin (SIINFEKL) were isolated from control or tumor-bearing mice and 

transferred into recipient mice, which were infected with Lm-expressing ovalbumin (Lm-OVA). 

AT3 tumors still drove systemic changes in TCR transgenic mice (Figure 2-13c). OT-I CD8+ T 

cells from control and tumor-bearing mice proliferated equivalently in control recipients at day 7 

post-infection, the peak of the CD8 T cell response94–96 (Figure 2-14a). However, when OT-I T 

cells were transferred into tumor-bearing recipients prior to infection, they expanded poorly, failed 

to induce T-bet expression associated with differentiation into effector cells, and expressed higher 

levels of PD-1 (Figure 2-14b). Similar results were also observed when polyclonal CD8 T cells 

from control or tumor-burdened mice were competitively transferred (Figure 2-14c). We found that 

antigen-specific central memory, effector memory, and short-lived effector CD8+ T cells were less 

abundant in tumor-bearing mice at day 10 as well, suggesting that defects extend beyond peak 

proliferation and represent a fundamental impairment of de novo CD8+ T cell responses (Figure 

2-14d). Together, these results demonstrate that cell extrinsic mechanisms suppress systemic T 

cell function in the tumor context.  

 Since tumor experienced CD8+ T cells in the periphery were not dysfunctional, we 

hypothesized that impaired APC activity earlier during infection contributes to decreased 
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peripheral CD8+ T cell activation. Dendritic cells (DCs) play a key role in orchestrating CD8+ T cell 

responses to Lm97, and evidence suggests that circulating DCs in breast cancer patients have 

reduced antigen presentation capacity98. Therefore, we quantified costimulatory molecule 

expression on splenic DCs 2 days post-infection. DCs from AT3 tumor-bearing animals expressed 

lower levels of key costimulatory molecules CD80 and CD86 and the activation marker CD83 

when compared to tumor-free controls (Figure 2-14e and Figure 2-13d). DCs from tumor-bearing 

mice also exhibited suboptimal activation at day 7 of infection, expressing lower levels of CD80, 

the adhesion molecule CD54 (ICAM-1) and PD-L1 (Figure 2-13e). This result suggests that the 

PD-1/PD-L1 axis does not cause the T cell response impairment and indicates that alternative 

strategies are likely required to induce new systemic T cell activity. We therefore sought to 

pharmacologically boost APC activation as a plausible strategy for achieving this goal. Anti-CD40 

treatment drives potent and systemic APC activation as shown by elevated CD86 and PD-L1 on 

splenic DCs (Figure 2-14f and Figure 2-13f). In the context of infection, anti-CD40 treatment 

rescued CD8+ T cell proliferation in tumor-burdened animals 7 days post-infection (Figure 2-14g). 

We also observed significantly higher levels of activation markers CD80, CD54 and PD-L1 on 

DCs after treatment (Figure 2-13e), consistent with enhanced APC stimulation. In contrast, high 

doses of IL-12 or treatment with anti-CTLA-4 failed to rescue T cell proliferation (Figure 2-14g and 

Figure 2-13g), suggesting that T cell targeted interventions alone are not sufficient. These 

experiments demonstrate that APCs fail to drive optimal new T cell responses in the context of 

tumor burden.  

2.5.5 Tumor resection reverses changes in systemic immune organization and 

responsiveness 

Given that defects in T cell activity were reversed after removal from a tumor-burdened 

context, we asked whether tumor clearance was sufficient to revert changes in systemic immunity. 

We surgically resected tumors when systemic changes were evident across sites and allowed 

mice to recover from surgery for 14 days to mitigate immune confounders from wound healing. 



 20 

We carefully tracked both local recurrence and metastatic outgrowth by bioluminescent imaging. 

Successful tumor resection reversed changes in systemic immunity in the AT3 and 4T1 breast 

cancer and the MC38 colorectal cancer models (Figure 2-15a). Splenic immune cluster 

frequencies and proliferative behavior became comparable to control animals (Figure 2-15b and 

c, and Figure 2-16a-c). Successful resection restored compositional changes in spleen immune 

frequencies and T cell clusters; however, local recurrence in the AT3 model and overt lung 

metastasis in the 4T1 model led to intermediate phenotypes in the systemic immune state (Figure 

2-15d and e, and Figure 2-16d and f-g). Local recurrence induced changes in the spleen 

comparable to primary tumors, but the composition of T cells was less dramatically altered. Lung 

metastasis induced more moderate changes, suggesting that systemic immune perturbations are 

not primarily the consequence of disseminated metastases. Finally, we interrogated DC and T 

cell responses 7 days after Lm-OVA infection and observed higher CD86 and PD-L1 expression 

on DCs in successfully resected mice (Figure 2-16h), and both T cell proliferation and Granzyme 

B production were restored (Figure 2-15f-g). Local recurrence mitigated this rescue. Thus, 

changes in the immune macroenvironment, unlike those of T cells in the TME, are highly 

dependent on ongoing tumor burden and are reversible upon effective tumor clearance. 

Finally, we investigated circulating cytokine levels to define potential mediators of tumor-

driven systemic immune remodeling. We reasoned that candidate factors would be elevated in 

the serum of AT3 tumor-burdened mice, reduced in successfully resected animals, and elevated 

again with local recurrence, or vice versa. We found that levels of the inflammatory cytokines IL-

1a and G-CSF followed this pattern (Figure 2-16i). Notably, recent studies have implicated G-

CSF as a driver of myeloid-derived suppressor cell and neutrophil expansion in preclinical models 

and cancer patients10,13,99. While IL-1b has been shown to promote tumor development locally in 

the TME, the role of IL-1a is less well understood, though it is elevated human breast cancers100–

102. Consistent with the hypothesis that tumor-secreted factors contribute to systemic immune 
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remodeling, G-CSF and IL-1a, but not IL-1b, were produced by AT3 cancer cells in vitro (Figure 

2-16j). We next treated mice with IL-1 and G-CSF blocking antibodies starting 5 days after tumor 

initiation, prior to most systemic immune changes. We also investigated the potential systemic 

impacts of TGFb, a pleiotropic cytokine known to play key roles in shaping the TME, including 

immune cell exclusion and immunosuppression103,104. Both IL-1 and G-CSF blockade significantly 

abrogated systemic immune remodeling while TGFb blockade had no effect (Figure 2-15h and 

Figure 2-16e). IL-1 and G-CSF blockade reduced splenic neutrophils and less mature CD11b+ 

myeloid cells (Figure 2-15i). Notably, IL-1 blockade also significantly reduced circulating levels of 

G-CSF, suggesting that IL-1 may act upstream to promote G-CSF production (Figure 2-16k), 

consistent with in vitro data from human tumor cell lines105. IL-1 blockade was additionally 

sufficient to reduce tumor effects on the splenic T cell composition, preventing the observed 

reductions in naïve and central memory CD8 T cells (Figure 2-15j-k). Thus, circulating IL-1a and 

G-CSF are critical mediators of tumor-driven systemic immune remodeling in this context. 
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2.6 Discussion 

This study constructs a comprehensive landscape of the immune macroenvironment in 

cancer, revealing a systemic immune context to consider when targeting immune behavior 

therapeutically. Strong pre-existing T cell activity is associated with clinical benefit from currently 

available immunotherapies, but many cancer patients likely require the priming of new antitumor 

immune responses. However, the ability of a tumor-burdened immune system to establish new 

responses is poorly defined71,106,107. Cancer patients are more susceptible to opportunistic 

infections and mount less effective responses to vaccines108,109, though the relative contributions 

of tumor driven systemic disruption and cytotoxic cancer therapies are debated. Here, we show 

that systemic immunity is disrupted to varying degrees across tumor types. Systemic immune 

alterations in breast cancer impair new immune responses, even to highly immunogenic 

pathogens that do not share tumor antigens. This challenges the idea that T cell dysfunction in 

cancer is limited to tumor-specific T cells experiencing chronic antigen exposure. Our data reveal 

impairment in the initial coordination of a T cell response by APCs, impacting T cell proliferation 

and differentiation. Impaired type 1 immune responses represent a fundamental, but previously 

unappreciated, obstacle for effective immunotherapy. These results, alongside promising clinical 

results of CD40 agonism in pancreatic cancer110, strongly support combinatorial therapeutic 

strategies that include APC activation. 

This work further reveals remarkable plasticity in the systemic immune state, as successful 

tumor resection largely reverted systemic immune disruptions. Influenced by physiological 

context, immunotherapies may have different consequences when applied pre- or post-

operatively. These studies show that the immune macroenviornment in cancer is highly 

manipulatable, warranting further studies in cancer patients. Prior studies have connected 

systemic changes with relapse in breast cancer patients, showing altered immune gene 

signatures in uninvolved lymph nodes and blood of patients with metastatic versus non-metastatic 

disease111 and that circulating CD45RA-Foxp3high Tregs predict future relapse41. In breast tumor 
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models, we show that the primary tumor is a primary driver of systemic immune reorganization, 

but that lung and lymph node metastasis are also associated with additional subtle changes. 

Future work to understand systemic immune alterations across cancer patients could inform 

prognosis and optimal therapy. 

Our study lays the foundation for detailed studies of specific tumor macroenvironments to 

match our detailed understanding of tumor microenvironments in mouse tumor models and 

patients. Building a complete understanding of systems-level immunity in cancer should further 

our ability to drive effective and rationally-designed anti-tumor immune responses in all cancer 

patients. 
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Figure 2-1: Main mass cytometry gating strategy 
a, Main gating strategy for identifying major immune cell populations from mass cytometry 
datasets. 
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Figure 2-2: The systemic immune landscape is remodeled across tumor models. 
a, Composition of tumor immune infiltrates across late stage mouse models, identified by manual 
gating (n = 3 independent animals for 4T1; n = 6 AT3; n = 7 MMTV-PyMT; n = 6 B16; n = 6 Braf-
Pten; n = 4 LMP; n = 6 MC38; n = 1 SB28; n = 30 Controls). b-c, Principal component analysis 
(PCA) and corresponding vector plot of individual contributions for the tumor infiltrating immune 
frequencies (b), and the log2 fold change of immune frequencies for the tumor draining lymph 
node, bone marrow, blood, and spleen (c) identified manually (n = 3 for SB28, otherwise as in 
panel (a)) d, Scaffold maps of spleen immune frequencies in breast tumor models (4T1, AT3, and 
MMTV-PyMT). Black nodes represent canonical cell populations identified manually. Other nodes 
reflect unsupervised clustering of leukocytes. Nodes are arranged by similarity using a force-
directed graphing algorithm (see Methods). Red denotes populations significantly higher in 
frequency in tumor-burdened animals compared to controls; blue denotes significantly lower 
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frequency. For significant nodes (q < 0.05 by significance analysis of microarrays), the degree of 
coloring reflects log2 fold change (n as in panel (a)). e-f, PCA (e) and significant immune changes 
by cellular enrichment analysis (f) from human whole blood gene expression, comparing breast 
cancer patients (n = 173) and matched controls (n = 281), p*** <0.001 by two-sided Wilcoxon 
rank-sum test with Benjamini-Hochberg correction. Box plots: center line, median; box limits, 
upper and lower quartiles; whiskers, 1.58x interquartile range / sqrt(n); points, outliers. 
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Figure 2-3: Systemic immunity is distinctly remodeled across tumor types. 
a, Relative abundance of total leukocytes infiltrating the TME across eight tumor models. b-f, 
Scaffold maps of spleen cell frequencies across five distinct tumor models, SB28 glioblastoma 
(b), MC38 colorectal (c), LMP pancreatic (d), B16 melanoma (e), and Braf-PTEN melanoma (f), 
comparing late stage tumor burden to their respective health littermate controls. g, Heatmaps of 
the log2 adjusted fold change in bulk immune cell frequencies across all five tissues, where 
relevant, across all models. h, Heatmaps of the log2 adjusted fold change in bulk immune cell 
frequencies comparing the parental AT3 and engineered AT3 expressing reporters GFP and 
Luciferase, with cell labels in g. Lower inset shows linear correlation between these systemic 
immune features. 
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Figure 2-4: Systemic immunity is distinctly remodeled over tumor development. 
a, Pearson correlation between MMTV-PyMT primary tumor size and change in systemic immune 
composition, measured as Aitchison distance. b, Degree of systemic immune change by Aitchison 
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distance over tumor growth (left) and after removing the contribution of primary tumor size by 
linear regression (right).  c, Percent of PyMT expressing metastatic cancer cells in the lung (green) 
and primary draining lymph node (blue). d, Pearson correlation between lung or lymph node 
metastasis and the residual changes in systemic immune composition after regressing out 
primary tumor burden. e, Heatmap of the log2 adjusted fold change in bulk spleen immune cell 
frequencies for each 400mm2 tumor-bearing mouse, ranging from 0 to high metastatic disease. 
f, Pearson correlation between tumor mass and absolute number of infiltrating leukocytes in 4T1 
breast tumors. g, Spleen immune absolute cell counts, adjusted absolute cell counts per mg of 
tissue, and unadjusted immune frequencies at each time point for neutrophils, B cells and T cells 
of the 4T1 breast tumor model. h, PCA of relative immune cell frequencies from each major 
immune tissue over time in the MMTV-PyMT breast tumor model. Vectors designate progression 
from control (first point) to 25 mm2, 50mm2, 125mm2, and 400mm2 (last point, arrowhead). i, 
Scaffold maps of immune cell frequencies in the spleen at each time point of 4T1 tumor burden, 
colored by log2 fold change in frequency compared to the previous time point. 
  



 31 

 
 
Figure 2-5: The systemic immune landscape is remodeled progressively with tumor 
development. 
a-b, Scaffold maps of 4T1 tumor (a) and spleen (b) cell frequencies colored by significant 
Spearman correlation with time (across day 0, 7, 14, 21 and 35), p < 0.05 by two-sided t-test with 
Benjamini-Hochberg correction. Green denotes positive correlation, and brown denotes negative 
correlation. c, PCA and corresponding vector plot of contributions for immune cell frequencies 
from each immune tissue over 4T1 breast tumor growth. Vectors designate progression from 
control day 0 (first point) to day 7, 14, 21, and 35 (last point, arrowhead). d, Curves of mean cell 
frequencies across time from a subset of immune cell types contributing to c, colored by tissue 
corresponding with c. All panels from one experiment, n = 3 independent animals for day 21 and 
n = 4 for all other timepoints. 
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Figure 2-6: Immunity is distinctly remodeled by compartment over tumor development. 
a-d, Scaffold maps of immune cell frequencies over 4T1 tumor progression in the tumor draining 
lymph node (a) blood (b), bone marrow (c), and tumor (d), colored by fold change relative to the 
previous time point.  
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Figure 2-7: Tumor burden progressively changes the systemic T cell composition. 
a-d, CD3+ CD11b- leukocytes from all tissues from healthy and 4T1 tumor-burdened animals at 
progressive time points. a, Scaffold maps of the T cell cluster frequencies in the spleen at each 
disease stage, all colored by log2 fold change in frequency. Clusters with significant change over 
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time are highlighted in red in the first map, q < 0.05 by multiclass significance analysis of 
microarrays.  b, Heatmap of the protein expression defining each T cell cluster, column 
normalized to each protein’s maximum positive expression. c, Heatmap of each T cell cluster 
frequency, by row, in each site and across the individual 3-4 animals per time point. d, Stacked 
bar plot of the log2 fold change in cluster frequency between early (day 7) and late (day 35) 
disease stage, colored by tissue. e-j, Representative scatter plots of key proteins defining T cell 
clusters that change in frequency in the designated tissues between early and late disease stage 
for Tregs (e), CD4 T cells (f-h), and CD8 T cells (i-j). k, Representative scatter plots and 
quantification of CD101+ CD38+ dysfunctional CD8 T cells in the spleen and tumor of health or 
day 21 tumor-burdened animals. All panels from one experiment, n = 3 independent animals for 
day 21 and n = 4 for all other timepoints. Barplot: centre, mean; whiskers, standard deviation. 
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Figure 2-8: Tumor growth shifts the systemic T cell composition across models. 
a-b, PCA of T cell cluster frequencies across lymphoid tissues over tumor development for the 
4T1 (a) and MMTV-PyMT (b) breast tumor models. Vectors designate directional progression 
from control (first point) to late stage disease (last point, arrowhead). In a, tumor time points 
include day 7, 14, 21, and 35 after 4T1 cancer cell transplant. In b, tumor time points include 
tumor sizes of 25 mm2, 50 mm2, 125 mm2, and 400 mm2. c-e, CD3+ CD11b- leukocytes from all 
tissues clustered together from healthy and MMTV-PyMT tumor-burdened animals at progressive 
tumor sizes. c, Heatmap of each T cell cluster frequency, by row, in each site and across the 
individual 2-3 animals per time point. d, Stacked bar plot of the log2 fold change in cluster 
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frequency between early (25 mm2) and late (400 mm2) disease time points, colored by tissue. e, 
Heatmap of the protein expression defining each T cell cluster, column normalized to each 
protein’s maximum positive expression. f-h, Representative scatter plots of key proteins that 
define T cell clusters changing in frequency in the designated site between early and late disease 
stage for CD8 T cells (f), Tregs (g), and CD4 T Cells (h). 
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Figure 2-9: Tumor growth shifts the systemic mononuclear phagocyte composition. 
a, CD3- CD19- leukocytes from all tissues clustered together from healthy and 4T1 tumor-
burdened animals at progressive time points. Left, stacked bar plot of the log2 fold change in 
cluster frequency between early (day 7) and late (day 35) times points, colored by tissue. Right, 
heatmap of the protein expression defining each cluster, column normalized to each protein’s 
maximum positive expression. b, Curves of the mean cell frequencies over time in the 4T1 breast 
tumor model from designated mononuclear phagocyte cell types, colored by tissue. c, PCA of the 
mononuclear phagocyte cell frequencies from each tissue over time in the 4T1 breast tumor 
model. Vectors designate progression from control (first point) to day 7, 14, 21, and 35 (last point, 
arrowhead). Coloring of tissues for a-c corresponds to labels in c. 
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Figure 2-10: PD-1 and PD-L1 expression is dynamic over tumor growth. 
a, Distribution of PD-1 and PD-L1 signal intensities on tumor infiltrating leukocytes over time in 
the 4T1 or AT3 breast tumor models. Coloring of time points for a-d corresponds to legend in a. 
b, Percent of total infiltrating leukocytes (left of dashed line) or CD45-, non-endothelial cells (right 
of dashed line) with high PD-1 or PD-L1 expression in the 4T1 or AT3 tumor models. c, Percent 
of leukocytes with high PD-1 or PD-L1 expression over time and across tissues, 4T1 model. d, 
Pearson correlation between median PD-L1 signal intensity on blood versus tumor infiltrating 
leukocytes, 4T1 model. e, Percent of each major immune cell subset expressing high PD-1 or 
PD-L1 in the tumor, blood, and spleen, identified manually. Cell subsets below 0.2% of total 
leukocytes were not included, X. Bars ordered by time point, beginning at healthy control. Double 
positive PD-1/PD-L1 expression was rare and not illustrated. p*<0.05, One-Way ANOVA, with 
Tukey correction versus control tissue or healthy mammary fat pad (blue in b-c, fill corresponding 
to bar color in e), or versus day 7 (green in b-c). 
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Figure 2-11: Tumor burden induces tissue-specific changes in immune cell cycling. 
a-b, Log2 fold change in bulk Ki67 expressing leukocytes in each tissue tissues for 4T1, AT3 and 
MMTV breast tumors (a), and over 4T1 tumor progression (b). p*< 0.05, One-Way ANOVA, with 
Tukey correction versus control. c-d, Statistical Scaffold maps of Ki67 expression in immune cells 
of the tumor draining lymph node comparing control to day 21 (c) and the spleen over time (d) in 
4T1 tumor burdened animals. e, Percent of increasing clusters (red, total of 56), decreasing 
clusters (blue, total of 90), or unchanged cluster that have corresponding changes in cell cycle 
markers Ki67 and cleaved caspase-3. 
 
  



 41 

 
 
Figure 2-12: Tumor burden leads to impaired T cell responses to secondary infection. 
a-b, Fold change in body weight after Listeria monocytogenes (Lm) infection (n = 11 independent 
animals for control groups and n = 9 for AT3 groups) (a), and quantification of Lm bacterial burden 
(b) in control and AT3 tumor-burdened animals (n = 5 for day 3 groups, n = 4 for control day 8, 
and n = 2 for AT3 day 8). c, Scaffold map of CD8 T cell frequencies in the spleen in AT3 tumor-
burdened mice after 7 days of Lm infection, colored by fold change in frequency compared to 
infected control mice (n = 3 uninfected, n = 3 Lm infected), q < 0.05 by significance analysis of 
microarrays. d-e, Quantification and representative scatter plots of splenic CD8+ T cell 
proliferation (d) and granzyme B production (e) in response to LCMV Armstrong or Lm in healthy 
or AT3 tumor-burdened animals (n = 3 uninfected, n = 4 LCMV, and n = 3 Lm-infected). For all 
barplots: p* <0.05, p** <0.01 by two-sided t-test; center, mean; whiskers, standard deviation. 
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Figure 2-13: Tumor driven deficits in T cell responses are cell-extrinsic. 
a, Quantification of CD8+ T cell populations in the spleen of healthy or AT3 tumor-burdened mice 
after 7 days of Lm infection, Two-Way ANOVA with Bonferroni correction. b, Expression of 
inflammatory cytokines, Ifng, IL-2, and TNFa in splenic CD8 T Cells isolated from control or AT3 
tumor-burdened mice after in vitro differentiation with CD3, CD28, and IL-2, and re-stimulation 
with brefeldin A and PMA and ionomycin. c, Scatter plots of CD11b and Ly6G showing expected 
neutrophilia in OT-I TCR transgenic mice with AT3 tumor burden. d, Histograms of CD80, CD86, 
and CD83 signal intensity on cDCs from healthy or AT3 tumor-burdened mice at day 2 of Lm-
OVA infection. e, Median signal intensity of CD80, PD-L1 and CD54 activation markers on splenic 
cDCs from healthy or AT3 tumor-burdened mice compared to IL-12p70 or CD40 treatment at day 
7 of Lm-OVA infection. f, Median signal intensity of PD-L1 on splenic cDCs from untreated or 
CD40 treated AT3 tumor-burdened (day 21) mice. g, Quantification of splenic CD8+ T cell 
proliferation in healthy, untreated or CTLA-4 treated AT3 tumor-burdened animals in response to 
7 days of Lm-OVA infection. p*<0.05, two-tailed t-test.     
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Figure 2-14: Tumor burden attenuates dendritic cell activation during secondary infection. 
a, OT-I T cell proliferation from control or tumor-burdened animals transferred into control 
recipients, and analyzed at 72, 96, and 144 hours post-Lm-Ova infection (n = 3 independent 
animals per group). Quantification of 96 hours. b, Transferred OT-I T cell counts and median 
signal intensity of T-bet and PD-1 at day 6 of Lm-OVA infection (n = 3 for control, and n = 4 for 
AT3 hosts). c, Competitively transferred polyclonal CD8 T cell counts from congenic (CD45.1+ 
AT3 tumor-burdened or CD45.1+CD45.2+ control) donors into CD45.2 control (n = 5) or AT3 
tumor-burdened recipients (n = 4), after 7 days of Lm infection. d, CD8+ T cell subtype counts 
from transferred CD45.1+ OT-I T cells at day 10 of Lm-OVA infection (n = 5 for control, and n = 4 
for AT3 hosts). e, Median signal intensity of CD80, CD86, and CD83 on splenic classical dendritic 
cells (cDCs) from healthy (n = 4) or AT3 tumor-burdened (day 28, n = 6) mice, at day 2 of Lm-
OVA infection (n = 2 for uninfected groups). f, Median signal intensity of CD86 on splenic cDCs 
from untreated (n = 3) or CD40-treated (n = 4) AT3 tumor-burdened (day 21) mice. g, 
Quantification of splenic CD8+ T cell proliferation in healthy versus untreated, IL-12p70-treated, 
or anti-CD40-treated AT3 tumor-burdened animals at day 7 of Lm-OVA infection (n = 2 control 
uninfected, n = 4 control Lm, and n = 5 for AT3 groups). For all barplots: p* <0.05, p** <0.01, p*** 
<0.001 by two-sided t-test; center, mean; whiskers, standard deviation. 
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Figure 2-15: Tumor resection completely resets the systemic immune landscape. 
a, Heatmaps of log2 fold changes in peripheral immune frequencies from tumor-burdened (T) or 
resected (R) mice. b-c, Scaffold maps of spleen immune frequencies (b) and proliferation (c) after 
AT3 resection compared to control (n = 3 per group). Insets show resected compared to tumor-
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burden (n = 4), q < 0.05 by significance analysis of microarrays. d-e, Compositional Aitchison 
distances in spleen immune frequencies (d) or T cell cluster frequencies (e) from control (n = 3 
for AT3, 8 for 4T1, and 5 for MC38), tumor-burdened (n = 6, 8, and 4), resected (n = 3, 6 and 6), 
or locally recurrent mice for AT3 and distal lung metastasis for 4T1 (n = 3 for both)(2 independent 
experiments for 4T1 and 1 experiment for AT3 and MC38). f-g, Quantification and representative 
scatter plots of splenic CD8+ T cell proliferation (f) and granzyme B production (g) after Lm 
infection in control (n = 4 and n = 7), AT3 tumor-burdened (n = 4), resected (n = 17), or recurrent 
mice (n = 4), 3 independent experiments. h-k, Compositional Aitchison distances of spleen 
immune frequencies (h), spleen frequencies of neutrophil (top) and undefined CD11b+ cells 
(bottom) (i), compositional Aitchison distances of T cell subset frequencies (j), and splenic CD8+ 
T cell frequencies (k) from control, or tumor-burdened mice untreated or with IL-1, G-CSF, or 
TGFb antibody blockade (n = 5 per group, from 1 experiment). All box plots: center line, median; 
box limits, upper and lower quartiles; whiskers, 1.58x interquartile range / sqrt(n); points, outliers. 
All barplots: p* <0.05, p** <0.01, p*** <0.001 by two-sided t-test; centre, mean; whiskers, standard 
deviation. 
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Figure 2-16: Tumor resection resets systemic immune organization and function. 
a-c, Statistical scaffold maps of spleen immune cell frequencies (a) and proliferation by Ki67 
expression (b) in 4T1-resected mice, and of spleen immune cell frequencies in MC38-resected 
mice (c) compared to healthy control. Insets show resected mice compared to tumor-burdened 
mice. d-e, Heatmap of the log2 fold changes in splenic immune cell frequencies for local or lung 
recurrences from control mice (d), and for IL-1, G-CSF, or TGFb blockade from untreated AT3 
tumor-burdened mice (e). f-g, Heatmaps of T cell cluster expression profiles and log2 fold change 
from control for AT3 (f) and 4T1 (g) for the spleen and draining lymph node. h, Median signal 
intensity of CD86 and PD-L1 on splenic cDCs from healthy, AT3 tumor-burdened, resected, or 
resected mice with local recurrence at day 7 of Lm-OVA infection. i, Concentration of circulating 
cytokines, IL-1a and G-CSF from healthy, AT3 tumor-burdened, resected, or resected mice with 
local recurrence. j, Concentration of circulating G-CSF in control or AT3 tumor burdened mice left 
untreated or after 1L-1 or G-CSF blockade. k, Concentration of cytokines, IL-1a, IL-1b and G-
CSF from in vitro cell culture media conditioned with AT3 cancer cells. p*<0.05, two-tailed t-test. 
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Table 2-1: Antibody panel used for mass cytometry experiments.  
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Table 2-2: Change in spleen immune cell frequencies with tumor burden. 
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Table 2-3:  Antibody panel used for flow cytometry experiments. 
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2.7 Materials and Methods 

Animals: 

All mice were housed in an American Association for the Accreditation of Laboratory 

Animal Care–accredited animal facility and maintained in specific pathogen-free conditions. 

Animal experiments were approved and conducted in accordance with Institutional Animal Care 

& Use Program protocol number AN157618. Wild-type female BALB/c, C57BL/6, and B6x129 F1 

mice between 8-10 weeks old were purchased from The Jackson Laboratory and housed at our 

facility. 4T1 (1X105 cells / 100µl) or AT3 (5x105 cells / 100µl) breast cancer cells were transplanted 

into the fourth mammary fat pad. SB28 glioblastoma cells (1x105 cells / 2µl) were transplanted 

into the right cerebral hemisphere by stereotactic injection. MC38 colon cancer cells (1x105 cells 

/ 100µl), B16-F10 melanoma cancer cells (1x105 cells / 100µl), or LMP pancreatic cancer cells 

(2x105 cells / 100µl) were transplanted into the subcutaneous region of the flank. Female MMTV-

PyMT mice were bred at Stanford University. Tyr::CreER; BrafV600E/+; Ptenlox/lox mice  were 

purchased from Jackson Laboratory and housed at our facility. Tumors were considered well-

established when they reached approximately 1 cm3 in volume. TCR Transgenic OT-I CD45.1 

mice and heterozygous CD45.2,CD45.1 mice were bred at our facility. Animals were housed 

under standard SPF conditions with typical light/dark cycles and standard chow.  

Cell Lines: 

4T1 cells were gifted from Dr. Mary-Helen Barcellos-Hoff (UCSF). AT3 cells were gifted 

from Dr. Ross Levine (MSKCC). For in vivo experiments tracking tumor growth and recurrence 

after resection, we used 4T1 cells expressing mCherry-Luciferase and AT3 cells expressing GFP-

Luciferase. SB28 cells, derived from a NRasV12;shp53;mPGDF transposon-induced glioma112, 

were gifted from Dr. Hideho Okada (UCSF). LMP cells, derived from the KrasG12D/+;LSL-

Trp53R172H/+;Pdx-1-Cre model of pancreatic cancer113, were gifted from Dr. Edgar Engleman 

(Stanford University). MC38 cells and B16-F10 cells gifted from Dr. Jeffrey Bluestone (UCSF). 

4T1, MC38, B16 and SB28 cells were cultured in RPMI-1640, and AT3 and LMP cells were 
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cultured in DMEM, all supplemented with 10% fetal calf serum (FCS), 2 mM L-glutamine,100 

U/mL penicillin and 100  µg/mL penicillin and streptomycin. 

Infectious Agents: 

Listeria monocytogenes strain 10403s expressing OVA (Lm-OVA) was originally kindly 

provided by Dr. Shomyseh Sanjabi (UCSF).114 Lm-OVA stocks frozen at -80 o C were grown 

overnight at 37 o C in BHI broth supplemented with 5 ug/ml erythromycin. Then, overnight cultures 

were sub-cultured by diluting into fresh BHI broth supplemented with 5 ug/ml erythromycin and 

grown for 4 hours. Bacteria CFU was then quantified by measuring optical density at 600 nm. 

Bacteria were then diluted to 5X104 CFU / 100µl in sterile PBS and 100 µl was injected per mouse 

i.v. via the retro-orbital vein.      

Lymphocytic choriomeningitis virus (LCMV) was kindly provided by Dr. Jason Cyster 

(UCSF) and mice were infected with pre-titered and aliquoted stocks stored in PBS at -80o  C and 

diluted with sterile PBS. Mice were infected with 2x105 PFU by intraperitoneal injection. 

Mass Cytometry Antibodies: 

All mass cytometry antibodies and concentrations used for analysis can be found in 

Supplementary Table1. Primary conjugates of mass cytometry antibodies were prepared using 

the MaxPAR antibody conjugation kit (Fluidigm) according to the manufacturer’s recommended 

protocol. Following labeling, antibodies were diluted in Candor PBS Antibody Stabilization solution 

(Candor Bioscience GmbH, Wangen, Germany) supplemented with 0.02% NaN3 to between 0.1 

and 0.3 mg/mL and stored long-term at 4°C. Each antibody clone and lot was titrated to optimal 

staining concentrations using primary mouse samples. 

Cell Preparation: 

All tissue preparations were performed simultaneously from each individual mouse, as 

previously reported49. After euthanasia by C02 inhalation, peripheral blood was collected via the 

posterior vena cava prior to perfusion of the animal and transferred into sodium heparin-coated 
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vacuum tubes prior to dilution in PBS with 5 mM EDTA and 0.5% BSA (PBS/EDTA/BSA). Spleens 

and lymph nodes were homogenized in PBS/EDTA at 4° C. Bone marrow was flushed from femur 

and re-suspended in PBS/EDTA at 4°C. Tumors were finely minced and digested in RPMI-1640 

with 4 mg/ml collagenase IV, and 0.1 mg/ml DNase I. After digestion, re-suspended cells were 

quenched with PBS/EDTA at 4° C. All tissues were washed with PBS/EDTA and re-suspended 

1:1 with PBS/EDTA and 100 mM cisplatin (Enzo Life Sciences, Farmingdale, NY) for 60 s before 

quenching 1:1 with PBS/EDTA/BSA to determine viability as previously described86. Cells were 

centrifuged at 500 x g for 5 min at 4°C and re-suspended in PBS/EDTA/BSA at a density between 

1-10 x 106 cells/ml. Suspensions were fixed for 10 min at RT using 1.6% paraformaldehyde (PFA) 

in PBS and frozen at -80° C.  

Mass-Tag Cellular Barcoding:  

Mass-tag cellular barcoding was performed as previously described115. Briefly, 1 x 106 

cells from each animal were barcoded with distinct combinations of stable Pd isotopes in 0.02% 

saponin in PBS. Samples from any given tissue from each mouse per experiment group were 

barcoded together. Cells were washed once with cell staining media (PBS with 0.5% BSA and 

0.02% NaN3), and once with 1X PBS, and pooled into a single FACS tube (BD Biosciences). 

After data collection, each condition was deconvoluted using a single-cell debarcoding 

algorithm115. 

Mass Cytometry Staining and Measurement: 

Cells were resuspended in cell staining media (PBS with 0.5% BSA and 0.02% NaN2) and 

metal-labeled antibodies against CD16 and CD32 were added at 20 µg/ml for 5 min at room 

temperature (RT) on a shaker to block Fc receptors. Surface marker antibodies were then added, 

yielding 500 uL final reaction volumes and stained for 30 min at RT on a shaker. Following 

staining, cells were washed 2 times with cell staining media, then permeabilized with methanol 

for at 10 min at 4° C. Cells were then washed twice in cell staining media to remove remaining 
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methanol, and stained with intracellular antibodies in 500 µL for 30 min at RT on a shaker. Cells 

were washed twice in cell staining media and then stained with 1mL of 1:4000 191/193Ir DNA 

intercalator (Fluidigm) diluted in PBS with 1.6% PFA overnight. Cells were then washed once with 

cell staining media and then two times with double-deionized (dd) H20. Care was taken to assure 

buffers preceding analysis were not contaminated with metals in the mass range above 100 Da. 

Mass cytometry samples were diluted in dd H2O containing bead standards (see below) to 

approximately 106 cells per mL and then analyzed on a CyTOF 2 mass cytometer (Fluidigm) 

equilibrated with dd H2O. We analyzed 1-5 x 105 cells per animal, per tissue, per time point, 

consistent with generally accepted practices in the field. 

Mass Cytometry Bead Standard Data Normalization:  

Data normalization was performed as previously described49. Briefly, just before analysis, 

the stained and intercalated cell pellet was resuspended in freshly prepared dd H2O containing 

the bead standard at a concentration ranging between 1 and 2 x 104 beads/ml. The mixture of 

beads and cells were filtered through a filter cap FACS tubes (BD Biosciences) before analysis. 

All mass cytometry files were normalized together using the mass cytometry data normalization 

algorithm116, which uses the intensity values of a sliding window of these bead standards to correct 

for instrument fluctuations over time and between samples.  

Mass Cytometry Gating Strategy:  

After normalization and debarcoding of files, singlets were gated by Event Length and 

DNA. Live cells were identified by Cisplatin negative cells. All positive and negative populations 

and antibody staining concentrations were determined by titration on positive and negative control 

cell populations. 

Scaffold Map Generation:  

Statistical scaffold maps were generated using the open source Statistical Scaffold R 

package available at github.com/SpitzerLab/statisticalScaffold with modifications detailed below. 



 55 

Statistical scaffold analysis combines unsupervised clustering to identify immune cell subsets with 

dimensionality reduction using a force-directed graph to visualize the organization of immune cells 

within a tissue. Regions of the graph are easy to identify due to the incorporation of canonical 

immune cell types defined manually as ‘landmarks’ in the graph. As previously described49,86, cells 

from each tissue for all animals were clustered together and then deconvolved into their 

respective samples. Cluster frequencies or the Boolean expression of specific proteins for each 

cluster were passed into the Significance Analysis of Microarrays algorithm117 (using a q-value 

cutoff of 0.05), and the fold change results were reported (rather than the binary significance cutoff 

as originally implemented in Spitzer et al., 2017). Cluster frequencies were also correlated with 

the time from tumor inoculation using Spearman’s rank-ordered correlation. All results were 

tabulated into the Scaffold map files for visualization through the graphical user interface, with 

coloring modifications to graph the spectrum of fold change or correlation strength. The fold 

change was log2 normalized and graphed with an upper and lower limit of a four-fold difference, 

unless otherwise indicated. Cluster frequencies were calculated as a percent of total live 

leukocytes or parent immune subset as indicated. The spleen data from the 4T1 model were used 

to spatialize the initial Scaffold map because all major, mature immune cell populations are 

present in that tissue.  

Cell Frequency Heat Map Generation:  

Specified subsets, i.e. T cells and mononuclear phagocytes, were manually gated from 

each tissue for all animals and clustered together. Cluster frequencies were calculated as a 

percent of total live nucleated cells within that subset (excluding erythrocytes). T cells were 

identified as CD3+, CD11b-. Mononuclear phagocytes were defined as CD11b+, CD19-, CD3-, 

Ly6G-. Heatmaps of the resulting cluster frequencies were generated in R. 

Human Gene Expression Analysis: 

Whole blood microarray data was generated by The Norwegian Women and Cancer 

(NOWAC) study and is deposited in the European Genome-Phenome Archive under accession 
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number EGAS00001001804 as previously reported118. Principal component analysis of centered 

and scaled data was performed in R using the prcomp function. xCell cell type enrichment 

analysis119 was performed in R using the xCell package (https://github.com/dviraran/xCell) using 

a customized list of cell populations known to exist in peripheral whole blood (B-cells, Basophils, 

CD4+ memory T-cells, CD4+ naive T-cells, CD4+ T-cells, CD4+  central memory T-cells (Tcm), 

CD4+ effector memory T-cells (Tem), CD8+ naive T-cells, CD8+ T-cells, CD8+ Tcm, CD8+ Tem, 

DC, class-switched memory B-cells, eosinophils, erythrocytes, megakaryocytes, memory B-cells, 

Monocytes, naive B-cells, neutrophils, NK cells, NKT, pDC, plasma cells, platelets, Tgd cells, Th1 

cells, Th2 cells, and Tregs). 

In vitro CD8 T cell Differentiation and cytokine production: 

Mice bearing 21-day AT3 tumors were euthanized and their spleens harvested and 

dissociated. CD8 T cells were enriched using the EasySep Streptavidin Negative Selection Kit 

with the following biotinylated markers: CD11b, MHCII, CD11c, Gr1, B220, CD4, CD44, and 

Ter119. Isolated CD8 T cells were then stimulated with plate-bound anti-CD3 (1µg/mL) and 

suspended in anti-CD28 (0.5µg/mL)  containing T cell media for 3 days. The cells were then 

removed from CD3/CD28 stimulation and rested for 1 day. Cells were then restimulated with PMA 

and ionomycin (2µL/mL) or left unstimulated for 4 hours with brefeldin A and analyzed by flow 

cytometry. 

Adoptive T Cell Transfer: 

For OT1 and polyclonal adoptive transfers, CD8 T cells were isolated from spleens of 

CD45.1 OT1 TCR transgenic or CD45.1,CD45.2 heterozygote wildtype or CD45.1 BoyJ mice by 

enrichment with EasySep Streptavidin Negative Selection Kit with the following biotinylated 

markers: CD11b, MHCII, CD11c, Gr1, B220, CD4, and Ter119. Cells were stained with CFSE or 

Cell Trace Violet and 1x105 cells were then adoptively transferred into each recipient mouse via 

the retroorbital vein. 
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Quantifying Bacterial Burden: 

To quantify bacterial burden, spleens were harvested and dissociated. Cells from each 

mouse were lysed in 0.5% Triton-X 100 in PBS and cells were serially diluted in duplicate and 

aliquots were then added to BHI agar and incubated overnight at 37o C. Colonies grown were 

then counted to quantify bacterial CFU present.  

Treatments: 

For infection studies, in vivo antibody treatments were given i.p. starting on day 0 of Lm-

Ova infection: 200 μg of agonistic anti-CD40 (FGK4.5, BioXCell) on day 0, 225 μg of recombinant 

IL-12p70 (BioLegend) daily, and 200 μg of anti-CTLA-4 (9H10, BioXCell) on day 0 and day 3. For 

cytokine inhibition studies, in vivo antibody treatments were given i.p. starting on day 5 after 

injection of AT3 cells: 10ug of blocking anti-GCSF (67604, R&D Systems) daily, and 200 ug of 

both blocking anti-IL-1a (ALF-161, BioXCell) and blocking anti-IL-1R (JAMA-147, BioXCell) every 

3 days. We observed compensatory elevations in circulating IL-1a with anti-IL-1a treatment, so 

we added anti-IL-1R to ensure sufficient blockade of this pathway. 

Tumor Resection: 

Mice bearing 14-day 4T1 tumors or 16 to 21-day AT3 or MC38 tumors (between 350-

550mm3) were anesthetized by intraperitoneal (i.p) injection with a mixture of ketamine and 

xylazine, and titrated to effect with isoflurane from a precision vaporizer. The surgical site was 

shaved and sterilized with 70% ethanol and 10% povidone iodine. An incision was made 

subcutaneously at the anterior midline and along the flank of the side with the tumor, using 

surgical scissors, to reveal the inguinal mammary tumor. The tumor was teased away using 

forceps and the surgical wound closed with wound clips. Wound clips were removed after 7 days. 

20-30% of AT3- or 4T1-resected mice had tumor recurrence due to incomplete removal of primary 

tumors or outgrowth of micro-metastases. These mice were separated from successful resection 

analyses. 
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Cytokine Quantification: 

For in vivo circulating plasma cytokines, mice were bled via the retroorbital vein using 

heparinized capillary tubes. Blood was then centrifuged at 1000 x g for 10 minutes and the 

supernatant plasma was removed for analysis. For tissue culture supernatants, cells were grown 

for 48 hours in fresh media, then supernatant was removed, centrifuged at 3000g for 10 minutes 

to remove debris. Plasma and tissue culture supernatant samples were sent to Eve Technologies 

(Calgary, AB), and analyzed using a multiplex cytokine array. 

 

Flow Cytometry: 

Cells were stained for viability with Zombie-NIR stain. Cell surface staining was performed 

in cell staining media (PBS with 0.5% BSA and 0.02% NaN3) for 15 minutes at room temperature. 

Intracellular staining was performed after fixing cells with BioLegend FluoroFix Buffer and 

permeabilizing cells with BioLegend’s Intracellular Staining Perm Wash Buffer.  The following anti-

mouse antibodies were used: (PE-Dazzle594) – CD3 (clone 17A2), (Pacific Blue) – CD4 (clone 

RM4-5), (BV786) – CD8 (clone 53-6.7), (APC-Cy7) – CD45 (clone 30-F11), (APC) – CD38 (clone 

90), (PE) – CD101 (clone Moushi101) , (PD1) – PE-Cy7 (clone 29F.1A12), (BV421) – TCRb 

(clone H57-597), (PE) – IFNγ (clone XMG1.2), (BV711) – IL2 (clone JES6-5H4), (FITC) – 

TNFalpha (clone MP6-XT22), (BV650) – CD8 (clone 53-6.7), (BV510) – KLRG1 (clone 2F1-

KLRG1), (BV421) – CD62L (clone MEL-14), (FITC) – CD45.2 (clone 104), (APC) – CD8 (clone 

53-6.7), (PE-Cy7) – MHC I (clone AF6-120.1), (PE) – CD45.1 (clone A20). All antibodies were 

purchased from BioLegend, Inc., BD Biosciences, or Thermo Fisher Scientific. Stained cells were 

analyzed with a CytoFLEX flow cytometer (Beckman Coulter) or an LSR II flow cytometer (BD 

Biosciences).Singlets were gated by forward scatter area (FSC-A) and forwards scatter width 

(FSC-W), as well as by side scatter area (SSC-A) and side scatter width (SSC-W). All positive 

and negative populations were determined by staining on positive and negative control 

populations. 
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Quantification and statistical analysis: 

Comparison of cell frequencies and protein expression in Statistical Scaffold was 

performed using Significance Analysis of Microarrays as described above and in Bair and 

Tibshirani, 2004 and Bruggner et al., 2014. Features with q <0.05 were considered statistically 

significant. Comparison of cell frequencies was performed using Wilcoxon rank-Sum test with 

Benjamini-Hochberg correction in R. Analysis of principle components for human gene expression 

was performed using two-sided Wilcoxon rank-sum test in R. Analysis of cell correlation with time 

was performed using Spearman correlation with Benjamini-Hochberg correction. All comparisons 

over 4T1 tumor growth were performed by one-way ANOVA with Tukey correction in Prism. 

Unless otherwise states, all other comparisons after infection, treatment, or resection were made 

using two-sided t tests in Prism. All tests with p <0.05 were considered statistically significant. 

Unless otherwise stated in the figure legends, n = 3 to 6 independent mice for each experimental 

condition.  

Data availability: 

All mass cytometry data are publicly available by request to the senior author without 

restrictions or at https://premium.cytobank.org/cytobank/projects/2433/.  

Code availability: 

The updated Statistical Scaffold package is available at 

https://github.com/SpitzerLab/statisticalScaffold. 
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3.3 Abstract 
 
Memory T cells conventionally rely on oxidative phosphorylation and short-lived effector T cells 

on glycolysis. Here, we investigate how T cells arrive at these states during an immune 

response. In order to understand the metabolic state of rare, early activated T cells, we adapted 

mass cytometry to quantify metabolic regulators at single-cell resolution in parallel with cell 

signaling, proliferation, and effector function. We interrogated CD8 T cell activation in vitro as 

well as the trajectory of CD8 T cells responding to Listeria monocytogenes infection, a well-

characterized in vivo model for studies of T cell differentiation. This approach revealed a unique 

metabolic state in early activated T cells characterized by maximal expression of glycolytic and 

oxidative metabolic proteins. Peak utilization of both pathways was confirmed by extracellular 

flux analysis. Cells in this transient state were most abundant five days post-infection before 

rapidly downregulating metabolic protein expression. This approach should be useful for 

mechanistic investigations of metabolic regulation of immune responses. 

3.4 Introduction 
 

Understanding the regulatory mechanisms underlying immune responses is crucial to 

developing more rationally designed treatment strategies for acute and chronic infections, 

autoimmune diseases, and malignancy 120. CD8 T cells, when activated, expand and 

differentiate into potent short-lived effector cells (SLECs) as well as long-term memory cells, 

which confer durable protection against re-infection and cancer relapse 121–123. The former 

mediate primary adaptive immune responses against pathogens through the release of 

cytotoxic granules and pro-inflammatory cytokines 124,125. In contrast, long-lived memory cells 

remain quiescent until re-encountering antigen, upon which they rapidly mediate secondary 

immune responses 126. The field of immunometabolism has provided critical insight into these 

processes, revealing a complex regulatory interplay of signaling, metabolic, and epigenetic 

adaptations during CD8 T cell differentiation 127,128. 
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Upon activation, effector CD8 T cells undergo clonal expansion, necessitating as many 

as 20 replication cycles to generate sufficient daughter cells to clear pathogens 123. This process 

is energetically costly and requires rapid ATP production for the biosynthesis of essential 

building blocks 127. Previous studies suggest that the exit from quiescence is supported by a 

dramatic metabolic shift from oxidative phosphorylation (OXPHOS) in naïve cells, fueled by 

beta-oxidation of long chain fatty acids (LCFA), to aerobic glycolysis in SLECs, characterized by 

lactate production in the setting of adequate oxygen 129–131. This metabolic conversion permits 

continued cycling through the pentose phosphate pathway and thus generation of intermediates 

necessary for nucleic acid and lipid biosynthesis. This adaptation also circumvents negative 

feedback induced by the accumulation of pyruvate and acetyl-CoA 127,132. Additional feed-

forward mechanisms supporting this process include the activation of transcription factors 

downstream of phosphoinositide 3-kinase (PI3K) signaling. For instance, hypoxia inducible 

factor 1 (HIF1a) mediates the upregulation of nutrient receptors including glucose transporter 1 

(Glut1), the main point of entry for glucose into T cells 129.  

Meanwhile, the transition to the memory T cell fate is associated with the inhibition of 

PI3K/mTORC1 signaling and silencing of aerobic glycolysis by AMP-activated protein kinase 

(AMPK). Instead, AMPK favors mitochondrial biogenesis and fusion 125,133–135, which is mediated 

by peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1a) 130,136. This 

tightly regulated metabolic shift results in an LCFA-fueled oxidative program characterized by 

increased mitochondrial mass 133. This property of memory cells confers additional oxidative 

potential, known as spare respiratory capacity (SRC), to permit more rapid recall during 

secondary immune responses 137.  

While many previous studies using polyclonal and multicellular T cell populations 

suggest that a reciprocal, tightly regulated relationship exists between OXPHOS and glycolysis 

and the signaling cascades that regulate these pathways, their precise interactions in individual 
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cells have yet to be elucidated. Moreover, the regulation of metabolic machinery in rare, early 

activated T cells remains poorly understood. The early stages of infection lead to antigen 

specific CD8 T cells acquiring transient cell states preceding differentiation into effector subsets, 

but precisely how these intermediate stages of differentiation metabolically orchestrate rapid 

proliferation and differentiation has remained technically challenging 138–140. Recently, 

considerable advances in single-cell analysis have enabled studies of signaling and effector 

programs in T cells at high resolution 141,142. Analogous studies of T cell metabolic regulation 

would likely provide new insights. For instance, a recent study utilizing stable isotope tracing in 

activated T cells has found that OXPHOS may be more prominent in effector T cells in vivo than 

was previously thought 143. However, in the absence of single-cell resolution, it remains unclear 

whether the same cells are responsible for both OXPHOS and glycolysis, or alternatively, 

whether individual cells already differentiate and preferentially use one pathway versus the 

other during the effector phase. Many of the regulatory mechanisms that govern cellular 

metabolism are post-transcriptional and are not directly measurable by RNA-sequencing 136. 

Therefore, a single-cell proteomic approach provides unique opportunities.  

Mass cytometry uses metal-tagged antibodies to directly measure up to 45 proteins 

simultaneously in individual cells 144,145. This approach has permitted characterization of various 

aspects of cellular behavior including phenotype, signaling 146, proliferation 147, and chromatin 

state 148. Here, we have further adapted this platform to measure expression levels of enzymes 

and transporters involved in metabolic checkpoints. We have integrated direct quantitative 

evaluation of the signaling cues thought to mediate their regulation along with proteins indicative 

of CD8 T cell fate and function. In this study, we used this approach to interrogate key inflection 

points of the CD8 T cell response to Listeria monocytogenes infection (Lm-OVA), a well-

characterized model of CD8 T cell differentiation 149.  

 



 65 

3.5 Results 
 
3.5.1 Mass cytometry permits high-dimensional quantification of metabolic 
regulators in single CD8 T cells 
 

T cell differentiation requires the coordinated interplay of signaling and metabolic 

pathways, including the upregulation of rate-limiting enzymes and regulatory switches. The 

transition to aerobic glycolysis in SLECs is mediated by co-stimulatory signaling through CD28 

via the AKT/PI3K pathway 129,150; therefore, we measured the downstream intermediates mTOR, 

pS6, p4EBP1, and HIF1a (Fig. 3-1A). Signaling through this pathway promotes glucose uptake 

through the Glut1 receptor and the transcription of glycolytic enzymes 151, including 

glyceraldehyde-3-phosphate dehydrogenase (GADPH) (Fig. 3-1B), a critical metabolic switch 

implicated in glycolytic activity, which we also quantified.  

To investigate how the TCA cycle is regulated in activated T cells, we evaluated the 

expression of citrate synthase (CS) (Fig. 3-1B), the first step of the cycle, which is directly 

regulated by the NAD+/NADH ratio, ADP/ATP ratio, and succinyl-coA levels 152. As branched 

chain amino acid metabolism has been demonstrated to be critical for effective T cell activation 

153, we sought to understand this process by measuring the large neutral amino acid transporter 

(LAT1) chaperone CD98 (Fig. 3-1A), a key mediator of the import of these essential nutrients 

154–156. 

Previous work has described a reciprocal relationship between aerobic glycolysis and 

OXPHOS, the latter of which is associated with memory T cell differentiation. Therefore, we 

sought to understand this regulation at the single-cell level by measuring CPT1a, an enzyme 

that catalyzes the transport of LCFA from the cytoplasm to the mitochondria and that is critical 

for memory T cell function 137. Additionally, we measured the mitochondrial trifunctional 

complex, also known as hydroxyacyl-CoA dehydrogenase (HADHA), which catalyzes the final 

three steps of LCFA oxidation to acetyl-CoA in the mitochondria 157. As the role of b-oxidation of 

medium-chain fatty acids in T cell function has not been extensively evaluated 158, we also 
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measured the expression of medium-chain acyl-CoA dehydrogenase (ACADM), an essential 

enzyme that catalyzes the initial step of this process (Fig. 3-1B).  Moreover, we measured key 

components of the electron transport chain, including cytochrome C (CytoC) and ATP synthase 

(ATP5a) (Fig. 3-1B). To understand the counterregulatory processes governing OXPHOS 

activity and overall energy, we measured voltage-dependent ion channel 1 (VDAC1), a critical 

regulator controlling cytoplasmic-mitochondrial cross-talk (Fig. 3-1B)159,160.  

The cell signaling pathways that mediate mitochondrial fusion and biogenesis include 

MAP kinase and NFkB, which are activated during T cell priming 130,161,162; therefore, we 

measured the levels of phosphorylated (p) ERK and p-p38 MAP kinases in addition to the total 

levels of NFkB inhibitor alpha (IkBa). Calcium signaling, triggered by TCR ligation, has also 

been implicated in this process 163,164. Therefore, we additionally measured pCREB levels (Fig. 

3-1A).  

It has been proposed that the activity of metabolic pathways induces the activity 

epigenetic regulators such as Ezh2, which directly impact T cell fate and function 165,166. 

Therefore, we included a full range of well-characterized surface markers and transcription 

factors to subset T cells into naïve, central memory, effector memory, and terminal effector 

populations. Finally, to measure the impact on all of these factors on T cell proliferation during 

clonal expansion, we measured expression of cyclinB1 and Ki67. To assess production of 

cytotoxic mediators, we also measured granzyme B (Fig. 3-1A).  

3.5.2 Mass cytometry recapitulates metabolic phenotypes of CD8 T cell 
differentiation in vitro 
 

In order to query the metabolic program underlying antigen-specific CD8 T cell activation 

in vitro, we first stimulated TCR transgenic OT-1 splenocytes in the presence of their cognate 

antigen (the SIINFEKL peptide from ovalbumin) and IL-2 for 72 hours. After this initial priming 

period, antigen was removed, and cells were polarized in IL-2 or IL-7 for an additional 4 days to 

generate effector (OT-1eff) or central memory cells (OT-1mem), as described previously 125,137,167. 
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We analyzed the resulting cells by mass cytometry and real-time metabolic profiling by 

Seahorse assay (Fig. 3-1C, 3-2B-D).  In keeping with prior studies 125,137, OT-1eff   exhibited 

higher rates of extracellular acidification associated with glycolytic activity, while OT-1mem 

possessed marked spare respiratory capacity (Fig. 3-1C).  

Consistent with these results, OT-1eff  expressed elevated levels of glycolytic proteins at 

day 7 of activation, as evidenced by robust upregulation of Glut1 and GAPDH (Fig. 3-1D, Fig 3-

2A), suggestive of active glucose uptake and utilization. The expression of targets of the 

PI3K/mTORC1 pathway, including p4EBP1 and HIF1a, were likewise elevated in OT1eff (Fig. 

1D), consistent with the promotion of aerobic glycolysis. Also in keeping with previous data 153, 

the amino acid transporter CD98 was more highly expressed in OT1eff relative to OT-1mem (Fig. 

3-1D). In contrast to their effector counterparts, OT-1mem did not demonstrate this glycolytic 

profile, but instead upregulated CPT1a (Fig. 3-1D, 3-2A), which promotes OXPHOS in memory 

T cells 137. 

 
3.5.3 Dynamic metabolic changes in canonical subsets of activated CD8 T cells in 
vivo 
 

To understand the metabolic changes during CD8 T cell differentiation in a more 

physiologic context, we next evaluated the trajectory of the response to acute infection in vivo. 

C57BL/6 mice were infected with Listeria monocytogenes expressing whole cytoplasmic 

ovalbumin (Lm-OVA), a well-characterized model of CD8 T cell differentiation and metabolism 

125,133,137. Splenocytes were harvested daily over the first nine days post-infection for analysis by 

mass cytometry. We began by identifying canonical T cell differentiation states and investigating 

changes in metabolic enzyme and transporter expression over the course of the immune 

response (Fig.3-3A, 3-4A). Unsupervised clustering analysis revealed considerable 

heterogeneity and dynamic functional changes across all major canonical T cell subsets over 

the course of the primary immune response to Listeria monocytogenes (Fig. 3-3A-B).  
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At baseline, most naïve cells were predominantly contained within cluster Naïve 1, 

characterized by the expression of ACADM, pCREB, p-p38, NRF1, and weak expression of 

GAPDH (Fig. 3-3C). However, three new clusters, Naïve 2 and Naïve 3, emerged at days 1 and 

2 post-infection (p.i.) (Fig. 3-3D-E), all characterized by the downregulation of all of the above 

metabolic and signaling markers (Fig. 3-3C, 3-4A). Interestingly, these clusters demonstrated 

low IkB expression, suggestive of signaling through NFkB pathway (Fig. 3-3C, 3-3F, 3-4A-B). 

While most naïve T cells were contained within the Naïve 2 cluster at day 1 post-infection (p.i.) 

(Fig. 3-3D-E), this gave way to a predominance of the Naïve 3 cluster and days 2 and 3 p.i. (Fig. 

3-3D-E). By day 4 p.i., all these new clusters as well as an additional cluster, Naïve 4, were 

present in similar proportions (Fig. 3-3D-E). Notably, the Naïve 1 cluster began to re-emerge at 

day 6 p.i., and ultimately dominated the naïve pools from day 7 p.i. onwards (Fig. 3-3D-E). This 

predominance was associated with the involution of clusters Naïve 2, Naïve 3, and Naïve 4, 

which became nearly undetectable by day 7 p.i. (Fig. 3-3E). These findings are consistent with 

activation of both bystander and antigen specific T cells in the early stages of acute infection 

168,169 but reveal the metabolic adaptations that these cells undertake. Overall, these data 

support previous reports of a metabolically quiescent profile of naïve T cells, but they suggest 

heterogeneity and transitions within even these cells.  

Evaluation of the central memory cells over the course of infection revealed a similar 

pattern, starting with cluster TCM1, characterized by intermediate expression of expected 

markers of LCFA and OXPHOS including p-p38, pCREB, ACADM, HADHA, NRF1, and dim 

expression of ATP5a, CPT1a, pErk, and CytoC (Fig. 3-3C). Interestingly, this cluster also 

expressed GAPDH and pS6, but dimly expressed HIF1a compared to effector subsets (Fig 3-

3C, 3-4A). However, days 1-2 p.i., were marked by emergence of cluster TCM2 (Fig. 3-3D-E), 

which downregulated all of these metabolic and signaling factors, with only weak expression of 

HADHA and pS6 and upregulation of ATP5a (Fig. 3-3C, 3-3G, 3-4C). This cluster predominated 
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at days 2 through 4 p.i. Notably, day 2 p.i. was also marked the emergence of cluster TCM3 (Fig. 

3-3D-E), defined by expression of enzymes of fatty acid oxidation (FAO), including CPT1a, 

HADHA, ACADM, along with oxidative proteins, such as CS, ATP5a, VDAC1, and CytoC (Fig. 

3-3C, 3-4A). These cells also expressed less pS6 and GAPDH, suggestive of a state 

predominantly fueled by FAO (Fig. 3-3C). Commensurate with this oxidative profile, cells in this 

cluster also expressed p-p38, pErk, and pCREB (Fig. 3-3C, 3-4A). While cells in TCM3 also 

demonstrated expression of downstream intermediates of the PI3K cascade, such as p4EBP1 

and pS6, along with transcription factors associated with aerobic glycolysis, such as HIF1a, 

these were associated with lower GADPH expression (Fig. 3-3C, 3-4A). This metabolically 

active TCM cluster was transient, completely regressing by day 7 p.i. (Fig. 3-3D-E). Notably TCM1 

reemerged at day 5 p.i. and remained the predominant TCM cluster from days 6 through 9 p.i. 

(Fig. 3-3D). These data confirm the previously oxidative profile of central memory cells, but also 

reveal dynamic metabolic changes within these subsets over the course of an immune 

response.   

Effector memory cells (TEM) uniformly constituted cluster TEM1, which emerged at day 5 

p.i. and maintained stable frequency through day 9 p.i. (Fig. 3-3D-E). These cells demonstrated 

a more glycolytic metabolic profile, with upregulation of GAPDH, Glut1, and HIF1a, and dim 

oxidative and FAO marker expression (Fig. 3-3C, 3-4A). Meanwhile, SLECs comprised clusters 

SLEC1 and SLEC2 and emerged at days 5 and 6 p.i., respectively (Fig. 3-3D-E). These two 

clusters demonstrated distinctive metabolic phenotypes. The first population to appear, SLEC1, 

demonstrated expression of p4EBP1, pS6, HIF1a, Glut1, and GAPDH suggestive of a glycolytic 

profile (Fig. 3-3C, 3-3H, 3-4A, 3-4D). Recent studies have demonstrated that early effector cells 

continue TCA cycle engagement fueled by the uptake of amino acids and LCFA 153,170; 

consistently, cells in this cluster also expressed HADHA, CD98, CS, and VDAC1 (Fig. 3-3C, 3-

3H, 3-4A, 3-4D). However, ATP5a and CPT1a levels in this cluster were lower than those 
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observed in the more active TCM clusters, such as TCM3, distinguishing them from these more 

classically oxidative pools (Fig. 3-3C, 3-4A).  In comparison, cluster SLEC2 demonstrated a 

more muted metabolic profile, downregulating expression of all metabolic mediators except 

HIF1a, GAPDH, and CS, taking on the terminal glycolytic state observed in previous studies 

(Fig. 3-3C, 3-3H, 3-4A, 3-4D). As expected, the more metabolically active cells in cluster SLEC1 

expressed higher levels of Ki67 and granzyme B compared to cluster SLEC2 (Fig. 3-3C, 3-4A). 

Taken together, these findings agree with previous reports of a predominantly glycolytic terminal 

effector state. 

3.5.4 Early activated T cells exhibit maximal expression of glycolytic and 
oxidative proteins 
 

In addition to these well-characterized cell subsets, unsupervised high-dimensional 

analysis also revealed a group of early activated T cells that emerged at day 4 post-infection 

(Fig. 3-3D-E). These cells had high expression of Ki67, indicative of proliferation, and expressed 

high levels of CD44, CD27, and ICOS, but low levels of CD62L (Fig. 3-3C, 3-4A). This early 

activated cluster was most abundant at day 5, when it comprised nearly 20% of the CD8 T cell 

population, and it nearly completely disappeared by day 7 (Fig. 3-3D-E). As ICOS has been 

found to signal through the PI3K cascade 171, we anticipated that this population would be 

glycolytic. Indeed, these early activated cells expressed the highest levels of Glut1 and GAPDH 

across all CD8 T cells (Fig. 3-3C). However, these cells simultaneously exhibited peak 

expression of oxidative markers, including CPT1a, HADHA, ACADM, and ATP5a (Fig. 3-3C, 3-

4A). Commensurate with this observation, the signaling program of this population was marked 

by maximal expression of both pS6 and pCREB as well as minimal expression of IkB, reflecting 

simultaneous activity of both the PI3K/mTORC1 and NFkB pathways (Fig. 3-3C, 3-4A). In 

contrast to SLEC and memory cells, these early activated cells also expressed maximal 

expression of the amino acid transporter CD98 (Fig. 3-3C, 3-4A). 
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Given the unique metabolic expression profile of these early activated cells, we sought 

to confirm these observations through direct inspection of the primary data. We undertook 

further phenotypic analysis of these cells, which identified the high-affinity IL-2 receptor subunit, 

CD25, as another surface marker co-expressed by this population of interest, consistent with 

their recent activation (Fig. 3-5A). Consistent with the clustering analysis, we found that these 

manually gated cells peaked in frequency at day 5 followed by a rapid decline in abundance 

(Fig. 3-5B). Moreover, in comparison to all other CD8 T cells present in the animals at day 5, 

these cells clearly expressed elevated levels of both glycolytic and oxidative proteins (Fig. 3-5C, 

3-6A). Therefore, early activated T cells exhibited peak expression of metabolic mediators of 

oxidative and glycolytic pathways.  

3.5.5 Early activated T cells demonstrate peak glycolytic activity and increased 
mitochondrial activity and mass 
 

Because these early activated T cells were distinguished by simultaneously elevated 

levels of glycolytic and oxidative enzymes, we posited that this expression profile would 

translate to greater metabolic activity along these pathways when compared to their SLEC 

counterparts. To assess real-time bioenergetic flux through oxidative and glycolytic pathways, 

we sorted naïve, early activated, and SLEC T cells for analysis by Seahorse assay (Fig 3-6B). 

As expected, SLECs demonstrated significantly higher baseline and maximum ECAR compared 

to their naïve counterparts (Fig. 3-5D), confirming a predominantly glycolytic program driving the 

terminal effector state in vivo. However, in accordance with their enzymatic expression profile by 

mass cytometry, early activated T cells exhibited significantly higher basal and maximal ECAR, 

even compared to SLECs (Fig. 3-5D).  

Moreover, baseline and maximal OCR did not significantly differ between the SLEC and 

naive pools, as described previously 137 (Fig. 3-5E-F). However, early activated T cells did 

indeed exhibit significantly higher oxidative activity compared to both the SLEC and naïve cells 

(Fig. 3-5E-F). Since these cells exhibited maximal expression of CPT1a and electron transport 
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complexes, we hypothesized that that this population would possess SRC, in keeping with 

previous reports studying memory T cells that upregulate these enzymes 137. Indeed, while 

neither the naïve or SLEC pools were capable of surpassing their baseline OCR upon FCCP 

administration, the OCR of early activated T cells nearly doubled (Fig. 3-5E-F). As SRC has 

been associated with greater mitochondrial mass 133, we sought to quantify the mitochondrial 

content of these cells using MitoTracker Deep Red, a fluorescent dye staining mitochondria in 

live cells. Consistent with our mass cytometry and Seahorse data, the early activated T cells 

contained significantly more mitochondrial mass than the SLEC or naïve pools based on 

MitoTracker staining (Fig. 3-5G). Overall, these observations confirmed the unique, 

simultaneously oxidative and glycolytic profile in early activated T cells. 

3.5.6 Antigen-specific CD8 T cells transit through the early activation state 
commensurate with the onset of proliferation 
 

In order to query the antigen-specificity of these metabolic adaptations of early T cell 

activation, we adoptively transferred OT-1 T cells into congenic hosts, which were then infected 

with Lm-OVA. Splenocytes were analyzed daily from days 3 through 7 p.i. for metabolic analysis 

by mass cytometry (Fig. 3-7A-B, 3-8A). Indeed, unsupervised clustering analysis of adoptively 

transferred OT-1 T cells revealed early activated cells with an analogous state of metabolic 

activity, arising in small numbers at day 3 p.i. and peaking at day 4 before rapidly regressing by 

day 5 (Fig. 3-7A-B, 3-8A). The kinetics of the emergence of this cluster were slightly earlier 

compared to the previously characterized endogenous cells, perhaps a result of higher TCR 

affinity or increased frequency of antigen-specific precursor cells. Consistent with our findings in 

endogenous CD8 T cells (Fig. 3-3C, 3-5C), cells comprising this cluster exhibited simultaneous 

peak expression of markers of glycolysis, OXPHOS, and LCFA oxidation (Fig. 3-7C, 3-8A). We 

hypothesized that these metabolic adaptations were undertaken in support of clonal expansion 

of antigen-specific populations. Therefore, we assessed the proliferation of CFSE-labeled 

adoptively transferred OT-1 T cells on days 3 through 7 p.i. by flow cytometry. Commensurate 



 73 

with the emergence of this early activated metabolic state, the first antigen-specific T cells to 

divide did so at day 4 p.i. (Fig. 3-7D). By day 5 p.i., all adoptively transferred cells had divided 

multiple times (Fig. 3-7D). Consistent with this finding, the total number of OT1 T cells only 

modestly increased between days 3 and 4 p.i., but they subsequently rapidly expanded between 

days 4 and 5 p.i. before plateauing thereafter (Fig. 3-7E). These observations collectively 

suggest that early activated antigen-specific CD8 T cells undergo a transition to a metabolic 

state characterized by peak OXPHOS and glycolytic activity at the same time as they begin 

blasting, supporting the dramatic expansion of these cells during productive immune responses. 

3.5.7 Transient expression of metabolic proteins in early activated T cells 
 
As early activated CD8 T cells with peak metabolic protein expression were highly transient, 

only detectable for a few days during the immune response, we investigated the changes that 

take place in these cells thereafter. We sorted early activated T cells and transferred them into 

congenic hosts before isolating splenic T cells four days later (Fig. 3-7F). At the end of this 

period of time, the transferred early activated cells had given rise to a mixture of cells with 

phenotypes consistent with SLECs (CD44+ KLRG1+), as well as memory cells (CD44+ KLRG1-). 

Given the transient, elevated expression of cell cycle markers by the early activated cells (Fig. 

3-3C), we hypothesized that these cells would proliferate briefly upon adoptive transfer. Indeed, 

these cells expanded, but lost expression of Ki67 over the course of the four days (Fig. 3-7H, 3-

8B). These early activated T cells also downregulated expression of CD25 and ICOS, as well as 

granzyme B by this later time point (Fig. 3-7H, 3-8C). Consistent with a transient burst of 

metabolic activity, these cells exhibited markedly lower expression of both glycolytic and 

oxidative markers compared to the early activated T cells from which they originated (Fig. 3-7H, 

3-8C). Collectively, these data indicate that during CD8 T cell differentiation, early activated 

antigen-specific T cells undergo a transient period of peak metabolic activity. Thereafter, 
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downregulation of glycolytic and oxidative pathways takes place coordinate with differentiation 

into short-lived or memory cells. 

3.6 Discussion 
 

Mass cytometry permits broad-spectrum characterization of immune responses in 

healthy and diseased states 172. To date, this approach has been used to query the phenotypic 

and signaling adaptations undertaken by cells during differentiation 173,174. However, until now, 

the coordinated downstream metabolic cues supporting these programs have remained 

incompletely understood at the single-cell level. Here, we directly measured the expression 

levels of essential nutrient receptors, enzymes, signaling intermediates, and markers of cellular 

differentiation and effector function at the proteomic level. This allowed us to more thoroughly 

characterize CD8 T cell responses during acute infection, highlighting the metabolic adaptations 

of canonical T cell subsets and capturing a unique metabolic state in rare, early activated T 

cells.  

Previous models of the naïve-to-effector transition based on polyclonal population data 

have proposed a process in which OXPHOS is repressed to promote aerobic glycolysis 129,175. 

However, a recent study of intracellular flux in activated T cells has reported that effector T cells 

may use oxidative phosphorylation in vivo 143. Additionally, it has been observed that effector T 

cells engage in more active LCFA uptake than their memory cell counterparts, which instead 

have been shown to mobilize these substrates from lysosomal triglycerides 176. It is, therefore, 

feasible that fatty acid uptake may provide additional substrate for OXPHOS early in the course 

of T cell activation. Our data unify these observations, supporting a coordinated program in 

which glycolysis and OXPHOS are maintained simultaneously in individual cells during an 

earlier stage of T cell activation.   

Our approach to metabolic profiling by mass cytometry affords investigators the 

opportunity to functionally characterize the metabolic adaptations of rare cellular populations, 
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such as antigen-specific T cells. These cells would be otherwise difficult to analyze by current 

standard metabolomics assays due to the prohibitively large number of cells and extensive 

processing and ex vivo culture techniques required for these studies 177,178. Here, we were able 

to characterize the metabolic, signaling, and phenotypic progeny of adoptively transferred cells 

with single-cell resolution. This approach revealed a diversification during CD8 T cell 

differentiation in the context of acute infection, with a highly metabolically active and proliferative 

state in T cells early in the course of their response, which later give rise to cells with both 

memory and terminal effector phenotypes.  

The maximal expression of metabolic proteins early after T cell activation suggests a 

potential role for TCR ligation and/or co-stimulation during CD8 T cell priming. Notably 4-1BB 

ligation during co-stimulation has been shown to induce mitochondrial fusion via TRAF2-

mediated signaling through p38 and PGC1a 130,161. Similarly, CD28 ligation has been 

demonstrated to induce CPT1a expression in vitro 179. Whether these signals potentiate the 

observed spare respiratory capacity and increased mitochondrial mass in early activated T cells 

will be important to determine. As Drp1-mediated mitochondrial fission has been described in 

effector cells during metabolic reprogramming to the aerobic glycolytic program 133, it is possible 

that the absence of co-stimulation and loss of IL-2 signaling upon pathogen clearance may 

result in mitophagy and/or mitochondrial fission, repressing oxidative activity in terminal effector 

subsets.  

As the importance of metabolism to immune cell fate and function is increasingly 

appreciated, methods to evaluate these pathways in models of productive and dysregulated 

immune responses will be critical. The approach presented here may be adapted to any cell 

type of interest, including both immune cells and non-immune cells, such as interacting 

epithelial tissues or tumors. This methodology should enable investigators to query the 

functional programs underlying the development of the full spectrum of immune cell lineages 
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and their compromised state in the context of autoimmunity or malignancy. Additionally, 

integrated functional analysis of rare cellular subsets will permit simultaneous evaluation of the 

effects of various treatments on rare populations, such as tumor-infiltrating lymphocytes or 

neoantigen-specific T cells. 

 

Figure 3-1: Querying the integrated functional program of CD8 T cell activation 
Panel schematic depicting signaling, metabolic, effector and phenotypic targets 
interrogated by mass cytometry. Cell surface, cytosolic and nuclear markers are depicted 
in (A) and mitochondrial markers are denoted in (B). Markers directly measured by mass 
cytometry are demarcated by an asterisk (*). OT-1 transgenic CD8 T cells were stimulated 
with cognate peptide (SIINFEKL) in the presence of IL-2 (100 U/ml) for 72 hours, followed 
by 3 washes to remove antigen and polarization in IL-2 or IL-7 (both 10 ng/mL) to generate 
OT-1eff or OT-1mem. Samples were harvested at day 7 for metabolic analysis by mass 
cytometry and Seahorse assay analysis by Mitochondrial Stress Test. (C) Mass cytometry 
expression profiles of day 7 OT1eff and OT1mem for key metabolic enzymes as depicted 
by histograms. (D) Extracellular acidification rate and oxygen consumption rate by 
Seahorse Assay depicted in bar plots and with significance analysis by student’s t-test 
(p<.001 ****). Error bars represent standard error of the mean (SEM). Data are 
representative of 3 independent experiments. 
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Figure 3-2: Assessing the integrated functional program of antigen specific CD8 T 
cell activation in vitro 
A) OT-1 transgenic CD8 T cells were stimulated with cognate peptide (SIINFEKL) in the 
presence of IL-2 (100 U/ml) for 72 hours, followed by 3 washes to remove antigen and 
polarization in IL-2, IL-7, or IL-15 (all 10 ng/mL) to generate OT-1effor OT-1mem. Samples were 
fixed for mass cytometry at all time points depicted and cells were harvested at day 7 for 
Seahorse assay analysis by Mitochondrial Stress Test. Mass cytometry expression data for key 
metabolic, signaling and effector markers of interest.(B) OCR tracings as quantified by 
Seahorse. (C) Basal and maximal OCR readings and (D )basal and maximal ECAR readings as 
quantified by Seahorse. Significance analysis by paired two-tailed student’s t-test (p<0.05 *, 
p<0.01 **, p=0.0001***, p<0.0001****). Error bars represent SEM. Data are representative of at 
least 2 independent experiments. 
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Figure 3-3: Single-cell analysis of the CD8 T cell effector program in vivo. 
(A) Pooled CD8 T cells from mice at days 0 to 9 of Lm-OVA infection (n=2-3 mice per time 
point) clustered by Phenograph and visualized by a force-directed graph. (B) Force-directed 
graphs indicating cellular distribution by time point. (C) Functional and phenotypic median 
expression profiles for each CD8 T cell cluster. (D) Cluster proportion by time point  (E) 
Individual cluster frequency profiles at days 0 to 9 p.i. (F) Expression profiles of metabolic and 
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signaling in naïve clusters between days 0 and 1 p.i. (G) Histograms depicting the expression of 
functional markers in central memory cells between days 0 and 2 p.i. (H) Metabolic expression 
profiles of SLEC clusters between days 5-6 and 8-9 p.i. Significance analysis of all medians by 
two-tailed student’s t-test (p<0.05 *, p<0.01 **) is displayed. 
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Figure 3-4: Single-cell metabolic analysis of the primary CD8 T cell response in 
vivo. 
(A)Pooled CD8 T cells from mice at days 0 to 9 of Lm-OVA infection (n=2-3 mice per time point) 
clustered by Phenograph and visualized by force-directed graphs. Force-directed graphs of 
single-cell expression profiles of individual markers are depicted. Box plots of marker 
expression of (B) naïve, (C) central memory, and (D)SLECs at specified time points post-
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infection with Listeria monocytogenes. Significance analysis by paired two-tailed student’s t-test. 
Whiskers represent 1.5 * IQR. 
  



 82 

 

Figure 3-5: Early activated T cells exhibit a distinctive metabolic profile 
characterized by peak oxidative and glycolytic activity.  
(A) Biaxial scatter plots indicating surface marker expression profile of the early activated T cell 
pool. (B) Frequency of early activated cells during days 0 to 9 p.i. (C) Metabolic expression 
profiles of metabolic and signaling markers in early activated T cells in comparison to all other 
CD8 T cells during days 0 to 9 p.i. as depicted by histograms. Significance analysis of all 
medians by paired two-tailed student’s t-test (p<0.05 *, p<0.01 **) is displayed. CD8 T cell 
subsets of interest were sorted at days 5 (including, naïve cells, early activated cells) and 8 
(SLECs) p.i. and analyzed by Mitochondrial Stress Test (n=5 mice per time point). (D) Basal 
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ECAR and maximal ECAR measured upon oligomycin administration. (E) OCR over time. (F) 
Basal and maximal OCR readings obtained upon FCCP administration. (G) MitoTracker signal 
in each subset (n=5 mice per subset). Significance analysis by paired two-tailed student’s t-test 
(p<0.05 *, p<0.01 **). Error bars represent SEM. Data are representative of at least 2 
independent experiments. 
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Figure 3-6: Single-cell metabolic analysis by mass cytometry reveals the unique 
metabolic profile of early activated CD8 T cells 
 (A) Box plots of marker expression of early activated T cells compared to all other CD8 T cells 
at day 5 p.i. with Listeria monocytogenes. Significance analysis by paired two-tailed student’s t-
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test. Whiskers represent 1.5 * IQR.(B)Sorting strategy for isolation of naïve 
(CD62LhiCD44lowKLRG1lowCD25lo), transitional effectors(CD62LlowCD44hiCD25hi) at day 5 post-
infection and SLECs (CD62LlowCD44hiKLRG1hiCD25low) and day 8 post-infection is depicted by 
biaxial plots. 
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Figure 3-7: The early activated metabolic state is antigen specific and transient. 
OT-1 T cells were adoptively into congenic hosts, which were then infected with 5 x 104 CFU 
Lm-OVA. Splenocytes were harvested daily on days 3 through 7 p.i. for metabolic analysis by 
mass cytometry. (A) Pooled OT1 cells from mice at days 3 to 7 of Lm-OVA infection (n=3 mice 
per time point except day 3 (n=1)) clustered by Phenograph and visualized by a force-directed 
graph. (B) Force-directed graphs indicating cellular distribution by time point. (C) Functional and 
phenotypic median expression profiles for each CD8 T cell cluster. (D) Proliferation of adoptively 
transferred OT1s as measured by CFSE dilution at days 3-5 p.i. and (E) absolute cell counts at 
days 3-7 p.i. (F) Early activated T cells were sorted from CD45.1+ mice at day 5 p.i. and 
transferred into infected CD45.2+ hosts at day 5 p.i. (n=2 per group) and sacrificed 4 days later 
for analysis by mass cytometry (G) Differentiation state of the transitional subset determined by 
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CD44 and KLRG1 expression at day 9 p.i.  (H) Metabolic and signaling marker profiles before 
and after transfer at days 5 and 9 p.i. are represented by histograms. Significance analysis of 
the medians by two-tailed student’s t-test (p<0.05 *, p<0.01 **) is displayed. 
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3.7 Materials and Methods 
 
Animals 

All mice were housed in an American Association for the Accreditation of Laboratory Animal 

Care–accredited animal facility and maintained in specific pathogen-free conditions. Animal 

experiments were approved and conducted in accordance with AN157618. Wild-type female  

C57BL/6 mice and BoyJ CD45.1 between 8-10 weeks old were purchased from The Jackson 

Laboratory and housed at our facility. TCR Transgenic OT-I CD45.1 mice and heterozygous 

CD45.2,CD45.1 mice were bred at our facility. Animals were housed under standard SPF 

conditions with typical light/dark cycles and standard chow. 

Infectious Agents   

Listeria monocytogenes strain 10403s expressing OVA (Lm-OVA) was kindly provided by 

Shomyseh Sanjabi (UCSF). Lm-OVA stocks frozen at −80 C were grown overnight at 37˚C in 

BHI broth supplemented with 5 ug/ml erythromycin (Bio Basic, Amherst, New York). Then, 

overnight cultures were sub-cultured by diluting into fresh BHI broth supplemented with 5 ug/ml 

erythromycin and grown for 4 hours. Bacteria CFU was then quantified by measuring optical 

density at 600 nm. Bacteria were then diluted to 5×104 CFU / 100µl in sterile PBS and 100 µl 

was injected per mouse i.v. via the retroorbital vein.  

Mass Cytometry Antibodies  

Primary conjugates of mass cytometry antibodies were prepared using the MaxPAR antibody 

conjugation kit (Fluidigm, South San Francisco, CA) according to the manufacturer’s 

recommended protocol sourcing metals from Fluidigm (Fluidigm, South San Francisco, CA) or 

Trace Sciences International (Richmond Hill, Canada). Following labeling, antibodies were 

diluted in Candor PBS Antibody Stabilization solution (Candor Bioscience GmbH, Wangen, 

Germany) supplemented with 0.02% NaN3 to between 0.1 and 0.3 mg/mL and stored long-term 

at 4°C. Each antibody clone and lot was titrated to optimal staining concentrations using primary 
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mouse samples with all appropriate positive and negative controls: polyclonal murine CD8 T 

cells purified by positive selection kit (Stem Cell Technologies, Vancouver, Canada) stimulated 

with PMA/Ionomycin via eBioscience Cell Stimulation Cocktail (ThermoFisher Scientific, 

Waltham, Massachusetts) for 15 minutes, 3 hours and 6 hours or plate-bound anti-CD3 (145-

2C11) and soluble anti-CD28 (37.51) antibodies (UCSF Monoclonal Antibody Core, San 

Francisco) for 3 days, OT-1 splenocytes at day 7 of IL-2 or IL-7 polarization as below, and 

appropriate CD8 T cell subsets (Naïve, Short-lived Effector and Central Memory) at day 8 of 

Lm-OVA infection. Titration results were cross-referenced to the literature as described in the 

text. 

In vitro OT1 Stimulation and Polarization   

OT-1 polarizations were carried out as previously described (Carrio et al., 2004). Briefly, 

splenocytes from OT-1 mice were cultured at 1*106 cells/mL in 24 well-plates of complete RPMI-

1640 (UCSF Media Core facility) supplemented with 10% FBS (Omega Scientific, Tarzana, 

California), 100 U/mL penicillin-streptomycin (Fisher Scientific, Hampton, New Hampshire), 2 

mM L-glutamine (Sigma-Aldrich, St. Louis, Missouri) and 50 µM b-mercaptoethanol (Thermo 

Fisher Scientific, Waltham, Massachusetts ) and 10 mM HEPES (UCSF Media Core Facility) in 

the presence of OVA257-264 peptide (0.1 nM) (InVivoGen, San Diego, California) and IL-2 (100 

U/ml) (Teceleukin) kindly provided by NCI, Frederick, MD. After 3 days in culture, activated cells 

were washed 3 times with RPMI-1640 and re-cultured in T25 culture flasks at 1 x 105 cells/mL in 

the presence of either IL-7, IL-15 (BioLegend, San Diego, California), or IL-2 (Teceleukin) kindly 

provided by NCI, Frederick, MD (all cytokines 10 ng/ml).  After 2 additional days in culture, cells 

were passaged and re-cultured under the same conditions without peptide for an additional two 

days for total of 7 days in culture. Viability was confirmed by trypan blue exclusion (Thermo 

Fisher, Waltham, Massachusetts) or mass cytometry as described below.  
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Cell Preparation 

All tissue preparations were performed simultaneously from each individual mouse, as 

previously reported (Spitzer et al. 2017). After euthanasia by CO2 inhalation, spleens were 

collected and homogenized in PBS + 5mM EDTA at 4° C. All tissues were washed with 

PBS/EDTA and re-suspended 1:1 with PBS/EDTA and 100mM Cisplatin (Enzo Life Sciences, 

Farmingdale, NY) for 60 s before quenching 1:1 with PBS/EDTA + 0.5% BSA to determine 

viability as previously described (Spitzer et al., 2015). Cells were centrifuged at 500 x g for 5 

min at 4° C and re-suspended in PBS/EDTA/BSA at a density between 1-10 x 106 cells/ml. Care 

was taken to maintain all samples at 4° C during all phases of tissue harvest and preparation 

except viability staining and fixation. Suspensions were fixed for 10 min at RT using 1.6% PFA 

in PBS (Fisher Scientific, Hampton, New Hampshire) and frozen at -80° C.  

For experiments with adoptively transferred OT1 T cells, immunomagnetic enrichment was 

performed to facilitate the detection of extremely rare cells before proliferation. Following lysis of 

red blood cells with ACK lysis buffer (ThermoFisher Scientific, Waltham, Massachusetts), 

EasySep Streptavidin Negative Selection was used with the following biotinylated antibodies 

against: MHCII (AF6-120.1), CD11c (N418), Ly6C (RB6-8C5), B220 (RA3-6B2), CD4 (GK1.5), 

and Ter119 (TER-119). 

Mass-Tag Cellular Barcoding  

Mass-tag cellular barcoding was performed as previously described (Zunder et al., 2015). 

Briefly, 1 x 106 cells from each animal were barcoded with distinct combinations of stable Pd 

isotopes in 0.02% saponin in PBS. Samples from any given tissue from each mouse per 

experiment group were barcoded together. Cells were washed once with cell staining media 

(PBS with 0.5% BSA and 0.02% NaN3), and once with 1X PBS, and pooled into a single FACS 

tube (BD Biosciences, San Jose, California). After data collection, each condition was 

deconvoluted using a single-cell debarcoding algorithm (Zunder et al., 2015). 
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Mass Cytometry Staining and Measurement 

Cells were resuspended in cell staining media (PBS with 0.5% BSA and 0.02% NaN3), and 

antibodies against CD16 and CD32 (BioLegend, San Diego, California) were added at 20 µg/ml 

for 5 min at RT on a shaker to block Fc receptors. Surface marker antibodies were then added, 

yielding 500 uL final reaction volumes and stained for 30 min at RT on a shaker. Following 

staining, cells were washed 2 times with cell staining media, then permeabilized with methanol 

for at 10 min at 4°C. Cells were then washed twice in cell staining media to remove remaining 

methanol, and stained with intracellular antibodies in 500 uL for 1 hour at RT on a shaker. Cells 

were washed twice in cell staining media and then stained with 1 mL of 1:4000 191/193Ir DNA 

intercalator (Fluidigm, South San Francisco, CA) diluted in PBS with 4% PFA overnight. Cells 

were then washed once with cell staining media, once with PBS and once with Cell Acquisition 

Solution (Fluidigm, South San Francisco, CA). Care was taken to assure buffers preceding 

analysis were not contaminated with metals in the mass range above 100 Da. Mass cytometry 

samples were diluted in Cell Acquisition Solution containing bead standards (see below) to 

approximately 106 cells per mL and then analyzed on a Helios mass cytometer (Fluidigm, South 

San Francisco, CA) equilibrated with Cell Acquisition Solution. We analyzed 1-5 x 105 cells per 

animal per time point, consistent with generally accepted practices in the field. For adoptive 

transfer experiments, 1-4 x 106 cells per animal were analyzed.  

Mass Cytometry Bead Standard Data Normalization  

Data normalization was performed as previously described (Spitzer et al., 2017). Briefly, just 

before analysis, the stained and intercalated cell pellet was resuspended in freshly prepared 

Cell Acquisition Solution containing the bead standard at a concentration ranging between 1 

and 2 x 104 beads/ml. The mixture of beads and cells were filtered through a filter cap FACS 

tubes (BD Biosciences) before analysis. All mass cytometry files were normalized together 

using the mass cytometry data normalization algorithm (Finck et al., 2013), which uses the 
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intensity values of a sliding window of these bead standards to correct for instrument 

fluctuations over time and between samples.  

Adoptive T Cell Transfer 

For adoptive transfer of transitional cells and SLECs, T cells were sorted by flow cytometry from 

splenocytes harvested from WT CD45.2 C47Bl/6 mice or CD45.1 BoyJ mice 5 days post-

infection. Then, viable sorted cells were counted by hemocytometer and trypan blue staining, 

resuspended in sterile PBS and transferred into infection-matched congenic mice intravenously 

via the retroorbital vein. 

For adoptive transfer of pathogen specific T cells to validate the antigen specificity of transitional 

cells, CD8 T cells were immunomagnetically enriched from the spleens of CD45.1 OT1 TCR 

transgenic mice with EasySep Streptavidin Negative Selection using the following biotinylated 

antibodies against: MHCII (AF6-120.1), CD11c (N418), Gr1 (RB6-8C5), B220 (RA3-6B2), CD4 

(GK1.5), Ter119 (TER-119). Viable cells were quantified by counting on a hemocytometer with 

Trypan blue staining. 1 x 106 cells were then resuspended in sterile PBS and transferred into 

naïve WT CD45.2 mice intravenously via the retroorbital vein. 

Flow Cytometry and Cell Sorting 

Cells were stained for viability with Zombie-NIR dye. Cell surface staining was performed in cell 

staining media (PBS with 0.5% BSA and 0.02% NaN3) for 30 minutes at room temperature. The 

following anti-mouse antibodies were used: TCRβ – APC (H57-597), CD8 – PE (53-5.8), CD62L 

- BV421 (MEL-14), KLRG1 – BV510 (2F1/KLRG1), CD44 – PE-Cy7 (IM7), CD25 – FITC (3C7), 

CD19 – APC-Cy7 (1D3/CD19), and F480 APC-Cy7 (BM8).  Stained cells were analyzed with an 

LSR II flow cytometer (BD Biosciences). MitoTracker Deep Red (Thermo Fisher, Waltham, 

Massachusetts) staining was performed per manufacturer’s instructions and as previously 

(Scharping et al., 2016). For MitoTracker Deep Red experiments, Zombie-UV dye was used 

(BioLegend, San Diego, California). 
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For sorting experiments, cells were prepared as described for flow cytometry and then sorted 

into media (RPMI-1640, 20% FBS, 1% HEPES, 100 µg/mL penicillin/streptomycin) using a 

FACSAria II (BD Biosciences).   

Seahorse Assays   

Seahorse Assays were carried out using an Agilent Mitochondrial Stress Test kit as previously 

(van der Windt et al., 2012) and per the manufacturer’s instructions. Oxygen consumption rates 

(OCR) and extracellular acidification rates (ECAR) were measured in XF media (non-buffered 

RPMI-1640 containing 10 mM glucose, 2 mM L-glutamine, and 1 mM sodium pyruvate) under 

basal conditions and in response to 1 μM oligomycin, 1 μM fluoro-carbonyl cyanide 

phenylhydrazone (FCCP), and 100 nM rotenone + 1 μM antimycin A (all from Agilent, Santa 

Clara, California) using a 96-well XF Extracellular Flux Analyzer (EFA) (Agilent, Santa Clara, 

California).  

Statistical Analysis  

All significance analysis of Seahorse data and cellular frequency was performed by paired two-

sided student’s t-test with error bars representing SEM in Prism v8. (GraphPad, San Diego, 

California). Analysis of median protein expression was performed by paired or unpaired (as 

indicated) two-sided student’s t-test in R. 

Unsupervised Clustering Analysis 

Cell clusters were identified using the Phenograph algorithm as implemented in the ‘cytofkit’ 

package in R. Standard settings were used (with k = 30 for endogenous CD8 T cells and k = 

100 for OT1 T cells). 

Data Visualization  

Unsupervised force-directed graphs were generated as previously reported (Spitzer et al., 2015) 

with the following modifications. Single cells were down-sampled to n = 1,000 cells from each 

condition. All cells were combined in a single graph with edge weights defined as the cosine 

similarity between the vectors of marker values of each cell. All the pairwise distances were 
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calculated and for each node only the 10 edges of highest weight were retained. The graph was 

then laid out using the ForceAtlas2 algorithm in Gephi.  

 

Data Availability 

Mass cytometry data will be made publicly available as a report on Cytobank 

(www.cytobank.org) with linked flow cytometry standard (.fcs) files upon acceptance of the 

manuscript. 
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4.3 Abstract 
 
Immune responses to infection are dynamic, yet the precise coordination of all immune 

cell states and fates throughout the course an infection remain poorly defined. Using 

mass cytometry, we mapped the cellular dynamics of all immune lineages during acute 

infection with Listeria monocytogenes (Lm). We identified highly transient dendritic cell 

activation 2 days post-infection that functions as a critical time window for priming 

effector T cells. Regulation of this transient state was mediated by dendritic cell (DC) 

extrinsic IFNγ provided by T cells. Furthermore, antigen-specific T cells that arrive late 

to the site of priming and miss peak DC activation acquire only memory T cell fates. 

This temporal regulation of fate is recapitulated by CD8 DCs ex vivo suggesting shifts in 

activation state of a single antigen presenting cell population alter T cell fates. These 

results uncover a novel mechanism for temporal regulation of T cell differentiation 

during a dynamic immune response to infection. 
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4.4 Introduction 

One of the most important cellular interactions mediating protective adaptive 

immune responses is the priming of CD8 T cells by DCs. Upon recognition of cognate 

antigen presented on Major Histocompatibility Complex class I (MHCI) by DCs, CD8 T 

cells rapidly divide and differentiate into multiple mature effector populations60. Early 

decisions in T cell fate lead to the acquisition of functionally distinct differentiation states 

including memory and cytotoxic effector phenotypes60. Intriguingly, single cells are 

committed to specific fates very early after priming by DCs61,62. Because strength of 

signaling during priming dramatically alters fate acquisition138, this suggests 

stochasticity in the strength of signals received by T cells during the priming process.  

 Previous studies have shown that CD8 T cells that are primed after the onset of a 

chronic viral infection divide less and acquire memory fates65,180. Similar results have 

also been observed for CD4 T cells in a vaccination model181. An elegant study 

transferring CFSE-labeled TCR transgenic T cells at 12 hour intervals of acute Listeria 

monocytogenes (Lm) infection showed striking differences in level of proliferation when 

cells were removed 48 hours after transfer182. These data led us to hypothesize that 

CD8 T cells might receive dramatically different strength of signals through changing 

antigen abundance at different timepoints early in infection, which we sought to test 

experimentally. 

 Here we used mass cytometry to generate a comprehensive map of immune cell 

activation in the spleen over the first 9 days of infection with Lm. Unsupervised analysis 

of these data allowed for the identification of highly transient cell states across lineages. 

DC activation transiently peaked at day 2 post-infection and was rapidly downregulated 
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thereafter, a process supported by T cell-derived IFNγ. T cells primed after day 2 post-

infection acquired memory fate very early during differentiation. This finding was 

recapitulated by DCs from different days of infection ex vivo, suggesting that rapid 

temporal changes in DC activation state are sufficient to drive alternative T cell fate 

acquisition. These findings have important implications for how natural immune 

responses induce the differentiation of diverse T cell fates and how this might be 

therapeutically manipulated in different contexts.  

4.5 Results 

4.5.1 Acute infection drives rapid phenotypic and frequency shifts across all 

immune lineages in the spleen 

To map the complete immune response to acute infection with Lm expressing the 

model antigen ovalbumin (LmOVA), wild type C57BL/6 mice were infected 

intravenously, and spleen tissue was harvested every day for the first 9 days of 

infection. Mass cytometry was then performed using an antibody panel optimized to 

detect all major mature immune cell lineages, as well as their activation states. 

Unsupervised clustering revealed distinct cell states across all immune lineages (Figure 

4.1 A-B). Frequencies and phenotypes of all immune lineages shifted dramatically every 

single day of infection, which was characterized by early increases in neutrophil and B 

cell populations and decreases in many T cell populations, ultimately leading to T cell 

expansions (Figure 4.1 C-D, Figure 4.2 E). Immune landscapes were defined in each 

sample as a composite of unsupervised cluster frequencies. Principal component 

analysis and clustering of the samples identified 4 distinct phases of immune activation 

that we deemed as a Baseline cluster (D0, D1), Innate Activation cluster 1 (D2, D3), 
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Innate Activation cluster 2 (D4, D5), and T Cell Activation cluster (D6, D7, D8, D9) 

(Figure 4.1 E-F). Early increases in neutrophil frequencies coincided with increased 

circulating G-CSF, which peaked at 2 days post-infection (Figure 4.2 A). A second wave 

of neutrophil expansion that exceeded the initial wave in cell frequency peaked at day 5 

post-infection and coincided with another increase in circulating G-CSF (Figure 4.2 A). 

The key antigen-presenting cells for priming CD8 T cell responses, DC1s, reached a 

transient peak activation at 2 days post-infection, as indicated by expression of CD80, 

CD86, PDL1, and CD69, before rapidly downregulating the expression of these proteins 

(Figure 4.2 B). Macrophages and cDC2s also exhibited a peak in activation at day 2 

post-infection, but underwent more variable activation as indicated by subsequent 

increases in CD86 and CD80 after this time point. Macrophages in particular continued 

increased CD80 expression until reaching a dramatic decrease 6 days post-infection 

(Figure 4.2 B). Early evidence of T cell activation was observed at the end of the Innate 

Activation cluster 2, as a unique differentiation state of CD8 T cells expressing CD25 

and ICOS reached a transient peak on day 5 post-infection (Figure 4.2 C). Early T cell 

activation preceded a large expansion of KLRG1+ short lived effector cells (SLECs) that 

peaked at 7 days post-infection (Figure 4.2 D).   

4.5.2 Peak dendritic cell activation occurs 2 days post-infection and is regulated 

by T cell derived IFNγ 

CD8+ cDC1s are the critical DC subset required for priming CD8 T cells in 

response to many challenges including Lm183. To validate previous findings, we infected 

wild type and Batf3-/- mice which lack cDC1s. At 7 days post-infection, the frequency of 

KLRG1+granzymeB+ CD8 T cells was significantly reduced in Batf3-/- mice (Figure 4.3 
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A). To further assess the activation of cDC1s over time, we calculated a composite 

activation score based on the expression of 8 molecules associated with activation 

(CD54, CD80, CD83, CD86, MHCII, CD69, PDL1, and PDCA1). This score identified 

that cDC1s acquire a peak activation state 2 days post-infection that is significantly 

higher than any other day of infection, including the day preceding and following this 

state, highlighting the transient nature of cDC1 activation (Figure 4.3 B). To identify 

potential cell extrinsic regulators of cDC1 activation, we quantified cytokines from 

spleen tissue homogenate over the first 3 days of infection and found that IFNγ levels 

followed a pattern strikingly similar to cDC1 activation, with a peak at 2 days post-

infection (Figure 4.3 C). The STAT1 signaling pathway is a prototypically activated by 

IFNγ184. We, therefore, quantified levels of phosphorylated STAT1 (pSTAT1) at 2 days 

post-infection and found that cDC1s showed the highest fold-change in pSTAT1, 

suggesting that IFNγ signaling was acting directly on cDC1s (Figure 4.3 D). In order to 

identify the cellular source of IFNγ, we depleted either NK cells or T cells (Figure 4.3 E). 

We found that splenic IFNγ was significantly reduced by T cell depletion, but not NK cell 

depletion (Figure 4.3 F). Furthermore, peak cDC1 activation at 2 days post-infection 

was significantly decreased when T cells or IFNγ was depleted (Figure 4.3 G). 

Together, these results demonstrate that peak DC activation at day 2 post-infection is 

regulated in a cell extrinsic manner through T cell-derived IFNγ.  

4.5.3 Late primed T cells acquire memory fate 

To assess the functional consequences of the peak cDC1 activation state at 2 

days post-infection, we adoptively transferred TCR transgenic OT1 T cells at 0, 1, 2, 3, 

or 4 post-infection LmOVA and then harvested cells for analysis 7 days after adoptive 
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transfer (Figure 4.4 A). CD8 T cells underwent significantly less proliferation when 

transferred in 2-4 days post-infection and also underwent significant alterations in fate. 

We saw a decreased proportion of KLRG1+CD62L- cytotoxic effector cells when cells 

were transferred at 1 or 2 days post-infection compared to cells transferred at the onset 

of infection. Strikingly, cells transferred after 2 days post-infection failed to acquire 

KLRG1+CD62L- fate and differentiated almost exclusively into CD62L+KLRG1- central 

memory cells (Figure 4.4 B). 

 To further assess the mechanistic underpinnings of memory fate acquisition in 

late primed cells, we adoptively transferred CFSE-labeled OT1 T cells at 0 (Early) or 3 

(Late) days post-infection and sorted cells for RNA sequencing 72 hours post-adoptive 

transfer. Intriguingly, we found that late-primed cells had proliferated more at this time 

point (Figure 4.4 C). This may be because priming occurred immediately as the cells 

entered the host, whereas priming may not occur immediately for early-primed cells. 

Nonetheless, we found that late-primed cells began to re-express CD62L after 5 

divisions whereas early-primed cells did not (Figure 4.4 D). Furthermore, RNA-seq 

confirmed that early- and late-primed cells have divergent transcriptional programs that 

match cytotoxic effector and memory states, respectively (Figure 4.4 E). Late-primed 

cells expressed higher levels of prototypical memory genes including Ccr7, Tcf7, and 

Sell whereas early-primed cells expressed higher levels of canonical effector genes 

such as Ifng, Gzmb, Pdcd1, and Fasl (Figure 4.4E).  

To further test the mechanisms of late-primed memory differentiation, we sorted 

cDC1s from D1 or D2 post LmOVA infection, co-cultured them ex vivo with naïve OT1 

CD8 T cells for 3 days, and then assessed T cell fate (Figure 4.4 F). Consistent with our 
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previous data, we found that DCs from later in infection primed significantly more 

memory T cell fates, as indicated by expression of CD62L by activated CD8 T cells 

(Figure 4.4 G).  

4.6 Discussion 
 

This study is, to the best of our knowledge, the first high-dimensional single-cell 

time course of a response to acute infection in a lymphoid organ. Recent research in 

other contexts includes studies assessing immune cells in peripheral blood in response 

to infection and whole organ transcriptomics in response to vaccination57,185. While 

these studies also suggest that immune responses are highly dynamic in nature, they 

did not identify the transient activation of antigen-presenting cells described here, likely 

because the studies sampling peripheral blood did not capture antigen presentation that 

occurs in lymphoid organs, and whole tissue transcriptomics does not have the single-

cell resolution to determine the activation state of extremely rare DC populations. 

Transient DC activations states have also been described in the response of mice to 

infection with acute and chronic LCMV186, as well as MCMV187, suggesting that this 

state is a hallmark of acute infection, though these studies did not investigate the 

consequences for T cell priming. This study is the first to mechanistically link temporal 

changes in DC activation to regulation of T cell differentiation. Importantly, our data 

suggest that memory fate is acquired very early during the differentiation trajectory of 

late-primed cells and is due to the temporal shifts in signals received from DCs rather 

than through clonal competition. We envision this study as a conceptual framework for 

studying immune responses as rapid time courses of high-dimensional single-cell data 

that can reveal novel mechanistic insights for how the immune system makes decisions.   
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Figure 4-1: Unsupervised clustering identifies dramatic shifts in immune cell 
frequencies and phenotypes during infection. 
(A) Unsupervised clusters from all major lineages are plotted as a frequency of total live 
CD45+ splenic immune cells at all days of infection. (B) All live CD45+ cells are plotted 
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in UMAP dimensionality reduced space and colored by major cell type, as well as 
unsupervised cluster. (C) Heatmap for median expression in each unsupervised cluster. 
(D) Density of cells in UMAP dimensionality reduced space overlaid on the entire 
immune landscape at each timepoint. (E) Fold-change in frequency (as percent of live 
CD45+) of each unsupervised cluster compared to frequency in uninfected mice. (F) 
Principal component analysis of single mice as a composite of unsupervised cluster 
frequency and k-means clusters of samples are circled. (G) Heatmap of all 
unsupervised cluster frequencies in each mouse.       
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Figure 4-2: Neutrophil, antigen-presenting cell, and CD8 T cell dynamics during 
infection 
(A) Circulating plasma G-CSF levels and neutrophil frequencies across infection time. 
(B) Expression of CD80, CD86, PDL1, and CD69 on cDC1s, cDC2s, and macrophages 
from all days throughout infection. (C) Transitional CD25+ICOS+ CD8 T cells that peak 
at 5 days post-infection. (D) KLRG1+ SLEC frequency over the course of infection. 
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Figure 4-3: Peak dendritic cell activation is supported by T cell-derived IFNg 
(A) Frequency of cytotoxic CD8 T cells in the spleen of WT and Batf3-/- mice infected 
with LmOVA at D7 post-infection. (B) Composite activation score (CD80, CD86, CD83, 
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CD54, CD69, PDCA1, and PDL1) in single cDC1s plotted at each time point over 
activation (C) Cytokine quantification from the spleen homogenate on D0-D3 post-
infection. Significance p<0.01. (D) PhosphoSTAT1 quantification in all major immune 
lineages with fold-change calculated from the median of uninfected mouse samples. (E) 
Antibody-mediated depletion of T cells by anti-Thy1 or NK cells by anti-NK1.1. (F) 
Quantification of IFNg from the spleen homogenate at D2 post-infection in mice 
depleted of T cells or NK cells. (G) Heatmap showing expression of key proteins in 
splenic cDC1s from uninfected, D2 isotype-matched control Ig treated mice, D2 anti-
Thy1-treated mice, or anti-IFNg treated mice. Activation score calculated for cDC1s 
from each condition. Significance p<0.01.     
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Figure 4-4: Late-arriving T cell acquire memory fate 
(A) Schematic of experimental design to transfer OT1 T cells at different stages of 
infection with LmOVA and to analyze cells 7 days after transfer. (B) SLEC and Central 
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Memory cell gating and quantification of antigen specific cells 7 days after adoptive 
transfer. (C) CFSE dye dilution in OT1 T cells transferred at D0 (Early) or D3 (Late) and 
sorted 72 hours later. (D) Quantification of CD62L MFI on cells at specific numbers of 
divisions gated through CFSE dye stain. Significance p<0.01. (E) Heatmap of RNA-seq 
in early- and late-primed cells highlighting differentially expressed genes associated 
with memory and cytotoxic effector fates. (F) Schematic of experimental design to sort 
cDC1s from D1 or D2 post-infection, coculturing with naïve OT1 CD8 T cells and 
analyzing 3 days later. (G) Gating of CD44 and CD62L in representative divided OT1 T 
cells and quantification of CD62L+ and CD62L- divided OT1 T cells.  
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4.7 Materials and Methods 
 

Animals 

All mice were housed in an American Association for the Accreditation of Laboratory Animal 

Care–accredited animal facility and maintained in specific pathogen-free conditions. Animal 

experiments were approved and conducted in accordance with AN157618. Wild-type female  

C57BL/6 mice and BoyJ CD45.1 between 8-10 weeks old were purchased from The Jackson 

Laboratory and housed at our facility. TCR Transgenic OT-I CD45.1 mice and heterozygous 

CD45.2,CD45.1 mice were bred at our facility. Animals were housed under standard SPF 

conditions with typical light/dark cycles and standard chow. 

Infectious Agents   

Listeria monocytogenes strain 10403s expressing OVA (Lm-OVA) was kindly provided by 

Shomyseh Sanjabi (UCSF). Lm-OVA stocks frozen at −80o C were grown overnight at 37˚ C in 

BHI broth supplemented with 5 ug/ml erythromycin (Bio Basic, Amherst, New York). Then, 

overnight cultures were sub-cultured by diluting into fresh BHI broth supplemented with 5 ug/ml 

erythromycin and grown for 4 hours. Bacteria CFU was then quantified by measuring optical 

density at 600 nm. Bacteria were then diluted to 5×104 CFU / 100µl in sterile PBS and 100 µl 

was injected per mouse i.v. via the retroorbital vein. 

Mass Cytometry Antibodies  

Primary conjugates of mass cytometry antibodies were prepared using the MaxPAR antibody 

conjugation kit (Fluidigm, South San Francisco, CA) according to the manufacturer’s 

recommended protocol sourcing metals from Fluidigm (Fluidigm, South San Francisco, CA) or 

Trace Sciences International (Richmond Hill, Canada). Following labeling, antibodies were 

diluted in Candor PBS Antibody Stabilization solution (Candor Bioscience GmbH, Wangen, 

Germany) supplemented with 0.02% NaN3 to between 0.1 and 0.3 mg/mL and stored long-term 
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at 4° C. Each antibody clone and lot was titrated to optimal staining concentrations using 

primary mouse samples with all appropriate positive and negative controls.  

Cell Preparation 

All tissue preparations were performed simultaneously from each individual mouse, as 

previously reported (Spitzer et al. 2017). After euthanasia by CO2 inhalation, spleens were 

collected and homogenized in PBS + 5 mM EDTA at 4° C. All tissues were washed with 

PBS/EDTA and re-suspended 1:1 with PBS/EDTA and 100 mM cisplatin (Enzo Life Sciences, 

Farmingdale, NY) for 60 s before quenching 1:1 with PBS/EDTA + 0.5% BSA to determine 

viability as previously described (Spitzer et al., 2015). Cells were centrifuged at 500 x g for 5 

min at 4° C and re-suspended in PBS/EDTA/BSA at a density between 1-10 x 106 cells/ml. Care 

was taken to maintain all samples at 4° C during all phases of tissue harvest and preparation 

except viability staining and fixation. Suspensions were fixed for 10 min at RT using 1.6% PFA 

in PBS (Fisher Scientific, Hampton, New Hampshire) and frozen at -80° C.  

Mass-Tag Cellular Barcoding  

Mass-tag cellular barcoding was performed as previously described (Zunder et al., 2015). 

Briefly, 1 x 106 cells from each animal were barcoded with distinct combinations of stable Pd 

isotopes in 0.02% saponin in PBS. Samples from any given tissue from each mouse per 

experiment group were barcoded together. Cells were washed once with cell staining media 

(PBS with 0.5% BSA and 0.02% NaN3), and once with 1X PBS, and pooled into a single FACS 

tube (BD Biosciences, San Jose, California). After data collection, each condition was 

deconvoluted using a single-cell debarcoding algorithm (Zunder et al., 2015). 

Mass Cytometry Staining and Measurement 

Cells were resuspended in cell staining media (PBS with 0.5% BSA and 0.02% NaN3), and 

antibodies against CD16 and CD32 (BioLegend, San Diego, California) were added at 20 µg/ml 

for 5 min at RT on a shaker to block Fc receptors. Surface marker antibodies were then added, 

yielding 500 uL final reaction volumes and stained for 30 min at RT on a shaker. Following 
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staining, cells were washed 2 times with cell staining media, then permeabilized with methanol 

for at 10 min at 4° C. Cells were then washed twice in cell staining media to remove remaining 

methanol, and stained with intracellular antibodies in 500 uL for 1 hour at RT on a shaker. Cells 

were washed twice in cell staining media and then stained with 1 mL of 1:4000 191/193Ir DNA 

intercalator (Fluidigm, South San Francisco, CA) diluted in PBS with 4% PFA overnight. Cells 

were then washed once with cell staining media, once with PBS and once with Cell Acquisition 

Solution (Fluidigm, South San Francisco, CA). Care was taken to assure buffers preceding 

analysis were not contaminated with metals in the mass range above 100 Da. Mass cytometry 

samples were diluted in Cell Acquisition Solution containing bead standards (see below) to 

approximately 106 cells per mL and then analyzed on a Helios mass cytometer (Fluidigm, South 

San Francisco, CA) equilibrated with Cell Acquisition Solution. We analyzed 1-5 x 105 cells per 

animal per time point, consistent with generally accepted practices in the field. For adoptive 

transfer experiments, 1-4 x 106 cells per animal were analyzed.  

Mass Cytometry Bead Standard Data Normalization  

Data normalization was performed as previously described (Spitzer et al., 2017). Briefly, just 

before analysis, the stained and intercalated cell pellet was resuspended in freshly prepared 

Cell Acquisition Solution containing the bead standard at a concentration ranging between 1 

and 2 x 104 beads/ml. The mixture of beads and cells were filtered through a filter cap FACS 

tubes (BD Biosciences) before analysis. All mass cytometry files were normalized together 

using the mass cytometry data normalization algorithm (Finck et al., 2013), which uses the 

intensity values of a sliding window of these bead standards to correct for instrument 

fluctuations over time and between samples.  

Adoptive T Cell Transfer 

For adoptive transfer of pathogen specific T cells to validate the antigen specificity of transitional 

cells, CD8 T cells were immunomagnetically enriched from the spleens of CD45.1 OT1 TCR 

transgenic mice with EasySep Streptavidin Negative Selection using the following biotinylated 
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antibodies against: MHCII (AF6-120.1), CD11c (N418), Gr1 (RB6-8C5), B220 (RA3-6B2), CD4 

(GK1.5), and Ter119 (TER-119). Viable cells were quantified by counting on a hemocytometer 

with trypan blue staining. 1x106 Cells were then resuspended in sterile PBS and transferred into 

naïve WT CD45.2 mice intravenously via the retroorbital vein. In some cases cells were also 

stained with CFSE. 

Flow Cytometry, Cell Sorting 

Cells were stained for viability with Zombie-NIR dye. Cell surface staining was performed in cell 

staining media (PBS with 0.5% BSA and 0.02% NaN3) for 30 minutes at room temperature. The 

following anti-mouse antibodies were used: TCRβ – APC (H57-597), CD8 – PE (53-5.8), CD62L 

- BV421 (MEL-14), CD45.2 – PE-Cy7 (104), CD45.1 – FITC (A20), and CD19 – APC-Cy7,.  

(1D3/CD19). Stained cells were analyzed with an LSR II flow cytometer (BD Biosciences).  

For sorting experiments, cells were prepared as described for flow cytometry and then sorted 

into lysis buffer (1X Takara single-cell lysis buffer) using a FACSAria II (BD Biosciences).   

Statistical Analysis  

All significance analysis was performed by paired or unpaired (as indicated) two-sided student’s 

t-test in R. 

Unsupervised Clustering Analysis and Data Visualization 

Cell clusters were identified using the CLARA algorithm with 100 clusters as implemented in the 

‘cluster’ package in R. 

Data Availability 

Mass cytometry data will be made publicly available as a report on Cytobank 

(www.cytobank.org) with linked flow cytometry standard (.fcs) files upon acceptance of the 

manuscript. 
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Chapter 5 Closing and Future Directions 
 

Establishing that the peripheral immune macroenvironment is significantly perturbed in 

cancer has opened many potential new areas of investigation. Because Type 1 immune 

responses are blunted in the spleen of AT3 tumor-bearing mice, it would be prudent to evaluate 

these responses in other tumor models. Another essential question is to assess how Type 1 

immune responses develop in non-lymphoid organs of tumor-bearing mice such as the 

response to Lm infection in the liver, lung, and tumor itself. Furthermore, it is important to 

continue deciphering the emergent properties of the tumor-burdened immune system by driving 

tumor de novo immune responses to a diverse range of challenges including vaccines, 

parasites, allergens, and commensals. Finally, the precise mechanisms that drive impaired DC 

activation remain elusive. Identifying whether this defect is intrinsic to precursor and mature 

DCs or rather driven by a secondary interaction is a sensible next step.  

Single-cell metabolic analysis has also provided a new experimental toolset for many 

new potential areas of investigation188. The early-activated CD8 T cell state that uses oxidative 

phosphorylation and glycolysis simultaneously should be assessed in other diverse contexts 

such as in antiviral as well as natural and therapeutically induced antitumor responses. 

Furthermore, preliminary data suggest that CD4 T cells undergo a similar metabolic transition 

that requires experimental validation through orthogonal metabolic assays. This general 

technique of measuring metabolic state through antibodies targeting key metabolic mediators 

may also be applied to recent multimodal single cell technologies such as ASAP-seq, which 

combines single cell chromatin accessibility and intracellular quantification of antibody targets.  

The precise timing of priming during infection and how infectious dose alters this also 

warrants further investigation. Preliminary data suggest that transient DC activation is not driven 

through transcriptional regulation ;therefore, this transient state may be regulated post-

transcriptionally. Manipulating DC transience may provide a therapeutic approach to tune the 
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type of T cell response elicited. Future studies may use chemokines or treatments to modulate 

T cell migration to optimize T cell responses to vaccines. Alternatively, vaccination through the 

implantation of synthetic antigen-loaded discs could be paired with migration modulators to 

facilitate memory T cell responses to cancer189. 

Together, these studies each interrogate key aspects of immunological coordination 

across diverse contexts. While immune responses have been studied at the single-cell level by 

flow cytometry for decades, the majority of previous studies have been technologically limited to 

only measuring fractions of immune cells, processes, and interactions. To advance basic and 

translational immunology, we must develop comprehensive maps of immune responses that 

delineate the full breadth and chronology of dynamic immune coordination. These three studies 

establish new experimental and computational frameworks for studying the development of 

multi-lineage immune responses over time. These frameworks can be applied to any complex 

immunological context to continue deciphering mysteries of basic immunology and informing 

rational design of therapeutics. Combining recent advances in single-cell multimodal 

(RNA+ATAC or Protein+ATAC or Protein+RNA) measurements with these frameworks will 

provide an unprecedented new window into the regulation of dynamic immune responses.   
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