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EPIGRAPH

Grown-ups like numbers. When you tell them about a new friend, they never ask

questions about what really matters. They never ask: ‘What does his voice sound

like?’ ‘What games does he like best?’ ‘Does he collect butterflies?’ They ask: ‘How

old is he?’ ‘How many brothers does he have?’ ‘How much does he weigh?’ ‘How

much money does he have?’ Only then do they think they know him.

—Antoine de Saint-Exupéry, The Little Prince
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ABSTRACT OF THE THESIS

Systematic Dynamic Modeling Based on Step-Response Experiments
Thesis

by

Alicia Dautt-Silva

Master of Science in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2017

Professor Raymond A. De Callafon, Chair

The purpose of this thesis is the computation of optimal input signals for

output tracking of a dynamic system. The starting point is a non-optimal input signal

given in the form of a simple step input and the measurement of the resulting output.

The data is used to formulate a (linear) dynamic model from which the optimal

input signal is computed via “input shaping”. This paper presents a summary of

the method to obtain a dynamic model from the step response data, and compares

various “input shaping” methods to compute (sub)optimal input signals to achieve

a desired output signal. The method to estimate a dynamic model is based on the

xiii



realization algorithm; the optimal input shaping techniques compared in this paper

include zero vibration (ZV), finite impulse response (FIR) filtering and a convex

optimization formulation using linear programming (LP). It is shown that the linear

programming solution for input shaping can also be generalized to find optimal input

signals with a fixed resolution using a mixed integer linear programming formulation.

The approach of dynamic modeling and input shaping is illustrated on a simulation

example of a two-mass system as well as experimental data obtained from a class IV

LASER system characterized by varying the pulse length of the low power used to

seed it.
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Chapter 1

Introduction

The evolving demands of modern technologies require the development and use

of smaller, cheaper semiconductors which are both high speed and energy efficient.

The modeling and analysis of novel techniques used in the manufacture of these new

devices is a common, important practice for ensuring expected performance.

For such systems, obtaining accurate models that can be used for the corre-

sponding analysis is often achieved by experimentation and the examination of the

input-output relationships of the system via system identification [1].

The available analysis tools yield to models that capture the relevant dynamics

of the systems even in the presence of uncertainty. Within this context, experiments

are usually designed that utilize the process input as the experimental variable. A

common input for the analysis of dynamics systems such as LASERs or servo systems

is the step input, from which one obtains the system’s step response [2].

By using a step input, we can perform everything in the time domain: average,

isolate the particular step and then utilize the realization algorithm. Using a proper

deterministic input signal, allows us to obtain a model with the realization algorithm

1
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[3].

Different approaches to compute a desired response are explored; a desired

response is defined for a system, consisting in the time to reach a steady state and

the maximum allowed overshoot/undershoot. First, obtaining an inverse model.

Input shaping is defined as a feed-forward control technique first proposed in

the 1980s. It is a technique for shaping the system input (commands) to eliminate

the system vibration in the response.

From input shaping, first we explore zero vibration (ZV) [4]. Based on the

knowledge that most of the systems will vibrate when an impulse is given, applying

a second impulse to the system can cancel the vibration induced by the previous

impulse. In ZV, is needed to derive the amplitude and locations of the impulse

commands [5].

The use of input shaping techniques in control systems helps to reduce the

overshoot/undershoot and the settling time of under-damped systems. Finite impulse

response (FIR) filters are a different approach [6]. Unlike ZV input shapers, which are

impulse-based, the FIR filters preshape an input command to reduce the vibration.

[7]

The inverse model and input shaping techniques approaches enforce no limits

on the computed input or constraints on the system response. Convex optimization

will also be explored with a view to applying both constraints [8]. Finally mixed

integer linear programming (MILP), in which the at least one of the input variables

is restricted to integers, will be applied [9, 10].

In this paper, we review the full process of testing new equipment, analyzing

a step-response experiment, doing the system identification for it and analyzing the



3

possible input shaping techniques to obtain an ideal response. Two examples are

utilized to illustrate this process, the LASER experiment and a two-mass system

experiment. An Educational Control Product (ECP) is used to verify the results

obtained for the two-mass system.

Chapter 2 shows the experimental data and how it is obtained, as well as the

system identification for each experiment. Chapter 3 shows the input shaping tech-

niques and Chapter 4 shows the application of each. In Chapter 5 the experimental

results are presented. Conclusions are Chapter 6.

1.1 Motivation

The main objectives of this work are as follows: to describe a systematic

procedure for modeling consistency and to use the obtained model in conjunction

with input shaping techniques in order to enhance control inputs such that a more

desirable system response can be achieved.

To this end, two sets of data are utilized to exemplify the input shaping meth-

ods previously mentioned.

1.1.1 Two-Mass System Model

The two-mass system is used for verification and interpretation of the results

we get with the processes we compare; since it’s a well understood dynamic system,

ZV, FIR and optimization will be illustrated. We consider a step input on the two-

mass system and compute the inputs for each method based on the step-response.

The motivation is to move both masses, m1 and m2, as fast as possible to a desired
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position. The objective is to find the right input signal to obtain the ideal result for

m1.

Figure 1.1: Two-mass system. Cascade spring/mass/damper system.

The two-degree-of-freedom (2DOF) mechanical system depicted in Figure 1.1

consists of 2 masses, m1 and m2, each having positioning freedoms x1 and x2, respec-

tively. The masses are connected via spring elements having stiffness coefficients k1

and k2 (spring or flexible shaft). Additionally, to model the damping present in the

system, a viscous damping, d1 and d2, are assumed to act on each of the masses in

the mechanical system [11].

To obtain data, we work with the ECP model 210, rectilinear plant in Figure

1.2.

Figure 1.2: ECP Model 210.

1.1.2 LASER Pulse Length Experiment

In the semiconductor industry, to expose good wafers it is necessary to control

the amount of extreme ultraviolet (EUV) generated as a function of time. The exper-
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iment aimed to identify a means to control the amount of EUV, using the LASER as

an actuator. The amount of EUV generated is proportional to the energy delivered

by the LASER. Consequently, it is required to adjust the LASER power in order to

compensate for other system variations as a means to keep the EUV constant.

The step-response experiment is used in order to identify a model and its

parameters. The goal is to characterize the optical properties of the LASER pulse at

the output of a LASER amplification chain as a function of the input pulse length

used to seed the chain.

Figure 1.3 shows the raw data from the experiment. The experiment has 16

cycles in total. Figure 1.4 shows the data of one of the sixteen steps.
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Figure 1.3: Raw data from experiment consisting of sixteen steps. The
pulse width and energy are in arb. units.
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Figure 1.4: Raw data of one of the sixteen steps.



Chapter 2

Experimental Data and Step

Response Model Estimation

2.1 Experimental data

2.1.1 Data for the Two-Mass system Experiment

The mechanical system can be moved and positioned by a control force, de-

noted by F. The control force is a rectilinear force applied to the first mass m1.

To obtain the data for the two-mass system, we apply a step input to the ECP

and log the results. The data obtained for m1 is shown in Figure 2.1. There is an

undesirable oscillation as noted in the response and a settling in the later samples.

Notice the stiction/friction effects in the ECP data. In the following section we will

discuss this compared to the obtained model.

7
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Figure 2.1: Step-response for the ECP two-mass system.

2.1.2 Data for the LASER Pulse Length Experiment

The repeated steps in the LASER experiment are averaged to produce one

set of data summarizing the results and in order to reduce the noise. We can see in

Figure 2.2 that the Laser Energy signal is noisy when the step goes up and down,

and we can predict there are different dynamics during the step up and step down

transitions.
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Figure 2.2: Average of the sixteen steps.

The data for step up and step down is split and from now on, we refer to two
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single-input single-output (SISO) models; step up and step down. The signal split

is made by identifying the transitions from low to high and high to low in the pulse

width input. The purpose is the system identification of both systems [1].

Figure 2.3 shows our starting point for the data from the LASER pulse exper-

iment; a non-optimal input signal in the form of a step input, and the measurement

of the resulting output.

0 10 20 30 40 50 60

samples [k]

p
u

ls
e 

en
er

g
y

Figure 2.3: Data split for each of the SISO models. Step up data (dashed
line), and step down data (solid line).

The overshoot and undershoot are undesirable, since it is required to control

the EUV. If the LASER can’t be controlled, then there is not a control knob. This is

why the system characterization takes place in order to determine if there is a ‘fixed’

response.

2.2 Step Response Model Estimation

For the Two-Mass system and LASER pulse length experiments, we estimate

a discrete-time model using the realization algorithm for step input experiments. The
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same process is applied to obtain the model for the step up, step down and two-mass

system data.

Defining R = HY - TGHU , where HY is an N1 x N2 Hankel matrix with the

outputs y(t); TG is an N1 x N1 + 1 Toeplitz matrix with Markov parameters g(t);

and HU is an N1 + 1 x N2 Hankel matrix containing the input data u(t), where u(t)

represents the step input, thus HU is a unity matrix. The product TGHU can be

computed without knowledge of g(t) in TG. The singular value decomposition (SVD)

of R can be computed to obtain

(2.1)R = UΣV T =

[
Un Us

] Σn 0

0 Σs

[ V T
n V T

s

]
.

The SVD can be used to approximate the matrix R; R allows a decomposition

R = R1R2, where R1 = UnΣn
1/2 and R2 = Σn

1/2VT
n . The diagonal values of Σ can be

used to determine the order of the model.

The shifted elementary data matrix (EDM) equation allows us to write
−→
R =

−→
H Y -

−→
T G

−→
H U .

−→
R helps us find A;

−→
R = R1AR2. We can also find matrices B =

R2(:,1), C = R1(1,:) and D = y(0) [3].

From the state-space representations, we obtain the transfer functions.

2.2.1 Realization Algorithm for Two-Mass System Experi-

ment

The two-mass model is defined as 4th order model, Figure 2.4.

The transfer function for it is:

Gm1 =
13.4458z3 − 25.8688z2 + 12.4532z + 0.2059

z4 − 3.8772z3 + 5.6868z2 − 3.7395z + 0.9301
. (2.2)
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Figure 2.4: Hankel singular values for the two-mass system.

The model is stably invertible since the numerator roots are within the unit circle.

In this case, we do not work this advantage in future sections.

The model response is simulated with a step input to compare its response with

the measured step response data from the experiment. The comparison in Figure 2.5

verifies that the identified model is a reasonably good estimate.
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Figure 2.5: Measured response vs simulated response. Data from the two-
mass system experiment (green solid line), and simulated response from the
GRA model obtained (black dashed line).

Notice the stiction/friction effects in experimental data, but good coherence in oscil-
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lation and damping modeling. The difference in oscillatory response at longer times

is likely due to extraneous damping sources in the ECP apparatus.

2.2.2 Realization Algorithm for LASER Pulse Length Ex-

periment

Both the step up and step down models are defined as 3rd order models, Figure

2.6.

0 5 10
10

0

10
1

10
2

10
3

0 5 10

Figure 2.6: Hankel singular values for the LASER system. Left: Step up
model. Right: Step down model.

The transfer function for the two models are:

Gup =
0.3158z2 − 0.5801z + 0.2665

z3 − 1.7313z2 + 0.7293z + 0.0130
, (2.3)

Gdown =
−6.5196z2 + 12.2565z − 5.7570

z3 − 1.7374z2 + 0.7348z + 0.0096
. (2.4)

The models are stably invertible since the numerators roots are within the unit circle.

The obtained models of the systems are simulated with a step input to com-

pare their response with the measured step response data from the experiment. The
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comparison in Figure 2.7 verifies that the identified models are a good estimate.
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Figure 2.7: Measured response vs simulated response. Top: Step up model.
Bottom: Step down model. In each plot: data from the LASER experiment
(green solid line), and simulated response from the GRA models obtained
(black dashed line).



Chapter 3

Input shaping Techniques

Figure 2.3 reveals that the response of the system has a positive overshoot when

the step goes up, while the step down data has an even more pronounced undershoot.

The ideal output would not have any overshoot or undershoot. The data suggests

using a gradual step input which would control the overshoot and undershoot in the

signals. In the following sections we review the possible input shaping techniques to

create a desirable system response.

In input shaping, the original input (unmodified) signal is passed through an

input shaper and this new shaped signal is fed to the system. The purpose of this new

signal is to remove oscillation that can be caused by the unmodified input signal [12].

Input shapers used in the design of control systems helps to decrease the overshoot

or undershoot and the time for a steady response in an oscillating systems [13], such

as the LASER pulse experiment.

The feed-forward technique consists of a convolution of the input command

with a series of impulses. The result is a modified input command that reduces the

residual vibration in the response. To apply input shaping the amplitudes and timing

14
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of such impulses have to be determined to reduce the residual vibration [4, 14].

3.1 Inverse Model Approach

For a given model, the most straightforward approach is check if the inverse

is stable. The models for the step up and step down systems are stably invertible.

We apply a step input signal the size of our output (once stable) to the inverse of

the model, G−1; this gives us the ideal input. Let’s consider this step signal our first

approach. By making a simulation of the model, G, with the ideal input, we are able

to get the ideal output as shown in Figure 3.1.

10 20 30 40 50 60

samples [k]

Figure 3.1: Inverse model approach. Top: Step up model. Bottom: Step
down model. In each plot: data from the LASER experiment (blue solid
line), ideal response (red dotted line), and computed input with G−1 (red
dashed line).

In this case, the zeros are stable and we can perform a simple inversion on the

obtained model. We can create the inverse of a model to compute the ideal input,

but we do not have any assurance that the computed ideal input is feasible, since

we are working without any input constraints. The hardware may not have enough
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freedom to generate such an idealized input.

3.2 ZV and FIR filters

Two impulse responses can be superimposed such that the system moves for-

ward without vibration after the input has ended. This is the two-impulse ZV input

shaper. The amplitudes, Ai; and times, ti; of the impulses are given by [15, 16]:

 Ai

ti

 =

 1
1+K

K
1+K

0 0.5Td

 , i = 1, 2, (3.1)

where

K = e
−ζπ√
1−ζ2 , (3.2)

Td is the damped period of vibration, and ζ is the damping ratio. The convolution

is performed between the original input and the amplitude of the first and second

impulse, shifted by one-half of the damp vibration period. A constraint for the

amplitude Ai of the impulse has to be met, Ai > 0, i = 1,..,m, and
∑m

i=0
Ai = 1.

The impulse convolution with a step input signal might not be the ideal ap-

proach for some systems’ behaviors. It creates smaller size steps until it reaches the

full size step: a staircase command. Each impulse added will result in an output

delay. Figure 3.2 shows a basic example of step command and impulse convolution

as command shaping [17].

Figure 3.2: Input shaping a step to produce a staircase command.
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In a different feed-forward approach, the input signal and FIR filters are con-

voluted; this type of input shaper adds zeros to the system [18].

FIR filters are withing the most common. FIR filter consist of nonzero impulse

responses. The poles in the z-plane are only at z=0 and are represented by [6]:

H(z) =
M∑
n=0

bn · z−n, (3.3)

where bn are parameters of the filter. Similar to the ZV conditions, the FIR filter

gain shall be one.

3.3 Convex Optimization

A different class of optimization problems is linear programming, where the

objective and all constraint functions are linear. The general formulation for this is

[8]:

minimize cTx

subject to aTi x ≤ bi, i = 1, ...,m,

(3.4)

where x is the vector of optimization variables and ai, bi and c are parameters and

constraint functions.

We look to minimize the maximum error of our desired trajectory, ydes,

E = max|y(t)− ydes(t)|. (3.5)

The constraint we work with in this case is defining a range for the input, Ulow ≤

u(t) ≤ Uhigh. The optimization problem is now expressed as [19]:
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minimize E = maxT=1,...,M |y(t)− ydes(t)|

subject to Ulow ≤ u(t) ≤ Uhigh, t = 1, ..., N,

(3.6)

where M is the output we have defined up to and u(t) is the optimization variable.

Having the z-Domain transfer functions in equations 2.3, 2.4 and 2.2, we can

define the following equations for each system,

G(q) = q−1
b0 + b1q

−1 + ...+ bnq
−n

1 + a1q−1 + ...+ anq−n
,

y(k) = G(q)u(k),

y(k) + a1y(k − 1) + ...+ any(k − n) =

b0u(k − 1) + b1u(k − 2) + ...+ bnu(k − n− 1).

(3.7)

The output y(k) can be written as,

y(k) = b0u(k − 1) + b1u(k − 2) + ...+ bnu(k − n− 1)

− a1y(k − 1)− ...− any(k − n),

(3.8)

from which we can define y = Φ u, where Φ is a Toeplitz matrix using the elements

of y(k), impulse response [19].

Aij =


hi−j if0 ≤ i− j ≤ k,

0 otherwise



19

Developing the previous statement,



y(0)

y(1)

y(2)

.

.

.

y(n− 1)

y(n)



=



h0 0 0 0 . . . 0

h1 h0 0 0 . . . 0

h2 h1 h0 0 . . . 0

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

0 ... 0 hk ... h2 h1 h0





u(0)

u(1)

u(2)

.

.

.

u(n− 1)

u(n)



.

We can now solve the optimal control problem using standard LP software, such as

MATLAB’s function ‘linprog’ [20].

Figure 3.3 schematically illustrates the two different amplitude constraints [21].

The first constraint during the initial response is a large one, due to the response initial

oscillation. Once the response is settled, a second tight constraint is created. The

maximum and minimum constraints are defined as y and y, respectively.

Figure 3.3: Definition of the output constraints.

k∗ represents the samples to reach the steady state; if k∗ is longer than the minimum

necessary, the response will oscillate due to the freedom on time to reach the target.



20

In order to find the minimum sample number k∗min, the bisection method is used.

The bisection method consists of defining the problem as feasible, and start

with the range [klow, khigh] which contains k∗. The convex feasibility problem it’s

solved at its midpoint t = (klow + khigh)/2, to determine whether the optimal value

is in the lower or upper half of the range, and update the range based on the result.

This produces a new range, which contains the optimal value k∗, but has half the

width of the initial one. This is repeated until the interval is within a valid maximum

value, [8].

3.4 Mixed Integer Linear Programming

Since we have emphasized on the restrictions the input may be subject to

based on the hardware, we explore further techniques such as MILP. Integer linear

programming investigates linear programming problems in which at least one of the

variables is restricted to integers [9].

In linear programming the values obtained from a solution procedure may be

real or an integer. The linear programming models shown in the previous systems

have been continuous, meaning the variables are allowed to be real [10].

Solutions so far use full design freedom on the input, but in many practical

situations only input signals where a particular constraint on the level/size can be

applied.

In the LASER experiment, the lower bound is a restriction on the hardware

used to actuate the pulse length. It can’t go lower than the value used in the exper-

iment. For the upper bound, the main reason is not because of what the hardware

is physically capable of, but rather that the response curve flattens off. However, the
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continuous values solution is not valid, since only integers are allowed as the pulse

width. A valid approach could be rounding the values to the nearest integer, but this

might affect the optimal solution. In those cases the MILP solution would be best

[22].

minimize cTx

subject to aTi x ≤ bi, i = 1, ...,m,

where x ∈ Z.

(3.9)



Chapter 4

Application of Input Shaping

Techniques

4.1 Application of ZV and FIR filters

4.1.1 Two-mass System experiment

Following the mentioned ZV and FIR filters input shaping techniques, we

can see in Figure 4.1 an improvement by utilizing the ZV method in regards of the

overshoot and oscillation, and does not add a delay.

22
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Figure 4.1: ZV for Two-mass system. Top: Optimization response. Bot-
tom: Optimization input. In each plot: data from Two-mass experiment
(solid blue line), and data from ZV (red dotted line).

Figure 4.2 shows there is no improvement for this system utilizing FIR filters.

It is clear that ZV method has the best and fastest response in this case.
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Figure 4.2: FIR filters for Two-mass system. Top: Optimization response.
Bottom: Optimization input. In each plot: data from Two-mass experiment
(solid blue line), 10th order FIR filter (red line), and 20th order FIR filter
(black line).

Figure 4.3 shows a comparison between ZV ad the FIR filters.
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Figure 4.3: Two Mass System. In each plot: system simulation (solid blue
line), data from ZV (magenta solid line), 10th order FIR filter (red dashed
line), and 20th order FIR filter (red dotted line), optimization (green solid
line).

4.1.2 LASER Pulse Length Experiment

ZV input shaping approach does not match the models Gup and Gdown in an

optimal way, since we are not looking to reduce system vibration. The input shaping

based on impulse convolution is aimed to reduce the vibration on flexible systems.

However, by applying a ZV input shaper to the previously mentioned systems, they

show some improvement in smoothing the overshoot and undershoot in the response,

Figure 4.4.
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10 20 30 40 50 60

samples [k]

Figure 4.4: Computed ZV input and simulated output. Top: Step up
model. Bottom: Step down model. In each plot: data from the LASER
experiment (solid line), simulated response of the system to ZV input (dotted
line), and ZV shaped input (dashed line).

The overshoot and undershoot in the response of the systems is reduced and the delay

is negligible. The response matches the original behavior.

As a second approach, we apply triangular FIR filters of order of 10 and 20 to

illustrate their behavior. Results are shown in Figure 4.5.

10 20 30 40 50 60

samples [k]

Figure 4.5: FIR filters. Top: Step up model. Bottom: Step down model.
In each plot: data from the LASER experiment (solid line), response and
input for the 10th order (red dotted and dashed line), response and input for
the 20th order (black dotted and dashed line).
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The overshoot and undershoot in the response, for both triangular FIRs, is clearly

smoother, but the delay is proportional to the order of the filter.

Figure 4.6 and Figure 4.7 show a comparison of the system input and response,

with the ZV input shaper and FIR filters.
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Figure 4.6: Step up model. In each plot: data from LASER experiment
(solid blue line), data from G−1 (solid green line), data from ZV (magenta
dotted line), 10th order FIR filter (red dashed line), and 20th order FIR filter
(black dashed line).
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Figure 4.7: Step down model. In each plot: data from LASER experiment
(solid blue line), data from G−1 (solid green line), data from ZV (magenta
dotted line), 10th order FIR filter (red dashed line), and 20th order FIR filter
(black dashed line).
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4.2 Application of Convex Optimization

4.2.1 Two-Mass system Experiment

In this example, we are not considering having a desired output trajectory vec-

tor (e.g. ydes). We are only exercising an approach constraint on the output and a

limit in the input. Figure 4.8 shows the optimization for the Two-mass system, com-

pared with the data from the experiment. The overshoot is completely removed and

the response is steady at around the half of the samples than the original experiment.
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Figure 4.8: Optimization for Two-Mass system. Top: System responses.
Bottom: System inputs. In each plot: data from Two-Mass experiment (blue
dashed line), and optimization (green solid line).

4.2.2 LASER Pulse Length Experiment

From the inverse model, we have a desired output trajectory (in a vector),

shown in Figure 3.1 as the ideal system response. We want to minimize the peak

on the output behavior and have an output that matches the defined ideal system

response.
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Figure 4.9 and Figure 4.10 show the optimization for each model. We can

clearly identify the peak on the input computed from the inverse model and the peak

on the computed optimal input. The values are close, but with the optimization we

can see the input constraint. Due to this constraint on the input value, we see a delay

on the output reaching the ideal system response, but the difference is negligible.
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Figure 4.9: Optimization for step up model. Top: System responses. Bot-
tom: System inputs. In each plot: desired data from inverse model (solid
line), and optimization (dashed line).
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Figure 4.10: Optimization for step down model. Top: System responses.
Bottom: System inputs. In each plot: desired data from inverse model (solid
line), and optimization (dashed line).
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Doing an approach where we don’t have a desired output trajectory vector,

we exercise a set of constraints on the output and limits in the input.

There are two important parameters to consider when defining output con-

straints: y1 and k∗.

First, if y1 is larger than necessary and k∗ is too short, the amplitude of the

response will increase in order to reach the target response within the time frame.

Second, if k∗ is too long, the response signal will not settle to the target value, but will

oscillate about the target response until the k∗ point is reached, this as a response to

the oscillation of the input signal that will oscillate until k∗ is reached. This is clearly

reflected in Figure 4.11, exemplifying the step up model with an ideal k∗, and a k∗

longer than required.
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Figure 4.11: Optimization for system up model varying k∗. Top: System
responses. Bottom: System inputs. In each plot: desired data from inverse
model (green solid line), optimization with optimal k∗ (blue solid line), and
optimization with long k∗ (red dashed line).
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4.3 A different “ideal input” for the LASER pulse

Experiment

As mentioned in Chapter 3, Figure 3.1, we computed an ideal input with the

use of the model inverse, based on the ideal response. A new smoother approach

as ideal response will be defined for each system. The new ideal inputs/outputs are

shown in Figure 4.12.

10 20 30 40 50 60

Figure 4.12: Computed Input from G−1 based on a new ideal system re-
sponse.

Going again trough the optimization process with these new signals, Figure

4.13 and Figure 4.14 show the results. Since the changes on the ideal inputs were not

significant, only smoother, the optimization results are similar. However, this new

input might be a more feasible approach for the existing firmware.



31

10 20 30 40 50 60 70 80 90

Figure 4.13: Optimization for system up model.

10 20 30 40 50 60 70 80 90

Figure 4.14: Optimization for system down model.

4.4 MILP and Fractional MILP

It might not be physically possible for a particular plant to generate the input

from convex optimization. Following the same approach as in convex optimization,

we exercise a MILP approach.

We can see the results for each are very similar to those in the convex opti-

mization shown in Figure 4.8 and Figure 4.9. The inputs have a very similar path

to the ones in convex optimization, but as in staircase due to the fractional/integer
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limits.

4.4.1 Two-mass System experiment

The values are based in a MILP approach, but restricted to integers. For the

two-mass system, we use the fractional MILP, since the maximum value is approx.

0.7072 and it is not possible to create an integer restricted input, as there is no range

of integers in the input values.

To solve this, we set the input u(k) multiplied by a factor, defined as xz, to

create a range of integers. At the end, a filter 1
xz

is applied before the plant Gm1. The

factor xz is 40, giving an input range of u(k) = {0, 1, 2, ..., 28}. The obtained inputs

passes through a 1
xz

filter, thus the real input is u(k) = {0, 1/40, 2/40, ..., 28/40}.

Figure 4.15 shows the results of the fractional MILP technique applied to the

two-mass system.
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Figure 4.15: Computed fractional MILP and simulated response for two-
mass system. Top: System responses. Bottom: System inputs. In each plot:
data from two-mass experiment (blue dashed line), and MILP (solid green
line)
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4.4.2 LASER pulse length experiment

For the LASER system, we use the MILP approach directly, since input u(k)

allows a wide range of integers. Figure 4.16 shows the results of MILP technique

applied to the LASER experiment.
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Figure 4.16: Computed MILP input and simulated response for step up
model. Top: System responses. Bottom: System inputs. In each plot:
desired data from inverse model (blue solid line), and MILP (green solid
line)

This method would the ideal for the LASER experiment since input, u(k), is restricted

to integers.

4.5 The Two-mass system equations derived from

the dynamic system

The derivation of the equations for the two-mass system is a more clear way

to show some results. Though the model is only ideal and does not reflect the real

behavior, it is a way to make a clean and clear example of convex optimization, MILP
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and fractional MILP. Back to the initial system on Figure 1.1 we derive the equations

[11].

The derivation of the equations of motion along with a Laplace transform,

results in a transfer function model G(s) with

y(s) = G(s)u(s), (4.1)

that relates the Laplace transformed input force u(s) and output signal y(s) = x1(s)

or x2(s). In the case where the output is chosen as y(s) = x1(s), the transfer function

G1(s) is given by

G1(s) =
b2s

2 + b1s+ b0
a4s4 + a3s3 + a2s2 + a1s+ a0

, (4.2)

whereas for the output y(s) = x2(s), the transfer function G2(s) is given by

G2(s) =
b0

a4s4 + a3s3 + a2s2 + a1s+ a0
, (4.3)
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where the coefficients bi, i = 0, 1, 2 and aj are determined by

b2 = m2,

b1 = d2,

b0 = k2,

a4 = m1m2,

a3 = m1d2 +m2d1,

a2 = k2m1 + (k1 + k2)m2 + d1d2,

a1 = (k1 + k2)d2 + k2d1,

a0 = k1k2.

(4.4)

The step-response for G1(s) is shown in Figure 4.17. We can see the oscillation

in the response and then a settling in the later samples.
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Figure 4.17: Step-response for the Two-Mass System.

The convex optimization for the two-mass system shows a reduction in the

oscillation from the response in a short time, Figure 4.18.
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Figure 4.18: MILP for Two-mass system. Top: Optimization response.
Bottom: Optimization input.

As a first test, we limit the input values to integers. Figure 4.19 shows the

MILP response for the Two-Mass System. In this case the example is of binary type,

since it is simulating a step input and the allowed values are 0 and 1.
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Figure 4.19: MILP for Two-mass system. Top: Optimization response.
Bottom: Optimization input.

To smooth the MILP response, we will use a ‘fractional’ MILP approach. The

values will be based in a MILP approach, but restricted to u(k) = {0, 0.2, 0.4, 0.6,

0.8, 1}. This is achieved by setting an input from u(k) = {0, 1, 2, 3, 4, 5} and having
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Figure 4.20: Fractional MILP for Two-mass system. Top: Optimization
response. Bottom: Optimization input.

The response is better since the input is not of binary type, Figure 4.20. There

is a smoother response from the initial shown in Figure 4.19. The response from

fractional MILP is similar to the convex optimization response, with the advantage

that the input values are restricted.



Chapter 5

Experimental Verification

We applied the diverse input shaping techniques, such as inverse model, ZV,

FIR filters and convex optimization, for the two-mass and LASER systems. In general

the conclusion is that the inverse model is the best approach, if you can perform it.

When it is not possible, convex optimization is the best technique.

In order to test the convex optimization technique, we utilized the ECP 210

from which the data from the original experiment was obtained. The MILP settling

time is fast and the control signals are fairly aggressive, so we decided not to test

MILP. In order to find a good compromise, we test the convex optimization input.

The obtained input in Figure 4.8 is loaded as a trajectory (trj) file in the ECP.

The results are shown in Figure 5.1. The response accurately tracks the prediction.
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Figure 5.1: Computed optimization input and simulated response for two-
mass system. Top: System responses. Bottom: System inputs. In each plot:
calculated optimization data (green solid line), and ECP test obtained data
(blue dashed line).



Chapter 6

Conclusions

We have shown different possibilities available when analyzing the input-

output data result of a step experiment.

1. Step input experiment and data collection. For the two experiments shown in

this thesis, the two-mass system and the LASER pulse length, we have a step

input and its response.

2. System identification process. In this case, we are working with data from

step input experiments, thus the use of the realization algorithm for step input

experiments.

3. Identify the best response based on different input approaches (ZV, filter, opti-

mization, etc.). We are analyzing the ZV option, which gives a great improve-

ment. The FIR filters provide a good response for the LASER system, at the

cost of delay in the response. This might be negligible for some systems, but in

most cases time is a factor to consider. Inverse model and convex optimization

give a combination of an ideal result in the best time possible.
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4. Evaluate if the system can perform the required input for the given best re-

sponse. We have to consider hardware restrictions, since it might not be capable

of setting the input values, e.g. the MILP option is a solution for the hardware

restrictions.

The real definitions for each experiment are: a) the freedom the system allows

in an input rate change, and b) the constraints in the response (e.g. overshoot) and

input limits. If the system cannot perform the required input, Steps 3 and 4 iterate

until the best response is obtained.

This work has presented a method for modeling a system as well as available

options for achieving a desirable response. The initial delay and response definitions

are the constraints: the overshoot/undershoot allowed as an initial response and the

time to have a steady response.

We can see convex optimization as the best option for any system, since we

can have a restricted input and response within the optimal time.
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