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Does Science Advance One Funeral at a Time?†

By Pierre Azoulay, Christian  Fons-Rosen, and Joshua S. Graff Zivin*

We examine how the premature death of eminent life scientists alters 
the vitality of their fields. While the flow of articles by collaborators 
into affected fields decreases after the death of a star scientist, the 
flow of articles by  non-collaborators increases markedly. This surge 
in contributions from outsiders draws upon a different scientific cor-
pus and is disproportionately likely to be highly cited. While outsid-
ers appear reluctant to challenge leadership within a field when the 
star is alive, the loss of a luminary provides an opportunity for fields 
to evolve in new directions that advance the frontier of knowledge. 
(JEL I23, O31, O33)

A new scientific truth does not triumph by convincing its opponents and 
making them see the light, but rather because its opponents eventually die, 
and a new generation grows up that is familiar with it.

—Max Planck

Whether manna from heaven or the result of the purposeful application of 
research and development, technological advances play a foundational role in 
all modern theories of economic growth (Solow 1957, Romer 1990, Aghion and 
Howitt 1992). Only in the latter part of the nineteenth century, however, did tech-
nological progress start to systematically build upon scientific foundations (Mokyr 
1992, 2002). Economists, in contrast to philosophers, historians, and sociologists 
(Kuhn 1962, Shapin 1996, Merton 1973), have devoted surprisingly little effort to 
understanding the processes and institutions that shape the evolution of science.1 

1 A notable exception is the theoretical model of scientific revolutions developed by Bramoullé and  Saint-Paul 
(2010).
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How do  researchers identify problems worthy of study and choose among potential 
approaches to investigate them?

Presumably these choices are driven by a quest for recognition and scientific 
glory, but the view that scientific advances are the result of a pure competition 
of ideas, one where the highest quality insights inevitably emerge as victorious, 
has long been considered a Panglossian but useful foil (Kuhn 1962, Akerlof and 
Michaillat 2017). Indeed, the provocative quote from Max Planck in the epigraph of 
this paper underscores that even the most celebrated scientist of his era understood 
that the pragmatic success of a scientific theory does not entirely determine how 
quickly it gains adherents, or its longevity.

Can the idiosyncratic stances of individual scientists do much to alter, or at least 
delay, the course of scientific advance? Perhaps for the sort of scientific revolutions 
that Planck, the pioneer of quantum mechanics, likely had in mind, but the proposi-
tion that established scientists are slower than novices in accepting  paradigm-shifting 
ideas has received little empirical support whenever it has been put to the test (Hull, 
Tessner, and Diamond 1978; Gorham 1991; Levin, Stephan, and Walker 1995). 
Paradigm shifts are rare, however, and their very nature suggests that once they 
emerge, it is exceedingly costly to resist or ignore them. In contrast, “normal” scien-
tific advance, the regular work of scientists theorizing, observing, and experiment-
ing within a settled paradigm or explanatory framework, may be more susceptible 
to political jousting. The absence of new  self-evident and  far-reaching truths means 
that scientists must compete in a crowded intellectual landscape, sometimes sav-
agely, for the supremacy of their ideas (Bourdieu 1975).

In this paper, we use a  difference-in-differences setup to test “Planck’s Principle” 
in the context of academic biomedical research, an enormous domain which has 
been the province of normal scientific change ever since the “central dogma” of 
molecular biology (Crick 1970) emerged as a unifying description of the informa-
tion flow in biological systems. Specifically, we examine how the premature death 
of 452 eminent scientists alter the vitality (measured by publication rates and fund-
ing flows) of subfields in which they actively published in the years immediately 
preceding their passing, compared to matched control subfields. In contrast with 
prior work that focused on collaborators (Azoulay, Graff Zivin, and Wang 2010; 
Oettl 2012; Jaravel, Petkova, and Bell 2018; Mohnen 2018), our work leverages 
new tools to define scientific subfields which allows us to expand our focus to the 
response by scientists who may have similar intellectual interests with the deceased 
stars without ever collaborating with them.

To our surprise, it is not competitors from within a subfield who assume the 
mantle of leadership, but rather entrants from other fields who step in to fill the void 
created by a star’s absence. Importantly, this surge in contributions from outsiders 
draws upon a different scientific corpus and is disproportionately likely to be highly 
cited. Thus, consistent with the contention by Planck, the loss of a luminary pro-
vides an opportunity for fields to evolve in novel directions that advance the scien-
tific frontier. The rest of the manuscript is dedicated to elucidating the mechanisms 
responsible for this phenomenon.

It does not appear to be the case that stars use their influence over financial or 
editorial resources to block entry into their fields, but rather that the very prospect 
of challenging a luminary in the field serves as a deterrent for entry by outsiders. 
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Indeed, most of the entry we see occurs in those fields that lost a star who was espe-
cially accomplished. Even in those fields that have lost a particularly bright star, 
entry can still be regulated by key collaborators left behind. We find suggestive evi-
dence that this is true in fields that have coalesced around a narrow set of techniques 
or ideas or where collaboration networks are particularly  tight-knit. We also find that 
entry is more anemic when key collaborators of the star are in positions that allow 
them to limit access to funding or publication outlets to those outside the club that 
once nucleated around the star.

To our knowledge, this manuscript is the first to examine the dynamics of scien-
tific evolution using the standard empirical tools of applied microeconomics.2 We 
conceptualize the death of eminent scientists as shocks to the structure of the intel-
lectual neighborhoods in which they worked several years prior to their death, and 
implement a procedure to delineate the boundaries of these neighborhoods in a way 
that is scalable, transparent, and does not rely on ad hoc human judgment. The con-
struction of our dataset relies heavily on the PubMed Related Citations Algorithm 
(PMRA), which groups scientific articles into subfields based on their intellectual 
content using abstract words, title words, and very detailed keywords drawn from 
a controlled vocabulary thesaurus curated by the National Library of Medicine. As 
such, we are able to delineate circumscribed areas of scientific inquiry whose bound-
aries are not defined by shared training, collaboration, or citation relationships.

In addition to providing evidence regarding a central question for scholars study-
ing the scientific process, our paper is among the very few economic studies that 
attend to the ways in which scientists position themselves in intellectual space (cf. 
Borjas and Doran 2015a, b and Myers 2018 for other notable examples). As such, 
our work can be understood as integrating the traditional concerns of economists, 
understanding how incentives and institutions influence the rate of knowledge pro-
duction or diffusion, with those of cognate disciplines such as sociology and philos-
ophy, who have traditionally taken the direction of scientific change as the central 
problem to be explained.

The rest of the paper proceeds as follows. In the next section, we examine the 
institutional context and lay out our broad empirical strategy. In Section II, we then 
turn to data, methods, and descriptive statistics. We report the results in Section III. 
Section IV concludes by outlining the implications of our findings for future work.

I. Institutional Context and Empirical Design

Our empirical analyses are centered on the academic life sciences. The merits of 
this focus are several-fold. First, the field has been an important source of scientific 
discovery over the past half-century. Many modern medical therapies can trace their 
origins to research conducted in academic laboratories (Sampat and Lichtenberg 

2 Considerable work outside of economics has examined the evolution of scientific fields through network and 
community detection techniques (e.g., Rosvall and Bergstrom 2008; Börner, Chen, and Boyack 2003; cf. Fortunato 
and Hric 2016 for a review of this  fast-evolving research area). These approaches rely on collaboration or citation 
links to define the vertices of the knowledge network used to partition a scientific space into subfields. While social 
scientists have utilized these techniques to explain a wide range of phenomena (e.g., Foster, Rzhetsky, and Evans 
2015), these approaches are less  well suited to our setting where citation and collaboration are among the primary 
outcomes of interest.
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2011; Li, Azoulay, and Sampat 2017). These discoveries, in turn, have generated 
enormous health and welfare gains for economies around the world.

Second, the life science research workforce is large and specialized. The Faculty 
Roster of the Association of American Medical Colleges lists more than 200,000 
faculty members employed in US medical schools and academic medical centers 
in 2015.3 Moreover, scientific discoveries over the past  half-century have greatly 
expanded the knowledge frontier, necessitating increasing specialization by research-
ers and a greater role for collaboration (Jones 2009). If knowledge and techniques 
remain at least partially tacit long after their initial discovery,  tightly-knit research 
teams may be able to effectively control entry into intellectual domains. The size and 
maturity of this sector, including its extensive variety of  narrowly defined subfields, 
makes it an ideal candidate for an inquiry into the determinants of the direction of 
scientific effort in general, and how it is influenced by elite scientists in particular.

Third, the academic research setting also offers the practical benefits of an exten-
sive paper trail of research inputs, outputs, and collaboration histories. On the input 
side, reliance of researchers on one agency for the majority of their funding raises 
the possibility that financial gatekeeping by elite scientists could be used to regulate 
entry into scientific fields. Data on NIH funding at the individual level, as well as 
membership in “study sections” (the  peer-review panels that evaluate the scientific 
merits of grant applications) will allow us to examine such concerns directly. Most 
importantly for our study, the principal output of researchers (publications) are all 
tagged by a controlled vocabulary of keywords managed by the National Library 
of Medicine. This provides the raw material that helps delineate scientific subfields 
without appealing to citation linkages or collaborative relationships (the specifics of 
this process are described in detail in Section IIB and online Appendix C).

These many virtues, however, may come at the expense of generalizability. While 
the life sciences span a wide range of research styles, from  small-team  data-driven 
epidemiology, to  medium-size laboratories under the helm of a single principal 
investigator, to  large-scale  multi-institution clinical trials, most biomedical research-
ers cluster topically and socially in small,  quasi-independent subfields. This broad 
domain seldom features exceedingly small research teams (as in pure mathematics) 
or “big science” efforts where capital needs are so extensive and specialized as to 
fully consolidate the field into a single or a handful of large authorship teams (as in 
 high-energy particle physics, e.g., Aad et al. 2015). As such, one should refrain from 
applying our findings to other fields of science where the structure of collaborative 
efforts and the degree of intellectual  clustering are likely to generate different pat-
terns of succession, compared to those observed in the life sciences.

Accounts by practicing scientists indicate that collaboration plays a large role in 
both the creation and diffusion of new ideas (Reese 2004), and historians of science 
have long debated the role of controversies and competition in shaping the direc-
tion of scientific progress and the process through which new subfields within the 
same broad scientific paradigm are born and grow over time (Hull 1988, Morange 
1998, Shwed and Bearman 2010). Our study presents a unique opportunity to test 

3 This figure excludes life science academics employed in graduate schools of arts and science or other 
 non-medical school settings such as MIT, Rockefeller University, The Salk Institute, UC Berkeley, the intramural 
campuses of NIH, etc.
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some of their insights in a way that is more systematic and can yield generalizable 
insights on the dynamics of field evolution.

II. Empirical Design, Data, and Descriptive Statistics

Below, we provide a detailed description of the process through which the 
matched scientist/subfield dataset used in the econometric analysis was assembled. 
We begin by describing the criteria used to select our sample of superstar academics, 
with a particular focus on “extinction events,” the set of subfields in which these sci-
entists were active prior to their death and the procedure followed to delineate their 
boundaries. Finally, we discuss the matching procedure implemented to identify 
control subfields associated with eminent scientists who did not pass away but are 
otherwise similar to our treatment group.

A. Superstar Sample

Our basic approach is to rely on the death of “superstar” scientists as a lever to 
estimate the extent to which the production of knowledge in the fields in which they 
were active changes after their passing. The study’s focus on the scientific elite can 
be justified both on substantive and pragmatic grounds. The distribution of publica-
tions, funding, and citations at the individual level is extremely skewed (Lotka 1926, 
de Solla Price 1963) and only a tiny minority of scientists contribute, through their 
published research, to the advancement of science (Cole and Cole 1972). Stars also 
leave behind a corpus of work and colleagues with a stake in the preservation of 
their legacy, making it possible to trace back their careers, from humble beginnings 
to wide recognition and acclaim.

The elite academic life scientist sample includes 12,935 individuals, which corre-
sponds to roughly 5 percent of the entire relevant labor market. In our framework, a 
scientist is deemed elite if they satisfy at least one of the following criteria for cumu-
lative scientific achievement: (i) highly funded scientists; (ii) highly cited scientists; 
(iii) top patenters; and (iv) members of the National Academy of Sciences or of 
(v) the National Academy of Medicine. Since these criteria are based on extraordinary 
achievement over an entire scientific career, we augment this sample using additional 
criteria to capture individuals who show great promise at the early and middle stages 
of their scientific careers ( so-called “shooting stars”). These include (vi) NIH MERIT 
awardees; (vii) Howard Hughes Medical Investigators; and (viii) early career prize 
winners. Online Appendix A provides additional details regarding these metrics of 
“superstardom” and explores the sensitivity of our core set of results to the type of 
scientists (“cumulative stars” versus “shooting stars”) included in the sample.

For each scientist, we reconstruct their career from the time they obtained their 
first position as independent investigators (typically after a postdoctoral fellowship) 
until 2006. Our dataset includes employment history, degree held, date of degree, 
gender, and department affiliations as well as complete list of publications, patents, 
and NIH funding obtained in each year by each scientist.4

4 Online Appendix B details the steps taken to ensure that the list of publications is complete and accurate, even 
in the case of stars with frequent last names. Though we apply the term of “star” or “superstar” to the entire group, 
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The 452 scientists who pass away prematurely, and who are the particular focus 
of this paper, constitute a subset of this larger pool of 12,935. To be included in 
our sample, their deaths must intervene between 1975 and 2003 (this allows us to 
observe at least three years’ worth of scientific output for every subfield after the 
death of a superstar scientist). Although we do not impose any age cutoff, the median 
and mean age at death is 61 with 85 percent of these scientists having passed away 
before the age of 70 (we explore the sensitivity of our results to the age at death 
in online Appendix E). We also require evidence, in the form of published articles  
and/or NIH grants, that these scholars were still in a scientifically active phase of 
their career in the period just preceding their death (this is the narrow sense in which 
we deem their deaths to have occurred prematurely).

Within this sample, 229 (51 percent) of these scientists pass away after a pro-
tracted illness, whereas 185 (41 percent) die suddenly and unexpectedly. We were 
unable to ascertain the particular circumstances of 37 (8.20 percent) death events.5 
Table 1 provides descriptive statistics for the deceased superstar sample. The median 
star received her degree in 1957 and died at the age of 61. Forty percent of the stars 
hold an MD degree (as opposed to a PhD or MD/PhD), and 90 percent of them are 
male. On the output side, the stars each received an average of roughly $16.6 mil-
lion in NIH grants, and published 138 papers that garnered 8,341 citations over the 
course of their careers (as of 2015).

B. Delineating Research Fields

The source of the publication data is PubMed, an online resource from the 
National Library of Medicine that provides fast, free, and reliable access to the bio-
medical research literature. PubMed indexes more than 40,000 journals within the 
life sciences.

To delineate the boundaries of the research fields in which each deceased star was 
active, we develop an approach based on topic similarity between each article where 
the star appeared as a last author in a window of five years prior to her death, and the 
rest of the scientific literature.6 Specifically, we use the PubMed Related Citations 
Algorithm (Lin and Wilbur 2007) which relies heavily on Medical Subject Headings 
(MeSH), but not in any way on citation or collaboration linkages.

MeSH terms constitute a controlled vocabulary maintained by the National 
Library of Medicine that provides a very  fine-grained partition of the intellectual 
space spanned by the biomedical research literature. Importantly for our purposes, 
MeSH keywords are assigned to each publication by professional indexers who 
focus solely on their scientific content. That said, the PubMed Related Citations 
Algorithm—hereafter, PMRA—also uses title and abstract words as inputs, which 

there is substantial heterogeneity in intellectual stature within the sample (see Table 1).
5 Online Appendix Table A3 provides the full list of deceased superstars, together with their year of birth and 

death, cause of death, institutional affiliation at the time of their passing, and a short description of their research 
expertise.

6 A robust social norm in the life sciences systematically assigns last authorship to the principal investigator, first 
authorship to the junior author who was responsible for the conduct of the investigation, and apportions the remain-
ing credit to authors in the middle of the authorship list, generally as a decreasing function of the distance from the 
extremities (Zuckerman 1968, Nagaoka and Owan 2014). Only in the case of last authorship can we unambiguously 
associate the star with a subfield.
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are selected by the authors, and may reflect their aspirations. While this raises the 
possibility that our subfield definitions are not impervious to social influences, it 
does offer one advantage, namely that our subfield boundaries can quickly reflect 
the emergence of new terms whose inclusion in the official MeSH thesaurus will 
occur with some lag.7 Regardless, as will become clear in the next section, our 
 difference-in-differences design alleviates the concern that idiosyncratic features of 
PMRA might affect our conclusions, since these would influence treatment and con-
trol subfields in a symmetric fashion.

We then use the “Related Articles” function in PubMed to harvest journal articles 
that are intellectually proximate to the star scientists’ own papers in the last five 
years of her life.8 Online Appendix C describes the algorithm in more detail and per-
forms extensive robustness checks. In particular, we verify that the cutoff rules used 
by PMRA to generate a set of intellectual neighbors for a given source article do not 
induce treated subfields to exhibit idiosyncratic truncation patterns, from above or 
from below, compared to control subfields. Using a tunable version of PMRA, we 
also assess the robustness of our core results to manipulations of these cutoff rules. 
Reassuringly, our results are qualitatively similar regardless of the rule employed.

To fix ideas, consider “The Transcriptional Program of Sporulation in Budding 
Yeast” (PubMed ID 9784122), an article published in the journal Science in 1998 
originating from the laboratory of Ira Herskowitz, an eminent UCSF biologist who 
died in 2003 from pancreatic cancer. As can be seen in online Appendix Figure C4, 
PMRA returns 72 original related journal articles for this source publication. Some 
of these intellectual neighbors will have appeared before the source to which they are 

7 Importantly, defining subfields as isomorphic to the set of articles related (in a  PMRA-sense) to a source article 
does not imply a fixed number of articles per subfield. On the contrary,  PMRA-generated subfields can be of arbi-
trary large size. In online Appendix C, we document the variation in subfield size and explore the sensitivity of our 
results to alternate subfield definitions, including those that exclude potentially endogenous intellectual linkages.

8 To facilitate the harvesting of  PubMed-related records on a large scale, we have developed an  open-source 
software tool that queries PubMed and PMRA and stores the retrieved data in a MySQL database. The software is 
available for download at http://www. stellman-greene.com/FindRelated/. Prior research leveraging the intellectual 
linkages between articles generated by PMRA include Azoulay et al. (2015, 2019), and Myers (2018).

Table 1—Summary Statistics: Deceased Superstar Scientists

Mean Median SD Min. Max.

Year of birth 1930.157 1930 11.011 1899 1959
Degree year 1957.633 1957 11.426 1928 1986
Year of death 1991.128 1992 8.055 1975 2003
Age at death 60.971 61 9.778 34 91
Female 0.102 0 0.303 0 1
MD degree 0.403 0 0.491 0 1
PhD degree 0.489 0 0.500 0 1
MD/PhD degree 0.108 0 0.311 0 1
Sudden death 0.409 0 0.492 0 1
Number of subfields 6.805 4 7.308 1 57
Career number of pubs. 138.221 112 115.704 12 1,380
Career number of citations 8,341 5,907 8,562 120 72,122
Career NIH funding $16,637,919 $10,899,139 $25,441,933 0 $329,968,960
Sits on NIH study section 0.007 0 0.081 0 1
Career number of editorials 0.131 0 0.996 0 17

Notes: Sample consists of 452 superstar life scientists who died while still actively engaged in research. See online 
Appendix A for more details on sample construction.

http://www.stellman-greene.com/FindRelated/
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related, whereas others will have only been published after the source. Some will rep-
resent the work of collaborators, past or present, of Herskowitz’s, whereas others will 
represent the work of scientists he may never have come in contact with during his life, 
much less collaborated with. The salient point is that nothing in the process through 
which these related articles are identified biases us toward (or away from) articles by 
collaborators, frequent citers of Herskowitz’s work, or  co-located researchers.

Consider now the second  most-related article to Herskowitz’s Science paper 
listed in online Appendix Figure  C4, “Phosphorylation and Maximal Activity 
of Saccharomyces  cerevisiae  Meiosis-Specific Transcription Factor Ndt80 Is  
Dependent on Ime2.” Online Appendix Figure C5 displays the MeSH terms that 
tag this article along with its source. As a byproduct, PMRA also provides a car-
dinal dyadic measure of intellectual proximity between each related article and 
its associated source article. In this particular instance, the relatedness score of 
“Phosphorylation …” is 94 percent, whereas the relatedness score for the most dis-
tant related article in Figure C4, “Catalytic roles of yeast …,” is only 62 percent.

In the five years prior to his death (1998–2002), Herskowitz was the last author on 
12 publications, the publications most closely associated with his position as head of 
a laboratory. For each of these source publications, we treat the set of publications 
returned by PMRA as constituting a distinct subfield, and we create a subfield panel 
dataset by counting the number of related articles in each of these subfields in each 
year between 1975 and 2006. An important implication of this data construction 
procedure is that the subfields we delineate are quite limited in scope. One window 
into the degree of intellectual breadth for subfields is to gauge the overlap between 
the articles that constitute any pair of subfields associated with the same star. In the 
sample, the 452 deceased stars account for 3,076 subfields, and 21,661 pairwise 
combination of subfields (we are only considering pairs of subfields associated with 
the same individual star). Online Appendix Figure C6 displays the histogram for the 
distribution of overlap, which is extremely skewed. A full half of these pairs exhibit 
exactly zero overlap, whereas the mean of the distribution is  0.06 . To find pairs of 
subfields that display substantial amounts of overlap (for example, one-half of the 
articles in subfield 1 also belong in subfield 2), one must reach far into the right tail 
of the distribution, specifically, above the ninety-eighth percentile.

As such, the subfields we delineate are relatively  self-contained. Performing the 
analysis at the level of the subfield, rather than lumping together all the subfields 
of an individual star, will provide us with an opportunity to exploit variation in the 
extent of participation of the star within each of her subfields. We will also check 
the validity of the main results when rolling the data up from the subfield level to 
the star level in online Appendix F. Finally, since even modest amounts of overlap 
entail that the observations corresponding to the subfields of individual stars will 
not be independent in a statistical sense, we will cluster standard errors at the level 
of the star scientist.9

9 The compactness of these subfields likely reflect the technology of research within the life sciences, a similar 
exercise performed in a different domain of science, particularly those characterized by large collaborative projects, 
might well result in subfields with substantially more overlap.
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C. Identification Strategy

Given our interests in the effect of superstar death on entry into scientific sub-
fields, our empirical strategy is focused on changes in published research output 
after the superstar passes away, relative to when she was still alive. To ensure that 
we are estimating the effect of interest and not some other influence that is cor-
related with the passage of time, our specifications include age and period effects, 
as is the norm in studies of scientific productivity (Levin and Stephan 1991). These 
temporal controls are tantamount to using subfields that lost a superstar in earlier 
or later periods as an implicit control group when estimating entry into subfields 
that currently experienced the death of a superstar. If the death of a superstar only 
represented a  one-time shift in the level of entry into the relevant subfields, this 
would not be problematic. But if these unfortunate events affect trends, and not 
simply levels, of scientific activity, this approach may not suffice to filter out the 
effect of  time-varying omitted variables, even when flexible age and calendar time 
controls are included in the econometric specification. One tangible concern about 
 time-varying effects relates to the life cycle of subfields, where productive potential 
may initially increase over time before peaking and then slowly declining.

To mitigate this threat to identification, our preferred empirical strategy relies 
on the selection of a matched scientist/subfield for each treated scientist/subfield. 
These control observations are culled from the universe of subfields in which super-
stars who do not die are active (see Section IIA and online Appendix D). Combining 
the treated and control samples enables us to estimate the effect of superstar death 
in a  difference-in-differences framework. Online Appendix Figure D1 illustrates the 
procedure used to identify control subfields in the particular case of the Herskowitz 
publication highlighted above.

We begin by looking at all the articles that appeared in the same journal and in the 
same year as the treated source articles. From this set of articles, we keep only those 
that have one of the  still-living superstars in the last authorship position. Then, using 
a “coarsened exact matching” procedure detailed in online Appendix D, the control 
source articles are selected such that (i) the number of authors in the treated and 
control are approximately similar; (ii) the age of the treated and control superstars 
differ by no more than five years; and (iii) the number of citations received by the 
treated and source article are similar. For the Herskowitz/“sporulation in budding 
yeast” pair, we can select ten control articles in this way. All of these controls were 
also published in Science in 1998, and have between five and seven authors. One 
of these controls is “Hepatitis C Viral Dynamics in Vivo … ,” whose last author is 
Alan Perelson, a biophysicist at Los Alamos National Lab. Perelson and Herskowitz 
obtained their PhD only a year apart. The two papers had received 514 and 344 
citations respectively by the end of 2003. Though this is a large difference, this 
places both well above the ninety-ninth percentile of the citation distribution for 
 five-year-old articles published in 1998.

One potential concern with the addition of this “explicit” control group is that 
control subfields could be affected by the treatment of interest. What if, for instance, 
a control source article happens to be related (in a PMRA sense) with the treated 
source? Because the subfields identified by PMRA are narrow, this turns out to be 
very infrequent. Nonetheless, we remove all such instances from the data. We then 



2898 THE AMERICAN ECONOMIC REVIEW AUGUST 2019

find all the intellectual neighbors for these control source articles using PMRA; a 
control subfield is defined by the set of related articles returned by PMRA, in a man-
ner that is exactly symmetric to the procedure used to delineate treated subfields. 
When these related articles are parsed below to distinguish between those published 
by collaborators and  non-collaborators of the star, or between those by intellectual 
outsiders and insiders, covariates for treated and control observations will always be 
defined with perfect symmetry.

D. Descriptive Statistics

The procedure described above yields a total of 34,218 distinct subfields; 3,076 
subfields correspond to one of the 452 dead scientists, whereas 31,142 subfields cor-
respond to one of 5,809  still-living scientists. Table 2 provides descriptive statistics 
for control and treated subfields in the baseline year, i.e., the year of death for the 
deceased scientist.10

Covariate Balance.—In the list of variables displayed in Table 2, a number of 
covariates are balanced between treated and control subfields solely by virtue of the 
coarsened exact matching procedure: for instance, (star) investigator year of degree, 
the source article number of authors, or the source article number of citations at 
baseline. However, there is nothing mechanical to explain the balance between 
treated and control subsamples with respect to the stock of our main outcome vari-
able: the number of articles in the star’s field. Figure 1 compares the distributions 
of the cumulative number of articles published in our sample of subfields up to the 
year of death, broken down by treatment status. Overall, one can observe a great 
deal of overlap between the two histograms; the means and medians are virtually 
identical. Of course, balance in the levels of the outcome variable is not technically 
required for the validity of the empirical exercise.11 Yet, given the ad hoc nature of 
the procedure used to identify control subfields, this degree of balance is reassuring.

Another happy byproduct of our matching procedure is that treated and control 
scientists also appear quite similar in the extent of their eminence at the time of 
(counterfactual) death, whether such eminence is measured through NIH funding, 
the number of articles published, or the number of citations these articles received.

Collaborators versus  Non-Collaborators.—One critical aspect of the empirical 
analysis is to distinguish between collaborators and  non-collaborators of the star 
when measuring publishing activity in a subfield. It is therefore crucial to describe 
how this distinction can be made in our data. Information about the superstars’ 
colleagues stems from the Faculty Roster of the Association of American Medical 
Colleges (AAMC), to which we secured licensed access for the years 1975 through 
2006, and which we augmented using NIH grantee information (cf. Azoulay, Graff 
Zivin, and Wang 2010 for more details).

10 We can assign a counterfactual year of death for each control subfield, since each control subfield is associ-
ated with a particular treated subfield through the matching procedure described above.

11 What is required is that the trends in publication activity be comparable between treated and control subfields 
up until the death of the treated scientist. We verify that this is the case below.
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An important implication of our reliance on these sources of data is that we can 
only identify authors who are faculty members in US medical schools, or recipients 
of NIH funding. We cannot systematically identify scientists working for indus-
trial firms, or scientists employed in foreign academic institutions.12 The great 
benefit of using AAMC data, however, is that they ensure we have at our disposal 
both demographic and employment information for every individual in the rele-
vant labor market: their (career) age, type of degree awarded, place of employ-
ment, gender, and research output, whether measured by publications or NIH  
grants.

To identify authors, we match the authorship roster of each related article in 
one of our subfields with the AAMC roster.13 We tag as a collaborator any author 

12 We can identify trainees who later go on to secure a faculty position, but not those who do not stay in 
academia.

13 We limit ourselves to authors with relatively infrequent names. Though this may create some measurement 
error, there is no reason to suspect that the wrongful attribution of articles to authors will impact treated and control 
subfields in a differential way.

Table 2—Summary Statistics: Control and Treated Subfields at Baseline

Mean Median SD Min. Max.

Control subfields (observations = 31,142)
Baseline stock of related articles in the field 76.995 59 64.714 0 384
Baseline stock of related articles in the field, 
 non-collaborators

68.390 51 60.222 0 381

Baseline stock of related articles in the field, 
 collaborators

8.604 5 10.358 0 125

Source article number of authors 3.970 4 1.901 1 15
Source article citations at baseline 16.331 8 30.305 0 770
Source article long-run citations 70.427 38 116.108 1 4,495
Investigator gender 0.067 0 0.249 0 1
Investigator year of degree 1960.546 1962 10.998 1926 1991
Death year 1991.125 1991 7.968 1975 2003
Age at death 58.100 58 8.795 34 91
Investigator cumulative number of publications 164 131 123 1 1,109
Investigator cumulative NIH funding 
 at baseline

$18,784,517 $11,904,846 $25,160,518 0 $387,558,656

Investigator cumulative number of citations 12,141 8,010 12,938 9 157,581

Treated subfields (observations = 3,076)
Baseline stock of related articles in the field 76.284 58 64.046 0 368
Baseline stock of related articles in the field, 
 non-collaborators

67.752 51 59.725 0 357

Baseline stock of related articles in the field, 
 collaborators

8.532 5 9.841 0 86

Source article number of authors 3.987 4 1.907 1 14
Source article citations at baseline 16.694 8 36.334 0 920
Source article long-run citations 70.432 35 180.528 1 6,598
Investigator gender 0.099 0 0.299 0 1
Investigator year of degree 1960.141 1961 10.898 1928 1986
Death year 1991.125 1991 7.970 1975 2003
Age at death 58.100 58 8.796 34 91
Investigator cumulative number of 
publications

170 143 118 12 1,380

Investigator cumulative NIH funding 
 at baseline

$17,637,726 $12,049,690 $24,873,018 0 $329,968,960

Investigator cumulative number of citations 11,580 8,726 10,212 120 72,122

Notes: The sample consists of subfields for 452 deceased superstar life scientists and their matched control sub-
fields. See online Appendix D for details on the matching procedure. All time-varying covariates are measured in 
the year of superstar death.
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who appeared as a  coauthor of the star associated with the subfield on any pub-
lication prior to the death. Each related article is therefore assigned to one of 
two  mutually exclusive bins: the “collaborator” bin comprises the set of publi-
cations with at least one identified author who coauthored with the star prior to 
the year of death (or counterfactual death); the “ non-collaborator” bin comprises 
the set of publications with no identified author who coauthored with the star 
prior to the year of death (or counterfactual death).14 As can be seen in Table 2, 
roughly 11 percent of the publication activity at baseline can be accounted for by 
collaborators. Moreover, this proportion is very similar for control and treated 
subfields.15

A First Look at Subfield Activity.—Online Appendix Figure E1 confirms that 
the treated and control subfields are on similar trajectories in publication activ-
ity up to the time of superstar death (though they diverge after the death event). 
This provides suggestive evidence for the validity of our research design, and is 
notable since the coarsened exact matching procedure that generated the sam-
ple of control subfields did not make any use of these outcomes. Moreover, the 
absence of differential trends can be observed for overall activity, for activ-
ity restricted to collaborators of the star, and for the publishing activity of   
non-collaborators.

14 We identify the publications in the subfield for which the superstar is an author and eliminate them from these 
calculations. As a result, any decrease in activity within the subfield cannot be ascribed to the mechanical effect of 
its star passing away.

15 We define collaboration status by looking at the authorship roster for the entire corpus of work published by 
the star before or in the year of death, and not only with respect to the articles of the star that belong to the focal 
subfield.
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Figure 1. Cumulative Stock of Publications at Time of Death

Notes: We compute the cumulative number of publications, up to the year that immediately precedes the year of 
death (or counterfactual year of death) for the 3,076 treated subfields and 31,142 control subfields.
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More boldly, we can use these averages in the raw data to examine changes 
in outcomes after the death. For both treated and control subfields, the curves 
exhibit a pronounced inverted  U-shaped pattern, with activity first increasing 
until it reaches a peak roughly two years before the death of the star (or coun-
terfactual death for the control subfields and their associated stars). Activity then 
decreases steadily, but the slope of the decrease appears more pronounced for 
control subfields, relative to treated subfields (panel A). This pattern is flipped 
when examining activity due to collaborators (panel B): the relative decline 
is much more pronounced for treated subfields, which is consistent with the 
results in Azoulay, Graff Zivin, and Wang (2010). Panel C, which focuses on 
subfield activity limited to  non-collaborators, provides the first  nonparametric 
evidence that the  downward-sloping part of the activity curve is less steep for  
treated subfields.

Online Appendix Figure E1 provides a transparent illustration of subfield publi-
cation activity over time, which proceeds directly from averaging the raw data, but 
the evidence it provides should be handled with an abundance of caution. First, it 
conflates calendar time and experimental time, when in actuality the death events 
in the data occur at varying frequencies between the years 1975 and 2003. Second, 
covariates like field age are not perfectly balanced across the treated and control 
groups, since the number of control subfields is not identical across treated sub-
fields. Finally, it abstracts away from robust inference, and particularly from clus-
tering: one would expect the subfield outcomes associated with an identical star 
to be correlated. Our econometric framework, described below, addresses these 
limitations and as a result provides a more solid foundation for the estimation of 
the causal effect of star death on the dynamics of subfield activity.

III. Results

The exposition of the econometric results proceeds in stages. After a review of 
methodological issues, we provide results that pertain to the main effect of superstar 
death on subfield growth, measured by publication rates and funding flows. Next, 
we attempt to elucidate the mechanism (or set of mechanisms) at work to explain 
our most robust finding, that of relative subfield growth in the wake of a star’s pass-
ing, a growth entirely accounted for by contributions from  non-collaborators. We do 
so by examining the characteristics of the articles published by  non-collaborators, 
before turning to the characteristics of their authors. We also explore heterogeneity 
in the treatment effect through the interaction of the  post-death indicator variable 
with various attributes of the stars and the subfields.

A. Econometric Considerations

Our estimating equation relates publication or funding activity in subfield  i  in 
year  t  to the treatment effect of losing a superstar:

(1)  E [ y it   |  X it  ]  = exp [  β 0   +  β 1   AFTER_DEAT H it  

  +  β 2   AFTER_DEAT H it   × TREA T i   + f  (AG E it  )  +  δ t   +  γ i  ]  ,
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where  y  is a measure of subfield activity,  AFTER_DEATH  denotes an indicator 
variable that switches to 1 in the year after the superstar associated with  i  passes 
away,  TREAT  is an indicator variable for treated subfields,  f  (AG E it  )   corresponds 
to a flexible function of the field’s age, the   δ t    s stand for a full set of calendar year 
indicator variables, and the   γ i    s correspond to subfield fixed effects, consistent with 
our approach to analyze changes in activity within subfield  i  following the passing 
of a superstar.16

The subfield fixed effects control for many  time-invariant characteristics that 
could influence research activity, such as the need for capital equipment or the 
extent of disease burden (e.g., for clinical fields). A pregnant metaphor for the 
growth of scientific knowledge has been that of biological evolution (Hull 1988, 
Chavalarias and Cointet 2013): a field is born when new concepts are introduced, 
resulting in an accelerating production of “offspring” (articles), until the underlying 
scientific community loses its thematic coherence, ushering in an era of decline (or 
 alternatively, splitting or merging events). To flexibly account for such life-cycle 
effects, we include subfield age indicator variables (where subfield age is computed 
as the number of years since the year of publication for the source article). The 
calendar year effects filter out the effects of the general expansion of the scientific 
enterprise as measured by the number of journals and articles published each year.17

We follow Jaravel et al. (2018) in including in our specification an indicator for 
the timing of death that is common to treated and control subfields (whose effect 
will be identified by the coefficient   β 1   ) in addition to the effect of interest, an inter-
action between  AFTER_DEATH  and  TREAT  (whose effect will be identified by the 
coefficient   β 2   ). The effects of these two variables are separately identified because 
(i) death events are staggered across our observation period and (ii) control subfields 
inherit a counterfactual date of death because they are uniquely associated with a 
treated subfield through the matching procedure described in Section IIC. The inclu-
sion of the common term addresses the concern that age, calendar year, and subfield 
fixed effects may not fully account for shifts in subfield activity around the time of 
the star’s passing. If this is the case,  AFTER_DEATH  will capture the corresponding 
transitory dynamics, while  AFTER_DEATH × TREAT  will isolate the causal effect 
of interest. Empirically, we find that in some specifications, the common term has 
substantial explanatory power, though its inclusion does not  radically alter the mag-
nitude of the treatment effect.

Estimation.—The dependent variables of interest, including publication counts 
and NIH grants awarded, are skewed and  non-negative. For example, 31.40 percent 
of the subfield/year observations in the data correspond to years of no publication 
activity; the figure climbs to 56.70 percent if one focuses on the count of NIH grants 
awarded. Following a  long-standing tradition in the study of scientific and techni-
cal change, we present  quasi-maximum likelihood (QML) estimates based on the 
conditional fixed effects Poisson model developed by Hausman, Hall, and Griliches 

16 To avoid confusion, we have suppressed any subscript for the superstars. This is without loss of generality, 
since each subfield is uniquely associated with a single star.

17 It is not possible to separately identify calendar year effects from age effects in the “within subfield” dimen-
sion of a panel in a completely flexible fashion, because one cannot observe two subfields at the same point in time 
that have the same age but were born in different years (Hall, Mairesse, and Turner 2007).
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(1984). Because the Poisson model is in the linear exponential family, the coeffi-
cient estimates remain consistent as long as the mean of the dependent variable is 
correctly specified (Gouriéroux, Monfort, and Trognon 1984).

Inference.—QML (i.e., “robust”) standard errors are consistent even if the underly-
ing data-generating process is not Poisson. In fact the Hausman et al. estimator can be 
used for any  non-negative dependent variables, whether integer or continuous (Santos 
Silva and Tenreyro 2006), as long as the variance/covariance matrix is computed using 
the outer product of the gradient vector (and therefore does not rely on the Poisson 
variance assumption). Further, QML standard errors are robust to arbitrary patterns of 
serial correlation (Wooldridge 1997), and hence immune to the issues highlighted by 
Bertrand, Duflo, and Mullainathan (2004) concerning inference in DD estimation. We 
cluster the standard errors around superstar scientists in the results presented below.18

Dependent Variables.—Our primary outcome variable is publication activity in 
a subfield. However, we go beyond this raw measure by assigning the related arti-
cles that together constitute the subfield into a variety of bins. For instance, we 
can decompose publication activity in the subfield into two mutually exclusive sub-
fields: articles with a superstar on the authorship roster versus articles without a 
superstar; etc. Articles in each bin can then be counted and aggregated up to the 
subfield/year level.

Capturing funding flows at the field level is slightly more involved. PubMed sys-
tematically records NIH grant acknowledgments using grant numbers. Unfortunately, 
these grant numbers are often truncated and omit the grant cycle information that 
could enable us to pin down unambiguously the particular year in which the grant was 
awarded. When it is missing, we impute the award year using the following rule: for 
each related publication that acknowledges NIH funding, we identify the latest year in 
the  three-year window that precedes the publication during which funding was awarded 
through either a new award or a competitive renewal. To measure funding activity in 
a subfield, we create a count variable that sums all the awards received in a particular 
year, where these awards ultimately generate publications in the focal subfield.

B. Main Effect of Superstar Death

Table  3 and Figure  2 present our core results. Overall, we find that publica-
tion activity increases slightly following the death of a star scientist who was an 
active contributor to it, but the magnitude of the effect is modest (about 5.2 per-
cent) and imprecisely estimated (column 1). Yet, this result conceals a striking pat-
tern that is uncovered when we distinguish between publications by collaborators 
and  non-collaborators. The decline in publication activity accounted for by previ-
ous collaborators of the star is large, on the order of 20.7 percent (column 2). This 

18 Knowledge spillovers and scientific breakthroughs, including the adoption of research tools, could encourage 
innovation across related fields. This possibility is not entirely dealt with by clustering inference at the star level, 
since spatial dependence in knowledge space could occur between any pair of subfields, whereas clustering only 
allows for dependence among the subfields associated with the same star. As it turns out, the Poisson conditional 
fixed effects estimator also provides a consistent estimator of the variance in the presence of  time-invariant patterns 
of spatial  auto-correlation (Bertanha and Moser 2016).
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 evidence is consistent with previous findings, which showed that coauthors of super-
star scientists who die suffer a drop in output, particularly if their  non-collaborative 
work exhibited strong keyword overlap with the star, i.e., if they were intellectually 
connected in addition to being coauthors (Azoulay, Graff Zivin, and Wang 2010, 
Table VI, column 2).

A limitation of the previous work focusing on the fate of collaborators after the 
loss of an eminent scientist always lied in the failure to distinguish between social 
and intellectual channels of influence, since every treated scientist was by definition 
a collaborator, even if merely a casual one. In this study, we can relax this constraint, 
and when we do, we find that relative publication activity by  non-collaborators 
in the subfield increases by a statistically significant  100 ×  ( e   0.082  − 1)  = 8.6%  
(column 3).19

We also explore the dynamics of the effects uncovered in Table  3. We do so 
by estimating a specification in which the treatment effect is interacted with a set 
of indicator variables corresponding to a particular year relative to the superstar’s 
death, and then graphing the effects and the 95 percent confidence interval around 
them (panels A, B, and C of Figure 2 correspond to columns 1, 2, and 3 in Table 3).20

Two features of the figure are worthy of note. First, the dynamics amplify the pre-
vious results in the sense that we see the effects increasing (in absolute value) mono-
tonically over time: there is no indication that the effects we estimated in Table 3 are 
merely transitory. Five years after a star’s death, the relative increase in publication 

19 The number of observations varies ever so slightly across columns because the conditional fixed effects 
specification drops observations corresponding to subfields for which there is no variation in activity over the entire 
observation period. This is true as well for the results reported in Tables 4 through 7.

20 In these specifications, the  AFTER_DEATH  term which is common to treated and control subfields is also 
interacted with a complete series of lags and leads relative to the year of death or counterfactual death.

Table 3—Effect of Superstar Death on Subfield Entry Rates

Publication flows NIH funding flows (number of awards)

All authors Collaborators 
only

Non-
collaborators 

only
All authors Collaborators 

only

Non-
collaborators 

only
(1) (2) (3) (4) (5) (6)

After death 0.051 −0.232 0.082 0.046 −0.265 0.110
(0.029) (0.057) (0.029) (0.035) (0.076) (0.033)

Number of investigators 6,260 6,124 6,260 6,215 5,678 6,202
Number of fields 34,218 33,096 34,218 33,912 29,163 33,806
Number of field-year obs. 1,259,176 1,217,905 1,259,176 1,049,942 902,873 1,046,678
log likelihood −2,891,110 −729,521 −2,768,252 −1,350,204 −472,329 −1,223,913

Notes: Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the 
total number of publications in a subfield in a particular year (columns 1, 2, and 3), or the total number of NIH 
grants that acknowledge a publication in a subfield (columns 4, 5, and 6). All models incorporate a full suite of year 
effects and subfield age effects, as well as a term common to both treated and control subfields that switches from 
0 to 1 after the death of the star, to address the concern that age, year, and individual fixed effects may not fully 
account for trends in subfield entry around the time of death. Exponentiating the coefficients and differencing from one 
yield numbers interpretable as elasticities. For example, the estimates in column 3 imply that treated subfields see an 
increase in the number of contributions by non-collaborators after the superstar passes away, a statistically significant 
100 × (exp[0.082] − 1) = 8.55%. Robust standard errors in parentheses, clustered at the level of the star scientist. 
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activity by  non-collaborators is large enough in magnitude to fully  offset the decline 
in activity by collaborators. Second, there is no discernible evidence of an effect in 
the years leading up to the death, a finding that validates ex post our identification 
strategy.

Nevertheless, the case for the exogeneity of death events with respect to the 
course of knowledge growth and decline within a subfield is stronger for sudden 
causes of deaths than for anticipated causes of death. Online Appendix Figure E2 
provides a version of panel C of Figure 2 (event study graphs for  non-collaborators) 
broken down by causes of death (anticipated versus sudden). While there is more 
variability in the estimated path of outcomes in the years leading up to the death 
event in the anticipated case (panel A) than in the sudden case (panel B), it is 
imprecisely estimated and  non-monotonic. In both panels, however, one can 
observe a slow but steady increase after the event in the rate of contributions by 
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Figure 2. Effect of Star Scientist Death on Subfield Growth and Decline

Notes: The dark dots in the above plots correspond to coefficient estimates stemming from conditional (subfield) 
fixed effects Poisson specifications in which publication flows in subfields are regressed onto year effects, subfield 
age effects, as well as 20 interaction terms between treatment status and the number of years before/after the death 
event (the indicator variable for treatment status interacted with the year of death is omitted). The specifications also 
include a full set of lead and lag terms common to both the treated and control subfields to fully account for tran-
sitory trends in subfield activity around the time of the death. The 95 percent confidence interval (corresponding to 
robust standard errors, clustered at the level of the star scientist) around these estimates is plotted with vertical light 
gray lines; panel A corresponds to a dynamic version of the specification in column 1 of Table 3; panel B corre-
sponds to a dynamic version of the specification in column 2 of Table 3; panel C corresponds to a dynamic version 
of the specification in column 3 of Table 3.
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 non-collaborators in treated subfields, relative to control subfields. The distinction 
between sudden and anticipated events is explored further in Section IIID.

The last three columns of Table  3 focus on funding flows from the National 
Institutes of Health (NIH) rather than publication flows. More precisely, the out-
come variable in columns 4, 5, and 6 is the number of distinct NIH awards that 
acknowledge a publication in the subfield in the  three-year window before the year 
of publication for the related article (summing the financial total of grant amounts, 
as opposed to the number of grants, yields similar results). The patterns are very 
similar to those obtained in the case of publication activity, both in terms of magni-
tudes and in terms of statistical significance.

C. Subfield Growth Patterns

In the remainder of the manuscript, we seek to characterize the kind of contribu-
tion, and the type of investigators that give rise to the novel empirical regularity we 
uncovered: that of relative growth for subfields following the death of their superstar 
anchor, a phenomenon entirely accounted for by research activity undertaken by 
scientists who never collaborated with the star while alive. As a consequence, all the 
results below pertain to contributions by  non-collaborators; any article with even 
one author who collaborated with the star is excluded from the count of articles that 
constitute the dependent variable.

The Impact and Direction of New Research.—What characterizes the additional 
contributions that together lead to increased activity in a subfield after a star has 
passed on? Are these in fact important contributions to the subfield? Do they con-
tinue to focus on mainstream topics within the subfield, or should they be under-
stood as taking the intellectual domain in a novel direction? Tables 4 and 5 explore 
these issues.

In Table 4, we parse every related article in the subfields to assign them into 
one of six mutually exclusive bins, based on their  vintage-specific  long-run 
citation impact: articles that fall in the bottom quartile of the citation distri-
bution; in the second quartile; in the third quartile; articles that fall above the  
seventy-fifth percentile, but below the ninety-fifth percentile; articles that fall 
above the ninety-fifth percentile, but below the ninety-ninth percentile; articles 
that fall above the  ninety-ninth percentile of the citation distribution.21 Each  
column in Table  4 (with the exception of the first which simply replicates the 
effect for all papers, regardless of impact, that was previously displayed in 
Table 3, column 3) reports the corresponding estimates. A startling result is that 
the magnitude of the treatment effect increases sharply and monotonically as we 
focus on the rate of contributions with higher impact. In contrast, the number of 

21 A vintage is comprised of all the articles published in a given year. When we are referring to the  vintage-specific, 
 article-level distribution of citations, the relevant universe to compute quantiles is not limited to the articles that 
constitute the subfields in our data. Rather, the relevant universe includes the entire set of 17,312,059 articles that 
can be  cross-linked between PubMed and the Web of Science. As a result, there is no reason to suspect that individ-
ual stars, or even our entire set of stars, could ever alter the shape of these distributions. For example, the article by 
Sopko et al. highlighted in online Appendix Figure C5 received 40 citations from other articles in PubMed by 2015. 
This puts this article above the seventy-ninth percentile of the citation distribution for articles published in 2002.
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 lower-impact articles contributed by  non-collaborators contracts slightly, though 
the effect is not precisely estimated.22

Table 5 parses the related articles in each subfield to ascertain whether contri-
butions by  non-collaborators constitute a genuine change in intellectual direction. 
Panel A distinguishes between contributions that are proximate in intellectual space 
to the source article from those that are more distant (though still part of the sub-
field as construed by PMRA). Because we have at our disposal both a cardinal and 
an ordinal measure of intellectual proximity, we present two sets of estimates. In 
both cases, the magnitude of the treatment effect pertaining to  PMRA-proximate 
publication activity is larger, and more precisely estimated than the magnitude 
corresponding to  PMRA-distant publication activity (relative to the same patterns 
for the control group of subfields). We can certainly rule out the conjecture that 
 non-collaborators enter the field from the periphery. Rather, their contributions 
appear to tackle mainstream topics within the subfield. Panel B sheds light on the 
intellectual direction of the field, by examining the cited references contained in 
each related article. The first two columns separate related articles in two groups: 
publications that cite at least some work which belongs to the subfield identified by 
PMRA for the corresponding source and publications that cite exclusively out of the 
PMRA subfield. Only articles in the second group appear to experience growth in 
the  post-death era. The next two columns proceed similarly, except that the list of 
references is now parsed to highlight the presence of articles authored by the star 
(column 3), as opposed to all other authors (column 4). We find that subfield growth 

22 Online Appendix Table E3 and Figure E3 break down these results further by examining separately the 
growth of subfields by cause of death (anticipated versus sudden). As mentioned earlier, the case for exogeneity 
is stronger for sudden death, since when the death is anticipated, it would be theoretically possible for the star to 
engage in “intellectual estate planning,” whereby particular scientists (presumably close collaborators) are anointed 
as representing the next generation of leaders in the subfield. Our core results continue to hold when analyzed sep-
arately by cause of death. However, we gain statistical power from pooling these observations, and some empirical 
patterns would be estimated less precisely if we chose to focus solely on observations corresponding to subfields 
for which the star died suddenly and unexpectedly.

Table 4—Scientific Impact of Entry

Vintage-specific long-run citation quantile

All pubs
Bottom 
quartile 2nd quartile 3rd quartile

Btw. 75th 
and 95th 
percentile

Btw. 95th 
and 99th 
percentile

Above 
99th 

percentile

After death 0.082 −0.028 0.008 0.031 0.125 0.232 0.320
(0.029) (0.036) (0.033) (0.032) (0.035) (0.049) (0.081)

Number of investigators 6,260 6,222 6,260 6,257 6,255 6,161 5,283
Number of fields 34,218 33,714 34,206 34,212 34,210 33,207 21,852
Number of field-year observations 1,259,176 1,240,802 1,258,738 1,258,954 1,258,880 1,221,952 804,122
log likelihood −2,768,252 −689,465 −1,125,555 −1,432,223 −1,469,096 −542,735 −156,519

Notes:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is 
the total number of publications by non-collaborators in a subfield in a particular year, where these publications fall 
in a particular quantile bin of the long-run, vintage-adjusted citation distribution for the universe of journal articles 
in PubMed. All models incorporate a full suite of year effects and subfield age effects, as well as a term common 
to both treated and control subfields that switches from 0 to 1 after the death of the star. Exponentiating the coeffi-
cients and differencing from one yield numbers interpretable as elasticities. For example, the estimates in column 
1, panel A imply that treated subfields see an increase in the number of contributions by non-collaborators after the 
superstar passes away, a statistically significant 100 × (exp[0.082] − 1) = 8.55%. Robust standard errors in paren-
theses, clustered at the level of the star scientist.
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can be mostly accounted for by articles from  non-collaborators who do not build on 
the work of the star.

Whereas panel B highlighted the extent to which contributors were bringing new 
sources of inspiration into the subfield, panel C focuses on the extent to which the 

Table 5—Entry and Research Direction

Cardinal measure Ordinal measure

Intellectual 
proximate 

articles

Intellectual  
distant 
articles

Intellectual 
proximate 

articles

Intellectual 
distant 
articles

Panel A
After death 0.091 0.028 0.117 −0.024

(0.030) (0.035) (0.028) (0.037)
Number of investigators 6,228 6,099 6,260 6,017
Number of fields 33,375 32,232 34,218 31,712
Number of field-year observations 1,228,157 1,186,589 1,259,176 1,167,423
log likelihood −1,628,374 −1,816,449 −1,893,982 −1,628,170

In-field versus 
out-of-field references

Backward citations 
to the star’s bibliome

With 
in-field 

references

Without 
in-field 

references

With 
references 
to the star

Without 
references 
to the star

Panel B
After death −0.023 0.128 0.078 0.152

(0.041) (0.031) (0.036) (0.034)
Number of investigators 6,195 6,260 6,247 6,259
Number of fields 32,721 34,218 34,179 34,147
Number of field-year observations 1,204,315 1,259,176 1,257,747 1,256,576
log likelihood −792,795 −2,510,344 −1,914,448 −1,767,571

Vintage of cited 
references

Vintage of 2-way 
MeSH term combinations

Young Old Young Old
Panel C
After death 0.071 −0.010 0.090 0.029

(0.035) (0.034) (0.033) (0.036)
Number of investigators 6,260 6,260 6,258 6,260
Number of fields 34,218 34,214 34,206 34,210
Number of field-year observations 1,259,176 1,259,044 1,258,732 1,258,906
log likelihood −2,124,598 −1,613,457 −1,853,062 −1,784,275

Notes: Estimates stem from conditional (subfield) fixed effects Poisson specifications. In panel A, the dependent 
variable is the total number of publications by non-collaborators in a subfield in a particular year, where these pub-
lications can either be proximate in intellectual space to the star’s source publication, or more distant (in the PMRA 
sense). Since PMRA generates both a cardinal and an ordinal measure of intellectual proximity, we parse the related 
articles using both measures, yielding a total of four different specifications. For the cardinal measure, a related 
article is deemed proximate if its similarity score is above 0.58, which corresponds to the median of relatedness in 
the sample. For the ordinal measure, a related article is deemed proximate if its similarity rank is below 90, which 
also corresponds to the median of similarity in the sample. In panel B, we focus on whether the content of entrants’ 
contributions in the subfield change after the superstar passes away. Each cited reference in a related article can 
either belong to the subfield, or fall outside of it; it can cite a publication of the star scientist associated with the 
subfield, or fail to cite any of the star’s past contributions. In panel C, the dependent variable is the total number of 
publications by non-collaborators in a subfield in a particular year, where these publications can either be “fresh” 
(citing young references, or being annotated by MeSH terms of recent vintage) or “stale” (citing old references, or 
being annotated by MeSH terms of distant vintage). All models incorporate a full suite of year effects and subfield 
age effects, as well as a term common to both treated and control subfields that switches from 0 to 1 after the death 
of the star. Exponentiating the coefficients and differencing from one yield numbers interpretable as elasticities. 
For example, the estimates in the first column of panel A imply that treated subfields see an increase in the number 
of PMRA-proximate contributions by non-collaborators after the superstar passes away, a statistically significant 
100 × (exp[0.091] − 1) = 9.53%. Robust standard errors in parentheses, clustered at the level of the star scientist. 
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treated subfields move closer to the scientific frontier in the wake of the superstar’s 
passing. The first two columns do so by distinguishing between contributions that 
draw on recent versus more dated references. This exercise is repeated in columns 3 
and 4, with a focus on the vintage of the MeSH term combinations for each article 
in the subfield.23 Both sets of results indicate that these new contributions are more 
likely to build on science of a more recent vintage.

Taken together, the results presented in Table 5 paint a nuanced picture of direc-
tional change in the wake of the superstar passing. The new contributions do not 
represent a radical departure from the subfield’s traditional concerns (panel A). At 
the same time, the citation and MeSH evidence (panels B and C) make it clear that 
these additional contributions are more likely to draw on  new-to-the-subfield as well 
as  new-to-the-world ideas. In short, they both rejuvenate the subfield, and alter its 
angular velocity by shifting its intellectual center of gravity away from its  pre-death 
position.

It is important to note, however, that the findings above do not imply that the 
published results of entrants necessarily contradict or overturn the prevailing scien-
tific understanding and assumptions within a subfield. We provide indirect evidence 
regarding these contributions’ disruptive impact by leveraging a measure recently 
proposed by Funk and  Owen-Smith (2017). Their index captures the degree to which 
an idea consolidates or destabilizes the status quo, by measuring whether the future 
ideas that build on the focal idea also rely on its acknowledged predecessors. The 
results in online Appendix Table E4 suggest that these contributions do not radically 
disrupt the subfield. Rather, they appear to reflect the impact of a myriad “small 
r,” permanent revolutions whereby new ideas come to the fore without necessarily 
eclipsing prior approaches.

Outsiders versus Competitors.—The next step of the analysis is to investigate 
the type of scientists who publish the articles that account for subfield growth in 
the wake of a star’s death. We examine the proximity in intellectual space between 
 non-collaborators in the subfield and the deceased superstar. One possibility is that 
 non-collaborators are competitors of the star, with much of their publication activity 
falling into the subfield when the star was alive. Another possibility is that they are 
recent entrants into the subfield: intellectual outsiders. To distinguish these different 
types of authors empirically, we create a metric of intellectual proximity for each 
related author we can match to the AAMC Faculty Roster, by computing the fraction 
of their publications that belongs to the star’s subfields up to the publication year for 
each related article.24 The distribution of this field overlap measure is displayed on 
panel A of Figure 3. The distribution is skewed, with a pronounced mass point at the 
origin: approximately 50 percent of the related articles turn out to have authors with 
exactly zero intellectual overlap with the star’s subfield, and another 1.24 percent 
are authored by new scientists for whom this publication within the subfield is also 
their first publication overall.

23 A  two-way MeSH term combination is born in the year where an article is annotated by the keyword pair for 
the first time.

24 Whenever we match more than one author on a related article, we assign to that article the highest proximity 
score for any of the matched authors. Online Appendix Table E9 defines overlap with respect to all the subfields 
associated with a given star, rather than simply the focal subfield. This does not alter our conclusions.
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We now use this metric to gauge the extent to which the  post-death publica-
tion activity by  non-collaborators (relative to the control group) can be attributed 
to related authors whose outsider status falls into one of twelve separate bins. This 
includes one bin for new scientists, one bin for the bottom half of the overlap distri-
bution, one bin for every five percentiles above the median (fiftieth to fifty-fifth per-
centile, fifty-fifth to sixtieth percentile, … , ninety-fifth to ninety-ninth percentile), as 
well as a top percentile bin. We then compute the corresponding measures of sub-
field activity by aggregating the data up to the subfield/year level. These results are 
presented graphically in panel B of Figure 3. Each dot corresponds to the magnitude 
of the treatment effect in a separate regression with the outcome variable being the 
number of articles in each subfield that belong to the corresponding bin.

A striking pattern emerges. The authors driving the growth in relative publication 
activity following a star’s death are largely outsiders. They do not appear to have 
been substantially active in the subfield when the star was alive. In other words, they 
are predominantly new entrants into these subfields, though not necessarily novice 
scientists.

D. The Nature of Entry Barriers

The evidence so far points to fields of deceased stars enjoying bursts of activ-
ity after the death event. The influx of outsiders documented above suggests that 
stars may be able to regulate entry into their field while alive. In this section, we 
attempt to uncover the precise nature of barriers to entry into the subfields where 
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Figure 3. Characteristics of Related Authors: Competitors or Outsiders?

Notes: Panel A displays the distribution of overlap between the past output of related authors and each star’s sub-
field. For each author on a related article matched to the AAMC Faculty Roster, we create a metric of intellectual 
proximity by computing the fraction of their publications that belongs to the star’s subfield. Slightly more than half 
of related articles have authors with zero overlap, i.e., this related article is their first contribution to the star’s sub-
field. 1.24 percent of related articles are authored by new scientists for whom this publication within the subfield is 
also their first publication overall. Using this information, we aggregate the number of related articles in a partic-
ular subfield and in a particular year, e.g., the number of articles in the subfield in year t that have authors above 
the ninety-fifth percentile in our measure of field overlap. In panel B, each dot corresponds to the magnitude of the 
treatment effect in a separate regression where the dependent variable is the number of articles in each subfield 
authored by scientists who belong to a particular bin of intellectual proximity, as measured by field overlap above.
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the stars were prominent prior to their untimely demise. Methodologically, we do 
so by splitting the sample of fields across the median for a series of relevant covari-
ates. Because there is no presumption that death events are exogenous with respect 
to subfield growth and decline within the strata delineated by these covariates, it 
should be clear that we will only be able to document conditional correlations, and 
not causal effects in what follows.25

While it is tempting to envisage conscious effort by the stars to block entry 
through the explicit control of key resources, such as funding and/or editorial good-
will (Brogaard, Engelberg, and Parsons 2014; Li 2017), this explanation appears 
inconsistent with the facts on the ground. In the  five-year window before death, only 
three of our stars (out of 452) were sitting on study sections, the funding panels that 
evaluate the scientific merits of NIH grant applications. Another three were journal 
editors in the same time window. This handful of individuals could not possibly 
drive the robust effects we have uncovered.26 If barriers to entry are not the result of 
explicit control by stars, what is discouraging entry?

Goliath’s Shadow.—One possibility is that outsiders are simply deterred by the 
prospect of challenging a luminary in the field. The existence of a towering figure 
may skew the  cost-benefit calculations from entry by outside scholars toward delay 
or alternative activities. Table 6 examines this role of implicit barriers to entry by 
focusing on the eminence of the star. Eminence is measured through the star’s pub-
lication count, the star’s cumulative number of citations garnered up to the year of 
death, and the star’s cumulative amount of NIH funding. We also have a “local” 
measure of eminence: the star’s importance to the field, which is defined as the frac-
tion of papers in the subfield that have the star as an author. Splitting the sample at 
the median of these measures reveals a consistent pattern of results. Stars that were 
especially accomplished appear to be an important deterrent to entry, with their pass-
ing creating a larger void for  non-collaborators to fill. Rather than directly thwarting 
the efforts of potential entrants, it appears that the mere presence of a  preeminent 
scholar is sufficient to dissuade intellectual outsiders from engaging with the field.

Of course, the accomplishment of the star alone may not be the only factor influ-
encing entry. We next turn our attention to how the characteristics of the field and the 
star’s coauthors may also modulate this relationship. Since entry is largely confined 
to those fields that have lost an eminent star, the analysis that follows limits attention 
to those subfields in which the most eminent among the stars were active, as mea-
sured by our citation metric in Table 6.27

25 Instead of interacting the treatment effect with covariates, we prefer to estimate our benchmark specifications 
on subsamples corresponding to below and above the median of these covariates. For these two approaches to yield 
comparable results, one would need to also saturate the specification with interaction terms between the covariates 
and year/field age effects. In practice, we have found that the fixed effects Poisson models fail to converge with 
this full set of interactions.

26 We verified that omitting these scientists from the sample hardly changes the core results.
27 More precisely, Table 7 drops from the sample subfields associated with stars who fall below the median of 

cumulative citations garnered by the year of death. Results are qualitatively similar when focusing on the most emi-
nent stars as defined by publications or NIH funding. Online Appendix Table F6 presents the results corresponding 
to the subsample of  less-eminent stars.
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Subfield Coherence.—Entry into a field, even after it has lost its star, may be 
deterred if the subfield appears unusually coherent to outsiders. A subfield is likely 
to be perceived as intellectually coherent, when the researchers active in it agree on 
the set of questions, approaches, and methodologies that propel the field forward. 
Alternatively, a field might be perceived as socially coherent, when the researchers 
active in it form a  tightly-knit clique, often collaborating with each other, and per-
haps also reviewing each other’s manuscripts. To explore these purported barriers to 
subfield entry, we develop two alternative measures of intellectual coherence, and 
one measure of social coherence.

Our first index of intellectual coherence leverages PMRA to capture the extent to 
which articles in the subfield pack themselves into a crowded scientific  neighborhood. 
Recall that for each article in a subfield, we have at our disposal both a  cardinal and 
an ordinal measure of intellectual proximity with the source article from which all 
other articles in the subfield radiate. Focusing only on the set of articles published 
in the subfield before the year of death, we measure intellectual coherence as the 
cardinal ranking (expressed as a real number between 0 and 1) for the twenty-fifth 
most related article in the subfield.28 According to this metric, subfields exhibit wide 
variation in their degree of intellectual coherence, with a mean and median equal 
to 0.60   (SD = 0.13)  . The second index of intellectual coherence exploits the list 
of references cited in each article in the subfield before the star’s death. In the spirit 

28 The choice of the twenty-fifth-ranked article is arbitrary, and also convenient. After purging from each sub-
field reviews, editorials, and articles appearing in journals not indexed by WoS, 95 percent of the subfields contain 
25 articles or more in the period that precedes the star’s death. In those rare cases where the number of articles is less 
than 25, we choose as our measure of coherence the cardinal measure for the  least-proximate article in the subfield.

Table 6—Breakdown by Star Scientist Characteristics

Publications Citations Funding Importance to the field

Below 
median

Above 
median

Below 
median

Above 
median

Below 
median

Above 
median

Below 
median

Above 
median

After death 0.059 0.116 0.036 0.125 0.014 0.162 0.063 0.123
(0.037) (0.050) (0.042) (0.040) (0.040) (0.052) (0.031) (0.045)

Number of  
 investigators

2,901 4,836 2,792 4,619 3,048 4,287 5,019 4,493

Number of fields 17,210 17,008 17,328 16,890 15,731 15,487 16,985 17,233
Number of field-year  
 observations

632,089 627,087 636,750 622,426 578,277 570,665 625,140 634,036

log likelihood −1,377,727 −1,387,650 −1,367,335 −1,396,652 −1,268,559 −1,252,952 −1,462,538 −1,257,973

Notes: Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is 
the total number of publications by non-collaborators in a subfield in a particular year. Each pair of columns splits 
the sample across the median of a particular covariate for the sample of fields (treated and control) in the baseline 
year. The table examines differences in the extent to which the eminence of the star at death (respectively counter-
factual year of death for controls) influences the rate at which non-collaborators enter the field after the star passes 
away. Eminence is measured through the star’s cumulative number of publications, the star’s cumulative number of 
citations garnered up to the year of death, and the star’s cumulative amount of NIH funding. We also have a “local” 
measure of eminence: the star’s importance to the field, which is defined as the proportion of articles in the subfield 
up to the year of death for which the star is an author. All models incorporate a full suite of year effects and sub-
field age effects, as well as a term common to both treated and control subfields that switches from 0 to 1 after the 
death of the star. Exponentiating the coefficients and differencing from one yield numbers interpretable as elastici-
ties. For example, the estimate in the second column implies that treated subfields see an increase in the number of 
contributions by non-collaborators after the superstar passes away, a statistically significant 100 × (exp[0.116] − 1) 
= 12.30%. Robust standard errors in parentheses, clustered at the level of the star scientist. 
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of Funk and  Owen-Smith (2017), for all related articles published in the five years 
prior to the star’s death, we compute the fraction of references that fall within the 
subfield. Our contention is that subfields that are more  self-referential will tend to 
dissuade outsiders from entering. Once again, we observe meaningful variation 
across subfields using this second index   (mean = 0.05; SD = 0.04)  .

Our measure of social coherence summarizes the degree of “cliquishness” within 
a subfield by computing the clustering coefficient in its coauthorship network. The 
clustering coefficient is simply the proportion of closed triplets within the network, 
an intuitive way to measure the propensity of scientists in the field to choose insiders 
as collaborators.29

Panel A of Table 7 investigates the role of these intellectual and social barriers in 
modulating the  post-death expansion of fields. We find tentative evidence of a role 
for both types of barriers, in that the magnitude of the treatment effect for coher-
ent fields is always smaller than the magnitude for less coherent fields, regardless 
of how coherence is measured. The difference between the estimates for more or 
less coherent subfields does not reach statistical significance at conventional levels. 
What seems notable, however, is that the magnitudes are consistently ordered across 
the three measures.

Incumbent Resource Control.—While we noted earlier that stars do not appear 
especially well positioned to directly block entry through the control of key resources, 
it is possible that those resources can be controlled indirectly through the influence 
of collaborators. If incumbent scholars within a field serve as gatekeepers of funding 
and journal access, they may be able to effectively stave off threats of entry from 
outsiders. The same may be implicitly true if collaborators are the recipients of the 
lion’s share of funding within the field. To assess financial gatekeeping, we use 
information regarding the composition of NIH funding panels, to tabulate, for each 
star, the number of collaborators who were members of at least one of these com-
mittees in the five years preceding the death of the star. We would like to proceed 
in a similar fashion using the composition of editorial boards, but these data are not 
easily available for the set of  PubMed-indexed journals and the 30-year time period 
covered by our sample. As an alternative, we develop a proxy for editorial position 
based on the number of editorials or comments written by every collaborator of 
the star.30 We then sum the number of editorials written by coauthors in the five 
years before the death. Together, the editorial and study section information allow 
us to distinguish between the stars whose coauthors were in a position to channel 
resources toward preferred individuals or intellectual approaches from those stars 
whose important coauthors had no such power.

29 The clustering coefficient is based on triplets of nodes (authors). A triplet consists of three authors that are 
connected by either two (open triplet) or three (closed triplet) undirected ties. The clustering coefficient is the num-
ber of closed triplets over the total number of triplets (both open and closed, cf. Luce and Perry 1949).

30 We investigated the validity of this proxy as follows. In the sample of deceased superstars, every individual 
with five editorials or more was an editor. In a random sample of 50 superstars with no editorials published, only 
one was an editor (for a field journal). Finally, among the 16 superstars who wrote between one and four editorials 
over their career, we found 2 whose CV indicate they were in fact editors for a key journal in their field. We con-
clude that there appears to be a meaningful correlation between the number of editorials written and the propensity 
to be an editor.
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Panel  B of Table  7 presents the evidence on the role of indirect control. The 
results paint a consistent, if not always statistically significant, picture. While sub-
field expansion is the rule, it appears more pronounced when stars have relatively 
few collaborators in influential positions, or collectively capture a smaller portion 
of the funding that supported research in the subfield. Indirect control therefore 
appears to be a potential mechanism through which superstars can exert influence on 
the evolution of their fields, even from beyond the grave. Coauthors, either through 
their direct effort to keep the star’s intellectual flame alive or simply by their sheer 
(financial) dominance in the field, appear to erect barriers to entry into those fields 
that prevent its rejuvenation by outsiders.

Taken together, these results suggest that outsiders are reluctant to challenge 
hegemonic leadership within a field when the star is alive. They also highlight a 
number of factors that may constrain entry even after she is gone. Intellectual, social, 
and resource barriers all seem to play a role in impeding entry, with outsiders only 
entering subfields whose topology offers a less hostile landscape for the support and 
acceptance of “foreign” ideas.

Table 7—The Nature of Entry Barriers

PMRA-based 
definition

Citation-based 
definition Cliquishness

Below 
median

Above 
median 

Below 
median

above 
median 

Below 
median

Above 
median 

Panel A. Subfield coherence
After death 0.202 0.067 0.161 0.096 0.129 0.064

(0.038) (0.048) (0.053) (0.041) (0.049) (0.052)
Number of investigators 3,353 3,203 3,422 3,157 2,865 3,561
Number of fields 9,062 7,828 8,731 8,159 8,044 8,846
Number of field-year observations 334,142 288,284 321,826 300,600 296,704 325,722
log likelihood −711,335 −664,170 −760,842 −631,287 −692,330 −685,682

Editorial channel
NIH study 

section channel
Fraction of subfield 

NIH funding
Below 
median

Above 
median 

Below 
median

Above 
median 

Below 
median

Above 
median 

Panel B. Indirect control through collaborators
After death 0.147 0.086 0.134 −0.078 0.174 0.084

(0.056) (0.048) (0.043) (0.095) (0.051) (0.051)
Number of investigators 3,452 2,068 4,385 664 3,559 2,525
Number of fields 11,110 5,780 15,338 1,552 9,863 7,027
Number of field-year observations 410,025 212,401 565,219 57,207 363,690 258,736
log likelihood −951,705 −461,769 −1,293,997 −125,950 −840,777 −545,782

Notes:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is 
the total number of publications by non-collaborators in a subfield in a particular year. The sample is limited to the 
subfields in which the most eminent among the stars were active (specifically, above the median of the “cumulative 
citations up to the year of death” metric). Each pair of columns splits the sample across the median of a particular 
covariate for the sample of subfields (treated and control) in the baseline year. For example, the first two columns of 
panel B compare the magnitude of the treatment effect for stars whose collaborators have written an above-median 
number of editorials in the five years preceding the superstar’s death, versus a below-median number of editorials. 
All models incorporate a full suite of year effects and subfield age effects, as well as a term common to both treated 
and control subfields that switches from 0 to 1 after the death of the star. Exponentiating the coefficients and differ-
encing from one yield numbers interpretable as elasticities. For example, the estimates in the first column of panel 
B imply that treated subfields see an increase in the number of contributions by non-collaborators after the super-
star passes away, a statistically significant 100 × (exp[0.147] − 1) = 15.84%. Robust standard errors in parenthe-
ses, clustered at the level of the star scientist. 
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E. Reallocation and Welfare

What are the implications of our results for welfare? We approach this question 
with a great deal of caution, since much of the evidence presented thus far pertains 
to changes in the direction, rather than the rate, of scientific progress. Making wel-
fare statements in this context is tantamount to valuing the importance of the new 
directions in which related authors take their fields (compared to the prior agenda 
inherited from the superstar), as well as ascertaining the fate of fields that the new 
entrants departed, and the agenda they otherwise might have pursued had the star 
remained alive. Such an exercise is fraught with peril. Below we synthesize the 
results that already speak to these questions, and provide a few additional suggestive 
pieces of evidence.

Our earlier evidence suggests that entrants bring different and more recent ideas 
into the subfields they enter to create highly impactful output (Tables 4 and 5). In 
online Appendix E we further show that the subfields that experience the largest 
 post-death boost in activity are those in which the star was presiding over an empire 
that was losing momentum in the years immediately preceding the star’s death 
(online Appendix Tables E5 and E8). These subfields are also those in which the 
star’s close collaborators were less able to regulate entry (Table 7, panel B).

It is important to note, however, that the additional output by entrants in treated 
subfields is largely offset by commensurate declines in output by the star’s collabo-
rators (Table 3). Moreover, these new contributions appear to come at the expense of 
the entrants’ prior agenda. In online Appendix G, we examine changes in total output 
at the related author level, using a  difference-in-differences  setup that parallels our 
analyses at the subfield level. The results in Table G1 show that  non-collaborators 
do not increase their overall output, measured in terms of publications and NIH 
grants awarded. Since we know from our main analysis that related authors are 
contributing more within the subfields of dead superstars, the absence of changes in 
total output imply that this additional work is displacing work they were doing in 
other subfields. Their new output replaces, at least in part, articles that these authors 
would have written in other intellectual domains had the star remained alive.31

As a whole, these results imply that entrants are moving subfields in productive 
directions relative to the period immediately preceding the passing of the star, but 
without increasing scientific output in the aggregate. However, the impacts in the 
final years of a star’s life are not necessarily indicative of their contributions writ 
large. Indeed, the lofty accomplishments which earned them superstar status suggest 
that their net contribution to society is likely positive. A longer view would also rec-
ognize that the scientific journeymen of today may well become the stars of tomor-
row (as shown in online Appendix Table E10) with a career that slowly builds to an 
apex of socially valuable accomplishments, that will someday experience a similar 
decline (see online Appendix Figure E4).

31 We also estimate a dynamic version of these specifications and display the corresponding event  study-style 
graphs in Figure G1 (publication output) and Figure G2 (grant output). In general, it appears from these figures that 
the total output of related authors neither expands nor contracts in the wake of a star’s passing.
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F. Extensions and Robustness

Online Appendix E presents results pertaining to extensions of the main analyses. 
Online Appendix F provides a number of robustness checks. In the interest of space, 
we only call out a subset of the analyses presented therein, but we have written these 
appendices as  stand-alone documents, such that the interested reader can consult 
them for additional details.

Impact of Research Infrastructure Needs.—Our analysis is limited to the life sci-
ences. Though this area accounts for a large fraction of publicly funded, civilian 
research funding in the United States, it is not necessarily representative of all fields 
of science. In particular, some domains of research require access to expensive and 
specialized capital equipment. When capital needs are large and lumpy, the evolu-
tion of subfields in the wake of an eminent scientist’s death will likely depend on the 
institutions that govern access to the scarce capital equipment.

Within biomedical research,  large-scale clinical trials most closely, albeit imper-
fectly, resemble the characteristics of  capital-intensive scientific fields. These require 
a large infrastructure of data collection, monitoring, and management, which is why 
these activities are often consolidated in large cooperative groups such as the AIDS 
Clinical Trials Group, the Children’s Oncology Group, or the Framingham Heart 
Study. PubMed has a “publication type” field which allows us to identify the sub-
fields that are  clinical-trial intensive (10 percent of the subfields) versus those that 
are not (the remaining 90 percent). Online Appendix Table E6 replicates the results 
of Table 3 separately for these two subsamples. Although our ability to estimate 
statistically significant effects is limited by sample size, the magnitudes are very 
similar.

Impact of Star Age and Experience.—As explained earlier, we do not impose 
a strict age cutoff for the deceased star, we merely insist that they exhibit tangi-
ble signs of research activity, such as publishing original articles, obtaining NIH 
grants, and training students. Among our 452 departed superstars, the median age at 
death is 61, the  seventy-fifth percentile 67, and the top decile 73. How do the core 
results change when the scientists who passed away at an advanced age are excluded 
from the sample? As can be observed in online Appendix Table E7, the subfields of 
stars who passed away more prematurely are responsible for most of the effect. The 
effect for the fields associated with older stars is small in magnitude and imprecisely 
estimated. We chose to keep these older stars in the sample because a larger sam-
ple affords us opportunities to explore mechanisms without losing power to detect 
nuanced effects statistically.

Star-Level Analyses.—In online Appendix Table F1, we probe the robustness of 
the core results presented in Table 3 after rolling up the data to the level of the star 
scientist (deceased or control). Recall that the treatment variable exhibits variation 
at the level of the star scientist, and not at the level of a single subfield. In this robust-
ness check, we lump all related articles for each star together as if they belonged to 
a single subfield. The results in Table F1 are quite similar to those in Table 3, both 
in terms of magnitude and statistical significance. One exception is the coefficient 



2917AZOULAY ET AL.: DOES SCIENCE ADVANCE ONE FUNERAL AT A TIME?VOL. 109 NO. 8

on the effect of entry by collaborators, which is negative as expected, but smaller in 
magnitude, relative to the corresponding coefficient in Table 3. The corresponding 
 event-study graphs, displayed in online Appendix Figure F3, also display patterns 
fully consistent with those observed for our benchmark set of results. As explained 
in Section IIB, we strongly prefer performing the analyses at the subfield level, for 
two reasons. First, the subfields delineated by PMRA exhibit limited overlap (see 
online Appendix Figure C6), and as a result the  within-star, between-subfield vari-
ation in publication activity can be exploited meaningfully. Second, we can track 
the differential position of the star across the subfields in which she was active. The 
covariates that leverage these differences help us shed light on mechanisms, as in 
Table 7 and in online Appendix Tables E5 and E8.

Alternate Functional Forms.—In online Appendix Table F2, we examine the sen-
sitivity of our benchmark set of results to the choice of alternative functional forms. 
In the three columns to the left, we simply use the “raw” number of articles in the 
subfield as the outcome, and perform estimation by ordinary least squares (OLS). 
Of course, the estimates are not directly interpretable in terms of elasticities. At the 
mean of the data, however, the treatment effect in the third column implies that sub-
field entry by  non-collaborating authors expands by  0.409/3.335 = 12.26 percent , 
which is not all that different from the 8.2 percent reported in Table 3. In the three 
columns to the right, we report results corresponding to OLS estimation, but this time 
with the outcome variables transformed using the inverse hyperbolic sine function 
(Burbidge, Magee, and Robb 1988). In this case, coefficient estimates can be inter-
preted as elasticities, as an approximation. They are quite similar once again to those 
reported in Table 3, except for the effect on entry by collaborators, which is smaller in  
magnitude.

IV. Conclusion

In this paper, we leverage the applied economist’s toolkit, together with a novel 
approach to delineate the boundaries of scientific fields, to explore the effect that the 
passing of an eminent life scientist exerts on the dynamics of growth, or decline, for 
the fields in which she was active while alive. We find that publications and grants 
by scientists who never collaborated with the star surge within the subfield, absent 
the star. Interestingly, this surge is not driven by a reshuffling of leadership within 
the field, but rather by new entrants who are drawn from outside of it. Our rich data 
on individual researchers and the nature of their scholarship allows us to provide a 
deeper understanding of this dynamic.

In particular, this increase in contributions by outsiders appears to tackle the 
mainstream questions within the field but by leveraging newer ideas that arise in 
other domains. This intellectual arbitrage is quite successful: the new articles rep-
resent substantial contributions, at least as measured by  long-run citation impact. 
Together, these results paint a picture of scientific fields as scholarly guilds to which 
elite scientists can regulate access, providing them with outsized opportunities to 
shape the direction of scientific advance in that space.

We also provide evidence regarding the mechanisms that may enable the regula-
tion of entry. While stars are alive, entry appears to be effectively deterred where the 
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shadow they cast over the fields in which they were active looms particularly large. 
After their passing, we find evidence for influence from beyond the grave, exer-
cised through a  tightly-knit “invisible college” of collaborators (de Solla Price and 
Beaver 1966, Crane 1969). The loss of an elite scientist central to the field appears 
to signal to those on the outside that the cost/benefit calculations on the  avant garde 
ideas they might bring to the table has changed, thus encouraging them to engage. 
But this appears to occur only when the topology of the field offers a less hostile 
landscape for the support and acceptance of “foreign” ideas, for instance when the 
star’s network of close collaborators is insufficiently robust to stave off threats from 
intellectual outsiders.

In the end, our results lend credence to Planck’s infamous quip that provides the 
title for this manuscript. Yet its implications for social welfare are ambiguous. While 
we can document that eminent scientists restrict the entry of new ideas and scholars 
into a field, gatekeeping activities could have beneficial properties when the field 
is in its inception; it might allow cumulative progress through shared assumptions 
and methodologies, and the ability to control the intellectual evolution of a scientific 
domain might, in itself, be a prize that spurs much ex ante risk taking. Because our 
empirical exercise cannot shed light on these countervailing tendencies, we must 
refrain from drawing concrete policy conclusions from our results.

All of the evidence we have presented pertains to the academic life sciences. 
It is unclear how the lessons from that setting might apply to other fields inside 
the academy. In particular, when frontier research requires access to expensive 
and  highly-specialized capital equipment, as is sometimes the case in the physical 
sciences, the rules governing access to that capital are likely to favor succession 
by insiders. At the other end of the spectrum, more atomistic fields where scien-
tists generally work alone or in very small groups may evolve in a more friction-
less manner. Whether our findings apply to industrial research and development is 
also an open question. In that setting, the choice of  problem-solving approaches 
is guided by market signals (however imperfectly, cf. Acemoglu 2012), and thus 
likely to differ from those selected under the more nuanced system of pecuniary 
and  non-pecuniary incentives that characterizes academic research (Feynman 1999; 
Aghion, Dewatripont, and Stein 2008). Assessing the degree to which our results 
extend to other settings, and the reasons they might differ, represents a fruitful area 
for future research.
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