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Antimalarial Benzoxaboroles Target Plasmodium falciparum
Leucyl-tRNA Synthetase

Ebere Sonoiki,a,b Andres Palencia,c Denghui Guo,a Vida Ahyong,d Chen Dong,e Xianfeng Li,e Vincent S. Hernandez,e

Yong-Kang Zhang,e Wai Choi,e Jiri Gut,a Jennifer Legac,a Roland Cooper,f M. R. K. Alley,e Yvonne R. Freund,e Joseph DeRisi,d

Stephen Cusack,c Philip J. Rosenthala

Department of Medicine, University of California, San Francisco, California, USAa; Division of Infectious Diseases and Immunology, School of Public Health, University of
California, Berkeley, California, USAb; European Molecular Biology Laboratory, Grenoble Outstation and Université Joseph Fourier, Centre National de la Recherche
Scientifique and EMBL Unit of Virus Host-Cell Interactions, Grenoble, Francec; Howard Hughes Medical Institute and the Department of Biochemistry and Biophysics,
University of California, San Francisco, California, USAd; Anacor Pharmaceuticals, Inc., Palo Alto, California, USAe; Department of Natural Sciences and Mathematics,
Dominican University of California, San Rafael, California, USAf

There is a need for new antimalarials, ideally with novel mechanisms of action. Benzoxaboroles have been shown to be active
against bacteria, fungi, and trypanosomes. Therefore, we investigated the antimalarial activity and mechanism of action of
3-aminomethyl benzoxaboroles against Plasmodium falciparum. Two 3-aminomethyl compounds, AN6426 and AN8432, dem-
onstrated good potency against cultured multidrug-resistant (W2 strain) P. falciparum (50% inhibitory concentration [IC50] of
310 nM and 490 nM, respectively) and efficacy against murine Plasmodium berghei infection when administered orally once
daily for 4 days (90% effective dose [ED90], 7.4 and 16.2 mg/kg of body weight, respectively). To characterize mechanisms of ac-
tion, we selected parasites with decreased drug sensitivity by culturing with stepwise increases in concentration of AN6426. Re-
sistant clones were characterized by whole-genome sequencing. Three generations of resistant parasites had polymorphisms in
the predicted editing domain of the gene encoding a P. falciparum leucyl-tRNA synthetase (LeuRS; PF3D7_0622800) and in an-
other gene (PF3D7_1218100), which encodes a protein of unknown function. Solution of the structure of the P. falciparum
LeuRS editing domain suggested key roles for mutated residues in LeuRS editing. Short incubations with AN6426 and AN8432,
unlike artemisinin, caused dose-dependent inhibition of [14C]leucine incorporation by cultured wild-type, but not resistant,
parasites. The growth of resistant, but not wild-type, parasites was impaired in the presence of the unnatural amino acid norva-
line, consistent with a loss of LeuRS editing activity in resistant parasites. In summary, the benzoxaboroles AN6426 and AN8432
offer effective antimalarial activity and act, at least in part, against a novel target, the editing domain of P. falciparum LeuRS.

There is an urgent need for new antimalarials. As older regimens
are limited by resistance in Plasmodium falciparum, the most

virulent human malaria parasite, artemisinin-based combination
therapy regimens have been adopted as standard treatment for
uncomplicated falciparum malaria (1). However, resistance to ar-
temisinins is growing in Southeast Asia (2), and resistance has
been seen to most artemisinin partner drugs (3). Drug resistance
seriously jeopardizes efforts to control and eliminate malaria, and
new agents, ideally with novel mechanisms of action, are needed.

Benzoxaboroles are boron-containing compounds that have
demonstrated potent activity against a number of infectious
pathogens, including bacteria (4, 5), fungi (6), and trypanosomes
(7). The highly electrophilic nature of the boron component of
these compounds leads to interaction with a variety of protein
targets via reversible covalent bonds (8, 9), with identified targets
including leucyl-tRNA synthetase (LeuRS) (5, 6) and �-lactamase
(10). In particular, the benzoxaboroles tavaborole and AN3018
(6) inhibit fungal LeuRS, and AN3365 and AN3664/ZCL039 in-
hibit bacterial LeuRS (4, 5).

There is increasing interest in the exploration of aminoacyl-
tRNA synthetases as antimicrobial targets in both prokaryotic and
eukaryotic pathogens (11, 12). These enzymes catalyze the attach-
ment (charging) of amino acids to their cognate tRNAs. For ex-
ample, mupirocin inhibits bacterial IleRS and is used topically to
control Staphylococcus aureus colonization (13). Class I amino-
acyl-tRNA synthetases, including LeuRS, contain a cis editing do-
main that is distinct from the enzyme active site and that recog-

nizes noncognate amino acids and hydrolyzes misacylated tRNAs
(14). The LeuRS editing domain is the target of the benzoxaborole
LeuRS inhibitors noted above. In P. falciparum, aminoacyl-tRNA
synthetase inhibitors and their targets include borrelidin (ThrRS)
(15, 16), mupirocin (IleRS) (17), 4-thiaisoleucine (IleRS) (18),
cladosporin (LysRS) (19), lysyl-adenylate analogues (LysRS) (20),
and halofuginone (ProRS) (21). The P. falciparum cytosolic
LeuRS, but not an apicoplast-directed LeuRS, contains a typical
editing domain (22).

In a search for new antimalarial compounds, we screened a
benzoxaborole library rich in LeuRS inhibitors for potency against
cultured P. falciparum. The two most active compounds, AN6426
and AN8432, were selected for further studies. The compounds
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demonstrated effective activity against multiple P. falciparum
strains and in a murine malaria model. Genetic and biochemical
evidence is consistent with activity of these compounds against P.
falciparum LeuRS.

MATERIALS AND METHODS
Synthesis of benzoxaboroles. Experimental procedures and analytical
data for compounds 1, 2, 5, 6, 9, and 10 (Table 1) were described previ-
ously (23). Their analogs, 3, 4, 7, and 8, were prepared by following similar
synthetic routes and procedures. The compounds were analyzed by 1H
nuclear magnetic resonance (NMR), liquid chromatography-mass spec-
trometry (LC-MS), and high-performance liquid chromatography
(HPLC) for structural characterization and purity. 1H NMR spectra were
recorded on a Varian or Bruker spectrometer (300 or 400 MHz). LC-MS
data were obtained using an Agilent LC-MS 1200 with a 6110 MS detector
equipped with an electrospray ion source operated in a positive or nega-
tive mode. HPLC analysis was performed on a Shimadzu HPLC system or
a Waters 600 controller system. The columns used were a Venusil XBP-
C18 (50 by 4.6 mm inner diameter [ID]), Shimpack VP-ODS (150 by 4.6
mm ID), or UPLC BEH C18 (50 by 2.1 mm ID). Resulting analytical data
were consistent with corresponding structures, and HPLC purity was
�95% at 214, 220, or 254 nm (see the supplemental material).

Culture of malaria parasites. Erythrocytic P. falciparum was cultured
using standard methods at 2% hematocrit in RPMI 1640 (Invitrogen)
medium supplemented with 0.5% AlbuMAX II (GIBCO Life Technolo-
gies), 2 mM L-glutamine, 100 mM hypoxanthine, 5 �g/ml gentamicin, 28
mM NaHCO3, and 25 mM HEPES at 37°C in an atmosphere of 5% O2, 5%
CO2, and 90% N2. P. falciparum strains were from the Malaria Research
and Reference Reagent Resource Center (https://www.beiresources.org
/ProgramInformation.aspx).

Activity of benzoxaboroles against cultured P. falciparum. Parasites
were synchronized by treatment with 5% D-sorbitol and cultured in du-
plicate 96-well culture plates (200 �l per well) with serially diluted ben-
zoxaboroles or the antimalarials chloroquine, lumefantrine, mefloquine,
piperaquine, artemisinin, and dihydroartemisinin (from Sigma-Aldrich,
except piperaquine, which was from Jinan Jiaquan International Trade
Co.), at concentrations of 0.056 to 1,000 nM, with �0.2% dimethyl sul-
foxide (DMSO). After 48 h, cultures were fixed with 2% formaldehyde for
24 h at 37°C or 48 h at room temperature, cells were stained with 4 nM
YOYO-1 dye (Molecular Probes), and counts of treated and control cul-
tures were determined using fluorescence-activated cell sorting (FACS).
Fifty percent inhibitory concentrations (IC50s) were calculated by nonlin-
ear regression using GraphPad Prism software. Activity against isolates
from Ugandan children with uncomplicated falciparum malaria was de-
termined using an enzyme-linked immunosorbent assay (ELISA) directed
against P. falciparum histidine-rich protein-2, as previously described
(24).

Cytotoxicity assays. Human Jurkat (T cell lymphoma) and HepG2
(hepatocarcinoma) cells were from the American Type Culture Collec-
tion. Jurkat cells were seeded in 96-well plates at 2 � 104 cells per well in
100 �l RPMI 1640 medium with 10% fetal bovine serum and 2 mM

L-glutamine, with 10-fold serial dilutions (0.1 nM to 100 �M) of
oxaboroles and a final concentration of 0.25% DMSO. Plates were incubated
at 37°C in 5% CO2 for 72 h, 20 �l [3-(4,5-dimethylthiazol-2-yl)-5-(3-
carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] was added,
and after 4 additional h, absorbance was determined at 490 and 690 nm.
IC50s were calculated by nonlinear regression analysis with the four-pa-
rameter logistic equation using GraphPad Prism software. HepG2 cells
were seeded in 96-well plates at 3,000 cells per well in Dulbecco’s modified
Eagle’s medium with 10% fetal bovine serum, 2 mM L-glutamine, and 50
U/ml penicillin-streptomycin. Serial half-log dilutions of oxaboroles in
DMSO, at a final concentration of 0.5% DMSO, were added, and cells
were grown for 7 days at 37°C in 5% CO2 with replacement of medium
and compounds on the fourth day. After 7 days, medium was removed,
cells were blotted dry, 50 �l of 1� Janus green stain (Mitosciences, Eu-
gene, OR) was added per well, and the assay was developed according to
the manufacturer’s protocol (in-cell ELISA kit; catalog number MS643).
Absorbance at 595 nm was measured and IC50s were calculated as de-
scribed for Jurkat cells.

Activity of benzoxaboroles against murine malaria. Swiss Webster
mice were infected intraperitoneally with 6 � 106 P. berghei-infected
erythrocytes collected from a previously infected mouse and then treated,
beginning 1 h after inoculation, with benzoxaboroles (in 55% polyethyl-
ene glycol [PEG] 300, 25% propylene glycol, 20% water) or chloroquine
(in water) by daily oral gavage for 4 days. Negative controls were treated
with vehicle only. Infections were monitored by daily microscopic evalu-
ation of Giemsa-stained blood smears. ED90 values, based on compari-
sons of parasitemias between treated and control animals on the fourth
day after initiation of treatment, were calculated using GraphPad Prism
software. Mice were euthanized when parasitemias exceeded 50%.

Stage specificity assay. Using a previously described protocol (25),
synchronous W2 strain P. falciparum organisms were cultured in tripli-
cate wells in 96-well culture plates with 2 �M AN6426 or 1.3 �M chloro-
quine for 8-h intervals, beginning at the ring stage. At the end of each
interval, the cultures were washed 3 times and resuspended in culture
media without drug. After 48 h, when control parasites were at the ring
stage, the cultures were fixed with 2% formaldehyde, stained, and counted
with FACS as described above.

Selection of parasites with decreased sensitivity to AN6426. Tripli-
cate 10-ml cultures of Dd2 strain P. falciparum, each containing a clonal
population of 6 � 107 asynchronous parasites, were incubated with step-
wise increasing concentrations of AN6426, beginning with 0.4 �M. Me-
dium was changed and fresh AN6426 added daily. Once treated parasites
grew at rates comparable to those of untreated controls, parasite aliquots
were cloned by limiting dilution, drug sensitivity (IC50s) was assessed as
described above, aliquots were stored, the concentration of AN6426 was
increased, and the selection process was repeated. To assess the ease of
resistance selection, 3 cultures each of 106, 107, and 108 Dd2 strain para-
sites were incubated with 1.5 �M AN6426, and cultures were monitored
for 67 days or until parasites regrew.

Whole-genome sequencing. To prepare genomic DNA, synchronized
P. falciparum-infected erythrocytes (100 ml, 2% hematocrit, 10% para-

TABLE 1 In vitro and in vivo antimalarial activities of AN6426 and AN8432a

Compound

Cultured parasite IC50 (�M)
Mammalian cell CC50

(�M)
Murine malaria ED90

(mg/kg) (P. berghei)

Laboratory strain

Ugandan isolates3D7 W2 Dd2 HepG2 Jurkat

AN6426 0.19 � 0.05 0.31 � 0.18 0.42 � 0.15 0.35 � 0.13 78 � 3 �100 7.4
AN8432 0.28 � 0.01 0.49 � 0.29 0.49 � 0.18 ND 106 � 38 �25 16.2
a IC50 results (� standard deviations) are means from at least 3 experiments, each with duplicate readings. CC50 (50% cytotoxic concentration) results for Jurkat and HepG2 cells
are means from 2 experiments, each with at least 2 replicates. The value for field isolates is the mean readings from 7 independent isolates collected in Tororo, Uganda, in 2013 and
performed as described previously (40). In vivo ED90 values are based on comparisons of parasitemias between treated and control animals on the fourth day after inoculation of
parasites and initiation of treatment. ND, not determined.
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sitemia) were treated with 0.15% saponin for 5 min on ice to lyse eryth-
rocytes, followed by 3 washes in phosphate-buffered saline (PBS). Parasite
pellets were lysed in 150 mM NaCl, 10 mM EDTA, 50 mM Tris-HCl, pH
7.5, 0.1% Sarkosyl (Sigma-Aldrich), and 200 mg/ml proteinase K (Qia-
gen) overnight at 37°C. The samples were then subjected to extraction
with phenol-chloroform–isoamyl alcohol (25:24:1), pH 7.9 (Ambion),
treatment with 0.05 mg/ml RNase A (1 h 37°C), two additional phenol-
chloroform extractions, one chloroform extraction, and then ethanol pre-
cipitation. All extractions used light phase lock tubes (5 Prime).

Genomic DNA libraries were prepared from 100 ng DNA using the
Nextera DNA sample preparation kit (Illumina) according to the manu-
facturer’s instructions, except with 6 cycles and the bridge amplification
step at 65°C for 6 min (26). Each library was barcoded with unique sets of
two indices from the Nextera index kit (Illumina) to allow multiple sam-
ples to be run on one flow cell. Fragments of 360 to 560 bp next were
extracted and collected using Lab Chip XT (Caliper Life Sciences) accord-
ing to the manufacturer’s instructions. The fragments were amplified by
limited-cycle PCR using Kapa HiFi DNA polymerase (Kapa Biosystems)
with deoxynucleoside triphosphates (dNTPs) with an 80% AT coding bias
(6 cycles of 95°C for 10 s, 58°C for 30 s, 65°C for 6 min). The primers for
both PCR steps were AATGATACGGCGACCACCGA and CAAGCAGA
AGACGGCATACG (26). Libraries were pooled at concentrations of 2 nM
per library, as determined with a DNA Bioanalyzer (Agilent). Final library
quantification and qualification, as detailed previously (26), were com-
pleted, followed by sequencing at the UCSF Center for Advanced Tech-
nology on a HiSeq 2000 system (Illumina). Sequence data for each library
were aligned to the 3D7 reference genome using Bowtie (27), discarding
reads with �1 nucleotide mismatch and multiple alignments across the
genome. For the identification of single-nucleotide polymorphisms
(SNPs), reads were matched to those from the parental strain, and the top
200 SNPs per chromosome, ranked according to frequency of conflicting
nucleotides per position in the genome, were chosen and filtered based on
standard parameters (26). SNPs were considered legitimate if the number
of reads covering the position was �10 and the frequency was at least 80%.
Searches for novel SNPs included only nonsynonymous SNPs in exons,
excluding hypervariable genes (pfemp1, rifin, and stevor). Copy number
variation was analyzed using the UCSC Genome Browser (28).

Dideoxy sequencing. Genomic DNA was extracted using the QIAamp
DNA minikit (Qiagen) according to the manufacturer’s instructions.
PF3D7_0622800 was amplified in 4 fragments using the Phusion Hot Start
II high-fidelity DNA polymerase kit (Thermo Scientific) with 80% AT
dNTPs and primers described in Table S3 in the supplemental material
(95°C for 3 min; 30 cycles of 95°C for 10 s, 52°C for 30 s, 65°C for 1 min;
68°C for 10 min). The amplified fragments were cleaned using ExoSAP-IT
(Affymetrix), mixed with sequencing primers (see Table S3), and se-
quenced at the UCSF Genome Core Facility. For PF3D7_1218100, the
same approach was followed, but only one 800-bp fragment, including the
M416T SNP, was amplified and sequenced.

Production of P. falciparum and P. knowlesi LeuRS editing do-
mains. DNA fragments encoding LeuRS editing domains of P. falciparum
(PfLeuRS; residues 272 to 687) and P. knowlesi (PkLeuRS; residues 266 to
600) were cloned into the NcoI-XhoI sites of pETM-11 (EMBL). Flexible
loops of PfLeuRS (residues 328 to 361 and 475 to 519, corresponding to
insertions 1 and 3, respectively) and PkLeuRS (residues 400 to 432) were
deleted for crystallization. A glycine was introduced at position 475 of
PfLeuRS. Cysteine 273 of PfLeuRS was mutated to serine to prevent for-
mation of intermolecular disulfide bridges. Proteins were expressed in
BL21-Codon�RIL Escherichia coli at 18°C. The cells were lysed by soni-
cation in 40 to 60 ml of lysis buffer (20 mM Tris-HCl, pH 8.0, 100 mM
NaCl, 5 mM �-mercaptoethanol, 10 mM imidazole, and one tablet of
cOmplete protease inhibitor [Roche]). The soluble fraction was loaded
onto a nickel-nitrilotriacetic column (Ni-NTA; Qiagen) and washed with
50 ml lysis buffer, 50 ml lysis buffer plus 1 M NaCl, and then 50 ml lysis
buffer. Proteins were eluted with 15 ml lysis buffer plus 400 mM imid-
azole. The His tag of recombinant proteins was removed with tobacco

etch virus protease. Pure protein fractions were dialyzed in lysis buffer
without imidazole and concentrated to 10 to 15 mg ml�1.

Crystallization of P. falciparum and P. knowlesi LeuRS editing do-
mains. Crystallization was carried out at 20°C by the hanging-drop vapor
diffusion method. PfLeuRS D3 crystallized in two different space groups.
Monoclinic crystals of PfLeuRS D3 were obtained by mixing 1 �l 10
mg/ml protein with 1 �l reservoir solution containing 0.2 M sodium
nitrate, pH 6.8, 20% (wt/vol) PEG 3350, and 12% glycerol. Triclinic crys-
tals of PfLeuRS D3 were obtained by mixing 1 �l 10 mg/ml protein with 1
�l reservoir solution containing 0.1 M HEPES, pH 7.5, 10% isopropanol,
20% (wt/vol) PEG 4000, and 5% glycerol. Crystals of PfLeuRS D13 were
obtained by mixing 1 �l of 10 mg/ml protein with 1 �l reservoir solution
containing 0.1 M HEPES, pH 7.5, 20% (wt/vol) PEG 10000, and 8% eth-
ylene glycol. Crystals of PkLeuRS were obtained by mixing 1 �l of protein
at 12 mg ml�1 with 1 �l reservoir solution containing 0.05 M sodium
cacodylate, pH 6.5, 0.2 M potassium chloride, 0.1 M magnesium acetate,
10% (wt/vol) PEG 8000, and 25% ethylene glycol.

Structure determination and refinement. All data collection and
refinement statistics are shown in Table S2 in the supplemental mate-
rial. Diffraction data sets were collected at the European Synchrotron
Radiation Facility and integrated and scaled with the XDS suite (29) or
with the HKL2000 program package (30). Further data analysis was
performed with the CCP4 suite (31). The structure of PkLeuRS D3 was
initially solved by molecular replacement with PHASER (32) using the
structure of the Cryptosporidium muris LeuRS (CmLeuRS) editing do-
main (PDB entry 5FOM; A. Palencia, R. Liu, M. Lukarska, J. Gut, A.
Bougdour, B. Touquet, E. Wang, X. Li, M. R. K. Alley, Y. R. Freund, P. J.
Rosenthal, M. Hakimi, and S. Cusack, unpublished data) as a model. All
models were improved by manual adjustments with COOT (33) and re-
fined using REFMAC5 (34). Structure quality was analyzed with the PDBe
validation server (http://wwpdb-validation.wwpdb.org/validservice/),
which showed all residues for the different models in allowed regions of
the Ramachandran plot. Figures were drawn with PYMOL (http://www
.pymol.org/). Docking of AN6426-Ade76 into the editing site of plasmo-
dial LeuRS was done by structural alignment of the PfLeuRS structure to
the complex of CmLeuRS-AN6426-AMP (PDB entry 5FOM). The root-
mean-square deviation calculated over backbone atoms of CmLeuRS and
PfLeuRS was 1.27 Å.

Protein synthesis assay. Synchronous Dd2 strain trophozoites at 10 to
15% parasitemia were washed 3 times with leucine-free culture medium
and resuspended at 5% hematocrit in the same medium. Triplicate 100-�l
cultures were incubated with 0�, 1�, 10�, or 100� the IC50 of test
compounds for 15 min at 37°C, 0.5 �Ci of [14C]leucine (324 mCi/mmol;
PerkinElmer) was added, cultures were incubated for 2 h at 37°C, eryth-
rocytes were lysed with 0.15% saponin as described above, pellets were
resuspended in 100 �l 0.02% sodium deoxycholate (Sigma-Aldrich) to
lyse the parasites, and 100 �l ice-cold 10% (wt/vol) trichloroacetic acid
(TCA) was added to precipitate proteins. Precipitates were transferred to
0.45-�m nitrocellulose membrane filter plates (Millipore Multiscreen
HTS, MSHAN4B50), washed 4 times with 400 �l ice-cold 5% TCA, and
air dried. [14C]leucine incorporation was determined by adding 60 �l
OptiPhase Supermix scintillation cocktail (PerkinElmer) and counting in
a Wallac MicroBeta Trilux 1450 liquid scintillation counter.

Norvaline sensitivity assay. Synchronized Dd2 strain parasites were
cultured at 1% parasitemia, beginning at the ring stage, in either leucine-
free or complete culture media with various concentrations of L-norvaline
(Sigma-Aldrich) for 48 h, and the parasites were then fixed, stained, and
counted as described above.

Protein structure accession numbers. Atomic coordinates and struc-
ture factors have been deposited in the Protein Data Bank under the fol-
lowing accession codes: 5FO4 for the PfLeuRS D3 structure in the P1 space
group, 5FOC for PfLeuRS D3 in the P21 space group, 5FOD for the
PfLeuRS D13 structure, and 5FOF for the PkLeuRS structure.
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RESULTS
Structure-activity relationships for 3-aminomethyl benzoxa-
boroles active against P. falciparum. A benzoxaborole library
was screened against cultured multidrug-resistant W2 strain P.
falciparum. Multiple 3-aminomethyl benzoxaboroles were active,
and IC50s were determined for the closely related compounds 1 to
10 (Fig. 1). Compound 1, with a phenyl group at R4, had moderate
activity; replacement with a chloro atom in compound 2 led to
submicromolar activity. Larger and more lipophilic groups at R7,
such as a 7-benzyloxy group in compound 3, had minimal effect
on antimalarial activity. A free basic amino group at R3 was re-
quired for activity, as a Boc-blocked amino group abrogated ac-
tivity in compound 5. Replacement of the R7 ethoxy group (com-
pound 6; AN6426) with other alkoxy groups, such as methoxy in 7
and cyclopropyloxy in 8, led to decreased activity. Replacement of
the R4 Cl with F in compound 9 reduced activity; replacement of
this Cl with Br (10; AN8432) had minimal impact on activity.
From this analysis, compounds AN6426 and AN8432 emerged as
the most active antimalarials, and they were selected for further
study.

In vitro and in vivo antimalarial activity of AN6426 and
AN8432. We characterized activities of AN6426 and AN8432
against multiple strains of P. falciparum, including field isolates.
Activities were similar against laboratory strains known to be sen-
sitive (3D7) or resistant (W2 and Dd2) to chloroquine and other
antimalarials and against fresh isolates collected from malaria pa-
tients in Uganda in 2012 (Table 1). Assessment of IC50s showed
minimal differences after 48- or 96-h incubations; thus, AN6426

and AN8432 lack the delayed death phenotype (with much greater
activity after 96 h) seen with tetracyclines and some other antimi-
crobials. The compounds were tested for cytotoxicity against hu-
man Jurkat and HepG2 cells; toxicity was seen only at concentra-
tions at least 50-fold greater than concentrations toxic to cultured
parasites.

When administered orally to P. berghei-infected mice once
daily for 4 days, the compounds demonstrated activity, with day 4
ED90 values of 7.4 mg/kg/day for AN6426 and 16.2 mg/kg/day for
AN8432. At a dosage of 200 mg/kg/day, the compounds afforded
long-term cures in 40 to 60% of infected mice (see Fig. S1 in the
supplemental material).

Stage specificity and morphological effects of AN6426. Syn-
chronized W2 strain parasites were incubated with the compound
or chloroquine for 8-h intervals across the erythrocytic life cycle.
AN6426 was removed at 8-h time points, cultures were main-
tained until untreated control parasites had reached the ring stage,
and the parasitemias of control and treated cultures were com-
pared. For both AN6426 and chloroquine, inhibition of parasite
development was seen across the life cycle, but activity was greatest
against trophozoites (Fig. 2). AN6426-treated parasites had no
obvious morphological abnormalities during the ring and early
trophozoite stages, but the parasites treated during these stages
were unable to develop into multinucleated schizonts or new ring-
stage parasites (Fig. 2).

Selection and analysis of parasites with decreased sensitivity
to AN6426. To gain insight into the antimalarial mechanism of
action of AN6426, we cultured Dd2 strain P. falciparum in step-

Entry R3 R4 R6 R7 cLogD7.4 IC50 (μM) 

1 NH2CH2 Ph H EtO 1.8 2.7 

2 NH2CH2 Cl H EtO 0.68 0.71 

3 NH2CH2 Cl H PhCH2O 2.1 0.84 

4 NH2CH2 Cl Cl EtO 1.2 3.3 

5 BocNHCH2 Cl H EtO 2.8 >10 

6 (AN6426) (S)-NH2CH2 Cl H EtO 0.68 0.31 

7 (S)-NH2CH2 Cl H MeO 0.34 0.86 

8 (S)-NH2CH2 Cl H c-PrO 0.73 2.8 

9 (S)-NH2CH2 F H EtO 0.29 2.2 

10 (AN8432) (S)-NH2CH2 Br H EtO 0.95 0.49 

Artemisinin      0.006 

Chloroquine      0.10 

 

O
B
OH

R3

R7
R6

R4

FIG 1 In vitro activity of benzoxaboroles against cultured P. falciparum. IC50s against the W2 strain of P. falciparum were determined from two independent
experiments, each performed in duplicate. cLogD7.4 (calculated [log] distribution coefficient at pH 7.4) was calculated using ChemAxon software under the
condition of pH 7.4. Boc, tert-butoxycarbonyl.
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wise increasing concentrations of the compound, assessed parasite
sensitivity after each step, and characterized cloned parasites with
decreased sensitivity by whole-genome sequencing. Parasites were
incubated with AN6426 at 0.4 �M for 4 weeks (R1), 1 �M for 10
weeks (R2), and then 10 �M for 14 weeks (R3) (Fig. 3). At each
step of selection, parasites were initially undetectable on Giemsa-
stained smears (for 	3 weeks for R1 and 7 to 8 weeks for R2 and
R3) followed by regrowth, suggesting selection of mutations al-
lowing growth under drug pressure. Parasites at each step of
AN6426 resistance were similarly resistant to AN8432, indicative
of a shared mechanism of resistance. In contrast, selected parasites
did not demonstrate decreased sensitivity to the antimalarials

chloroquine, lumefantrine, mefloquine, piperaquine, and dihy-
droartemisinin (Fig. 3).

Parasites from each step of selection were cloned by limiting
dilution, and DNA from multiple clones was analyzed by whole-
genome sequencing. Sequencing identified a number of genetic
changes between parent and AN6426-resistant parasites, includ-
ing SNPs and copy number variations. SNPs in only two genes
were seen in multiple clones from all selection steps: PF3D7_
0622800, which encodes cytoplasmic LeuRS (35), and PF3D7_
1218100, which encodes a protein of unknown function classified
as a membrane protein based on homology models (36). For the
LeuRS gene, 4 different SNPs were identified in the predicted ed-
iting domain (14, 37, 38) (Fig. 3). SNPs identified in R2 and R3
parasites (T400I and V568L), but not those identified in R1 para-
sites (E628G and V630L), map to conserved editing active-site
regions of LeuRS from other eukaryotic pathogens (Fig. 4). For
PF3D7_1218100, a single SNP (M416T) was present in R1, R2,
and R3 parasites (Fig. 3). In addition, 2- to 4-fold amplification of
two clusters of genes on chromosome 12 was observed at all levels of
resistance; one of these clusters includes PF3D7_1218100 (see Table
S1 in the supplemental material). R3 parasites were subsequently cul-
tured without drug pressure for 5 months. These parasites showed
partial reversion to drug sensitivity, with 	5-fold decreased sensitiv-
ity to AN6426 compared to the wild type, but they retained mutations
in both PF3D7_0622800 and PF3D7_1218100.

To assess ease of selection of resistance to AN6426, we cultured
different numbers of Dd2 strain P. falciparum with 1.5 �M
AN6426. In 3 cultures with inocula of 108 parasites, parasites re-
grew after 16, 23, and 23 days. With 3 cultures each of 107 or 106

parasites, no growth was seen over 67 days of observation. For
parasites incubated with 5 nM atovaquone, all 6 cultures with
inocula of 108 parasites regrew over 24 to 50 days, 2 of 6 cultures
with inocula of 107 parasites regrew after 45 days, and 1 of 6 cul-
tures with inocula of 106 parasites regrew after 45 days.

Structure of the LeuRS editing domain of P. falciparum and
P. knowlesi. To better understand AN6426-LeuRS interactions,
we obtained crystal structures of the editing domain from two
plasmodial species. Based on the crystal structure of the LeuRS
editing domain of the related apicomplexan parasite Cryptospo-
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FIG 2 Stage specificity of action of AN6426. (A) Parasitemias were com-
pared between W2 strain P. falciparum incubated with 2 �M AN6426, 1.3 �M
chloroquine, or 0.1% DMSO for 8-h intervals across the life cycle and then
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pendent experiments. (B) Photomicrographs of representative parasites
treated with AN6426 and untreated controls are shown. ER and LR, early and
late rings; ET, MT, and LT, early, mid-stage, and late trophozoites; S, schizonts.

Dihydroartemisinin

R1-1 R1-2 R2-1 R2-2 R3-1 R3-2 Revertant R3 

IC50 (μM)  AN6426  0.42  ± 0.15 0.70 ± 0.15 0.63 ± 0.21 6.7 ± 0.06 8.6 ± 1.2 22 ± 1.3 25 ± 1.2 4.7 ± 0.5 
AN8432 0.49  ± 0.18 0.94  ± 0.13 6.4 ± 0.19 18 ± 0.63 

IC50
 
 Chloroquine

 
48 ± 8.1 34 ± 5.3 20 ± 6.9 9.5  ± 3.9 

Lumefantrine
 

5.6 ± 0.1 2.6 ± 1.3 0.95  ± 1.1 0.97 ± 0.3 
Mefloquine

 
2.2 ± 0.43 0.13 ± 0.1 0.67 ± 0.1 0.23  ± 0.1 

Piperaquine
 

15 ± 0.03 7.5 ± 1.7 11  ± 2.5 5.7 ± 2.2 

 
7.9 ± 1.7 6.1 ± 0.7 7.0 ± 8.1 3.6 ± 1.0 

SNPs PF3D7_0622800  None V630L** E628G* T400I** V568L* V568L** V568L* V568L* 
PF3D7_1218100 None M416T** M416T* M416T** M416T* M416T** M416T* M416T* 

Wild type 

 6  107 Dd2 
 parasites/flask 

0.4 μM              R1 
IC50     1.7 μM   

1 μM  
           R2 

IC50   6.2 μM   
10 μM  

             R3 
IC50   32 μM   31 Days 73 Days 103 Days 

1st  generation    2nd generation     3 rd generation 

             Cloned by limiting dilution 

        R3Rev 
IC50   4.7 μM

0 μM  

150 Days 

    Revertant R3 

 (nM) 

FIG 3 Selection and analysis of AN6426-resistant parasites. The selection schematic is shown at the top, including concentration of AN6426 and duration of
incubation for each step. IC50s for the indicated compounds are shown after each selection; values include standard deviations from at least 3 independent
experiments, each with 2 replicates. SNPs identified in these parasites by whole-genome and dideoxy sequencing (**) or by dideoxy sequencing alone (*), based
on comparison with the 3D7 reference strain, are shown.
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ridium muris (Palencia et al., unpublished), we designed several
constructs of the LeuRS editing domains of P. falciparum (residues
272 to 687) and of P. knowlesi (residues 266 to 600), a monkey
species that causes human infections in Southeast Asia. One or
more of three apicomplexan-specific and presumably flexible in-
sertions were deleted with the aim of promoting crystallization.
Crystals were obtained for two P. falciparum LeuRS constructs,
one with deletion of insertion 3 (residues 475 to 520; PfLeuRS D3)
and another with deletion of insertion 1 as well (residues 328 to
360; PfLeuRS D13). These crystals diffracted to 1.5 and 1.7 Å,
respectively (see Table S2 and Fig. S2 and S3 in the supplemental
material). In addition, we obtained crystals of PfLeuRS D3 in a
second space group (P1), which diffracted to 1.85 Å. A construct
with deletion of insertion 3 in the P. knowlesi LeuRS editing do-
main (PkLeuRS D3) gave crystals diffracting to 2.4 Å (see Table
S2). All structures showed the canonical editing domain fold of
eukaryotic LeuRS (39) but with unique partially ordered inser-
tions similar to those observed in the LeuRS editing domain of C.
muris (Palencia et al., unpublished). The role of these insertions,
which are distant from the editing active site, is unknown.

The two mutations identified in R2 and R3 resistant parasites,
T400I and V568L, map to the threonine-rich and AMP-binding
loops of the P. falciparum LeuRS editing domain, respectively.

Both loops are involved in binding and proofreading of noncog-
nate amino acids in bacterial and fungal LeuRS homologs (40) and
in binding of benzoxaboroles (6, 7, 23, 39). T400 in the P. falcip-
arum LeuRS structure aligns with T252 of E. coli LeuRS; this resi-
due is responsible for steric exclusion of cognate leucine from the
editing site, thereby preventing hydrolysis of correctly charged
Leu-tRNALeu but allowing hydrolysis of incorrectly incorporated
amino acids (41). The replacement of threonine with the more
bulky isoleucine would likely impact negatively on the predicted
binding of AN6426, which extends into the noncognate amino
acid binding site. V568 structurally aligns to V335 of E. coli LeuRS,
which establishes hydrophobic contacts with the terminal adeno-
sine-ribose of the tRNA and is important for the stabilization of
the substrate in the LeuRS editing site (40). The V568L substitu-
tion is predicted to destabilize or impede the formation of the
inhibition adduct (AN6426-AMP) in the editing site of P. falcipa-
rum LeuRS due to the larger size of leucine. The LeuRS mutations
found in R1 resistant parasites, E628G and V630L, which are as-
sociated with low-level resistance, map outside the editing active
site (Fig. 4).

AN6426 and AN8432 inhibit protein synthesis. To further
consider P. falciparum LeuRS as the target for the 3-aminomethyl
benzoxaboroles, we characterized the effects of AN6426 and

A B

C

D

FIG 4 Structure of P. falciparum LeuRS editing domain and mapping of resistant mutants. (A) P. falciparum LeuRS editing domain surface model (white) and
cartoon representation (blue) with resistance mutant residues shown as red sticks. (B) Zoomed view of the PfLeuRS editing site. (C) Docking of AN6426-AMP
adduct into the editing site of PfLeuRS. The adduct was placed by overlapping PfLeuRS with the complex of C. muris LeuRS with AN6426-AMP (PDB entry
5FOM). Root mean square deviation over backbone atoms was 1.3 Å. (D) Sequence alignment of LeuRSs of plasmodia, other eukaryotic pathogens, and E. coli.
Residues that are changed in P. falciparum AN6426-resistant mutants are highlighted in red.
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AN8432 on uptake of leucine, an indicator of parasite protein
synthesis. Treatment of wild-type Dd2 strain parasites with 2-h
pulses of AN6426 or AN8432 inhibited incorporation of [14C]leu-
cine, indicative of a block in protein synthesis, as also seen with the
protein synthesis inhibitor cycloheximide but not with artemis-
inin, a rapid-acting antimalarial that does not act against protein
synthesis (Fig. 5A). In parasites with high-level resistance to
AN6426, the compound did not inhibit [14C]leucine incorpora-
tion (Fig. 5B). To specifically assess LeuRS editing, we cultured
parasites in leucine-free medium in the presence of norvaline, a
noncognate analogue of leucine that is readily charged to tRNA by
LeuRS enzymes (40) and then hydrolyzed from tRNALeu by the
editing active site (37). Misincorporation of norvaline into pro-
teins is toxic (6). Norvaline was not toxic to wild-type parasites but
markedly inhibited the growth of R2 and R3 parasites (Fig. 4C), an
effect that was not seen when cultures contained leucine (Fig. 4D).
These results support the hypothesis that AN6426 acts against P.
falciparum through inhibition of LeuRS editing.

DISCUSSION

We identified two benzoxaboroles, AN6426 and AN8432, with
nanomolar in vitro activity against P. falciparum and efficacy in a

rodent malaria model. To gain insight into mechanisms of action,
we selected and characterized parasites with markedly decreased
sensitivities to AN6426. Resistant clones consistently showed
SNPs predicted to be within the editing domain of LeuRS. Bio-
chemical studies showed that AN6426 and AN8432 inhibited pro-
tein synthesis in wild-type, but not AN6426-resistant, parasites,
and that resistant parasites were inhibited by exogenous norva-
line, consistent with a loss of LeuRS editing. Taken together, our
data suggest that a target of the antimalarial benzoxaboroles
AN6426 and AN8432 is P. falciparum LeuRS.

The mutations seen in parasites selected for resistance to AN6426
were predicted, based on comparison with homologs from other or-
ganisms, to be located within the LeuRS editing domain (4–6, 42),
and this conclusion was supported by determination of the structure
of this domain in P. falciparum LeuRS and by our biochemical
studies. Brief incubations with AN6426 and AN8432, but not the
rapid-acting antimalarial artemisinin, led to dose-dependent in-
hibition of parasite incorporation of leucine, consistent with a
block in protein synthesis. Cycloheximide blocked leucine incor-
poration at concentrations closer to its antiparasitic IC50, presum-
ably because its action against polypeptide elongation (43, 44) is
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FIG 5 Biochemical support for action of benzoxaboroles against LeuRS. (A) Effects of benzoxaboroles and positive (cycloheximide) and negative (artemisinin)
controls on [14C]leucine incorporation by wild-type Dd2 strain P. falciparum. (B) Effects of AN6426 on [14C]leucine incorporation by parasites selected for
resistance. Concentrations studied were multiples of IC50s, determined based on triplicate measures (IC50 for AN6426, 420 nM; cycloheximide, 130 nM;
artemisinin, 8.7 nM). (C and D) Effects of norvaline on growth of cultured parasites selected for resistance in the absence (C) or presence (D) of exogenous
leucine (0.025 g/liter). Error bars represent standard deviations from at least three independent experiments.
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more rapidly toxic to parasites than inhibition of aminoacylation.
In leucine-free media, growth of AN6426-resistant, but not wild-
type, parasites was inhibited by norvaline, consistent with a block
in LeuRS editing in resistant parasites. Taken together, our genetic
and biochemical results suggest that AN6426 and AN8432 act
against P. falciparum via inhibition of LeuRS.

In contrast to the case for C. muris, we did not detect binding of
the AN6426-AMP adduct into the isolated P. falciparum LeuRS
editing domain in vitro. Although the P. falciparum and C. muris
editing domain structures are similar (sequence similarity of
38.4%, with root-mean-squared deviation calculated over back-
bone atoms of 1.3 Å), the P. falciparum editing active site contains
three idiosyncratic amino acid substitutions (also seen in plasmo-
dial homologs) at usually conserved residues. These substitutions
might explain differences in the ease of binding of AN6426 to the
editing domain (Fig. 4; also see Fig. S3 in the supplemental mate-
rial). In P. falciparum LeuRS, K397 makes a unique hydrogen
bond to Q649 but does not interact with nearby E399. In LeuRS of
C. muris and many other organisms, these three residues are R397,
E649, and E399, and the multivalent arginine forms a salt bridge to
both glutamates. Another P. falciparum-specific residue, I563,
which in other species is a lysine, is predicted to lead to the loss of
interaction with the phosphate of the 3= terminal adenosine
(Ade76) of tRNALeu; this interaction contributes to trapping the
tRNALeu in the editing site of LeuRS. These idiosyncratic differ-
ences make it plausible that for P. falciparum, unlike other LeuRS
enzymes, high-affinity adduct formation occurs only in the con-
text of the full-length LeuRS and tRNA.

Of note, P. falciparum encodes two LeuRS enzymes, the nucle-
ar-encoded enzyme that is expressed in the cytoplasm and that we
have shown to be the target of AN6426 and a second enzyme that
is encoded by the apicoplast genome (PF3D7_0828200; previously
annotated PF08_0011) (45). We did not see mutations in the api-
coplast LeuRS gene in parasites selected for resistance to AN6426.
This result is consistent with the observation that AN6426 targets
the LeuRS editing domain and the understanding from informat-
ics analysis that, unlike the cytoplasmic LeuRS, the P. falciparum
apicoplast LeuRS does not contain a canonical editing domain
(46).

Parasites selected for resistance to AN6426 consistently con-
tained an SNP in a second P. falciparum gene, PF3D7_1218100,
and 2- to 4-fold amplification of a gene cluster that includes this
gene. The function of the PF3D7_1218100 product is unknown.
The product is predicted to be a 55.7-kDa protein that features
two transmembrane domains and an apicoplast signal peptide
(36). The gene is transcribed in mature erythrocytic parasites
and in sexual stages. Disruption of the P. berghei ortholog of
PF3D7_1218100 (PBANKA_143370) led to a defect in the devel-
opment of sporozoites but no apparent effect in erythrocytic par-
asites (35). Thus, the limited available data concerning this gene
product do not explain its role in resistance to AN6426 and
AN8432. Further consideration of both LeuRS and the product of
PF3D7_1218100 as targets of AN6426 should include reverse ge-
netic experiments to explore the impact of gene alterations on
sensitivity to the compound.

Malaria drug discovery is especially challenging. In addition to
obvious requirements for a drug to be safe and efficacious, anti-
malarial drug candidates should meet additional criteria, includ-
ing rapid clinical response, requirement for no more than 3 days
of treatment (and ideally single-dose treatment), oral bioavailabil-

ity, low tendency to select for drug resistance, lack of cross-resis-
tance with existing antimalarials, safety in children and in preg-
nancy, and low cost of production (47). Our results with AN6426
and AN8432 suggest that the 3-aminomethyloxaborole class war-
rants further exploration. First, the compounds exerted good ac-
tivity against P. falciparum, although increased potency is a goal in
optimization of this class. Second, the compounds were active
against murine malaria with once-daily dosing. Third, the safety
of other benzoxaboroles has been demonstrated, with extensive in
vitro and in vivo toxicology studies and progression to trials in
humans (22, 48, 49). Fourth, AN6426 and related benzoxaboroles
are easy to synthesize, requiring a 4- to 6-step scheme starting
from inexpensive reagents (50). Lastly, our results suggest that
AN6426 has a novel antimalarial mechanism of action, the inhi-
bition of P. falciparum LeuRS. Taken together, these results sup-
port continued efforts to develop 3-aminomethyl benzoxaboroles
as novel antimalarial agents.
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