UC Berkeley Archaeological X-ray Fluorescence Reports

Title

X-Ray Fluorescence (XRF) Analysis of Major Oxide and Trace Element Concentrations for Rock Samples from AZ U:5:182 (ASM), Phoenix, Arizona

Permalink https://escholarship.org/uc/item/644458mc

Author Shackley, M. Steven

Publication Date 2015-09-19

Supplemental Material https://escholarship.org/uc/item/644458mc#supplemental

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-NonCommercial License, available at <u>https://creativecommons.org/licenses/by-nc/4.0/</u>

GEOARCHAEOLOGICAL X-RAY FLUORESCENCE SPECTROMETRY LABORATORY 8100 WYOMING BLVD., SUITE M4-158

ALBUQUERQUE, NM 87113 USA

X-RAY FLUORESCENCE (XRF) ANALYSIS OF MAJOR OXIDE AND TRACE ELEMENT CONCENTRATIONS FOR ROCK SAMPLES FROM AZ U:5:182 (ASM), PHOENIX, ARIZONA

by

M. Steven Shackley Ph.D., Director Geoarchaeological XRF Laboratory

Report Prepared for

Scott Courtright PaleoWest Archaeology Phoenix, Arizona

19 September 2015

INTRODUCTION

The trace element and oxide analysis here of rock samples from AZ U:5:182 (ASM) northwest of Phoenix, Arizona indicates that none of the artifacts match the source standards from the Mogollon or Hardscrabble Mesa dacite from near Strawberry, Arizona (Shackley 2013). Indeed the artifacts are produced from a large range of intermediate and mafic volcanic rocks from many sources, none of which have been chemically characterized and thus known.

Both the trace element and major oxide analyses indicate very different composition than the dacites on the southern edge of the Mogollon Rim in Arizona's Transition Zone. Based on this study, it seems that these Transition Zone dacites did not reach the Phoenix Basin, although there has been little research into these intermediate volcanic raw materials in the region (c.f. Shackley 2011b; see cover image here). Sample PD-1 does not match the trace element profile for the Strawberry dacites, but it could be a similar volcanic rock and possibly from a source nearby and related to the Strawberry dacites. (see Tables 1 and 2, and Figures 1 and 2).

LABORATORY SAMPLING, ANALYSIS AND INSTRUMENTATION

All archaeological samples are analyzed whole. The results presented here are quantitative in that they are derived from "filtered" intensity values ratioed to the appropriate x-ray continuum regions through a least squares fitting formula rather than plotting the proportions of the net intensities in a ternary system (McCarthy and Schamber 1981; Schamber 1977). Or more essentially, these data through the analysis of international rock standards, allow for inter-instrument comparison with a predictable degree of certainty (Hampel 1984; Shackley 2011a).

Trace Element Analyses

All analyses for this study were conducted on a ThermoScientific *Quant'X* EDXRF spectrometer, located in the Geoarchaeological XRF Laboratory, Albuquerque, New Mexico. It is equipped with a thermoelectrically Peltier cooled solid-state Si(Li) X-ray detector, with a 50

2

kV, 50 W, ultra-high-flux end window bremsstrahlung, Rh target X-ray tube and a 76 μ m (3 mil) beryllium (Be) window (air cooled), that runs on a power supply operating 4-50 kV/0.02-1.0 mA at 0.02 increments. The spectrometer is equipped with a 200 l min⁻¹ Edwards vacuum pump, allowing for the analysis of lower-atomic-weight elements between sodium (Na) and titanium (Ti). Data acquisition is accomplished with a pulse processor and an analogue-to-digital converter. Elemental composition is identified with digital filter background removal, least squares empirical peak deconvolution, gross peak intensities and net peak intensities above background.

The analysis for mid Zb condition elements Ti-Nb, Pb, Th, the x-ray tube is operated at 30 kV, using a 0.05 mm (medium) Pd primary beam filter in an air path at 200 seconds livetime to generate x-ray intensity Ka-line data for elements titanium (Ti), manganese (Mn), iron (as $Fe_2O_3^{T}$), cobalt (Co), nickel (Ni), copper, (Cu), zinc, (Zn), gallium (Ga), rubidium (Rb), strontium (Sr), yttrium (Y), zirconium (Zr), niobium (Nb), lead (Pb), and thorium (Th). Not all these elements are reported since their values in many volcanic rocks are very low. Trace element intensities were converted to concentration estimates by employing a least-squares or quadratic calibration line ratioed to the Compton scatter established for each element from the analysis of international rock standards certified by the National Institute of Standards and Technology (NIST), the US. Geological Survey (USGS), Canadian Centre for Mineral and Energy Technology, and the Centre de Recherches Pétrographiques et Géochimiques in France (Govindaraju 1994). Line fitting is linear (XML) for all elements but Fe where a derivative fitting is used to improve the fit for iron and thus for all the other elements. When barium (Ba) is analyzed in the High Zb condition, the Rh tube is operated at 50 kV and up to 1.0 mA, ratioed to the bremsstrahlung region (see Davis 2011; Shackley 2011a). Further details concerning the petrological choice of these elements in Southwest obsidians is available in Shackley (1988, 1995, 2005; also Mahood and Stimac 1991; and Hughes and Smith 1993). Nineteen specific pressed powder standards are used for the best fit regression calibration for elements Ti-Nb, Pb, Th, and Ba, include G-2 (basalt), AGV-2 (andesite), GSP-2 (granodiorite), SY-2 (syenite), BHVO-2 (hawaiite), STM-1 (syenite), QLO-1 (quartz latite), RGM-1 (obsidian), W-2 (diabase), BIR-1 (basalt), SDC-1 (mica schist), TLM-1 (tonalite), SCO-1 (shale), NOD-A-1 and NOD-P-1 (manganese) all US Geological Survey standards, NIST-278 (obsidian), U.S. National Institute of Standards and Technology, BE-N (basalt) from the Centre de Recherches Pétrographiques et Géochimiques in France, and JR-1 and JR-2 (obsidian) from the Geological Survey of Japan (Govindaraju 1994).

Major and Minor Oxide Analysis

Analysis of the major oxides of Na, Mg, Al, K, V, Cr, Mn, and Fe is performed under the multiple conditions elucidated below. This fundamental parameter analysis (theoretical with standards), while not as accurate as destructive analyses (pressed powder and fusion disks) is usually within a few percent of actual, based on the analysis of USGS RGM-1 obsidian standard (see also Shackley 2011a). The fundamental parameters (theoretical) method is run under conditions commensurate with the elements of interest and calibrated with four USGS standards (RGM-1, rhyolite; AGV-2, andesite; BHVO-1, hawaiite; BIR-1, basalt), and one Japanese Geological Survey rhyolite standard (JR-1).

Conditions of Fundamental Parameter Analysis¹

Low Za (Na, Mg, Al, Si, P)

Voltage	6 kV	Current	Auto ²
Livetime	100 seconds	Counts Limit	0
Filter	No Filter	Atmosphere	Vacuum
Maximum Energy	10 keV	Count Rate	Low

Mid Zb (K, Ca, Ti, V, Cr, Mn, Fe)

	Voltage	32 kV	Current	Auto	
	Livetime	100 seconds	Counts Limit	0	
	Filter	Pd (0.06 mm)	Atmosphere	Vacuum	
	Maximum Energy	40 keV	Count Rate	Medium	
Hi	gh Zb (Sn, Sb, Ba	, Ag, Cd)			
	Voltage	50 kV	Current	Auto	
	Livetime	100 seconds	Counts Limit	0	
	Filter	Cu (0.559 mm)	Atmosphere	Vacuum	
	Maximum Energy	/ 40 keV	Count Rate High		
Lo	ow Zb (S, Cl, K, C	a)			
	Voltage	8 kV	Current	Auto	
	Livetime	100 seconds	Counts Limit	0	
	Filter	Cellulose (0.06 mm)	Atmosphere	Vacuum	
	Maximum Energy	/ 10 keV	Count Rate	Low	

¹ Multiple conditions designed to ameliorate peak overlap identified with digital filter background removal, least squares empirical peak deconvolution, gross peak intensities and net peak intensities above background.

² Current is set automatically based on the mass absorption coefficient.

The data from the WinTrace software were translated directly into Excel for Windows and SPSS software for statistical manipulation and the major oxides plotted on the TAS plot to determine rock type. In order to evaluate these quantitative determinations, machine data were compared to measurements of known standards during each run. AGV-1 a USGS andesite standard was analyzed during each sample run for obsidian artifacts to check machine calibration (Tables 1 and 2).

REFERENCES CITED

Davis, K.D., T.L. Jackson, M.S. Shackley, T. Teague, and J.H. Hampel

2011 Factors Affecting the Energy-Dispersive X-Ray Fluorescence (EDXRF) Analysis of Archaeological Obsidian. In X-Ray Fluorescence Spectrometry (XRF) in Geoarchaeology, edited by M.S. Shackley, pp. 45-64. Springer, New York.

Govindaraju, K.

1994 Compilation of Working Values and Sample Description for 383 Geostandards. *Geostandards Newsletter* 18 (special issue).

Hampel, Joachim H.

1984 Technical Considerations in X-ray Fluorescence Analysis of Obsidian. In *Obsidian Studies in the Great Basin*, edited by R.E. Hughes, pp. 21-25. Contributions of the University of California Archaeological Research Facility 45. Berkeley.

Hildreth, W.

1981 Gradients in Silicic Magma Chambers: Implications for Lithospheric Magmatism. Journal of Geophysical Research 86:10153-10192.

Hughes, Richard E., and Robert L. Smith

1993 Archaeology, Geology, and Geochemistry in Obsidian Provenance Studies. *In Scale on Archaeological and Geoscientific Perspectives*, edited by J.K. Stein and A.R. Linse, pp. 79-91. Geological Society of America Special Paper 283.

Mahood, Gail A., and James A. Stimac

1990 Trace-Element Partitioning in Pantellerites and Trachytes. *Geochemica et Cosmochimica Acta* 54:2257-2276.

McCarthy, J.J., and F.H. Schamber

1981 Least-Squares Fit with Digital Filter: A Status Report. In *Energy Dispersive X-ray Spectrometry*, edited by K.F.J. Heinrich, D.E. Newbury, R.L. Myklebust, and C.E. Fiori, pp. 273-296. National Bureau of Standards Special Publication 604, Washington, D.C.

Schamber, F.H.

1977 A Modification of the Linear Least-Squares Fitting Method which Provides Continuum Suppression. In *X-ray Fluorescence Analysis of Environmental Samples*, edited by T.G. Dzubay, pp. 241-257. Ann Arbor Science Publishers.

Shackley, M. Steven

- 1988 Sources of Archaeological Obsidian in the Southwest: An Archaeological, Petrological, and Geochemical Study. *American Antiquity* 53(4):752-772.
- 1995 Sources of Archaeological Obsidian in the Greater American Southwest: An Update and Quantitative Analysis. *American Antiquity* 60(3):531-551.
- 2005 *Obsidian: Geology and Archaeology in the North American Southwest*. University of Arizona Press, Tucson.

- 2011a An Introduction to X-Ray Fluorescence (XRF) Analysis in Archaeology. In *X-Ray Fluorescence Spectrometry (XRF) in Geoarchaeology*, edited by M.S. Shackley, pp. 7-44. Springer, New York.
- 2011b Sources of Archaeological Dacite in Northern New Mexico. *Journal of Archaeological Science* 38:1001-1007.
- 2013 X-Ray Fluorescence (XRF) Analysis of Major Oxide and Trace Element Concentrations for Dacite Rock Samples from Mogollon Mesa, Northern Arizona. Report prepared for William Bryce, Southwest Archaeological Research Alliance, Phoenix, Arizona.

Sample	Ti	Mn	Fe	Zn	Rb	Sr	Y	Zr	Nb	Ва	Pb	Th
PD1	2939	599	2539 2	147	49	524	16	188	36	1756	15	22
PD33	2833	589	2499 8	86	47	520	14	190	35	1647	17	19
PD35	5058	810	4041 7	107	41	921	20	155	32	1756	10	4
PD37	5230	832	3874 6	90	52	530	26	121	29	1259	20	4
PD67	2779	558	2573 2	82	44	549	19	201	36	1783	16	16
PD68	2700	560	2344 7	62	44	498	17	194	33	1662	13	19
XRF1 ¹	4134	768	3060 2	325	57	541	19	124	37	1172	14	9
XRF2	2728	637	2562 3	285	46	510	14	187	37	1759	19	20
XRF3	1148 0	1114	7018 0	189	31	1041	21	208	31	3280	10	5
XRF4	3507	606	2533 7	87	57	443	20	131	35	1377	19	4
AGV-1	5634	648	4215 5	89	68	647	22	220	17	1102	29	4

Table 1. Trace element concentrations for the rock samples and USGS AGV-1.

¹ Unique numbers not identifiable. The XRF numbers are noted on the artifact bag.

Table	2.	Major	oxide	concentrat	ions for	the ar	chaeo	logical	sampl	es and	USGS	AGV-	1.
-------	----	-------	-------	------------	----------	--------	-------	---------	-------	--------	------	------	----

SAMPLE	Na2O	MgO	AI2O3	SiO2	K2O	CaO	TiO2	MnO	Fe2O3	Σ
	%	%	%	%	%	%	%	%	%	
PD1	4.232	1.465	16.739	64.27	3.126	4.379	0.544	0.098	4.476	99.329
PD33	2.479	0.467	10.167	59.955	5.44	9.165	1.008	0.187	9.804	98.672
PD35	3.707	2.976	18.484	57.164	2.1	6.52	1.063	0.131	7.389	99.534
PD37	3.994	3.167	17.534	58.801	2.646	5.162	1.131	0.131	6.898	99.464
PD67	2.852	0.758	10.849	54.88	4.924	10.809	1.244	0.233	11.956	98.505
PD68	4.388	1.868	18.619	62.469	2.316	5.059	0.553	0.087	4.185	99.544
XRF1	5.077	0.913	9.502	52.385	5.634	9.492	1.878	0.297	12.519	97.697
XRF2	3.248	0.8	10.836	50.26	5.418	11.204	1.26	0.294	13.706	97.026
XRF3	3.689	4.371	17.674	49.869	1.859	8.153	2.021	0.16	11.129	98.925
XRF4	4.919	0.516	16.228	64.037	3.764	3.801	0.837	0.104	4.591	98.797
AGV-1	3.617	0.967	16.896	62.199	3	5.095	1.072	0.099	6.734	99.679

¹ Sum includes only relevant oxides, so does not sum to 100%.

Figure 1. TAS plot of the archaeological samples, and two samples of "Strawberry dacite" (M=Mogollon Mesa; H=Hardscrabble Mesa) and USGS AGV-1 standard.

Figure 2. Zr versus Sr bivariate plot of archaeological samples and the Mogollon and Hardscrabble Mesa (Strawberry) dacite source rocks.