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Abstract 

A central question for cognitive science is whether children’s 
linguistic productivity can be captured by item-based 
learning, or whether the learner must be guided by abstract, 
system-wide principles governed by innate constraints. Here, 
we present a computational model of early language 
acquisition which learns to discover and use lexically-based 
frames in a fully incremental, on-line fashion. The model is 
rooted in simple prediction- and recognition-based processes, 
subject to the same memory limitations as language learners. 
When exposed to English corpora of child-directed speech, 
the model is able learn developmentally plausible frames and 
use them to capture over 70% of the utterances produced by 
target children aged 2 to 5. Across a typologically diverse 
range of 29 languages, the model is able to capture over 68% 
of child utterances. Together, these findings suggest that 
much of children’s early linguistic productivity can be 
captured by item-based learning through computationally 
simple mechanisms. 

Keywords: language learning; language acquisition; usage-
based approaches; computational modeling; chunking 

Introduction 

By four years of age, most children have mastered the basic 

grammatical structures of their native language, an 

achievement marking the transition to a seemingly 

unbounded capacity for communicating novel information. 

But how is such open-endedness possible, given the finite, 

noisy nature of the input? This is among the foundational 

questions of cognitive science. For over half a century, 

researchers have argued that children’s learning is guided by 

system-wide, abstract principles and constrained by innate 

biases (e.g., Chomsky, 1965). In recent decades, an 

alternative perspective has emerged in the form of usage-

based approaches, which hold that children’s linguistic 

productivity emerges gradually as a process of storing and 

abstracting over the input (e.g., Tomasello, 2003). In this 

framework, children’s earliest steps towards unbounded 

productivity come in the form of lexically-based frames: 

through knowledge of partially overlapping sequences, 

children form schemas with slots that are filled according to 

semantic, pragmatic, or phonological constraints (e.g., 

Braine, 1963). 

Among the earliest quantitative studies offering evidence 

for lexical frames was that of Lieven, Behrens, Speares, and 

Tomasello (2003), who used a technique known as the 

“traceback method” to analyze the speech of a single child 

during its second year. Lieven et al. found that a high 

proportion of the child’s linguistic productivity—utterances 

which went beyond frozen or recycled sequences to feature 

novel word combinations—could be explained in terms of 

lexically-specific frames, such as “there’s the __ .” 

Subsequent work improved on the original traceback 

method and yielded similar findings (e.g., Lieven, Salomo, 

& Tomasello, 2003).  

As highlighted by other researchers (e.g., Kol, Nir, & 

Wintner, 2014) the traceback method is not automated and 

is therefore severely limited in terms of the range of corpora 

and languages to which it can be applied. Moreover, the 

lack of a computationally explicit formulation means that 

the general approach does not make specific commitments 

to the types of learning mechanisms or representations that 

allow productivity to emerge from lexically-based 

representations. 

 This problem highlights a general lack of computational 

work examining item-based learning as a starting point for 

linguistic abstraction, which is reflected in the imprecise 

language with which usage-based theory is often discussed. 

For instance, researchers have appealed to complex 

psychological constructs such as analogical reasoning to 

explain lexically-based frames (e.g., Gentner & Namy, 

2006; Tomasello, 2003). Even computational studies 

examining the transition from item-based learning to 

abstraction have appealed to analogy while remaining 

agnostic as to the lower-level mechanisms supporting it 

(e.g., Bod, 2009). 

 By contrast, we aim to provide an account of early 

abstraction which is rooted in basic processes of prediction 

and recognition. Moreover, we wish to capture such 

learning in a way that is consistent with the myriad sensory 

and memory limitations imposed on the learner (as 

discussed in Christiansen & Chater, 2016). This requires a 

fully incremental and on-line learning model, in line with 

memory constraints that force reliance on local rather than 

global syntactic information. It also means capturing 

learning in a way that is fully usage-based in the sense that 

all learning takes place in the context of specific processing 

events. 
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Modeling Children’s Discovery and Use of 

Lexically-based Frames 

Here, we seek to model children’s discovery and use of 

lexical frames by modifying an existing usage-based 

computational framework, known as the Chunk-Based 

Learner (CBL; McCauley & Christiansen, 2014, 2019). 

Inspired by the aforementioned memory constraints, the 

CBL model aims to recreate individual children’s utterances 

by learning from the linguistic input to which they have 

been exposed. The model offers strong performance across a 

typologically diverse range of languages (McCauley & 

Christiansen, 2019) while capturing psycholinguistic data 

from both children (McCauley & Christiansen, 2014) and 

adults (Grimm, Cassani, Gillis, & Daelemans, 2017). 

Importantly, previous research has only used CBL to model 

the discovery and use of concrete multiword units. In the 

present study, we implement this pre-existing model and 

modify it to support the incremental, on-line discovery and 

use of lexically-based frames. 

In what follows, we describe the basic workings of the 

CBL model as well as the modifications we applied to 

enable the learning of lexical frames. Next, we examine 

qualitative and quantitative properties of the frames 

discovered by the model when exposed to corpora of 

English child-directed speech. We also evaluate the model’s 

ability to use these frames in a sentence production task, 

exploring the extent to which they can support early 

linguistic productivity. Finally, we look at the model’s 

ability to use frames in this sentence production task across 

a typologically diverse array of 29 different languages. 

Experiment 1: Modeling the Development of 

Lexically-based Frames in English 

The CBL Model 

The model has been described in detail in previous work 

(e.g., McCauley & Christiansen, 2019). We therefore briefly 

provide sufficient information to implement the model. The 

model processes the input corpus on a word-by-word basis, 

tracking low-level frequency information for words and 

word pairs (bigrams). This information is used on-line to 

calculate the backward transition probability (BTP) between 

words. By maintaining a running average of BTP over 

previously seen word pairs and using it as a threshold, the 

model classifies BTPs linking words as either high or low. 

High BTPs are used to group words together to form part of 

a chunk, while low probabilities are used to define chunk 

boundaries. When a boundary is placed, the preceding 

word(s)—there is no a priori limit on the size of a chunk—

are placed as a unit in the model’s chunk inventory. When 

the model encounters a previously-discovered chunk in the 

input, its frequency count is incremented by 1. The resulting 

chunk inventory thus contains a mix of single-word and 

multiword units. The model maintains frequency counts for 

pairs of chunks occurring together, which supports the 

incremental construction of utterances during production.  

The model also uses its chunk inventory on-line while 

processing the input. Through a combination of prediction- 

and recognition-based processing, knowledge of previously 

discovered chunks can assist in further discovery: when a 

word-pair is encountered, if it has occurred at least twice as 

part of an existing chunk, it is automatically grouped 

together (regardless of BTP). Otherwise, the BTP is 

evaluated against the running average threshold as described 

above. 

A record of the model’s on-line chunking of utterances is 

maintained for later evaluation against the output of a 

parser. CBL’s ability to approximate the output of shallow 

parsers cross-linguistically has been suggested to capture 

key aspects of comprehension (cf. McCauley & 

Christiansen, 2019). The model also aims to capture key 

aspects of production: as the model makes its way through a 

corpus of child-directed speech, it encounters utterances 

produced by the target child of the corpus, at which point 

the production side of the model comes into play. The 

model must produce its own utterance by generalizing from 

the chunks and statistics it has learned up to that point in the 

simulation. This task is used to evaluate our version of the 

model and is described below in the subsection entitled 

Sentence Production Task. 

Modifications to the CBL Model 

To enable the on-line discovery and use of lexical frames, 

we made some slight changes to the original CBL 

implementation. When the model has discovered 5 or more 

multiword chunks which overlap in all but one position, it 

creates a lexical frame—a chunk with an empty slot—and 

stores it in the chunk inventory. When chunks matching this 

frame are encountered, the frame’s frequency count is 

incremented, as are the counts of matching chunks. The 5+ 

criterion was selected in light of previous corpus studies of 

evidence for lexical frames in child-directed speech (e.g., 

Cameron-Faulkner, Lieven, & Tomasello, 2003, who used a 

criterion of 4+ in their analyses). As the original version of 

CBL already uses its chunk inventory during on-line 

processing, we felt this change was in keeping with the 

model’s intended psychological features. 

As an example of frame creation, consider an instance in 

which the model has already discovered and used the 

chunks in the box, in the tub, in the bag, and in the chair. 

When the model discovers the chunk in the cup, it also 

discovers the frame in the __ as an automatic generalization 

over the previous multiword chunks. Both in the cup and in 

the __ are initialized in the chunk inventory with counts of 

1, the starting frequency value for newly-discovered chunks. 

The frame’s count is then incremented by 1 when the model 

later encounters in the box, a previously discovered chunk, 

as is the count for that chunk. The frame’s count is also 

incremented by 1 again when the model discovers a new 

chunk, in the sink, and so forth. 

As described in the below section entitled Sentence 

Production Task, the model can rely on its knowledge of 

lexical frames during production. 
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Input Corpora 

Rather than aggregate across multiple corpora, each of our 

simulations involved exposing the model to a single corpus 

of child-directed speech. We selected, from the English 

language portion of the CHILDES database (MacWhinney, 

2000) all corpora meeting the following three criteria: i) 

contained at least 50,000 words; ii) featured a multiword 

child-to-adult utterance ratio of at least 1:10; and iii) 

spanned at least a 6-month period in terms of the target 

child’s age across the corpus. These criteria were met by 

individual corpora for 43 English-learning children (US: 25; 

UK: 18). Tags and punctuation were removed from the 

corpora, leaving, for each utterance, only speaker identifiers 

and the original sequence of words. 

Learning Lexical Frames in English 

Across the entire set of 43 simulations, the model 

discovered a mean of 14 lexical frames per 10,000 words of 

input. Rather than leading to a combinatorial explosion of 

units—as might suggest psychological implausibility, or 

coverage due to trivial factors in subsequent evaluation 

tasks--frames made up just 5% of the total chunk inventory 

for the simulation involving the largest corpus (Thomas; 

Maslen, Theakston, Lieven, & Tomasello, 2004), with 

smaller percentages for smaller corpora (3% on average).  

To offer a sense of the qualitative nature of the model’s 

lexical frames, we show, for the largest corpus (Thomas), a 

range of frequent frames as well as less-frequent but 

developmentally interesting frames. 

 

Table 1: Frequent and Developmentally Interesting 

Frames Learned from the Thomas (Dense) Corpus and 

Corresponding Counts in the Chunk Inventory 

 

Frequent 

Frames 

 Developmentally 

Interesting Frames 

 

the __  56117 a little __ 2131 

a __  42937 what’s __ 2122 

your __ 8366 a big __ 1401 

in the __ 7718 are you going to __ 1196 

on the __ 6950 what do you __ 945 

this __ 6742 more __  837 

that __ 6343 I want to __ 427 

very __ 4911 on __ own 228 

I don’t __ 3386 the red __ 120 

going to __ 3348 more __ 103 

 

As can be seen in Table 1, even though slots are allowed 

anywhere in a chunk, the vast majority of lexical frames 

featured a slot in the final position. Across all the English 

corpora, slot-final frames accounted for a large percentage 

of overall frames utilized, ranging from 85% to 98%. 

There is good overlap between the frames appearing in 

Table 1 and frames postulated by other researchers on the 

basis of corpus analyses, including some of the earliest to 

advance the notion of lexical frames: for instance, more __ 

is one of the first frames identified in Braine (1963).  

Next, we turn to the question of whether the lexical 

frames discovered by the model can offer insights into the 

nature children’s early productivity. To this end, we 

evaluate the model according to its ability to capture 

children’s actual utterances in these corpora, and measure 

the extent to which the model’s lexical frames can support 

production above and beyond concrete multiword chunks.   

Sentence Production Task 

The sentence production task was based on the bag-of-

words incremental generation task first described by Chang, 

Lieven, and Tomasello (2008). The task rests on the 

simplifying assumption that the overall message the child 

wishes to convey can be—very roughly—approximated by 

treating the utterance as an unordered bag-of-words. When 

the model encounters a multiword utterance produced by the 

target child of a corpus, its task is to sequence the items in 

the bag to produce its own utterance, using only the words 

and statistics it has discovered prior to that point. 

We used a nearly identical version of the task to that 

described by McCauley and Christiansen (2019): following 

psycholinguistic evidence for children’s use of multiword 

units (see above), the model was allowed to draw upon 

previously discovered chunks to populate the bag-of-words. 

To produce an utterance, the model begins by selecting from 

the bag the word or chunk with the highest transition 

probability given the start-of-utterance marker (a marker 

preceding every line in the corpus). At each subsequent time 

step the model removes and produces the word or chunk 

with the highest probability given the most recently placed 

chunk. This process continues until the bag is empty. 

Thus, production is implemented as fully incremental, 

chunk-to-chunk process, relying entirely on local 

information. In other words, there is no global whole-

sentence optimization. In this sense, the model captures the 

sorts of memory limitations described in the introduction. 

Where our version of the task differed from that described 

by McCauley and Christiansen (2019) was in the additional 

use of lexical frames: if the model lacked experience of a 

given sequence in the child’s utterance, but had learned a 

lexical frame capable of fitting that sequence, it was allowed 

to utilize the frame in the bag-of-words task. Consider the 

model’s attempt to produce the child utterance: “red one 

stuck in the jam.” In a case in which the model has 

discovered the lexical frame in the __ but has never 

encountered the sequence in the jam in the input, the model 

is allowed to use the lexical frame to complete this pattern. 

Statistics are then calculated over the frame itself, as if it 

were a fully concrete chunk.   

Gold Standard for Sentence Production Task 

Following each production attempt, the model’s utterance is 

scored against the child’s original utterance according to an 

all-or-nothing scoring metric: if the two utterances do not 

match completely, a score of 0 is assigned. Otherwise, a 

score of 1 is given. Thus, the overall accuracy of the model 
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across a corpus can be calculated as a percentage of 

correctly produced multiword utterances (single-word 

utterances are excluded to avoid inflating performance). We 

call this the Sentence Production Accuracy (SPA) score. 

Alternate Distributional Models We evaluate the model 

against two baseline models: the first is the basic version of 

CBL used as a starting point for the present study (described 

above; cf. McCauley & Christiansen, 2019). The second is a 

standard trigram model; this approach was selected as a 

baseline due to its widespread use and generally robust 

performance as a probabilistic language model across a 

range of genres (Manning & Schütze, 1999). 

Results and Discussion Across all 43 English 

simulations, the lexical frames version of the CBL model 

(CBL+LF) achieved a median Sentence Production 

Accuracy of 71.3% (mean: 69.5%). This is compared to a 

median score of 58.5% (mean: 57.8%) for the original CBL 

model and a median score of just 45.7% (mean: 45.1%) for 

the trigram (3G) baseline. The distribution of scores for 

each model are shown in Figure 1.  

A linear mixed-effects model fit using logit-transformed 

SPA scores, with child as a random factor, confirmed that 

both the CBL+LF model (β=0.53, t=22.8, p < 0.001) and the 

3G model (β=-0.53, t=-22.6, p < 0.001) differed 

significantly from the original CBL model, in opposite 

directions.1 

 

 
 

Fig. 1: Box and whisker plots depicting English Sentence 

Production Accuracy (%) for the model and its baselines. 

 

Thus, in addition to discovering developmentally and 

psychologically plausible lexical frames, the CBL+LF 

model was able to use these units to improve upon the CBL 

model’s production performance by nearly 12 percentage-

points, surpassing the performance of a standard trigram 

model by nearly 25 percentage-points.  

                                                           
1All p-values computed via Satterthwaite approximation. 

Experiment 2: Modeling the Development of 

Lexically-based Frames Across Typologically 

Diverse Languages 

The vast majority of computational modeling work in the 

study of language acquisition has focused on English. It is 

crucial, however, to determine whether the types of 

linguistic representations and learning mechanisms we 

ascribe to children can plausibly accommodate languages 

with typological features that differ greatly from those of 

English. In the case of the present model, which uses 

multiword units as much of the basis for learning and 

processing, morphological features are of particular interest.  

A previous study using the CBL model has demonstrated 

that multiword units do indeed facilitate production for 

typologically diverse languages, including morphologically 

rich languages (McCauley & Christiansen, 2019). Here, we 

ask the question of to what extent limited productivity based 

on lexical frames can improve the ability of CBL to capture 

the utterances of children learning a typologically diverse 

set of languages, above and beyond what can be captured 

through learning tied to concrete chunks. 

Corpora 

We selected from the CHILDES database (MacWhinney, 

2000) corpora involving single target children, rather than 

aggregating data across multiple corpora. Due to limitations 

on the number of corpora for several of the languages in 

CHILDES, these were selected according to slightly relaxed 

criteria: each corpus contained at least 10,000 words, at least 

1,000 multiword child utterances, and a child-to-adult 

utterance ratio of no less than 1:20. 

These criteria were met by corpora for 160 additional 

target children from 28 different languages (Afrikaans: 2, 

Cantonese: 8, Catalan: 4, Croatian: 3, Danish: 2, Dutch: 12, 

Estonian: 3, Farsi: 2, French: 15, German: 22, Greek: 1, 

Hebrew: 6, Hungarian: 4, Indonesian: 8, Irish: 1, Italian: 8, 

Japanese: 10, Korean: 1, Mandarin: 7, Polish: 11, 

Portuguese: 2, Romanian: 1, Russian: 2, Sesotho: 3, 

Spanish: 11, Swedish: 5, Tamil: 1, Welsh: 6). Table 2 lists 

some basic typological properties of these languages. 

To get a rough quantitative measure of morphological 

complexity for child-directed speech in each language, we 

calculated word type/token ratios (following the reasoning 

and methods of Chang et al., 2008). We refer to this as the 

Morphological Complexity Score. 

Sentence Production Task 

We used the same sentence production task as in Exp. 1. 

Results and Discussion 

Across all 29 languages and 200+ corpora, the lexical 

frames version of CBL achieved a mean SPA score of 

68.4%, compared to 55.3% for the original CBL model and 

just 45.9% for the trigram model. Means for each language 

are shown in Figure 2. By discovering and utilizing lexical 

frames, the model was able to reproduce the majority of the 
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child utterances in every language, with mean scores 

ranging from 55% (Swedish) to 81% (Romanian). 

A linear mixed-effects model was fit to logit-transformed 

SPA scores with language and child as random effects, and 

a by-language random slope of model. This confirmed that 

the CBL+LF model (β=0.58, t=26.8, p < 0.001) and the 

trigram model (β=-0.32, t=-8.6, p < 0.001) differed 

significantly from the original CBL, in opposite directions.  

Because previous work with the original version of CBL 

demonstrated that the model’s performance decreased as a 

function of morphological richness (McCauley & 

Christiansen, 2019), we compared CBL performance to 

CBL+LF in order to determine whether this effect was 

reduced by the use of lexical frames. Figure 3 depicts the 

relationship between the CBL+LF model and 

Morphological Complexity Score.   

 

Table 2: Typological Properties of the 29 Languages 

Language Family Genus 
Word 
Order 

# 
Cases 

Irish Indo-European Celtic VSO 2 

Welsh Indo-European Celtic VSO 0 

English Indo-European Germanic SVO 2 

German Indo-European Germanic N.D. 4 

Afrikaans Indo-European Germanic N.D. 0 

Dutch Indo-European Germanic N.D. 0 

Danish Indo-European Germanic SVO 2 

Swedish Indo-European Germanic SVO 2 

Greek Indo-European Greek N.D. 3 

Farsi Indo-European Iranian SOV 2 

Romanian Indo-European Romance SVO 2 

Portuguese Indo-European Romance SVO 0 

Catalan Indo-European Romance SVO 0 

French Indo-European Romance SVO 0 

Spanish Indo-European Romance SVO 0 

Italian Indo-European Romance SVO 0 

Croatian Indo-European Slavic SVO 5 

Russian Indo-European Slavic SVO 7 

Polish Indo-European Slavic SVO 7 

Estonian Uralic Finnic SVO 10+ 

Hungarian Uralic Ugric N.D. 10+ 

Sesotho Niger-Congo Bantoid SVO 0 

Hebrew Afro-Asiatic Semitic SVO 0 

Tamil Dravidian S. Dravidian SOV 7 or 8 

Indonesian Austronesian Malayic SVO 0 

Cantonese Sino-Tibetan Chinese SVO 0 

Mandarin Sino-Tibetan Chinese SVO 0 

Korean Korean Korean SOV 7 

 Japanese  Japanese  Japanese  SOV  9 

Note: Information from Haspelmath et al. (2005) 

Though Morphological Complexity Score was indeed a 

predictor of CBL+LF performance (β=-2.01, t=-3.5, p < 

0.001, r=0.23), we found that the presence of lexical frames 

reduced this effect in comparison to that observed for the 

original CBL model (β=-2.4, t=-4.1, p < 0.001, r=0.27), as 

confirmed by a significant interaction between model and 

Morphological Complexity Score (β=0.15, t=3.03, p < 0.01) 

in a linear mixed model which included model as a 

categorical factor. 

A close inspection of the lexical frames discovered by the 

model when exposed to English revealed that they were 

both psychologically and developmentally plausible, but we 

currently lack the cross-linguistic expertise to offer a 

detailed analysis of lexical frames for the 28 additional 

languages. Nevertheless, these simulations offer clear 

evidence that, in principle, the same types of representations 

and mechanisms can support the discovery of lexical frames 

across a typologically diverse range of languages. Indeed, 

for all the 29 languages, lexical frames capture early 

linguistic productivity above and beyond what can be 

achieved through concrete words and chunks:  CBL+LF 

lead to a 13 percentage-point improvement over mean CBL 

performance and a 23 percentage-point improvement over 

trigram models. 

 

 
Fig. 2: Sentence Production Accuracy (%) for the model and its 

baselines across 29 languages. Bars are overlapping. 
 

786



 

Fig. 3: CBL+LF SPA scores across all children and languages 

plotted against Morphological Complexity Score. Different colors 

denote distinct languages. Trendline from simple linear regression. 

General Discussion 

In this paper, we have demonstrated that a simple, 

developmentally-motivated model rooted in concrete 

prediction- and recognition-based processes can discover 

lexically-based frames that are not only psychologically 

plausible but also can capture a significant amount of 

children’s early linguistic productivity. In 200+ simulations 

of individual children across a typologically diverse array of 

languages, the CBL+LF model was able to capture a 

significantly higher proportion of child utterances than a 

version of the model relying solely on concrete words and 

chunks, offering an even larger improvement over trigram 

models. Moreover, this was achieved while accommodating 

the sorts of memory limitations that drive children (and 

adults) to rely on local information during comprehension 

and production (e.g., Christiansen & Chater, 2016). 

In contrast to previous quantitative studies examining 

evidence for lexical frames in child speech (e.g., those using 

the traceback method of Lieven et al., 2003), we 1) capture 

the actual learning of frames during comprehension, as well 

as their use in production, and 2) do this for children beyond 

their second year, with corpora covering child productions 

during the third and fourth year. 

Nonetheless, the CBL+LF approach is not without 

limitations. Firstly, frames operate on the level of words 

appearing within chunks; chunks themselves are not yet able 

to appear in slots. By overcoming this limitation in a 

principled way, a wider variety of linguistic phenomena 

could be captured. For instance, non-adjacent dependencies 

can be learned in the current version of the model: frames 

like this __ one and those __ ones capture a number 

dependency. Extending the model to allow entire chunks in 

slots will be a necessary subsequent step towards capturing 

more abstract processing of long-distance dependencies. 

A more serious limitation of the present work is that it 

does not incorporate the learning or use of semantic 

information. The semantic properties of words and frames 

are needed to provide constraints on which items that can 

appear in lexical frames. The learning of such information is 

crucial for moving towards a framework capable of 

producing utterances based on meaning representations (and 

forming meaning representations during comprehension). 

To this end, ongoing work aims to simulate the learning of 

lexical semantics, semantic roles, and argument structures 

through the use of automatically generated, idealized “visual 

scenes” which are paired with utterances in corpora. 

More generally, the promise of item-based computational 

approaches for tracing a path to more sophisticated forms of 

linguistic abstraction is great: previous work has shown that 

the systematic use of pseudographs to align and compare the 

sentences in a text can give rise to complex context-free 

grammars (Solan, Horn, Ruppin, & Edelman, 2005). 

Bayesian induction of item-based grammars from the speech 

of single target children has also yielded good coverage of 

those children’s increasing productivity (in a manner akin to 

the traceback method; Bannard, Lieven, & Tomasello, 

2009). However, these models are not subject to memory 

limitations, and involve computations beyond what children 

are capable of. A motivation for the current approach, 

therefore, was to take initial steps towards modeling 

increasingly productive linguistic representations in a way 

that is psychologically motivated, incremental, and on-line. 
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