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A B S T R A C T   

Worldwide monitoring of fossil fuel carbon dioxide (FFCO2) has been fragmented, and mostly 
devoted to developed countries. Here we compare a previously published FFCO2 dataset with 
socio-economic characteristics in order to better tailor FFCO2 urban point-sources for a megacity 
of the Global South, the Metropolitan Area of Rio de Janeiro (MARJ), Brazil. Evaluations were 
performed by superimposing maps of the FFCO2 measurements on urban data acquired from the 
Brazilian Institute of Geography and Statistics, the latest Origin-Destination Survey of the MARJ, 
and correlation and regression analyses between FFCO2 and socioeconomic variables. While we 
confirmed that population density and the transportation sector are important drivers of FFCO2 
concentrations, the centrality of urban activities within MARJ also creates undesirable clustered 
zones (e.g., the city centers and the main intercity bridge). At the intra-urban scale, both high- 
and low-income residents play important roles in FFCO2 levels. For instance, higher-income 
populations tend to produce more carbon pollution at their own residential areas, where most 
urban activities are located. Low FFCO2 levels were found in low-income areas with poor infra
structure. However, distance from the city center, age distribution, job availability, lack of basic 
services, and car ownership force low-income populations to commute through high-traffic areas, 
adding high FFCO2 levels to the same already clustered places. By integrating FFCO2 monitoring 
with many socioeconomic variables, we believe that we capture its spatial distribution as well as 
better understand the causes of its emission patterns. Therefore, future CO2 monitoring and 
assessment studies conducted in megacities can benefit from the insights and discussions pre
sented in this study.   

1. Introduction 

It is widely known that approximately 75% of global CO2 emissions originate in urban areas (Seto et al., 2014). In recent years, 
there has been a push to better characterize CO2 concentrations from those spaces, especially fossil fuel carbon dioxide (FFCO2) and its 
sources, to help policymakers to better mitigate it. 
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Cumulative CO2 emissions and fossil fuel usage can be added up in data inventories, enabling updated budget assessments per 
energy sector and city. Direct measurements of trace gases, including CO2, through established monitoring networks (NOAA: www. 
esrl.noaa.gov) produce a more realistic picture of greenhouse gas (GHG) concentrations at local sites. Fossil fuel-originating CO2 
can be isolated and determined when trace gas measurements are coupled with isotopic analyses of 13C and 14C (Miller et al., 2012; 
Basu et al., 2020). Alternatively, FFCO2 information at regional or urban scales can be derived by isotopic measurements of 14C from 
annual plants. Still, 14CO2 measurements from either air samples or plant-integrated sources are mostly being used as FFCO2 surface 
proxy (Battipaglia et al., 2010; Rakowski, 2011; Varga et al., 2019), or to show correlations of FFCO2 with general topographical 
features, wind patterns, and seasonality (Hsueh et al., 2007, Turnbull et al., 2015, Park et al., 2015, Santos et al., 2019). In some cases, 
FFCO2 local point-sources (e.g., proximity to roads, industrial clusters, cement complexes, and/or diesel- and coal-powered plants) 
have been identified (Quarta et al., 2007; Santos et al., 2019; Varga et al., 2019), or were associated with population density and per 
capita gross domestic product growth (Xi et al., 2013, Varga et al., 2020, Hou et al., 2020). 

Although the science of using 14C for FFCO2 attribution and mapping has made remarkable progress toward refining its estimates 
(Miller et al., 2012; Basu et al., 2020), FFCO2 information derived from isotopes has been highly fragmented (spatially and tempo
rarily) and not necessarily useful in terms of policy change. Decade-long research observations at Salt Lake County, Utah, USA, on 
air-14CO2 measurements show that major CO2 increases were attributed to population growth, but urban excesses were not as linear as 
expected (Mitchell et al., 2018). Moreover, FFCO2 from emerging economies and developing countries has been mostly overlooked 
(Marland, 2008). Nonetheless, studies forecast that by 2030 over 80% of the world’s megacities will be located in developing econ
omies, where massive urbanization (i.e., sprawling) already has been taking shape in a manner distinct from most developed countries. 
Currently, such growth patterns can be found in most cities in the Global South, but specially in São Paulo and Rio de Janeiro, in Brazil, 
as well as cities in Africa and Asia (Lagos, Nigeria, and Shanghai, China, respectively). In addition, this type of growth pattern is 
interconnected with socioeconomic and environmental problems, including increased GHG emissions (Ou et al., 2013). Therefore, for 
policy-relevant responses, Polloni-Silva et al. (2021) suggest that assessment of CO2 shifts should be followed by in-depth study of the 
region studied, such as its socio-economic circumstances. It is thus clear that to ensure effective FFCO2 monitoring and interpretation, 
so that results can be translated into actions for its mitigation, studies on FFCO2 information acquisition and socioeconomic-related 
emissions should be linked. Cities that tend to invest in adequate infrastructure, service, and policy plans (Lee and Lim, 2018), fol
lowed by nature-based solutions to land use (Pan et al., 2021; Seddon et al., 2020), tend to show economic efficiency and improved 
urban resilience (Larbi et al., 2021; Yao et al., 2022), and overall reduced GHG emissions (Ou et al., 2013). The aforementioned points 
call for a more in-depth, multi-criteria analysis of FFCO2 as it relates to public variables impacting urban spaces, and particularly where 
such an analysis is lacking. 

In 2009, Brazil established its National Policy of Climate Change (PNMC). Under this policy, Brazil pledged to reduce GHG 
emissions by 36.1%–38.9% by 2020, compared to 2005 data. The pledge also included Brazilian urban spaces, where it was estimated 
that the majority of GHG emissions came from the energy sector (i.e., CO2 emissions from road transport (39%) and the industrial 
subsector (27%)). In 2020, metrics on total CO2 emissions were still at levels similar to those of 2006/2007, slightly over 1300 t/year.1 

Therefore, any reduction would imply stabilization of the share of renewable energy sources in the energy matrix, followed by a 
decrease in fossil fuel usage (Carvalho et al., 2020). To identify opportunities for reductions, municipalities must first determine the 
amounts, sources, and causes of emissions. But direct monitoring of FFCO2 at Brazilian cities is scarce (Santos et al., 2019 and ref
erences therein) and rarely addresses possible drivers (topography, socioeconomic status, mobility conditions, etc.). 

Here, we took advantage of a recent work of Santos et al. (2019), which provided readings of FFCO2 across the Rio de Janeiro state 
through 14C measurements of Ipê leaves during 2015 (the first of its kind in all of South America). We focused on investigating trends in 
socio-economic patterns that could be associated with the FFCO2 spikes observed just at the Metropolitan Area of Rio de Janeiro 
(MARJ). The MARJ alone has already reached the megacity status, with more than 10 million people spread out in a disorganized 
urban mosaic, similar to many other emerging urban megacities in developing economies. 

To better identify FFCO2 urban point-sources and drivers, we use two approaches. First, we visually evaluate socioeconomic 
conditions in the population across the region with the FFCO2 data by superimposing multiple thematic maps, so as to capture first 
impressions of the relationships among variables. Socioeconomic information was acquired from the Brazilian Institute of Geography 
and Statistics (IBGE, 2010) and the latest Origin-Destination (OD) Survey of the MARJ (OD Survey, 2015). Afterwards, we ran a spatial 
regression model for FFCO2 concentrations, controlling for physical, socioeconomic, and mobility factors, to capture potential un
derlying patterns that can directly or indirectly influence FFCO2 excesses. Thus, we present our findings considering the population’s 
socioeconomic conditions across the region, as well as its infrastructure and mobility factors. Finally, the paper is summarized by a 
conclusion and perspectives on our work. In this section, we make brief comparisons with other cities in the Brazilian territory (i.e., 
Curitiba and São Paulo) as well as other examples worldwide. 

2. Study site characteristics 

The MARJ has a population of approximately 13 million inhabitants and a population density of 1750 inhabitants/m2, a high 
conurbation level and equally high vehicular activity (estimates from the Brazilian Institute of Geography and Statistics, IBGE, for 
20212). Besides including the main Rio de Janeiro (RJ) city, with approximately 6.3 million people (Malta and Marques da Costa, 

1 https://plataforma.seeg.eco.br/total_emission (choose CO2 to single out this pollutant from other GHGs).  
2 https://ftp.ibge.gov.br/Estimativas_de_Populacao/Estimativas_2021/estimativa_dou_2021.pdf 
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2021), this urbanized area has already incorporated another 21 municipalities over the years (Fig. 1). Thus, it is the second largest 
urban conglomeration in South America, after the Metropolitan Area of São Paulo, also located in the southeast region of Brazil. 

The MARJ’s poor infrastructure planning and urban sprawl (a sixfold population increase in just three decades; Da Silveira Pereira 
et al., 2021) have led to severe social gaps and socio-environmental vulnerabilities (Malta and Marques da Costa, 2021). Urban sprawl 
occurred from its urban centers to the Southern Zone (along the Atlantic coastline at both sides of the Guanabara Bay; Fig. 1), and later 
to the Western Zone (along the RJ city seafront, and the swamplands between Pedra Branca and the Tijuca Massifs; Fig. 2A). Urban 
sprawl promoted the coexistence of richer districts (facing the Atlantic Ocean, with a distinct pattern of segmentation and fragmen
tation; Glebbeek and Koonings, 2016) side-by-side with several favelas or shantytowns (i.e., 763 in RJ city alone; IBGE, 2010). RJ 
favelas can differ significantly from each other. Public policies from the late ‘80s and ‘90s implemented street paving and basic services 
in many surrounding wealthy vicinities (Borba, 2005), allowing for an explosive density growth and greater vehicular traffic. 

The region termed Baixada Fluminense (Fig. 1) has not caught up with other parts of the MARJ. It has over 2 million people 
sprawled within just six municipalities, characterized overall by low-income householders and a lack of access to basic infrastructure, 
such as land use management and good transportation options, as well as health care and education, green areas, and job opportu
nities. In contrast, RJ city and the Metropolitan East present a higher socioeconomic status, while Petrópolis city presents a different 
profile: it is agricultural and somewhat disconnected from MARJ. 

The MARJ also presents a complex terrain configuration, with several mountains, hills, valleys, lagoons, and swamplands. The 
excess of topographical features creates densely populated areas and road corridors (De Farias and de Oliveira, 2013), increasing both 
air pollutant concentrations (Gioda et al., 2016; De Figueiredo et al., 2019; Ventura et al., 2019) and FFCO2 (Santos et al., 2019). 

51% of jobs in the whole MARJ are located in the Central Business District of RJ city, an area which concentrates just 19% of its 
population (Casa Fluminense, 2017). Monthly income also varies substantially in the MARJ (Table 1), with a large fraction of its 
population living under poverty conditions (World Bank 2017). 

Public mobility and transport sustainability are also very poorly resolved at the MARJ. When comparing the RJ city metro system 
(42 km) to other developing cities (Beijing,3 727 km; and Mexico City,4 225 km) we observe its insufficient length and overall con
centration in just a few neighborhoods. Similar issues have been observed for the newer Bus Rapid Transit (BRT) and Light Rail Transit 
(LRT) systems. They also tend to run across the richest neighborhoods, favoring these income populations (Pereira et al., 2019). 

Population characteristics of MARJ areas are summarized in Table 1. Overall, the MARJ population has a high proportion of fe
males, youth, and young adults (< 32 years-old), as well as Indigenous and Afro-descendant peoples. High levels of illiteracy and low 
income remain startling. Moreover, the MARJ still shows a high percentage of unpaved streets, open sewage, and lack of street 
greenery for a city of this size. Population inequality layers across MARJ’s regions and municipalities are summarized in Table 2. In 
sum, gender, age, income, the unequal distribution of opportunities, and lack of proper infrastructure, together with the MARJ’s 
complex topographic features, tend to result in poor urban mobility conditions (longer commutes and increased traffic jams) (Tables 1 
and 2). 

Concerning fuel usage, light- and heavy-duty vehicles (commercial, privately owned cars and trucks, or motorbikes) can run on 
pure hydrous ethanol (E100), gasoline blended with ethanol proportions between 20 and 25% (E20-E25), diesel blended mix (B7 and 
B10), natural gas (NG) from petroleum wells, or biogas from sugarcane vinasse and bagasse or anaerobic digestion of biomass. These 
fuels are also used in the city’s public transportation: i.e., vans and shuttles, BRT-type (RJ city) or regular buses (remaining MARJ 
districts), boats, and ferries (Pinguelli et al., 2013; ANFAVEA, 2015). In addition to E100 or 100% biogas, all other types of fuels (even 
those that are blended) are still highly depleted in 14C (Dijs et al., 2006; Culp et al., 2014) due to the presence of petro‑carbon 
byproducts (Δ14C of approximately − 1000‰), and therefore can directly impact local FFCO2 levels. 

Fossil fuel consumption in the MARJ is not limited to the vehicular sector. MARJ has five thermoelectric plants: one in RJ city 
(Santa Cruz neighborhood), and the remaining four in the Baixada Fluminense (two in Duque de Caxias district, and another two in 
Seropédica; Fig. 1). These thermoelectric plants are NG-powered (Mendes and Sthel, 2018), thus creating stationary sources of FFCO2 
(approximately 28% of total CO2 emissions; Rio de Janeiro, 2015). Liquefied petroleum gas (LPG) is another source of FFCO2, and it is 
used for cooking and/or household heating (Bruce et al., 2017). At RJ state, LPG usage is about 50% (Coelho et al., 2018; Butera et al., 
2019), with wood or charcoal as secondary energy sources (Jakob et al., 2019). Other fossil fuel stationary sources are the petro
chemicals, metallurgical producers, and refineries. 

Given fuel-type usage in RJ state alone, it is safe to say that over 55% of it is still from fossil fuel sources, where most of it is destined 
for the transportation sector (Silva et al., 2020; SEEG, 2021). Therefore, due to fossil fuels’ devastating effects on the environment and 
health (Seto et al., 2014), there is a need to better characterize it in the MARJ, particularly when it comes to its spatial distribution 
(where most transport-related emissions in the RJ state occur). Moreover, identifying underlying drivers (e.g., socioeconomic factors) 
affecting FFCO2 would allow policymakers to specifically target its reduction. 

3. Methodology 

3.1. Fossil fuel CO2 distribution map based on 14CO2 derived from Ipê leaves 

A FFCO2 distribution map was obtained from a 2015 14C time-integrated mapping of Ipê leaves, sampled from deciduous perennial 

3 https://www.beijing-visitor.com/beijing-travel/beijing-subway-system  
4 https://mapa-metro.com/en/Mexico/Mexico%20City/Mexico%20City-Metro-map.htm 
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trees (Tabebuias) across RJ state, as detailed in Santos et al. (2019). On this statewide analysis, FFCO2 levels were calculated using 
relatively coarse-scale 14C data for better coverage of the space studied. Sampling was higher at urban centers and scattered toward 
inland and coastal areas, as recommended by others (Park et al., 2015). Moreover, vegetation sampling occurred mostly away from 
highways and known fossil fuel stationary point sources. This measure was performed mostly in open areas, but was nearly impossible 
at urbanized spaces (an issue also reported by others; Riley et al., 2008). 

In the MARJ area (subset reported in this study: Section 4.1, Fig. 2A), Ipê leaf sampling took place at public gardens (i.e., university 
campuses, natural areas, and city parks), private residences, and sidewalks alongside unpaved and paved roads and close to parking 
lots. Sampling was impractical in remote locations (with difficult terrain) and in most of the favelas. Mature living Ipê leaves (sampled 
just before abscission and set to dry) were packed in plastic bags and shipped to the W.M. Keck Carbon Cycle Accelerator Mass 
Spectrometry Facility at the University of California, Irvine (KCCAMS/UCI) for 14C dating by accelerator mass spectrometry (AMS) 
analysis and other techniques (Santos et al., 2007). Upon 14C-AMS data normalization and corrections (including background), pre
cision and accuracy yield was 2‰. A time-integrated atmospheric FFCO2 map for MARJ state was then derived based on the mea
surement of Δ14C (‰) values of Ipê leaves from both urban and cleaner areas. The formulae breakdown and parameter assumptions 
can be summarized as follows: a Δ14C shift from 27.1‰ (clean-air background) of approximately 2.5‰ toward negative values cor
responds to an input of 1 ppm of FFCO2. The global annual concentration of CO2 (ppm) for 2015 was obtained from NOAA (www.esrl. 
noaa.gov) as 400.36 ppm. 

3.2. Map production 

The database from the latest available Demographic Census of the Brazilian Institute of Geography and Statistics (IBGE, 2010) was 
obtained for the entire MARJ.5 Data from the latest Origin-Destination survey in the MARJ (OD Survey of 2015) was obtained through 

Fig. 1. Metropolitan Area of Rio de Janeiro (with its position in the Brazilian coast – smaller map in bottom right), with its 22 municipalities and 
subsectors (Rio de Janeiro City, Baixada Fluminense and Metropolitan East). The cities of Cachoeiras de Macacu and Rio Bonito were included in the 
MARJ in 2013, and Petrópolis in 2018. Source: IBGE (2010). 

5 https://www.ibge.gov.br/estatisticas/sociais/populacao/9662-censo-demografico-2010.html?edicao=10410&t=resultados 

J.B. Chiquetto et al.                                                                                                                                                                                                   

http://www.esrl.noaa.gov
http://www.esrl.noaa.gov
https://www.ibge.gov.br/estatisticas/sociais/populacao/9662-censo-demografico-2010.html?edicao=10410&amp;t=resultados


Urban Climate 43 (2022) 101176

5

personal communication with the Rio de Janeiro State Government Office. Census data was aggregated to OD zone levels (average 
population per household and average personal income), allowing us to compare population and income data to mobility data from the 
OD survey at the same scale. The following variables were then plotted using choropleth thematic classifications (Section 4.1, Figs. 2B- 
F): number of households with one car and one resident, households with no cars and with four or more residents, and average 
traveling time of produced motorized trips (trips which start in a given OD zone). 

Fig. 2. FFCO2 and socioeconomic data: A) top left: FFCO2 concentrations (bright orange), RJ-Niterói Bridge (purple) and main topographical 
features in the MARJ; B) top right: average number of people per household; C) center left: average personal income (US$); D) center right: average 
traveling time of produced motorized trips; E) bottom left: number of households composed of one person with vehicle ownership; F) bottom right: 
number of households composed of four or more persons without vehicle ownership. Pale blue denotes bodies of water (i.e., Guanabara and Sepetiba 
Bays as well as the Atlantic Ocean). Source: IBGE (2010) and OD Survey (2015). (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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3.3. Spatial statistical modeling 

We fit a spatial regression model to quantify the relationship between FFCO2 concentration, urban space characterization variables, 
and socioeconomic variables. Spatial regression is a regression method for studying multiple simultaneous effects from distinct 
covariates over an outcome (here, FFCO2) when the variables involved exhibit spatial correlation, which typically occurs when data 
have geographic attributes. The spatial regression models incorporate such inherent spatial correlations, presenting more consistent 
estimates of the effect of the covariates on the outcome. The interpretation of the coefficients related to the effects of the covariates on 
the outcome is done in exactly the same way as in linear regression. 

We use the Spatial Error Model (SEM), which emerges from the presence of spatial dependence between error terms of neighboring 
observations, suggesting the hypothesis that unobservable factors that influence the dependent variable are spatially correlated. A 
Lagrange Multiplier Test for spatial autocorrelation (Arbia, 2014) showed that the SEM is sufficient to remove spatial dependency, so 
more complex specifications were discarded. The SEM can be mathematically stated as follows: 

y = Xβ1 + u, (1)  

u = λWu+ ε, (2)  

εN
(
0, σ2

ε IN
)
. (3) 

Here, X is the matrix of independent variables, and β1 corresponds to their effect on the dependent variable (FFCO2). The error 
terms u have a spatial autoregressive specification with a scale parameter λ with |λ| < 1. W is a weight matrix, such that Wu forms a 
linear combination of the error terms. We assume that ε follows a multivariate normal distribution with zero mean and a constant 

Table 1 
Population characteristics and potential drivers of FFCO2.  

Data used in the statistical model Description Variable type Average value in the 
MARJ a 

number of residents per km2 b Demographic density 

Socio-demographic 

2071 

income b Average (in the OD zone) of the monthly income of the head 
of the household 178 USD 

% women b – 52% 
% illiterate people b – 4% 
% residents ≤32 years old b – 51% 
% students b – 18% 
% Black, brown or Indigenous 

residents b – 53% 

altitude (in meters) c – 
Location, topography and 
greenery 

Mostly sea level, peaks at 
900 m 

% households on streets with trees 
b – 54% 

distance from the city center c Distance (in km) from the city center N/A 
% households on paved streets b – 

Infrastructure and land use 
74% 

streets with open sewage b Existence of streets with open sewage on the OD zone 7% 
number of jobs d – 4504 per OD zone 

average traveling time d Average time from motorized trips departing from or 
arriving at the OD zone 

Mobility 

39 min 

number of trips d Number of motorized trips departing from or arriving at the 
OD zone 

40,334 daily trips per OD 
zone 

% households with one car (1 
resident) d – 3% 

% households with no cars (≥ 4 
residents) d – 21% 

a Mean value for each OD zone (weighted by population size if applicable); b IBGE, 2010; c Santos et al., 2019; d OD Survey, 2015; N/A – Not available; 
dash in description column implies same as first column. 

Table 2 
Socioeconomic characterization of MARJ householders by subsector.  

Municipality/Subsector Commute 
(> 1 h) 

Work and live in different cities Work in RJ city Income distribution (USD$)* Income 
(≥ USD$ 25)*  

Rio de Janeiro city 26% 2% 98% 315 5% 
Baixada Fluminense 9–54% 17–55% 9–44% 45–145 5–14% 
Metropolitan East 8–31% 7–37% 2–24% 51–406 3–14%  

* Personal monthly income. Data for 2010, converted to US dollars in 2021 currency. There is no data for Petrópolis city because it was included in 
the MARJ in 2018; Sources: IBGE, 2010, Casa Fluminense (2017). 
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diagonal variance matrix σε
2IN, where IN represents the N-dimensional identity matrix and N is the number of observations. 

For the weight matrix, we use inverse distance weighting, with weights for neighbor’s i and j given by wij = 1/dij
α, where dij is the 

distance between locations i and j, and α is the decay parameter. We test α = 1 and α = 0.25, corresponding to what we could 
respectively call short- and long-range correlations, accounting for qualitatively different situations. 

We depart from 17 potentially relevant independent variables (Table 1) and fit all the 131,071 possible specifications (i.e., distinct 
combinations of the set of independent variables), including up to 17 covariates for each choice of α. Selection rationale is as follows: 
population density and income have long-term effects on urban GHG emissions (Patarasuk et al., 2016; Baiocchi et al., 2015; Olaniyan 
et al., 2018; Luo et al., 2021), including FFCO2 (Xi et al., 2013, Wang et al., 2019, Varga et al., 2020, Hou et al., 2020). Some positive or 
negative drivers of income are illiteracy, age, gender, and race, all of which may impact FFCO2 levels. Altitude (elevation) may be less 
relevant to urban CO2 increases due to the relative unlikelihood of its proximity to urban development (Wang et al., 2019). However, 
we added this variable based on the MARJ urban expansion history, particularly regarding the occupation of favelas on hillsides 
(section 2). The transportation sector and its main factors (high-density urban road, vehicle ownership, commuting patterns), which 
are known to exert significant effects on GHG emissions (Wang et al., 2017, 2019; Xu et al., 2015), were also added. Last, the number of 
jobs was included, since work is an activity that drives transportation GHG emissions (Reckien et al., 2007). All the independent 
variables were measured at the OD zone level. 

Considering the limited sample size (72 FFCO2 unique observation sites were used from within MARJ; results from similar geo
locations among the 118 measurements shown in Fig. 2A were averaged), the best fit according to the Akaike Information Criterion6 

(Arbia, 2014) was chosen. Moreover, although MARJ Ipê leaf collection took place mostly inside residential areas, away from freeways 
and known fossil fuel stationary point sources, we could not explicitly control for these factors at all urban areas (as mentioned in 
Section 3.1). The absence of potentially relevant variables as independent variables in the model could cause what the statistical theory 
calls endogeneity, implying potential bias to the estimators of the remaining covariates. In the present case, endogeneity cannot be 
ruled out, and the parameters could indirectly reflect the effect of relevant variables not explicitly controlled, with which they may be 
associated.7 Even so, the estimation of parameters can be very useful, if their interpretation does not neglect the influence that such 
unnoted factors can exert on the coefficients (Section 4.2). 

4. Results and discussions 

4.1. FFCO2 and socioeconomic maps 

In Fig. 2A, we show the FFCO2 levels derived from Δ14C (‰) of Ipê leaves in MARJ. This is a subset from Santos et al. (2019). It 
incorporates both the highest Δ14C data of 27.1‰ (i.e., zero FFCO2 contribution: our background for clean air of Petrópolis city), and 
the lowest Δ14C value of − 43.6‰ (i.e., an excess of FFCO2 equivalent to 27.6 ppm), from RJ city center. The latter FFCO2 estimate is 
slightly higher than that attained for the center of the Los Angeles metropolis (15.1 ± 5.5 ppm) during 2005 and 2006 (Riley et al., 
2008), and it is equivalent to the locally added FFCO2 in urban Beijing during May to September of 2009 (25.2 ± 1.0 ppm). Thus, a 
local contribution of 27.6 ppm to MARJ in 2015 implies that fossil fuel usage remains strong, even though biofuels are largely available 
to the Brazilian transportation sector (Section 2). 

Greater FFCO2 levels (Fig. 2A) were detected in the south-central region of the MARJ, at both sides of Guanabara Bay. These regions 
show lower average population (Fig. 2B), as well as high income per household (Fig. 2C). They represent the business, education, and 
entertainment centers of the MARJ, and receive a large number of commuters. Therefore, we believe that we have captured the 
mobility flow associated with transportation needs (Pereira et al., 2019). After the RJ-Niterói bridge (Fig. 2A) opening in the ‘70s, four 
of the seven municipalities at the Metropolitan East side of Guanabara Bay (Maricá, Itaboraí, Tanguá, and São Gonçalo; Fig. 1) 
experienced intense growth (221% population increase between 1970 and 2010) and urbanization in the form of car-based suburbs 
(Barandier Jr, 2015). 

Similar to RJ city center, Niterói’s business center holds a large percentage of formal jobs (more than 30%), universities, and main 
transportation hubs, such as ferry and bus stations (with more than 300,000 commuters). It is assumed that at least a half million 
people pass through Niterói’s and São Gonçalo’s central areas daily (Fig. 2D). Average traveling time for motorized trips seems to show 
a very heterogeneous pattern in Fig. 2D. But the average commuting time of one-way trip is 39 min (Table 1). This implies that the 
MARJ population spends a considerable amount of time in traffic jams, particularly for those in the Baixada Fluminense subsector 
(Fig. 1), where commutes longer than one hour can reach 54% of total trips (Table 2). While overall MARJ’s commuters still seem to 
show a high level of daily public transportation usage (71.5%) versus private cars (28.5%), corroborating our findings (Figs. 2E and F), 
Barandier Jr (2015) pointed out that motorization by private cars had already increased as much as 27% in just nine years. 

Regarding marine traffic, Guanabara Bay operates many marine stations. They all use diesel or crude oil as their main fuel. Marine 

6 The Akaike Information Criterion (AIC) is a popular measure for the goodness of fit of a statistical model, providing a criterion for comparing 
candidate models. The AIC is based on the likelihood function and the number of model parameters, rewarding models that provide high values of 
the likelihood function (which roughly indicate how well the model reproduces the observed data) and penalizing the number of parameters entered 
in the model, favoring simpler models and avoiding overfitting.  

7 Traditional endogeneity tests (such as the Hausman test) rely on the existence of an adequate instrumental variable, which is not always possible 
to find; details on the procedure can be found in Wooldridge (2016). That is probably the reason that such a test is seldom presented. Instead, it is 
rather more common to argue about the presence/absence of endogeneity, as we did. 
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traffic emission has been estimated as 6701.4 tons of CO2 based on ship engine type, load factor, and fuel usage, and it affects mostly 
the business centers of RJ and Niterói cities (Cepeda et al., 2018). All the aforementioned factors can be observed by the excess of 
FFCO2 detected in the RJ and Niterói business centers (Fig. 2A), as both sides of the Guanabara Bay show basically the same FFCO2 
levels, although the Metropolitan East population (seven cities combined) is at least threefold lower than RJ city alone. 

Fig. 2F shows that the high proportion of households composed of four or more persons without vehicle ownership are located 
mostly in the Baixada Fluminense. Those also coincide with the commuters facing longer traveling times (Table 2). Commuting 
patterns are probably associated with either unemployment or underemployment conditions, and lack of basic education and career 
opportunities near the workers’ residences (Pereira et al., 2019). Over 2 million people commute to work within RJ city and from its 
surrounding municipalities (Pacheco et al., 2017; Table 2). 

The highest-income region is located at the MARJ southwest (a thin seafront strip at RJ city; Fig. 2C), which shows average to low 
population per household (Fig. 2B). This small area also shows a high proportion of households composed of one person owning a 
vehicle (Fig. 2E), and somewhat lower FFCO2 concentrations (Fig. 2A). It is characterized by high-income gated residential areas of 
high-rise buildings (Glebbeek and Koonings, 2016) with medium to low urban activity. 

Regions with many houses composed of four or more persons without a vehicle are mostly located in areas near lower FFCO2 
concentrations. These regions coincide with low-income householders (Fig. 2C) and longer traveling times (Fig. 2D), suggesting that 
poorer populations produce lower per capita FFCO2, at least in their own zones (Fig. 2A). 

4.2. FFCO2 and statistical modeling 

Table 3 shows the correlation matrix8 for the selected variables from Table 1. Next, we draw some significances between socio
economic and physical variables with FFCO2. Table 3 shows two distinct groups of variables, negatively and positively correlated to 
income. High-income zones have a higher proportion of single-person households with a car, and a higher percentage of households on 
streets with trees, of women, and of households on paved streets, with greater demographic density and areas that show more job 
offers. The correlation coefficients between these variables and income range between 0.38 and 0.84 (average 0.65). Zones with lower 
income are those with the highest percentage of Black, brown, or Indigenous residents, of households with four or more residents and 
no cars, and young residents, and illiterate people, with a higher percentage of streets with open sewage, more distant from the city 
center, with a greater number of students, and located at higher altitudes. The correlation coefficients between these variables and 
income range from − 0.96 (percentage of Black, brown, or Indigenous residents) and − 0.34 (log altitude), and their average is − 0.69, 
showing the magnitude of these associations. 

FFCO2 is positively correlated with the first group (variables positively correlated with income) and negatively correlated with the 
second (variables negatively correlated with income). It is more strongly correlated with population density (0.5), followed by the 
availability of jobs (0.43), income (0.28), and the variables paved streets (0.34) and number of households with one car and one 
resident (0.29). This may imply that some high-income residents live in areas with equally high urban activity (closer to the city center, 
with more services, more culture, and better infrastructure and employment options). This pattern is in line with the maps shown in 
Fig. 2, where at some residential areas (i.e., close to center busiest RJ area), specific high-income dwellers tend to be more vehicularly 
oriented (Figs. 2C and E), which could be associated with higher FFCO2 concentrations (Fig. 2A). 

Overall, our correlations support the fact that higher urban activity (intense commerce, transportation demands, etc.) tends to 
increase FFCO2 levels. In fact, the most important sector for CO2 emissions in RJ city and state is transportation (about 35% of total CO2 
emissions in the city; Rio de Janeiro, 2015, 2017). However, correlations between urban mobility variables (average traveling time and 
number of trips) and FFCO2 concentrations are not as strong (0.2 and 0.08, respectively) as those related to income and FFCO2. Here, 
traffic flow was not used to determine point-by-point fossil fuel emissions, a dataset not yet available in this region. Thus, it is difficult 
to determine how traffic flow influences specific OD zones that show either high or low FFCO2 levels. 

Physical variables such as distance to the city center and altitude show negative correlations to FFCO2: i.e., − 0.52 and − 0.6, 
respectively. The impact of the zones outside the city center is not completely unexpected. However, flat areas away from the MARJ 
city centers are densely occupied (> 3 residents per household; Fig. 2B), including its hillsides, implying that population density alone 
is not a main driver of FFCO2 concentrations. Households with no cars (− 0.24), high illiteracy (− 0.39), and open-air sewers (− 0.52) 
showed negative correlations with FFCO2, suggesting that these dwellers are living in less vehicularly oriented areas, as opposed to the 
high-income populations, as mentioned above. 

Regarding the results of the spatial regression model for FFCO2 (details in Section 3.3), we chose the best fit from all the possible 
configurations including up to 17 variables (for both choices of the decay parameter). The best fit, presented in Table 4, resulted from 
decay parameter α = 0.25, suggesting long-range spatial correlation. We note that variables not included in the final model should be 
considered statistically nonsignificant under the presence of the variables in the model. 

Wald and LR test the significance of the spatial dependence coefficient in the Spatial Error Model. Table 4 shows that this coefficient 
is considered nonsignificant by both tests. Considering that those tests are subject to the “type II error”,9 keeping the spatial coefficient 
should help to avoid bias in the estimation of the remaining coefficients. For assessing robustness of the estimates, we evaluate the 

8 Variables with markedly skewed distributions (such as income, population counts and geographic measurements) typically require logarithmic 
transformation in regression modeling. The models were fitted using the logarithmic form of the following variables: FFCO2, income, number of 
jobs, altitude, number of students and distance from the city center. For this reason, we also use this form in calculating correlation coefficients.  

9 A type II error occurs when a test fails to reject a null hypothesis that is actually false. 
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results of an ordinary linear model as well. Results show that coefficient estimates from the ordinary linear model are very close to the 
coefficients estimates deriving from the spatial specification (Table 4). Computed standard deviations of the spatial model are also 
comparable to the linear model ones. Fitting a linear regression is also convenient for it allows assessing the R-squared statistic, which 
is not generally valid for contexts other than the linear regression. Table 4 shows the R-squared is considerably high (Adjusted R- 
squared = 0.698). 

Also, the interpretation of the parameters depends on the functional form of the regression equation. The dependent variable is in 
logarithmic form, and we have both log- and level-independent variables. For log-log, we have constant elasticity of y with respect to 
xi: increasing xi in 1% causes an expected percentual change of magnitude approximately equal to βi in y; for log-level, the expected 
percentual change corresponds to 100 × βi for each additional unity of xi. These approximations are not so precise for βi far from zero 
(|βi| > 0.2). In this case, one can compute the exact percentage change by (eβi − 1) for the elasticity model and 100(eβi − 1) for the semi- 
elasticity. See Wooldridge (2016) for details. 

We calculated the effect of demographic density (log number of residents per km2) changes (holding all other predictors constant) on 

Table 3 
Correlation (derived from matrix between socioeconomic variables from the Census and the OD research and physical variables, including FFCO2 
from MARJ (derived from Santos et al., 2019). 
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log FFCO2 1,00 0,34 0,50 0,38 0,18 0,28 0,29 0,43 0,20 0,08 -0,39 -0,30 -0,26 -0,24 -0,60 -0,46 -0,52 -0,52 

% households on paved streets  0,34 1,00 0,66 0,65 0,28 0,56 0,49 -0,08 -0,29 0,08 -0,62 -0,69 -0,57 -0,61 -0,18 -0,12 -0,22 -0,52 

log number of residents per km2  0,50 0,66 1,00 0,80 0,14 0,38 0,45 0,04 -0,02 -0,01 -0,51 -0,54 -0,44 -0,46 -0,44 -0,19 -0,20 -0,41 

% women 0,38 0,65 0,80 1,00 0,48 0,68 0,75 0,20 -0,23 0,00 -0,65 -0,76 -0,71 -0,72 -0,38 -0,39 -0,38 -0,61 
% households on streets with trees 0,18 0,28 0,14 0,48 1,00 0,80 0,67 0,32 -0,06 0,03 -0,64 -0,68 -0,74 -0,71 -0,25 -0,41 -0,45 -0,53 

log income 0,28 0,56 0,38 0,68 0,80 1,00 0,84 0,27 -0,19 0,17 -0,81 -0,89 -0,96 -0,92 -0,34 -0,38 -0,51 -0,70 

% households with one car (1 resident) 0,29 0,49 0,45 0,75 0,67 0,84 1,00 0,27 -0,23 0,25 -0,62 -0,73 -0,81 -0,88 -0,46 -0,44 -0,42 -0,81 

log number of jobs 0,43 -0,08 0,04 0,20 0,32 0,27 0,27 1,00 0,01 0,05 -0,14 -0,22 -0,32 -0,25 -0,44 -0,38 -0,41 -0,30 

average traveling �me 0,20 -0,29 -0,02 -0,23 -0,06 -0,19 -0,23 0,01 1,00 0,00 0,13 0,12 0,25 0,20 -0,19 0,04 0,05 0,26 

number of trips  0,08 0,08 -0,01 0,00 0,03 0,17 0,25 0,05 0,00 1,00 -0,15 -0,02 -0,17 -0,19 -0,37 0,13 0,04 -0,18 

% illiterate  people -0,39 -0,62 -0,51 -0,65 -0,64 -0,81 -0,62 -0,14 0,13 -0,15 1,00 0,85 0,77 0,73 0,34 0,32 0,50 0,49 

% residents ≤ 32 years old -0,30 -0,69 -0,54 -0,76 -0,68 -0,89 -0,73 -0,22 0,12 -0,02 0,85 1,00 0,89 0,88 0,27 0,33 0,50 0,59 

% Black, brown or Indigenous residents -0,26 -0,57 -0,44 -0,71 -0,74 -0,96 -0,81 -0,32 0,25 -0,17 0,77 0,89 1,00 0,92 0,26 0,31 0,50 0,65 

% households with no cars (≥ 4 residents) -0,24 -0,61 -0,46 -0,72 -0,71 -0,92 -0,88 -0,25 0,20 -0,19 0,73 0,88 0,92 1,00 0,31 0,26 0,36 0,69 

log  al�tude -0,60 -0,18 -0,44 -0,38 -0,25 -0,34 -0,46 -0,44 -0,19 -0,37 0,34 0,27 0,26 0,31 1,00 0,54 0,31 0,54 

log number of students -0,46 -0,12 -0,19 -0,39 -0,41 -0,38 -0,44 -0,38 0,04 0,13 0,32 0,33 0,31 0,26 0,54 1,00 0,59 0,59 

log distance from the city center  -0,52 -0,22 -0,20 -0,38 -0,45 -0,51 -0,42 -0,41 0,05 0,04 0,50 0,50 0,50 0,36 0,31 0,59 1,00 0,63 

streets with open sewage -0,52 -0,52 -0,41 -0,61 -0,53 -0,70 -0,81 -0,30 0,26 -0,18 0,49 0,59 0,65 0,69 0,54 0,59 0,63 1,00 

Sources: IBGE, 2010; OD Survey, 2015, Santos et al., 2019. 

Table 4 
Estimates of the spatial and linear error model coefficients.  

Dependent variable: log(FFCO2) Spatial model Linear model 

Coefficient Std. error Coefficient Std. error 

log number of residents per km2 0.199*** (0.041) 0.201*** (0.040) 
% residents ≤32 years old 0.053*** (0.015) 0.053*** (0.016) 
% illiterate people − 0.178*** (0.041) − 0.182*** (0.043) 
streets with open sewers − 1.193*** (0.174) − 1.193*** (0.176) 
average traveling time 0.017*** (0.004) 0.017*** (0.004) 
log number of jobs 0.134*** (0.028) 0.138*** (0.028) 
% households with one car (1 person) − 0.126*** (0.031) − 0.128*** (0.033) 
Constant − 2.214** (0.919) − 2.201** (0.922) 
Observations 72  72  
Log Likelihood − 34.496  − 35.068  
sigma2 0.148  0.174  
Akaike Inf. Crit. 88.993  88.137  
Wald Test 1.633 (df = 1)  –  
LR Test 1.144 (df = 1)  –  
R-Squared –  0.728  
Adjsuted R-Squared –  0.698  

Note:*p < 0.1; **p < 0.05; ***p < 0.01. 
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FFCO2 and found that for each 1% demographic density increase, FFCO2 should increase approximately 0.2%. This finding somewhat 
agrees with general expectations (Seto et al., 2014), but alone does not help to determine local FFCO2 contributions. Population 
density has a complex relationship with FFCO2 emissions. In general, a compact city structure can reduce per capita emissions when it 
is supported by a good public transport network, mixed land use, and other measures in urban planning (Wang and Li, 2021; Xu et al., 
2019). Unfortunately, this is not the case for the MARJ, which shows similar problems as less developed regions in China (Liu et al., 
2017). Note that here, our evaluations assume that this megacity will continue growing under a business-as-usual scenario. MARJ has a 
unique landscape, punctuated by a series of hills, and therefore channels most of the traffic to the same routes (Fig. 2A). Without an 
efficient urban transportation system, the excess of daily traffic jams can just continue increasing transport-related FFCO2 
concentrations. 

The percentage of residents aged ≤32 years also has an increasing impact on FFCO2 levels: e.g., a 1% rise yields a 5.3% FFCO2 
increase, which is consistent with young adults’ daily activity patterns (Matz et al., 2015). For instance, young adults often drive their 
young to school and other activities, as well as themselves to work, school, or recreational places. Therefore, neighborhoods with a 
greater proportion of younger residents may show higher FFCO2 levels compared to the same neighborhoods with fewer youth and 
young adults. Moreover, activities at MARJ tend to be concentrated in a few locations (Pereira et al., 2019), creating some mobility 
demands. 

Despite FFCO2 being positively correlated with a younger population, the percentage of illiterate people is ceteris paribus nega
tively associated with FFCO2 (Table 4). Territories with high percentages of illiterate people showed 17.8% lower FFCO2 concen
trations, while OD zones with open sewers showed 69.6% lower FFCO2 than places with proper sewage disposal. These correlations 
may also imply that illiterate people tend to live and stay away from the business and high-income areas. Lack of basic infrastructure 
and overall autonomy (such as being able to obtain a driver’s license), as well as the lower likelihood of low-income populations 
spending additional funds on leisure activities, may explain a lower FFCO2 impact at their residential zones. 

Average travel time (i.e., average travel time that departs or arrives in the OD zone) shows increasing effects on FFCO2. Hence, a 1% 
increase on average travel time represents 1.7% more FFCO2. Traffic jam conditions tend to increase pollutant emissions (Ou et al., 
2013), but the average travel time at each OD Zone cannot translate automatically into high local FFCO2 concentrations. As previously 
stated, our work does not include traffic flow data, and therefore, the variable “average travel time” just means that people who live in 
that OD zone spend extra time in some type of vehicular transport to reach their destination. 

Regarding jobs, increasing job offers by 1% should imply an increase of FFCO2 levels by 0.13%. Urban areas with high job 
availability tend to attract more commuters (Manduca, 2021), which is clearly related to transportation demands in a given zone 
(Pereira et al., 2019). Finally, for every extra 1% of households with just one person owning a car, the concentration of FFCO2 de
creases by 12.6%. This result is somewhat unexpected; especially if those new drivers chose to favor nonrenewable fuels (such as 
gasoline, diesel, or NG), an increase of FFCO2 would be expected (Fig. 2A and E). On the other hand, locations with intense vehicle use 
and with populations from lower socioeconomic conditions tend to show high rates of poorly maintained, aged vehicles, which in turn 
present worse emission factors that can impact pollutant concentration in these locations (Park et al., 2016; Alvim et al., 2017; Helmers 
et al., 2019). Since income is highly correlated with households with one person and vehicle use in the MARJ (0.84; Table 3), the 
association captured in our results could stem from the fact that higher-income populations tend to own newer vehicles in good 
maintenance condition, and therefore with overall better emission factors (CONAMA, 2018). Although MARJ could significantly 
benefit from lower FFCO2 if all households manage to purchase newer vehicles, this scenario is unlikely to occur anytime soon, due to 
the ongoing high prices of fuel-efficient vehicles (Bauer et al., 2021). 

5. Conclusion and perspectives 

In rapidly changing complex urban spaces, finding commonalities that affect GHG emissions (or just FFCO2 concentrations) is 
challenging. It is difficult to differentiate from a government database alone the consumption of fuel types within political and 
administrative boundaries (Parshall et al., 2010). 

In this work, we combined existing methodologies to better understand the relationships between socioeconomic variables (ob
tained from official governmental reports) and FFCO2 concentrations (measured by time-integrated 14CO2 content in samples of Ipê 
leaves) across a megacity of the Global South: i.e., MARJ, in Brazil. Fast urbanization processes, and a lack of proper integrated urban 
planning and policies have brought socioeconomic gaps to MARJ (Malta and Marques da Costa, 2021; Da Silveira Pereira et al., 2021). 
The topographic features of the MARJ also have led to complicated mobility conditions and unintended traffic concentration (Pereira 
et al., 2019), leading to high FFCO2 levels at specific zones. Hence, centralized job-house zones can potentially increase on-road FFCO2, 
an issue that has been identified by others through public database studies of global cities (Song and Gurney, 2020). In this study, we 
identified high FFCO2 concentrations occurring around the Guanabara Bay, city centers, and the expanded areas near the RJ-Niterói 
Bridge exits (Fig. 2A), narrow areas (between the mountains and the ocean) with large-scale daily traffic activities. We determined that 
FFCO2 patterns are location-dependent (a function of centrality) as well as income-related. A large fraction of the MARJ population 
works away from their residential zones (Table 2), and therefore some type of transportation mode and distance travelled are 
responsible for higher or lower FFCO2 levels (Fig. 2A, C-F). 

High-income residents (Fig. 2C), while in low numbers (Fig. 2B), are somewhat moderate to stronger FFCO2 polluters when high 
income is related to high urban activity (higher FFCO2 levels were also found in the central/richer districts: the thin seafront strip at RJ 
city, and central business, educational, and cultural areas of the MARJ districts; Pereira et al., 2019). We also determined that illiterate 
people and areas with open sewage tend to produce less FFCO2 (Table 4) than the opposite. Nonetheless, lack of basic sanitation and 
waste management at these areas do not preclude the production of methane (another powerful GHG) at MARJ (Cotovicz Jr et al., 
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2016). It is desirable for low-income dwellers to eventually improve their quality of life and education, without entailing a significant 
net increase in FFCO2 concentrations (Galvin and Healy, 2020). Without significant infrastructure changes, and decentralization of 
jobs and services, our regression analysis reveals the following relationship: For every 1% increase in the population density at MARJ, a 
0.2% increase in FFCO2 levels should be observed. This is worrisome, and calls for immediate action. 

During the 1960s to 1980s, Brazilian government officials designed plans for urban development in several cities that were 
experiencing rampant growth, including Rio de Janeiro, São Paulo, and Curitiba. However, only Curitiba city moved forward with its 
public transportation and land use plans (Follador et al., 2022). It is not within the scope of this study to address why this was the case. 
However, Curitiba city (4062/km2 population density; IBGE, 2010) became a worldwide example of sustainable development and 
urban resilience thanks to an efficient urban planning and bus system (Larbi et al., 2021). Most residents are kept close to amenities and 
services, and to major bus lines. In addition, Curitiba has invested in expanding urban green spaces, while keeping its overall fuel 
consumption much lower (Dulal and Akbar, 2013). For instance, rather than gasoline-powered lawn mowers, city parks use animals as 
lawn mowers. 

While it would be difficult for the MARJ to just mimic the Curitiba infrastructure and transportation plans without a proper 
evaluation (both cities have very different landscape and infrastructure characteristics), evidence shows that urban growth and 
environmental sustainability are possible once opportunities for and/or constraints against urban sprawling are first identified, and 
stronger policies to restrict the release of CO2 are set in motion (Carvalho et al., 2012). Moreover, decentralization efforts regarding 
jobs and overall services have been implemented in existing cities elsewhere (e.g., in Canada, Duquet and Brunelle, 2020; in Spain, 
Díaz-Lanchas and Mulder, 2021; and in Indonesia, Trimurni and Mansor, 2020). While the overall results of decentralization attempts 
have been mixed, successes and pitfalls have been heavily attributed to other factors (e.g., investments and local governance). It is then 
reasonable to assume that a better spatial distribution, at least of jobs, in the MARJ (Pereira et al., 2019) would decrease transportation 
demands and lead to lower FFCO2 contributions, as has been found for São Paulo city (Chiquetto et al., 2021). Eventually, better spatial 
distribution of basic services, schools, commerce, and recreation options, thus affecting all journeys, should follow. Adoption of 
polycentric development models (e.g., Holden and Norland, 2005; Ou et al., 2019) should help curb overall GHG emissions and also 
bring a higher quality of life for those living in the MARJ, as well as to others living in megacities of the Global South facing similar 
issues. 

As a spinoff of this study, we have revealed some key factors, especially in regard to the implementation phase and analysis, that 
may help to improve FFCO2 information acquisition (using isotopes and/or other data collection methods) and statistical modeling. 
Fig. 2A shows 118 FFCO2 measurements across the MARJ; however, since many results were from similar geolocations, modeling used 
just 72 FFCO2 unique observations (as sites). Knowing where to implement measurements to optimize CO2 monitoring will certainly 
yield better CO2 metadata (and possibly FFCO2), potentially leading to more accurate interpretation of its increase, which in turn can 
contribute to the urban policy debate on how to curb FFCO2 concentrations. Regarding the identification of potential FFCO2 drivers for 
modeling, prior knowledge of population characteristics and regional attributes is paramount. If available, and for a better charac
terization of FFCO2 data, traffic flow and known fossil fuel stationary sources should be included as well. As mentioned, a traffic flow 
dataset is not yet available in this region, while known fossil fuel stationary sources were identified just for the large FFCO2 RJ state 
map of Santos et al. (2019), but difficult to obtain for the MARJ alone. For future studies, in this region or elsewhere, we also suggest 
the addition of meteorological models, which may add important information on pollutant dynamics. Nonetheless, our results could 
prove to be very useful for policymakers, not only for controlling FFCO2 levels, but also for guiding policies regarding specific urban 
management sectors and population sectors toward mitigation options. To the best of our knowledge, these are the first results of this 
kind obtained for a megacity in South America. 

Finally, the significant FFCO2 contribution to urbanized Brazilian megacities is, nevertheless, concerning. Even though Brazilian 
biofuels are widely used in the transportation sector, fossil fuel emissions from urban spaces remain a challenge that needs to be 
addressed. This calls for an integrated approach that could be implemented in parallel by combining decentralization of jobs and 
services, improved public transportation systems, cleaner fuel technologies, newer on-road vehicles, and stronger land use/trans
portation policies. 
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Plan. Stud. 20 (3), 375–396. https://doi.org/10.1080/09654313.2012.651801. 

Carvalho, N.B., Viana, D.B., de Araújo, M.M., Lampreia, J., Gomes, M.S.P., Freitas, M.A.V., 2020. How likely is Brazil to achieve its NDC commitments in the energy 
sector? A review on Brazilian low-carbon energy perspectives. Renew. Sust. Energ. Rev. 133, 110343 https://doi.org/10.1016/j.rser.2020.110343. 

Casa Fluminense, 2017. Municipal Profiles: Inequality Maps of Rio de Janeiro. Available from. https://casafluminense.org.br/wp-content/uploads/2020/06/Mapa- 
da-Desigualdade-Miniperfis-.pdf. 

Cepeda, M.A., Monteiro, G.P., de Oliveira Moita, J.V., Caprace, J.D., 2018, May. Estimating ship emissions based on AIS big data for the port of Rio de Janeiro. In: 
Proceedings of 17th Conference on Computer Applications and Information Technology in the Maritime Industries (COMPIT), Pavone, Italy, 14–16 May 2018; 
Volume (1)1, pp. 189–203. 

Chiquetto, J.B., Ribeiro, F.N.D., Leichsenring, A.R., Soares, J.R., Ribeiro, W.C., 2021. Poluição do Ar e Segregação Socioambiental: (des)construção de uma metrópole 
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