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Abstract 

I argue in this paper that ordinary experience is not only a 
nice part of everyday life; it is a necessity for the 
development of human knowledge.  I begin by looking at why 
the particular biological machinery that defines our nervous 
system matters.  I then examine the particular machineries 
that constrain but also foster the development of human 
knowledge.  Finally, I examine the kinds of activities that 
foster the development of knowledge, given the constraints of 
the given machinery, and conclude that activities that are 
repeated often and that involve meaningful interaction with 
an inherently meaningful environment form a plausible basis 
for the formation of knowledge within the particular neural 
net machinery that evolution has produced for us. 

Keywords: Learning; neural networks; embodied cognition; 
practice; education; development; instructional technology 

 

Mind and world in short have been evolved together, and in 
consequence are something of a mutual fit. 

   (James, 1948, p. 4) 

The Implementation Problem 

The implementation question is the notion that once a 

system of knowledge has been completely and accurately 

articulated, it shouldn’t matter in what kind of machinery 

the system is implemented.  This was a major assumption of 

cognitive science for quite a long time, and to its credit it 

was a very useful and fruitful assumption.  If we assume 

that there is no important difference between carbon-based 

machinery and silicon-based machinery, and this is a very 

reasonable assumption, we can investigate and test 

knowledge systems on silicon-based machinery, machinery 

which is much easier to control, much easier to completely 

specify, and much easier to manipulate in ethical ways.  

However, this assumption has two gaping holes in it:  how 

does the knowledge get into the machinery (most biological 

organisms have no programmers to install useful data 

structures or programs, while most silicon-based machines 

do have programmers), and how does the knowledge get 

interpreted (most silicon-based machines have intelligent 

“users” to interpret the output; most biological organisms 

must interpret the knowledge for themselves). 

If, instead of ignoring implementation, we examine how 

the actual machinery works, we find that there are many 

important constraints derived directly from the machinery 

that actually help us to understand how the knowledge gets 

incorporated into the machinery and how the “knowledge” 

in the system gets interpreted.  This, of course, does not 

mean that a silicon-based machine couldn’t learn and 

interpret on its own (see (Brooks, 2008) for example); it 

only means that silicon-based machinery isn’t necessarily 

constrained by the same physical qualities that constrain 

biological organisms.  A lot of very interesting work in 

artificial intelligence, does examine cognition while taking 

biological constraints into consideration, and these lines of 

research have been extremely fruitful, which should help to 

support the idea that implementation does indeed matter.  

The embodied cognition paradigm already assumes, 

however, that implementation is a critical element of any 

intelligent system. 

The Basic Machinery 

That leads to the examination of the actual elements of the 

biological machinery from which the nervous system is 

constructed.  There are, of course, very few elements in the 

biological machinery.  The main element is an ordinary 

neuron, which is not too dissimilar from other cells in the 

biological organism. Like other cells in the biological 

organism the neuron is best at responding to elements in the 

immediate surroundings.  In other words, the neuron is best 

at noticing what’s in its immediate neighborhood and 

responding by secreting to its immediate neighborhood.   

However, the neuron can take on very unusual shapes, 

and these shapes, make them particularly good for 

communicating with each other, by redefining what is meant 

by “its immediate neighborhood”.  The maximized surface 

area of the neuron (the dendrites) allows the neuron to 

receive multiple messages simultaneously from other 

neurons or from the environment.  The other part of the 

neuron’s unusual shape (the axon) can sometimes be quite a 

long extension of the cell body.  The axon is the main tool 

that the neuron has at its disposal for communicating to 

other neurons or to the muscles.   So just by changing its 

shape the neuron has the ability to get information from, and 

have an effect on, parts of the nervous system and ultimately 

parts of the body that are not apparently in its immediate 

neighborhood.   

This is important because the main technique that neurons 

have for getting information, and for sending information, 

involves the idea of simple local processing.  So it’s 

important to note that “local” for the neuron has been 

redefined to include connections to quite distant elements of 

the nervous system and the biological organism.  In fact, in 

the case of the photoreceptors, “local” involves light waves 

arriving in the immediate vicinity from potentially 

extremely distant locations.  Simple local processing is the 

kind of processing that single-celled organisms developed at 

the very beginning of organized life, to detect things in their 
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immediate environment, and through very simple rules 

made decisions about how to act on their environment. The 

typical example is a bacterium floating through water.  

When it detects a particular toxin in the environment, it 

activates its flagellum and flaps away from the toxin.  The 

cool thing about simple local processing is that when many 

organisms are using simple local processing at the same 

time, intelligent behavior can emerge at the level of the 

group or colony, without any programmer or leader or 

teacher.   

Because there is no programmer or leader or teacher to 

direct the nervous system this is an incredibly useful quality 

to include in any description or explanation of biological 

intelligence to account for the undoubtedly quite intelligent 

behavior of this leaderless system. 

So, the basic elements of which our nervous system is 

composed consist of billions of very simple agents, 

performing simple local processing in which “local” has 

been redefined to include any “neighbor” to which a 

neuron’s unusual shape can give it access, including, for 

example, any light wave event within the visual vicinity of 

the amazing biological eye.  This massively parallel system 

of simple agents acts without a leader, without a 

programmer, without a teacher; yet intelligent and useful 

behavior emerges over time.  We turn next to the question 

of how knowledge, or intelligent behavior, can emerge in 

such a system.  

How knowledge develops in such a system 

While no single model of the human nervous system has 

been universally accepted, we have established the basic 

building blocks and parameters from which it must be built.  

Several of the basic mechanisms with which such a neural 

network could store knowledge have also been identified.    

The first important mechanism was established about a 

hundred years ago by Pavlov (2009)and articulated more 

fully in the sea slug by Kandel and his colleagues (Hawkins, 

Greene, & Kandel, 1998, for example).  The ability of the 

nervous system to associate a previously non-meaningful 

stimulus with an already meaningful stimulus may seem 

rather minor and non-cognitive when discussed within the 

context of dog saliva and sea slugs, and yet this is an 

amazingly useful mechanism.  Association between a 

stimulus that is already meaningful and a previously 

meaningless stimulus can produce symbols, where a symbol 

means anything that stands for something else.  Surely this 

is the basis of the nervous system’s ability to use language 

and, more generally, abstract symbols.  Abstract symbols 

are, by definition, meaningless stimuli on their own which 

have taken on meaning by association with something 

already meaningful. 

The second important mechanism was robustly 

established during the half century of American behaviorist 

research (Staddon & Cerutti, 2003).  Operant conditioning 

increases the probability of a pattern of neural activity to 

reoccur if that pattern has proven to be useful (that is, if it 

has been reinforced).  In a probabilistic network, this 

couldn’t be more important.  A relatively more predictable 

pattern of activation that is meaningful or important to the 

organism is pretty close to a basic definition of intelligent 

behavior, or knowledge.  Again, operant conditioning may 

seem too basic and non-cognitive when discussed in the 

absence of a mind or within the context of training animals, 

as behaviorism often is; yet surely the ability to increase the 

probability of activating a useful pattern of neurons when it 

becomes clear that the pattern is, in fact, useful, could form 

the basis of an endogenous back-propagation system, the 

exogenous form of which is such an essential aspect of so 

many artificial neural nets (see, for example, McClelland 

and Rumelhart (1988)).  Whether it forms the basis of the 

feed backward system or not, most would agree that 

knowledge that is more probable, rather than less probable, 

to become available at the appropriate time is the main point 

of learning and education.  

The third important mechanism was hypothesized by 

Hebb sixty years ago (1949), and established more recently 

in empirical neuroscience research ((Isaac, Buchanan, 

Muller, & Mellor, 2009) for example). Hebb theorized that 

neurons that become activated simultaneously would be 

subsequently more likely to activate each other. This has 

been found at least in the case of the NMDA receptor, a 

receptor that requires simultaneous messages in order to 

allow permanent, structural changes to occur at the synapse 

(see (Isaac, et al., 2009) for example). This is perhaps a 

more general mechanism upon which both Pavlovian 

association and Skinnerian contingency are both built.  

Long-term potentiation has been the chief candidate for this 

process. Long-term potentiation involving the NMDA 

receptor requires more than one converging pathway to 

neural activation.  Also important is the idea that this 

process is dependent on an overwhelmingly huge stimulus, 

or an often repeated activation before it makes permanent 

changes to the synapse.  If long-term potentiation (or any 

kind of wiring) developed after every mere exposure the 

neural net would be in constant flux without the ability to 

store meaningful knowledge (something to keep in mind 

when considering so-called “smart” genes and genetic 

modifications). The ability of neurons to strengthen their 

association when they find themselves simultaneously 

activated over time is essential to both forms of 

conditioning, as well as learning to perceive and to act on 

any reliable invariance in the internal and external 

environment.  Invariance in the environment, by definition, 

provides almost endless repeated activation in response to 

objects and events that are important, or, at least, enduring. 

Finally, with lots of neurons activated simultaneously in 

response to an event in the environment, distributed 

“representation” is possible:  that is, a distributed set of 

neurons together form a concept.  This is important as a 

storage mechanism, but it is even more important as a 

means of developing categories and abstract concepts.   

When lots of neurons, rather than a single neuron, become 

activated by a particular stimulus, and then another large 

group of neurons becomes activated by a slightly different 
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stimulus, any overlapping active neurons get twice the 

opportunity to wire together with each other, and so 

subsequently are even more likely to activate each other.  

This overlapping set comes to stand for (or “mean”) the 

precise similarity between the two stimuli, not as an analogy 

but as a literal overlapping commonality. This is a 

profoundly important part of our machinery if we want to be 

able to explain the human genius for categorization, 

abstraction, and creativity. 

Very few psychologists admit that these crude 

mechanisms are useful for more than motor skill learning 

and perception.  Yet, what other mechanisms have been 

identified in the nervous system to account for lasting 

changes?  I am aware of none.  So, leaving physical skill 

learning and perception aside for the moment (although 

they’re quite important) let’s examine, briefly, how verbal, 

spatial, or declarative knowledge could develop in such a 

system, although the research in this area is ongoing and not 

at all settled yet. 

These mechanisms certainly do look better suited to the 

implementation of non-declarative knowledge than of 

declarative knowledge.  Non-declarative knowledge can 

build up over time through normal interactions and 

perceptions, and even without conscious awareness or 

attention.   But how do we explain the (seemingly) more 

cognitive, conscious and occasionally instantaneous 

category: declarative knowledge?  How could declarative 

knowledge be implemented in such a system? 

Unlike all other organisms, human beings have a rich set 

of verbal (as well as visual) symbols at their disposal.   One 

possibility is that words become associated (through 

classical conditioning mechanisms) with “concepts” already 

established in the neural network through Hebbian synapses.  

In fact, Bloom and her colleagues found that as soon as 

children are reliably able to refer to objects in their 

environment, jointly with their caregiver, vocabulary 

suddenly blossoms (Lifter & Bloom, 1989).  Goldin-

Meadow found that as soon as learners were capable of 

gesturing appropriately during problem-solving, that the 

correct words almost immediately followed (2003).  It 

seems that in humans, at least, language is produced almost 

simultaneously with the ability to identify and perceive a 

referent.  If this is the case, this is a powerful addition to the 

simple machinery with which we have to work:  to be able 

to have a word associated with each distinction we are 

capable of perceiving or acting upon.   

Once a word is in place (associated with a meaningful 

distinction) the neural net can use the activation of a word in 

place of the primary experience:  the word can initiate a 

cascade of neural activity that is very similar to the cascade 

that would be produced by the primary experience.  At this 

point, a coach, or a teacher, or a friend, or a parent can use a 

word (“hot”) to produce the same neural activity that might 

have been produced by a similar (“hot”) experience, thus 

allowing learning to take place without the primary 

experience.  Clearly the primary experience, or some critical 

conjunction of important partial experiences, must have 

occurred at some point.  But learning can quickly be 

produced in the absence of the primary experience once the 

word is in place.  From here it is a not impossibly large leap 

to the nervous system supplying the words internally in the 

absence of an external coach, teacher, friend or parent.  

These internally activated words, then, could form the basis 

of explicit knowledge and rational thought.  

Re-activation of sensory-motor cortex, followed by a 

cascade of neural activity similar to primary activation, has 

repeatedly been found to be the case with stored concepts 

(see, for example, the visual imagery work of Kosslyn 

(2005) and the motor imagery work of Jeannerod (1994)).  

The research on mirror neurons has even indicated that 

watching someone else’s behavior can trigger a cascade of 

neural activity that is similar to the neural activity involved 

in one’s own primary experience (Brass & Rüschemeyer, 

2010).   

The other aspect of declarative knowledge, the apparent 

ability of explicit knowledge to be examined consciously, 

needs more explanation, and probably a completely separate 

paper.  Briefly, though, the main advantage of implicit, or 

non-declarative knowledge, is that it is so well integrated 

into the neural network that it is ready for use without any 

conscious reflection.  That is of course its main liability as 

well, because without conscious reflection there is no room 

for “free will”, no room for new responses, and no room for 

transfer of knowledge to novel situations.  How, then, does 

declarative knowledge gain this apparently conscious 

element?  There is perhaps no hotter topic in philosophy of 

mind these days (see Metzinger (2009) for example), so I 

will not presume to solve this problem for all time.  

However, an intriguing possibility, and one that is in line 

with what is known about the biological constraints of the 

human nervous system, was put forth decades ago by 

Antonio Damasio (1989).  He pointed out that a mechanism 

in the hippocampus allowed incoming messages to be, 

essentially, bounced back to the sensory store from which 

they had just come.  Because incoming sensory information 

must reach the hippocampus in a cohesive timeframe, the 

bouncing back must also occur in tandem, restimulating the 

same sensory stores as the original experience.  He did not 

discuss verbal stimulation in particular, but because we 

know that verbal information stimulates the same sensory 

store as heard language (Hubbard, 2010), this mechanism 

should work for verbal information as for any other sensory 

stimulation.  What does this ability to bounce an experience 

back for re-experiencing buy us?  Just this:  it allows for the 

opportunity, as any multi-neuron synaptic junction would, 

for the original stimulus to be affected by other elements 

rather than triggering an automatic and unalterable cascade 

of activity.  Implicit knowledge does not need to go through 

this bounce-back process because it’s already usable, and in 

many cases, already crystallized.  Explicit knowledge, 

however, differs from implicit knowledge in the “second 

chance” it gives its network, and of course the environment, 

to affect the cascade of activity in a new or more subtle way.  

This explicit second chance may not result in fast, or 
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graceful, processing and activity (that is the strength of 

implicit knowledge), but it gives our neural net the 

opportunity to bring old symbols, old categories and old 

knowledge to bear on a new situation.  The analogy I have 

used with students is very over-simplified, but may help to 

illustrate this distinction.  If a sensory stimulus is like a 

pebble and our neural network is like a pond, then implicit 

knowledge is the set of waves that travel across the pond 

without hindrance when the pebble is dropped into its 

center, and explicit knowledge is the set of waves that 

results from the pebble’s original waves encountering a 

partial barrier that bounces back some of the waves allowing 

them to interact again with the out-moving waves.  The 

explicit is more complicated, more interesting, more filled 

with information (in the information theory sense), but the 

implicit is more graceful and efficient.  

So, it’s possible for both non-declarative and declarative 

knowledge to develop within the severe constraints built 

into the biological machinery about which we already know. 

Activities that Foster Development 

What kinds of activities, then, foster knowledge 

development in such a system, with so few clear 

mechanisms for plasticity?  Imagine the elaborately 

connected human nervous system moving about in the 

environment with all of its electrical activity visible for 

observation.  Notice that the nervous system is constantly 

active and that what changes is the relative activity of the 

system:  relative both in time and space. This system does 

not passively await inputs, but constantly changes in 

response to the particular interactions it has with its 

environment.  It should be clear at this point, that a system 

such as this one has no “input” device.  It has, rather, the 

ability to make small adjustments in real time in response to 

real events.  This system will only be as useful as the 

meaningful distinctions to which it can attend and respond. 

What activities will, naturally, produce patterned and 

intelligent behavior?   

Perhaps obviously, the neural network will store reliable 

patterns detected in the environment:  if a set of neurons is 

consistently firing together, they will begin to wire together, 

thus storing a united response to a unified set of stimuli.   

There are two major sources for such reliable patterns:  the 

natural invariances in the physical world, and the sets of 

actions that produce reliable (or meaningful) results for the 

organism (contingent activities).  Notice how perfectly these 

sources match our two major learning mechanisms:  

associative conditioning and operant conditioning. 

Invariance in the Environment 

Why does the physical world provide such a rich source of 

useful invariances (or correlations) for the nervous system?  

The short answer is “evolution”.  Because the particular 

physical environment in which we all develop is the product 

of multiple, simultaneous lines of successful evolution, 

within the same set of physical constraints based on the 

physical structure and physical laws of this particular planet, 

the characteristics that tend to appear simultaneously tend 

not to be arbitrary co-occurrences, but rather quite 

meaningful and successful co-occurrences.  In other words, 

if our nervous system happens upon a set of co-occurring 

characteristics in the natural world, they are extremely likely 

to be the product of a long and successful line of evolution, 

and therefore be the opposite of arbitrary or capricious.   

All else being equal, then, the set of repeated co-

occurrences we encounter will tend to be meaningful, not 

meaningless, co-occurrences, and therefore very useful for 

us to learn to perceive, “chunk” and to be able to act on.  

Our physical environment is full of non-arbitrary co-

occurrences.  The physical laws at work here are the same 

physical laws that have shaped our planet for billions of 

years and that have driven evolution of all the living species 

we encounter since life began on this planet.  And the co-

occurrences of living things in a particular environment are 

also non-arbitrary because these living things have had to 

survive within the same environment for millions of years.  

So the living organisms that we encounter have been 

successful not just in our particular physical environment, 

but in our particular ecological niche as well. 

Contingent Activities  

Held and his colleagues found quite a while ago that 

contingent experiences were necessary for the normal 

development of kittens (Held & Hein, 1963).  In his elegant 

set of experiments, in which kittens were literally yoked 

during their daily visual stimulation and were able to move 

around the visual stimuli based on just one of the yoked 

kittens’ movements, Held showed that kittens with 

completely equal visual stimulation, and deprivation, 

developed completely different visual capabilities 

depending only on whether the visual stimulation was 

contingent on the kitten’s own activity.  

Fox and Oakes updated Held’s experiments by doing a 

similar set of experiments using undergraduates, instead of 

kittens, and video games, instead of a yoked carousel 

experience (Fox & Oakes, 1984).  In this set of experiments, 

undergraduates were virtually yoked to each other while 

they played one of two versions of a video game.  In one 

version of the game, the undergraduates’ success at 

destroying elements of the virtual world was completely 

contingent on their motor behavior:  if their aim and timing 

was good, they were able to blow up a lot of objects; if their 

aim and timing was poor, they had little success.  In the 

second version of the game, undergraduates experienced the 

same (yoked) number of apparent successes, but the success 

had nothing to do with their motor behavior:  it depended 

completely on the success of the undergraduate to which 

they had been virtually yoked.  However, the second version 

of the game was designed to make it look like the success 

was contingent on the player’s skill:  elements were slowed 

or speeded up in order to make appropriate, successful, 

contact.  When tested afterwards all of the undergraduates 

felt as though they had succeeded: consciously they felt like 

their actions mattered.  But the undergraduates who played 
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the non-contingent form of the game were not as successful 

at a subsequent, unrelated, lexical decision task. 

Notice that “contingent experience” is any experience in 

which the organism’s actions are related, reliably, to the 

feedback the organism receives, whether or not the 

organism is consciously aware of this reliable relationship. 

Both Invariance and Contingency 

Diamond and Rosenzweig and their colleagues looked at 

both elements at once.  They found that rats that grew up in 

an environment with lots of new, physical and social 

interactions, developed more useful and heavier brains 

(Rosenzweig, Bennett, & Diamond, 1972).  Interestingly, 

when the interaction was eliminated, by having rats near 

enough to watch but not interact with all the stimulation, the 

rats’ brains did not become as useful or heavy.  Most 

importantly, however, these “enriched” lab rats had brains 

that were significantly less useful, heavy, and well-

connected than rats raised in the wild (where both 

invariants, and contingency are much more widely 

available) (Huck & Price, 1975; Zhao, Toyoda, Wang, & 

Zhuo, 2009) . 

Flanagan (1996) showed that in a normal classroom 

setting, third graders who did an activity that involved 

contingent rather than non-contingent feedback for just 

fifteen minutes were subsequently significantly less likely to 

give up in a challenging but possible puzzle.  Furthermore, 

third graders who used physical rather than virtual materials 

were significantly more likely to be able to build on that 

knowledge. 

Natural feedback refers to feedback that is not dependent 

on a teacher, programmer or author, but that is instead 

inherent in the activity itself.  So dropping objects of 

different weights does not require a teacher to give positive 

or negative feedback; the gravity of the physical world gives 

this feedback naturally.  Most interactions with the natural 

world provide such feedback, but natural feedback is not 

limited to the natural or physical world:  computer 

programming, for example, provides natural feedback 

because the programmer does not need a teacher or 

authority to provide positive or negative reinforcement – the 

programmed code either works or it doesn’t.  All else being 

equal, though, the natural world is the safer bet since co-

occurrences in the natural world are the product of 

evolution, and interactions with the natural world follow the 

laws of physics.  Artificial, or authored, environments 

depend completely on the author, or programmer to provide 

meaningful co-occurrences, and to provide meaningful 

feedback – these must be deliberately incorporated, while in 

the natural world they are already an integral part.  

Natural feedback is also less available in stereotypically 

female hobbies than in stereotypically male hobbies.  

Playing with water pistols provides natural feedback – either 

you get wet or you don’t.  Many stereotypically female 

hobbies depend on the opinions offered by peers or 

authority figures:  does this look pretty?  Have I pleased 

you?  Is this good?  Dweck and her colleagues have found 

that personal feedback rather than task-related feedback 

interferes with the mastery orientation of children solving 

challenging problems (Dweck & Leggett, 1988). Because of 

this difference in available stereotypically female and male 

after school activities, Flanagan and Canada provided 

school-age female students with one hour a week of after-

school activities in which the students got natural feedback 

for both invariance in the environment and their own 

contingency (Flanagan & Canada, 2010).  These students 

did computer programming (Scratch (Group) or Lego 

Mindstorms (Lab, 1999)) or building scale models (Google 

Sketch (Google, 2010) or physical craft materials) for eight 

weeks.  At the end of the eight weeks the students had 

significantly better spatial reasoning skills than a similar 

control group, and felt significantly more confident about 

doing math and using computers. 

Ordinary Experiences 

In environments that consist of inherently meaningful co-

occurrences and opportunities for consistently meaningful 

feedback the nervous system thrives.  Repetition, or 

practice, in such environments should produce robust, well-

organized, functional nervous systems.  The practice effect 

is well-established, but shouldn’t be ignored:  too often we 

turn to the conceptual or technological shortcut when mere 

practice in a meaningful environment would do more good.  

Imagine a basketball team that got an hour or two of lecture 

a week and then several readings in order to get ready to 

play the season; imagine an orchestra that got an hour or 

two of lecture a week and then had to read their musical 

scores as homework for getting ready for their concert 

season.  This sounds ridiculous, of course.  But we expect 

our students to learn more “cognitive” skills this way even 

though it shouldn’t work given the mechanisms available, 

and routinely fails to work (see (Sahiner, 1987) for 

example).  If we accept the mechanisms we’ve been given, 

cognitive education should begin to look more like physical 

and musical education. 

“Baby Einstein” media have recently been (finally) 

recalled because they probably do more harm than good 

(Lewin, 2009).  As cognitive scientists we owe anxious 

parents the benefit of our expertise, and must point out that 

ordinary interactions with people and meaningful objects are 

better suited to the developing nervous system than 

“educational” consumer media.  Because, (un)fortunately, 

constrained by the biological machinery with which we are 

born there is no magical input portal for pouring fully 

formed knowledge systems into the human mind:  there are 

just a few simple mechanisms that must incorporate 

knowledge through lots of simple, ordinary, meaningful 

encounters over a long period of time. 

Conclusion 

The human nervous system is the product of millions of 

years of evolution within an ecology that has simultaneously 

been evolving.  So it makes sense that the human nervous 

system should be optimized for operating within the 
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particular natural and physical world we call “earth”.  

Indeed when we look at the particular mechanisms actually 

available to the human nervous system for learning and 

developing a solid knowledge base, these mechanisms seem 

to be ideal for detecting and learning naturally occurring 

invariances in our ordinary environment, as well as for 

learning actions that turn out to be important and 

meaningful to the nervous system itself.  These are the very 

elements that Lloyd argued were the minimum essential 

requirements for anything we would consider to be a “mind” 

(1989). Furthermore, these mechanisms work best when the 

applicable neurons are activated simultaneously over a 

significant period of time.   

Activity that involves important co-occurrences that are 

meaningful for the organism over significant periods of time 

are more succinctly termed “ordinary” experiences and are 

the foundation of our solid and meaningful neural network.  

We would be wise to build on this framework rather than 

attempting to circumvent it.  Practice in real environments 

in real time has long been the accepted practice in athletics 

and music.  It is time for other human endeavors to follow 

the same advice. 
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