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Abstract Alternative polyadenylation (APA) plays important roles in modulating mRNA stability,

translation, and subcellular localization, and contributes extensively to shaping eukaryotic tran-

scriptome complexity and proteome diversity. Identification of poly(A) sites (pAs) on a genome-

wide scale is a critical step toward understanding the underlying mechanism of APA-mediated gene

regulation. A number of established computational tools have been proposed to predict pAs from

diverse genomic data. Here we provided an exhaustive overview of computational approaches for

predicting pAs from DNA sequences, bulk RNA sequencing (RNA-seq) data, and single-cell RNA

sequencing (scRNA-seq) data. Particularly, we examined several representative tools using bulk

RNA-seq and scRNA-seq data from peripheral blood mononuclear cells and put forward operable

suggestions on how to assess the reliability of pAs predicted by different tools. We also proposed

practical guidelines on choosing appropriate methods applicable to diverse scenarios. Moreover,

we discussed in depth the challenges in improving the performance of pA prediction and bench-

marking different methods. Additionally, we highlighted outstanding challenges and opportunities

using new machine learning and integrative multi-omics techniques, and provided our perspective on

how computational methodologies might evolve in the future for non-30 untranslated region, tissue-

specific, cross-species, and single-cell pA prediction.
Introduction

Precursor mRNA (pre-mRNA) polyadenylation is an essential
two-step event in the post-transcriptional regulation of gene

expression, which involves the cleavage of the pre-mRNA at
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the poly(A) site (pA) followed by the addition of an untem-
plated stretch of adenosines [1,2]. The selective use of pAs of
a single gene, termed alternative polyadenylation (APA), can

generate a diversity of isoforms with different 30 ends and/or
encode distinct proteins [3,4]. APA plays important roles in
modulating mRNA stability, translation, and subcellular local-

ization, which contributes extensively to shaping eukaryotic
transcriptome complexity and proteome diversity. APA is a
widespread regulatory mechanism in eukaryotes, which has

been observed in more than 70% of mammalian and plant
genes [5–11]. APA is highly tissue specific and dynamically
modulated in various conditions, cell types, and/or states
Figure 1 Schematic of computational approaches for predicting pAs f
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[2,12]. Specific APA programs have been implicated in diverse
biological processes and diseases, such as cell activation, pro-
liferation, neurodegenerative disorders, and cancer [3,4,13–

20]. Given the functional significance of APA, identification
and/or quantification of pAs on a genome-wide scale is crucial
and may be the first step in understanding the underlying

mechanism of APA-mediated gene regulation.
Early studies, dating back to the 1990s, predict pAs using

conventional machine learning (ML) models like support vec-

tor machine (SVM) [21–25], which distinguish whether a
nucleotide sequence contains a pA using a variety of hand-
crafted features (Figure 1A). In recent years, deep learning
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(DL) models [26–29] have been shown to provide better perfor-
mance than traditional ML methods, owing to their great abil-
ity for direct and automatic feature extraction and high

scalability with large amount of genomic data (Figure 1B).
With the advance of next generation sequencing (NGS) tech-
nologies, experimental protocols have been designed to cap-

ture 30 ends of mRNAs for direct profiling of genome-wide
pAs (Figure 1C), such as DRS [10,30], 3P-seq [7,31], 30READS
[11], PAT-seq [32], TAIL-seq [33,34], and several others (re-

viewed in [35–37]). Although these 30 end sequencing (30 seq)
approaches are powerful and highly sensitive in detecting the
precise locations of pAs, even for lowly expressed genes, they
are too technically demanding and costly to be widely applied

in genomic research. Alternatively, a myriad of computational
tools [17,38–40] have been developed for identifying and quan-
tifying pAs by leveraging the explosively growing RNA

sequencing (RNA-seq) data from diverse biological conditions,
cell types, individuals, and organisms (Figure 1D). In recent
years, the single-cell RNA sequencing (scRNA-seq) tech-

niques, particularly those 30 tag-based protocols such as cell
expression by linear amplification sequencing (CEL-Seq) [41]
and 10� Chromium [42], provide great potential to explore

dynamics of APA usage during the process of cellular differen-
tiation. Accordingly, a wide spectrum of tools have been pro-
posed to profile APA from diverse scRNA-seq datasets at cell-
type or even single-cell resolution [43–45] (Figure 1E).

The tsunami of genomic data especially bulk RNA-seq and
scRNA-seq data and the emergence of ensemble DL method-
ologies have revolutionized computational methods for detect-

ing pAs from diverse kinds of data. In the past decade, a few
literature reviews have involved the computational tools for
bioinformatic analysis of APA. In 2015, our group summa-

rized computational tools for predicting pAs from DNA
sequences and 30 seq methods for mapping pAs [37]. Szkop
and Nobeli [46] described experimental methods for probing

50 untranslated regions (UTRs) and 30 UTRs, and listed com-
putational methods for discovering alternative transcription
start sites (TSSs) and pAs from microarray and RNA-seq.
Yeh et al. [47] reviewed experimental methods and technolo-

gies for studying APA, and briefly listed seven RNA-seq tools
for analyzing APA dynamics in tabular form. Chen et al. [48]
comprehensively reviewed 30 seq methods for probing pAs,

while their review did not cover the computational tools for
APA analysis. Gruber and Zavolan [12] highlighted the impor-
tance of APA in health and disease, and briefly listed compu-

tational resources for studying APA in a table, including four
pA databases, two databases of motifs of RNA-binding pro-
teins (RBPs), eight RNA-seq tools for identifying and/or
quantifying pAs, and three tools for APA analysis. Our group

[49] benchmarked 11 tools for predicting pAs or dynamic APA
events from RNA-seq data. Another benchmark study [50]
benchmarked five tools for RNA-seq and compared their per-

formance with 30 seq, full-length isoform sequencing (Iso-Seq),
and Pacific Biosciences (PacBio) single-molecule full-length
RNA-seq method. Ye et al. [51] briefly summarized three com-

putational methods for detecting APA dynamics from diverse
single cell types. Zhang et al. [52] focused on the APA regula-
tion in cancer, and briefly listed 14 computational tools for

detecting APA. Kandhari et al. [53] highlighted the emerging
role of APA as cancer biomarkers and provided an overview
of existing relevant experimental and computational methods.
However, these two reviews [52,53] did not distinguish among
the prediction of pAs, detection of APA dynamics, and analy-
sis of APA. For example, APAlyzer [54] and movAPA [55]
listed in these reviews are actually toolkits for analyzing

APA rather than detecting APA dynamics or pAs, which are
different from other tools they listed such as DaPars [17] or
APAtrap [39]. Generally, although the aforementioned reviews

have provided detailed overviews of the progress in the com-
plex yet fruitful APA field, none of them has exhaustively sum-
marized available tools for different kinds of data in this field,

particularly the emerging DL-based methods and methods for
scRNA-seq. Moreover, most reviews only briefly listed tools
without delicate summary and sorting, which makes it difficult
for the scientific community to decide desirable method for

their data analysis. In this review, we described the principles
of identifying pAs from different kinds of data and provided
an extensive overview of available computational approaches.

We cataloged these methods into different categories in terms
of the underlying principles of the predictive models and the
data they used, and summarized their performance and charac-

teristics such as algorithms, features, and data used in the pre-
dictive model. Particularly, we examined several representative
tools using bulk RNA-seq and scRNA-seq data from periph-

eral blood mononuclear cells (PBMCs) and put forward oper-
able suggestions on how to assess the reliability of pAs
predicted by different tools. We also described several notes
on how to conduct objective benchmark analysis for these

massive number of tools. Moreover, we proposed practical rec-
ommendations on choosing appropriate methods for different
scenarios and discussed implications and future directions.

Additionally, we highlighted outstanding challenges and
opportunities using new ML and integrative multi-omics tech-
niques. Lastly, we provided our perspective on how computa-

tional methodologies might evolve in the future for pA
prediction, including non-30 UTR, tissue-specific, cross-
species, and single-cell pA prediction.

Computational approaches for pA prediction

Methods for predicting pAs from DNA sequences

The key trigger for cleavage and polyadenylation is the set of

cis-regulatory elements surrounding a pA, including
A(A/U)UAAA hexamer or variant thereof, the UGUA
element, upstream and downstream U-rich elements, and

downstream GU-rich elements [56]. Since poly(A) signals
(PASs), the core AAUAAA and its variants, are in the vicinity
of most mammalian pAs, the identification of the PASs is usu-
ally regarded as an alternative to determine the potential posi-

tion of a pA. In this review, we refer to the task of predicting
pAs or PASs as the ‘‘pA identification problem”. During the
past few decades, a wide range of computational approaches

have been proposed to predict pAs from DNA sequences using
experimental and in silico mapping of 30-end expressed
sequence tags (ESTs) (Files S1 and S2).

Methods based on traditional ML models

Earlier studies established traditional ML models to classify a
sequence as containing a pA or not, using various algorithms

(such as discriminant functions [21,22,57], hidden Markov
model (HMM) [23], SVM [24,58], Bayesian network [59], arti-
ficial neural networks, and random forests [60]) and combined
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classifiers [25,61] (Figure 2; File S2). The ML frameworks of
these methods are similar, except that different classification
models were employed and/or diverse hand-crafted sequence

features were compiled (File S1). As ML models rely heavily
on manually designed features and the PASs of human/
animals are considerably different from that of other species

like plants or Saccharomyces cerevisiae (yeast) [37,62], these
ML-based methods can be divided into two categories accord-
ing to the applicable species (File S1): (1) methods that are

applicable to human or animals, including POLYAH [21],
Polyadq [57], ERPIN [23], Poly(A) Signal Miner [63],
polya_svm [24], PolyApred [58], POLYAR [22], Chang’s
model [64], Dragon PolyA Spotter [60], Xie’s model [65], and

Omni-PolyA [25]; and (2) methods that are applicable to other
species, including the Graber’s method [66] for yeast, POLYA
[67] for Caenorhabditis elegans, PASS [68,69], PAC [59], and

PASPA [70] for plants, and Wu’s model for Chlamydomonas
reinhardtii [61]. These methods utilize diverse sequence features
around pAs for pA prediction (File S1). The most commonly

used features are position weight matrix for the poly(A)
motifs, distance between motifs, and k-gram nucleotide acid
patterns [21,23,24,57,58]. With the increase of the prior knowl-

edge of DNA sequences, more carefully hand-crafted features
were derived, such as Z-curve [59], RNA secondary structures
Figure 2 Landscape of computational approaches for predicting pAs f
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[61,64], physico-chemical, thermodynamic, and statistical char-
acteristics [60], term frequency–inverse document frequency
weight [61], and spectral latent features extracted by HMM

[65]. Particularly, since the significance of PASs is different
in pAs with different strengths, a few studies divided pAs into
sub-groups based on the expression level [22] or pattern assem-

bly [61], and then predicted pAs in each group. In terms of the
availability and ease of use of tools, several tools were pre-
sented as website (Figure 2), which is particularly convenient

for users with little program skill. However, since these tools
were generally developed many years ago, the programming
languages of many tools are outdated, such as Fortran or Perl,
and many tools are no longer available or maintained.

Methods based on DL models

Despite considerable progress has been made, the overall accu-

racy and generalizability of traditional ML-based methods
remain moderate due to the limited experimentally verified
pAs in the early years and the lack of prior domain knowledge
to finely design and acquire useful features. In recent years,

DL-based methods are emerging rapidly (Figure 2; File S2),
which directly learn hidden features from input nucleotide
sequences in a data-driven manner, without knowing any prior
rom DNA sequences, bulk RNA-seq, and scRNA-seq over time
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knowledge of sequence features. Most methods use convolu-
tion neural networks (CNNs), such as DeepPolyA [71],
Conv-Net [72], DeeReCT-PolyA [26], DeepPASTA [28],

DeepGSR [27], and APARENT [29]. Other DL techniques
were also utilized, such as the recurrent neural network
(RNN) employed in DeepPASTA [28], a hybrid model with

four logistic regression models and eight neural networks used
in HybPAS [73], and self-attention mechanisms used in SAN-
PolyA [74] and PASNet [75]. All of these tools were imple-

mented using DL frameworks in Python. In addition to pA
prediction, several methods can be utilized for multiple tasks.
For example, Conv-Net [72] is capable of inferring pA selec-
tion and predicting pathogenicity of polyadenylation variants.

DeepPASTA [28] can be used for the prediction of the most
dominant pA of a gene in a given tissue and the relative dom-
inance of APA sites in a gene. DeepGSR [27] is able to predict

genome-wide and cross-organism genomic signals such as
translation initiation sites. APARENT [29] can also be utilized
for the quantification of the impact of genetic variants on

APA. Different from hand-picked features used in ML-based
methods, one-hot encoding features without needing fine fea-
ture engineering are widely used in DL-based methods; how-

ever, DL-based models are generally of poor interpretability.
To enhance the interpretability, several methods provide an
additional function for visualization of signals. Xia et al. [26]
showed the interpretability of their DeeReCT-PolyA model

by transforming convolutional filters into sequence logos for
the comparison between human and mouse. In APARENT
[29], features learned across all network layers were visualized,

which can reveal cis-regulatory elements known to recruit
APA regulators and new sequence determinants of polyadeny-
lation. In addition to performance improvement, DL-based

methods have two significant advantages over ML-based
methods, the higher generalizability for different species and
the higher scalability with large amount of data. For example,

DeeReCT-PolyA [26] is an interpretable and transferrable
CNN model for recognition of 12 PAS variants, which enables
transfer learning across datasets and species. APARENT [29]
was trained using isoform expression data from more than

three million synthetic APA reporters.

Methods for predicting pAs from bulk RNA-seq data

Methods that predict pAs only from DNA sequences conspic-
uously fail to consider in vivo expression. RNA-seq has become
an indispensable approach for transcriptome profiling in

diverse biological samples, and a number of methods have
been proposed for identifying sample-specific pAs from
RNA-seq data (File S3). Our group previously benchmarked
11 representative methods for predicting pAs and/or dynamic

APA events from RNA-seq data [49]. Here we focus on predic-
tion of pAs rather than dynamic APA events. We collected rel-
evant methods summarized in our previous review [49] as well

as newly emerging methods, and divided these methods into
five categories according to their underlying strategies.

Methods that interrogate non-templated poly(A)-capped reads

RNA-seq data contain a small fraction (� 0.1%) of non-
templated poly(A) tail-containing reads [hereinafter referred
to as poly(A) reads] [46], which can be considered as direct evi-

dence for polyadenylation. By interrogating poly(A) reads, an
early study [76] identified � 8000 novel pAs in Drosophila mel-
anogaster from a total of 1.2 billion RNA-seq reads. Several
other methods, such as KLEAT [77] and ContextMap 2 [78],

not only employed direct evidence from poly(A) reads but also
incorporated transcript assembly to identify pAs. These
poly(A) read-based approaches have the advantage to deter-

mine the precise locations of pAs; however, it is still challeng-
ing to discover pAs of weakly expressed transcripts due to the
decreased read coverage near the 30 end and the low yield of

poly(A) reads.

Methods based on transcript assembly

Another series of approaches identify pAs from inferred alter-

native 30 UTRs by compiling transcript structures from RNA-
seq data, including PASA [79], Scripture [80], 3USS [81], and
ExUTR [82]. These transcriptome assembly-assisted methods

deduce gene models first using transcriptome assembly tools,
and then identify 30 UTRs that are absent in the deduced gene
models, which rely heavily on assembled gene structures. It is
widely accepted that transcriptome assembly from RNA-seq

data is a rather difficult and computationally demanding task,
and it is more challenging to precisely determine 30 UTRs,
especially for lowly expressed genes, due to 30 biases of read

coverage inherent in RNA-seq. Therefore, the performance
of these methods is inevitably hindered by potential limitations
of existing transcriptome assembly tools.

Methods that rely on prior annotations of pAs

During the last decade, numerous experimental techniques
have been developed to directly sequence 30 ends of mRNAs,

such as 30 T-fill [83], 30READS [11], TAIL-seq [33,34], to name
a few (Figure 1C). Accordingly, several pA databases built
upon 30 seq data of diverse species were continuously released,

including PolyA_DB 3 [84], PolyAsite 2.0 [8], and PlantAPAdb
[85]. These databases provide a large number high-confidence
pAs, which can be used for establishing pA prediction models
and evaluating pA prediction results. It is thus naturally to

incorporate annotated pAs for predicting pAs from RNA-
seq data. Several methods that rely on pre-defined pA annota-
tions, including QAPA [38], PAQR [86], and APA-scan [87],

were proposed for predicting pAs from RNA-seq data. For
these methods, the quality of annotated pAs is particularly
critical. Most studies establish a comprehensive compendium

of well-annotated pAs by merging non-redundant annotations
from diverse sources. By combining prior annotated pAs with
RNA-seq data, the quality of predicted pAs can be greatly

improved. However, currently available pA databases are far
from complete and limited to only a few well-studied species,
such as human, mouse, and Arabidopsis thaliana. Conse-
quently, these tools are not capable of detecting novel pAs

beyond existing poly(A) annotations.

Methods that infer pAs by detecting significant changes in RNA-

seq read density

The majority of recent approaches predict pAs by modeling
read density changes in terminal exons, including GETUTR
[88], IsoSCM [89], DaPars/DaPars2 [17,90,91], EBChange-

Point [92], APAtrap [39], TAPAS [40], moutainClimber [93],
and IPAFinder [94]. According to our previous benchmark
on 11 tools for RNA-seq [49], TAPAS generally obtained

higher sensitivity than other tools across different datasets.
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Of note, unlike most methods that require at least two samples
for change point detection, moutainClimber [93] is a de novo
cumulative-sum-based approach, which runs on a single

RNA-seq sample and simultaneously recognizes multiple TSSs
or APA sites in a transcript. Using mountainClimber, Cass
and Xiao analyzed 2342 genotype-tissue expression (GTEx)

samples from 36 tissues of 215 individuals and found 75% of
genes exhibited differential APA across tissues [93]. Different
from most pA prediction tools focusing mainly on 30 UTR,

IPAFinder was specifically proposed for identifying intronic
pAs from RNA-seq data [94]. Zhao et al. applied IPAFinder
to pan-cancer datasets across six tumor types and discovered
490 recurrent dynamically changed intronic pAs [94]. Methods

falling within this category rely on the detection of read density
fluctuations which requires sufficient read coverage in terminal
exons to detect APA sites. It is worth noting that data pre-

processing (normalization or smoothing) is particularly impor-
tant for reducing technical biases caused by non-biological
variability [46]. Particularly, some methods, such as APAtrap

and DaPars, re-define terminal exon boundaries based on
RNA-seq read coverage before identifying pAs, which are cap-
able of detecting pAs in previously unannotated regions.

Methods based on ML models

In recent years, some newly emerging methods employ tradi-
tional ML or DL model to identify pAs from RNA-seq,

including TECtools [95], IntMAP [96], Terminitor [97], and
Aptardi [98]. TECtools [95] first identifies terminal exons and
transcript isoforms ending at known intronic pAs. Then a

model was trained based on the aligned RNA-seq data for dis-
tinguishing terminal exons from internal exons and back-
ground regions, using diverse features reflecting differences in
read coverage of these regions. TECtool can also be applied

on scRNA-seq, which first pools reads of all cells to infer
new transcripts and then quantify each transcript in individual
cells. IntMAP [96] leverages one unified ML framework to

combine the information from RNA-seq and 30 seq to quantify
different 30 UTR isoforms using a global optimization strat-
egy. Terminitor [97] is based on a deep neural network for

three-label classification problem, which can determine
whether an input sequence contains a pA with PAS, a site
without PAS, or non-pA. Aptardi [98] is a multi-omics
approach based on bidirectional long short-term memory

(biLSTM) RNN, which predicts pAs by leveraging DNA
sequences, RNA-seq data, and the predilection of transcrip-
tome assemblers.

Methods for predicting pAs from scRNA-seq data

scRNA-seq is a powerful high-throughput technique for inter-

rogating transcriptome of individual cells and measuring cell-
to-cell variability in transcription [99]. Particularly, several 30

tag-based scRNA-seq methods enriching for mRNA 30 ends
via poly(A) priming, such as CEL-Seq [41], Drop-seq [100],
and 10� Chromium [42], provide great potential to dissect
APA at the single-cell resolution. However, the extremely high
dropout rate and cell-to-cell variability inherent in scRNA-seq

make it difficult to directly apply bulk RNA-seq methods to
scRNA-seq data. During the last few years, a wide range of
computational approaches specifically designed for pA

identification from scRNA-seq data have emerged (Figure 2;
File S4). We divided these methods into three categories
according to their underlying strategies.

Methods based on peak calling

The peak calling strategy is widely used by most methods for
pA identification from scRNA-seq data, including scAPA
[101], polyApipe (https://github.com/MonashBioinformat-

icsPlatform/polyApipe), Sierra [43], scAPAtrap [44], SAPAS
[102], and SCAPE [103]. The underlying principle of these
methods is that aligned reads from 30 tag-based scRNA-seq

accumulate to form peaks at genomic intervals upstream of
pAs [101]. In scAPA [101], a set of non-overlapping 30 UTRs
is first defined from the genome annotation and then peaks

within 30 UTRs are identified using an existing peak calling
tool. As adjacent pAs may situate in a single peak, the Gaus-
sian finite mixture model was implemented in scAPA to split

large peaks into smaller ones. polyApipe is a pipeline for iden-
tifying pAs from 10� Chromium scRNA-seq data, which
defines peaks of poly(A)-containing reads. Sierra [43] employs
the splice-aware peak calling based on Gaussian curve fitting

to determine potential peaks with pAs and then the peaks
are annotated and quantified in individual cells. Our group
proposed scAPAtrap [44] for identifying and quantifying pAs

in individual cells from 30 tag-based scRNA-seq. scAPAtrap
incorporates a genome-wide sensitive peak calling strategy
and poly(A) read anchoring, which can accurate locate pAs

without using prior genome annotation, even for those with
very low read coverage. Yang et al. proposed SAPAS for iden-
tifying pAs from poly(A)-containing reads and quantifying

pAs in peak regions determined by a parametric clustering
algorithm [102]. They further applied SAPAS to the scRNA-
seq data of GABAergic neurons and detected cell type-
specific APA events and cell-to-cell modality of APA for dif-

ferent GABAergic neuron types. Very recently, Zhou et al.
proposed the SCAPE method based on a probabilistic mixture
model for identification and quantification of pAs in single

cells by utilizing insert size information [103]. The parametric
modeling of peaks in most tools based on peak calling such
as scAPA and Sierra may cause biases and reduce statistical

power in detecting APA events. Alternatively, ReadZS [104],
an annotation-free statistical approach, was proposed to char-
acterize read distributions that bypasses parametric peak call-
ing and identifies differential APA usages at single-cell

resolution among � 2 cell types. ReadZS can not only detect
pAs in normal peak shape, but also identify distributional
shifts that are not.

Methods that rely on prior annotations of pAs

In contrast to the peak calling-based methods used for de novo
pA identification, a few approaches identify pAs base on prior

pA annotations, including MAAPER [105], SCAPTURE
[106], and scUTRquant [107]. Li et al. developed MAAPER
[105] for predicting pAs from both bulk RNA-seq and

scRNA-seq data, which incorporates annotated pAs in
PolyA_DB 3 [84] and pools single cells of the same type to
mimic pseudo-bulk samples. MAAPER also provides a

likelihood-based statistical framework for analyzing APA
changes and can identify common and distinct APA events
in cell groups from different individuals. The group of

MAAPER later developed SCAPTURE [106] which embed-
ded a DL model DeepPASS for evaluating called peaks from

https://github.com/MonashBioinformaticsPlatform/polyApipe
https://github.com/MonashBioinformaticsPlatform/polyApipe
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scRNA-seq. The DL model was trained by sequence shifting,
using annotated pAs from PolyA_DB 3, PolyA-seq, PolyASite
2.0, and GENCODE v39. The authors used SCAPTURE to

profile APA dynamics between COVID-19 patients and
healthy individuals, and found the preference of proximal
pA usage in numerous immune response-associated genes

upon SARS-CoV-2 infection. Fansler et al. developed scUTR-
quant [107] for measuring 30 UTR isoform expression from
scRNA-seq data, which relies on a cleavage site atlas estab-

lished from GENCODE annotation and a mouse Microwell-
seq dataset of 400,000 single cells [108].

Other methods for predicting pAs from scRNA-seq data

Additionally, some other methods do not use the peak calling
strategy, including APA-seq [109] and scDaPars [45]. Levin
et al. [109] designed the APA-seq approach to detect and quan-

tify pAs from CEL-Seq, which interrogates the gene identity
and poly(A) information in the paired read 1 and read 2.
Although APA-seq is in principle applicable to other 30 tag-
based scRNA-seq methods, it may not be universally applied

in practice in that only sample barcodes rather than the whole
30 end sequence of the transcript are retained in read 1 of many
public scRNA-seq data [44]. Unlike most tools that are only

applicable to 30 tag-based scRNA-seq, scDaPars [45] that
was proposed by the group of DaPars [17] can identify and
quantify APA events from either 30 tag (e.g., 10� Chromium)

or full-length (e.g., Smart-seq2) scRNA-seq. In the scDaPars
pipeline, DaPars, a tool for identifying APA events from bulk
RNA-seq, was first adopted to calculate raw relative APA

usage in individual cells, and then a regression model was uti-
lized to impute missing values in the sparse single-cell APA
usage matrix. By applying scDaPars to cancer and human
endoderm differentiation data, Gao et al. revealed cell type-

specific APA regulation and detected novel cell subpopulations
that were not found in conventional gene expression analysis.

Methods for APA analysis rather than pA prediction

In addition to the task of pA prediction (hereinafter termed
task 1), there are additional tasks related to the bioinformatic

analysis of APA, mainly including the prediction of tissue-
specific pAs (task 2), prediction of dominant pAs (task 3), pre-
diction of APA site switching (task 4), and other kinds of APA
analysis (task 5). Although most tools described in this review

are developed for task 1, several tools are capable of perform-
ing multiple tasks. For example, DeepPASTA [28] is able to
perform tasks 1–3; Conv-Net [72] can perform tasks 1 and 3.

In this review, we focus only on tools that are applicable to
task 1. Of note, NGS-based techniques specially designed for
probing pAs, generally known as 30 seq, such as DRS

[10,30], 3P-Seq [7,31], and 30READS [11], are experimental
methods rather than computational methods for identifying
pAs. Genome-wide pAs generated from 30 seq are highly con-

fident and are usually regarded as the true reference (i.e., prior
information) for building models or evaluating computational
methods. These 30 seq methods are beyond the scope of this
review, while have been reviewed in several other reviews

[12,46,48,53]. In addition, we have briefly summarized tools
or resources designed for APA analysis rather than pA predic-
tion in File S5. Tools such as DeeReCT-APA [110], polyA

code [111], and TSAPA [112] are not targeted at task 1 but
for tasks 2 and 3. Among the five tasks, detection of APA site
switching (task 4) is usually a routine step involved in the anal-
ysis of RNA-seq or scRNA-seq data. APA site switching

reflects the differential usage of APA sites between samples,
which does not necessarily need the prediction of pAs
(task 1) as a prerequisite. Of note, there are other commonly

used phrases similar to ‘‘APA site switching” mentioned in this
review, such as differential APA site usage [8,17], 30 UTR
shortening/lengthening [44,101], and APA dynamics

[17,44,98,113]. Some approaches for RNA-seq, such as
PHMM [114], ChangePoint [115], MISO [116], and roar
[117], directly discover APA site switching by detecting sudden
change of read density at terminal exons without identifying

APA sites. Recently, several tools have been developed for
scRNA-seq, such as SCUREL [118], scMAPA [119], and
scDAPA [120]. For example, our group developed scDAPA

[120] for characterizing differential usages of APA in different
cell types using 10� Chromium data, and found that APA
plays an important role in acute myeloid leukemia [113]. Addi-

tionally, some toolkits have been developed for routine analy-
ses of APA (e.g., annotation and visualization, task 5) using
annotated pAs and/or RNA-seq, such as APAlyzer [54] and

movAPA [55], while they are not capable of predicting pAs.
These diverse tools provide a wide range of complementary
resources and opportunities to address the more complex but
fruitful field of APA.

Discussion

Performance of pA prediction models

At present, there are only a few benchmark studies that sys-
tematically evaluate the performance of different tools. Previ-
ously, our group benchmarked 11 tools for RNA-seq [49] and
found that the sensitivity of some methods varied greatly

among different species. For instance, QAPA [38] performs
the second best on human data, while it performs the worst
on mouse data. APAtrap [39] is the top performer for Ara-

bidopsis data, while TAPAS [40] performs the best on human
or mouse data. Recently, Shah et al. [50] benchmarked five
tools for RNA-seq against 30 seq, Iso-Seq, and a full-length

RNA-seq method and found that pAs from 30 seq and Iso-
Seq are more reliable than pAs predicted from RNA-seq. They
suggested that incorporating the RNA-seq prediction tool

QAPA [38] with pA annotations derived from 30 seq or Iso-
Seq can reliably quantify APA dynamics across conditions.

The performance of different tools described in the respec-
tive studies is summarized in Files S1–S4. Generally, for pre-

dicting pAs from DNA sequences, DL-based models
significantly outperform ML-based methods and are more
suitable for large-scale analysis, owning to the good ability

of automatic feature extraction and scalability for big data
analysis (File S2). For example, DeepPASTA [28] has an area
under the curve (AUC) score over 93% in predicting pAs on a

DNA sequence dataset, which performs much better than ML-
based tools like PolyAR [22] or Dragon PolyA Spotter [60].
APARENT [29], based on deep neural network, was trained
on over three million synthetic APA reporter genes, which

overcomes inherent size limitations of traditional biological
datasets. In contrast, traditional ML-based methods like
POLYAR [22] and Omni-PolyA [25] require a considerable
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amount of prior knowledge and are unable to cope with the
rapidly growing data. In terms of the model generalizability,
methods for RNA-seq or scRNA-seq are generally applicable

to different species if the reference genome and the genome
annotation are available. In contrast, the cross-species applica-
bility of methods for DNA sequences is more complex. Models

applied to human are normally applicable to other mammals
like mouse due to similar PASs among mammals [56]. How-
ever, although most models can be in principle trained using

data from a different species, users need collect training data
from the other species which are not always available, and
most models use hand-crafted features that may not be gener-
alized well across species. Recent techniques like DL and

transfer learning greatly enhance the generalizability of mod-
els. Cross-species experiments have been performed for evalu-
ating the generalizability of some tools, such as DeepGSR [27]

and Poly(A)-DG [121], and for these tools single model trained
over one species can be generalized well to datasets of other
species without retraining. We need to point out that, the eval-

uation results in a single study may be biased and should be
treated with caution, because different datasets and perfor-
mance indicators were used for the performance evaluation

in different studies (Files S1–S4). In the following section of
‘‘Conclusion and prospects”, we also put forward several notes
on how to conduct more objective benchmarking in order to
make a fairer comparison of different tools.
How reliable are the obtained results?

Currently, there is no benchmark evaluation of tools for DNA

sequences or scRNA-seq data. Here we attempted to make a
preliminary examination of the reliability of results obtained
from different pA prediction tools, using a matched bulk

RNA-seq and 10� Chromium scRNA-seq data of human
PBMCs (File S6). We chose representative tools from each cat-
egory, including DaPars2 [90], TAPAS [40], and Aptardi [98]

for bulk RNA-seq data, Sierra [43], scAPAtrap [44], and
SCAPTURE [106] for scRNA-seq data, and DeepPASTA
[28] for DNA sequences (Figure 3A, top). We collected a total
of 676,424 non-redundant pAs from GENCODE v39, PolyA-

Site 2.0, and PolyA_DB 3, which were compiled from 30 seq
and can be used as the true reference (Figure 3A, bottom).
The number of pAs predicted by different tools, even those

under the same category, varied greatly (Figure 3B, left). For
example, the numbers of pAs predicted from bulk RNA-seq
by TAPAS and DaPars2 were nearly 8 times and 4 times that

of Aptardi. The numbers of pAs predicted from scRNA-seq by
Sierra and scAPAtrap were about twice that of SCAPTURE.
Of note, scAPAtrap can predict pAs for the whole genome
including intergenic regions, and all the three tools predict a

large number of pAs in introns (Figure 3B, right). If only
30 UTR regions are considered, the numbers of pAs predicted
by the three scRNA-seq tools were much closer (Figure 3C,

left). As most tools only identify pAs in 30 UTR, here we used
30 UTR pAs for subsequent evaluation. Next, we assessed the
authenticity of the predicted pAs by checking whether they are

supported by annotated pAs in the true reference. The overlap
of pAs predicted from RNA-seq with annotated pAs is much
lower than that of scRNA-seq (Figure 3C, left). Particularly,

the overlap rate between pAs predicted by SCAPTURE and
annotated pAs was as high as 96%, which may be because that
the DL model embedded in SCAPTURE was trained with
annotated pAs. The positions of pAs predicted by TAPAS,
SCAPTURE, and scAPAtrap were much more precise than

those by other tools (Figure 3C, right). Further, we examined
the consistency of the results predicted by different tools.
Generally, the consistency among different tools was very low

(Figure 3D). For bulk RNA-seq data, only 289 pAs were iden-
tified by all the three tools, whereas the vast majority of pAs
were identified exclusively by a single tool (Figure 3D, top).

In contrast, the consistency of pAs predicted from scRNA-
seq data by different tools was relatively higher (Figure 3D,
bottom). In addition, we assessed the reliability of predicted
pAs by investigating sequence features. The single nucleotide

profiles around pAs predicted by TAPAS, SCAPTURE, and
scAPAtrap resembled the general profile [49] (Figure 3E),
which is also consistent with the fact that they determine more

precise locations for pAs (Figure 3C, right). The percentage of
AATAAA around pAs predicted from scRNA-seq was much
higher than that from bulk RNA-seq (Figure 3F), indicating

that predicted pAs from scRNA-seq tend to be more reliable
and more accurate than those from bulk RNA-seq. Next, we
used the pA prediction tool for DNA sequences, DeepPASTA,

to examine how many pAs identified from bulk RNA-seq and
scRNA-seq data were predicted as true solely based on the
sequence characteristics. We extracted the upstream and down-
stream sequences of pAs predicted by RNA-seq tools as the

input for DeepPASTA. The proportion of pAs obtained by dif-
ferent tools to be predicted as true by DeepPASTA was not
high and varied greatly, ranging from 28% to 79% (Figure 3G,

top), indicating again the low overlap of pAs predicted by dif-
ferent tools. Considering only positive pAs by DeepPASTA,
the percentage of AATAAA and 1-nt variants of different tools

increased slightly (Figure 3G, bottom vs. Figure 3F), reflecting
that positive pAs confirmed by DeepPASTA are relatively
more reliable than negative ones. Finally, we examined pre-

dicted pAs of the immunoglobulin M heavy chain (IGMM)
gene, which was reported to be expressed as a secreted form
using the proximal pA and the membrane-bound form using
the distal one [122]. The proximal pA of IGHM has been

recently found preferentially used in B cells and plasma cells
of COVID-19 samples [106]. SCAPTURE and scAPAtrap pre-
dicted the precise locations of both proximal and distal pAs

from scRNA-seq data, while Sierra only predicted the proximal
one (Figure 3H). TAPAS predicted three pAs from bulk RNA-
seq data, of which two perfectly matched the reference pAs in

PolyASite 2.0. In contrast, Aptardi failed to predict any pA
for this gene and DaPars2 predicted two pAs yet not verified
by reference pAs.

Although this preliminary benchmark is far from objective

or exhaustive to reflect the advantages and disadvantages of
different tools, it reveals several potential issues when using
the results obtained by different pA prediction methods. First,

although a considerable number of pAs are identified by most
tools, the overall prediction accuracy and sensitivity of these
tools are low (Figure 3C). Our previous comparative study

[49] on tools for bulk RNA-seq have also revealed that a con-
siderable number of predicted pAs are not annotated in 30 seq,
and the overall prediction accuracy of these tools, even the best

one, TAPAS, is not high (40%–60% for human/mouse data).
It is still challenging to determine whether a pA not present in
prior annotations is false or novel. We anticipate that at least
part of predicted pAs that are not overlapping with annotated
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ones may potentially be true due to that the current pA anno-
tations are still far from complete. Second, the number of pAs
identified by different tools, either for bulk RNA-seq or

scRNA-seq, varies greatly, and the consensus of results
obtained by different tools is limited (Figure 3D). This is also
similar to the observation in our previous benchmark that each

tool predicts an independent set of pAs and the overlap of
results from different tools is extremely low (< 7% for
human/mouse data) [49]. Third, as some tools incorporate

additional information to predict pAs, e.g., prior pAs used
by SCAPTURE and poly(A) reads used by scAPAtrap, the
resolution of pAs predicted by different tools varies greatly
(Figure 3C and E). Fourth, 21%–72% of the predicted pAs

by different tools are not recognized as true pAs based on their
sequence features (Figure 3G). Fifth, although scRNA-seq
data suffers from extremely high level of noise and sparsity,

prediction results from scRNA-seq seem to be more reliable
and consistent than those from bulk RNA-seq (Figure 3C,
D, and F). However, this is not unexpected because it may

be less challenging to computationally predict pAs from the
30 tag-based scRNA-seq data than the full-length-based bulk
RNA-seq data. Still, further benchmark study with more com-

plete prior annotations, diverse datasets, and performance
indicators is needed in order to assess the results obtained from
different tools more fairly and objectively.

Here we try to give some operable suggestions on how to

obtain high-confidence pAs. The most straightforward way
may be making a consensus set of pAs that are predicted by
multiple tools; however, this may result in a relatively small

number of pAs due to the limited overlap between different
tools. Another way is to obtain the intersection of predicted
sites and real sites, using annotated pAs that are manually

curated and available in several databases such as PolyASite
2.0 and PolyA_DB 3. However, it should be noted that these
annotated data sources are compiled from limited biological

samples and species; they are far from complete to cover all
real sites especially tissue-specific ones. Similar to our bench-
mark analysis on bulk RNA-seq and scRNA-seq PBMCs (Fig-
ure 3), users can also use data from another omics from similar

biological samples, if available, to predict pAs for mutual ver-
ification. In addition, since many sequence motifs, e.g.,
AAUAAA and its variants, have been reported to have a posi-

tional preference relative to the pA, it is naturally to examine
3

Figure 3 Comparison of representative tools for predicting pAs from

A. Schematic of the benchmark (top) and the collection of reference pA

B.Number of pAs obtained by different tools (left) and distribution of

predicted by different tools with reference pAs (left) and distribution o

Overlap of 30 UTR pAs predicted by different tools from bulk RNA-s

profile around 30 UTR pAs predicted by different tools. For each too

identified by DREME was also shown. F. Percentage of AATAAA a

number of pAs obtained by different tools to be predicted as positive o

and 1-nt variants around positive pAs (bottom). The upstream and do

extracted as the input for DeepPASTA.H. Predicted 30 UTR pAs by di

gene model, reference pAs from three databases, read coverage from

coverage for each cell type of scRNA-seq, and predicted pAs from scR

the two representative pAs of IGHM. PBMC, peripheral blood mononu

immunoglobulin M heavy chain.
sequence patterns surrounding each predicted pA to get pAs
with explicit PASs. This is particularly useful for assessing
the authenticity of pAs from animals because AAUAAA and

its 1-nt variants appeared in > 90% of animal pAs [8]. In con-
trast, AAUAAA only accounts for < 10% of pAs in plants,
and therefore it is not practical to validate plant pAs through

sequence features. Moreover, the general single nucleoside
compositions surrounding pAs in different species have been
clearly reported, so we can inspect the base composition

around predicted pAs. Of note, this way is applicable to eval-
uation of the overall quality of the pAs, while it cannot be used
to assess the reliability of a single pA. The movAPA package
[55] can be used for most of the aforementioned quality

assessments.

Practical guidelines for choosing appropriate methods

Based on the summary of different methods (Files S1–S4), we
attempted to choose representative tools from each category
and propose a set of practical guidelines for users (Table 1).

As methods in different categories use different kinds of data
as the input, the choice of the method first depends on the
users’ own data. For bulk RNA-seq data, the choice of the

method should be mainly driven by the availability of pA
annotations. For scRNA-seq data, the choice of the method
mainly depends on the protocol of the scRNA-seq (e.g., 30

tag or full-length) and the availability of pA annotations.

For methods predicting pAs from DNA sequences, the choice
of the method should be primarily driven by the algorithm
used, DL or traditional ML. Particularly, for cross-species

pA prediction from DNA sequences, users should pay extra
attention to whether they need to retrain the model for individ-
ual species, which may require users to have certain program-

ming ability. Additionally, several tools are in the form of web
servers, providing a portable platform for predicting pAs from
DNA sequences for researchers with limited programming

ability. Several other factors also affect the choice of methods,
such as the availability of the tool or code, the popularity, the
ease of use, the clarity of documentation, and the scale of the
data. When predicting pAs on a dataset of interest, it is impor-

tant to further consider two points. First, it is critical that the
obtained pAs and/or the downstream results (e.g., differential
APA events) are confirmed by multiple pA prediction
matched bulk RNA-seq and scRNA-seq data of human PBMCs

s from GENCODE v39, PolyASite 2.0, and PolyA_DB 3 (bottom).

pAs in different genomic regions (right). C. Overlap of 30 UTR pAs

f distance from predicted 30 UTR pAs to reference pAs (right). D.

eq data (top) and scRNA-seq data (bottom). E. Single nucleotide

l, the sequence logo of the most dominant motif around the pA

nd 1-nt variants around pAs predicted by different tools. G. The

r negative by DeepPASTA (top) and the percentage of AATAAA

wnstream sequences of pAs predicted by each RNA-seq tool were

fferent tools for the IGHM gene. Tracks from top to the bottom are

bulk RNA-seq, predicted pAs from bulk RNA-seq data, read

NA-seq data. The red triangles on the chromosome strip highlight

clear cell; PAS, poly(A) signal; UTR, untranslated region; IGHM,



Table 1 Recommended tools for predicting pAs from DNA sequences, bulk RNA-seq, and scRNA-seq

Category Tool Year Description Refs.

Web servers for predicting pAs from

DNA sequences

Dragon PolyA Spotter 2012 A web server for predicting 12 poly(A) motifs from human DNA sequences, using an artificial neural network and a random

forest

[60]

PolyApred 2009 An SVM-based web server for predicting 13 poly(A) motifs in human, using sequence features of different types of nucleotide

frequencies and binary pattern

[58]

Polyadq 1999 An early web server based on two quadratic discriminant functions for predicting AAUAAA/AUUAAA signals, using

features encoded by position weight matrix

[57]

DL-based tools for predicting pAs from

DNA sequences

PASNet 2021 A hybrid DL framework for identifying 16 poly(A) motifs in different species, which integrates gated convolutional highway

networks with self-attention mechanisms

[75]

SANPolyA 2020 A self-attention DL model for predicting 18 poly(A) motifs in human and mouse [74]

HybPAS 2019 A hybrid model for predicting 12 poly(A) motifs in human, using eight neural networks and four logistic regression models [73]

APARENT 2019 The model trained on isoform expression data from more than three million synthetic APA reporters [29]

DeepPASTA 2019 A model based on CNN and RNN for predicting pAs from both sequence and RNA secondary structure [28]

DeeReCT-PolyA 2018 A transferrable CNN model for recognition of 12 poly(A) motifs, which enables transfer learning across datasets and species [26]

DeepGSR 2018 An approach based on CNN and one-hot features to predict genome-wide and cross-organism genomic signals and regions [27]

DeepPolyA 2018 A model for predicting pAs in Arabidopsis with one-hot encoding features [71]

Traditional ML-based tools for

predicting pAs from DNA sequences

PASS 2007 A GHMM-based model for predicting pAs in plants [68]

polya_svm 2006 An SVM-based tool for predicting pAs using position-specific scoring matrices to score 15 cis-regulatory elements [24]

Methods for bulk RNA-seq that rely on

prior annotations of pAs

QAPA 2018 It compiles an expanded compendium of known pA annotations for identifying and quantifying pAs, which was suggested by

Shah et al. [50] to be used in combination with pAs derived from 30 seq or Iso-Seq

[38]

PAQR 2018 It uses read coverage to segment 30 UTRs at annotated pAs [86]

Methods for bulk RNA-seq that based on

detecting changes in read density

moutainClimber 2019 It runs on a single RNA-seq sample and can recognize multiple TSSs or pAs [93]

APAtrap 2018 It can detect all pAs along the 30 UTR and can be used to improve 30 end annotations [39]

TAPAS 2018 It adopts a method originally used for time-series data to detect change points, which was suggested to have overall high

performance in several benchmark studies [49,50]

[40]

DaPars, DaPars2 2014, 2018 DaPars is probably the first and the most widely used tool for bulk RNA-seq and DaPars2 is its updated version [17,90,91]

Methods for bulk RNA-seq that based on

ML models

Aptardi 2021 A multi-omics DL-based approach for predicting pAs by leveraging DNA sequences, RNA-seq, and the predilection of

transcriptome assemblers; however, its sensitivity may be low according to our preliminary test (Figure 3)

[98]

Terminitor 2020 A DL-based model for three-label classification problem, which determines a poly(A) cleavage site, a non-polyadenylated

cleavage site, or non-cleavage site

[97]

TECtool 2018 It is based on transcriptome assembly and prior pA annotations, and can predict novel terminal exons [95]

Methods for predicting pAs from

scRNA-seq

scDaPars 2021 It is applicable to both full-length and 30 tag scRNA-seq, which uses DaPars to infer pAs and may be slow for large-scale

scRNA-seq

[45]

MAAPER 2021 An annotation-assisted method for both bulk RNA-seq and 30 tag scRNA-seq data, which incorporates prior pAs in the

PolyA_DB for identifying pAs in 30 UTRs and introns

[105]

SCAPTURE 2021 An annotation-assisted pipeline that implements a DL model to evaluate called peaks from 30 tag scRNA-seq, using prior pAs

from four databases for model training

[106]

scUTRquant 2021 An annotation-assisted method that incorporates pA atlas established from a mouse full-length Microwell-seq dataset of

400,000 single cells [108] for filtering pAs predicted from 30 tag scRNA-seq

[107]

SCAPE 2022 A peak calling-based method based on a probabilistic mixture model for identification and quantification of pAs in 30 tag
scRNA-seq by utilizing insert size information

[103]

ReadZS 2021 A statistical approach to characterize read distributions that bypasses parametric peak calling and identifies pAs from 30 tag
scRNA-seq

[104]

scAPAtrap 2020 A peak calling-based method that incorporates poly(A) reads for genome-wide pA prediction from 30 tag scRNA-seq [44]

Sierra 2020 A splice-aware peak calling-based method that can identify pAs in 30 UTRs and introns from 30 tag scRNA-seq [43]

Note: Tools are chosen based on criteria such as availability, function, ease of use, and popularity. pA, poly(A) site; ML, machine learning; SVM, support vector machine; GHMM, generalized hidden

Markov model; CNN, convolution neural network; RNN, recurrent neural network; scRNA-seq, single-cell RNA sequencing; 30 seq, 30 end sequencing; Iso-Seq, isoform-sequencing; RNA-seq, RNA

sequencing; DL, deep learning; UTR, untranslated region; TSS, transcription start site.
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methods. This is to ensure that the prediction is not biased due
to predefined parameter settings or the specific algorithm used
in the method. The merit of using different methods is also

demonstrated by the benchmark results in previous studies
[49,50] and in this study (Figure 3), which show substantial
complementarity between different methods. Second, even if

prior pA annotations are available, it can be also beneficial
to try out methods that do not rely on prior annotations.
When predicted pAs, even a small portion, are confirmed using

such a different method, it provides users with additional
evidence.

Conclusion and prospects

Challenges in improving the performance of pA prediction

The field of pA prediction is progressing rapidly, primarily in
the aspects of using DL models and predicting pAs at the

single-cell resolution. However, the overall accuracy, sensitiv-
ity, and specificity of currently available methods remain mod-
erate (Figure 3). The coming flood of extensive sequencing

data, especially multi-omics and single-cell data, will provide
new opportunities but also demand new computational meth-
ods to exploit this new information. Potential challenges of
improving the prediction performance include but are not lim-

ited to: paucity of annotated pAs covering diverse tissues and
species; mis-assemblies caused by the low complexity of
30 UTR sequences; mis-alignment of short reads or incomplete

sequence coverage near 30 ends; difficulty in capturing pAs in
low-expression genes; poor knowledge on primary, secondary,
or higher structure information of PASs, particularly in plants;

gaps in our knowledge on understanding APA regulators in
different omics layers; limited success in integrating the quan-
titative features from multiple omics layers; lack of trans-
ferrable intelligent methods for cross-species prediction; lack

of interpretability in models based on deep neural networks;
hurdle in constructing negative datasets due to the prevalence
of unconventional pAs in coding sequences (CDSs) and

introns; difficulty in identifying multiple pAs anywhere in a
transcript; and lack of effective algorithms to deal with the
extremely high isoform-level dropout rate and noise inherent

in scRNA-seq. Furthermore, higher standards for software
quality assurance and documentation would help improve
the ease of use of these tools and facilitate their application

in the broader community. Finally, new algorithms should
be designed to cope with ever-increasing amount of different
kinds of data, especially the explosion in single-cell data with
multi-omics features.

Notes on benchmarking different methods for predicting pAs

Till now, there are few reports on the exhaustive evaluation of

computational tools for predicting pAs. Previously, our group
benchmarked 11 representative tools for predicting pAs and/or
dynamic APA events from RNA-seq [49]. Lately, Shah et al.

[50] evaluated five tools for RNA-seq against 30 seq, Iso-Seq,
and a full-length RNA-seq method in identifying pAs and
quantifying pA usage. However, there is no study to provide

an exhaustive evaluation of existing tools for pA prediction
from different kinds of data, particularly those tools
for scRNA-seq. Here we attempt to give some notes on
benchmarking analysis in this field. First, the real pA dataset
is very critical for performance evaluation; however, the refer-
ence datasets used in different studies are quite different.

Therefore, it is imperative to compile reliable reference data-
sets with uniform standards. In particular, RNA-seq or
scRNA-seq data are sample-specific, so the reference pA data-

set from matched samples should also be considered. More-
over, due to the paucity of real pA datasets at the single-cell
level, possible deviations need to be considered when using real

pA data from bulk data for evaluation. For example, pAs
exclusively recognized in single cells may be authentic pAs
from rare transcripts or rare cells, even though they may not
be present in the bulk pA reference. Second, most tools were

evaluated using data only in mammals (mainly human and
mouse), and therefore the scalability of these tools in different
species, especially their applicability to plants, needs to be fur-

ther evaluated. Third, almost all published prediction tools
provide their own benchmark pipelines using different data-
sets, which potentially favors their prediction efficiency. These

benchmark protocols might be credible, but may lack objectiv-
ity, simplicity, and effectiveness. We have sorted out the data
used for performance evaluation in the respective study of each

tool in detail (Files S1–S4), which can facilitate researchers to
compile more diverse and standard data for objective bench-
mark in the future. So far, the most widely used datasets for
evaluating pA tools for DNA sequences are the PASS dataset

[68,69] of plant species, the ERPIN dataset [23] of human, and
the DeepGSR dataset [27] of animal species; datasets for bulk
RNA-seq are the MAQC dataset [123] and the HEK293 data-

set [124]; and datasets for scRNA-seq are the 10� human
PBMC data and the Tabula Muris atlas [125] (Files S1–S4).
Moreover, genomic data could be small sample data and

large-scale data; it is also necessary to evaluate the perfor-
mance of different tools under different sizes of data. Fourth,
the output format varies among different tools. For example,

most tools for DNA sequences generate binary output or
probabilities between 0 and 1; some tools for bulk RNA-seq
or scRNA-seq output potential regions of pA instead of exact
pA position. Therefore, how to unify the output of different

tools for objective evaluation needs to be carefully considered.
Fifth, compared with the benchmark of tools for DNA
sequence data, the benchmark for scRNA-seq tools is much

less uniform (Files S1–S4). Almost all studies examined the
consensus between the identified pAs and annotated pAs,
while there is still no commonly used objective evaluation

strategies with diverse indicators. Therefore, it is necessary to
use a variety of performance indicators (e.g., sensitivity, speci-
ficity, and precision) that are complementary in nature for
comprehensive performance evaluation, particularly for the

evaluation of the emerging scRNA-seq tools. At the same time,
it is also important to simply present an overall ranking of dif-
ferent tools. The last but not least, many tools have parameters

that can be adjusted; however, only the default parameters are
normally used for evaluation. Therefore, some strategies (e.g.,
grid search) should be proposed to evaluate the impact of dif-

ferent parameters of a method.
Predicting pAs in non-30 UTRs

With the advance of 30 seq, more and more unconventional
pAs located in non-30 UTRs like introns and CDSs were



Ye W et al / Survey on Poly(A) Site Prediction 79
discovered [3,48,126]. These non-30 UTR pAs may generate
mRNA isoforms encoding distinct proteins or resulting in
the creation of premature stop codons. Intronic polyadenyla-

tion has been found associated with cancer through the inacti-
vation of tumor-suppressor genes [94,127]. The differential use
of intronic pAs is a potential indicator for the differential

expression of pre-spliced mRNA transcripts, which contributes
to detecting newly transcribed genes and ultimately helps esti-
mate the rate and direction of cell differentiation [128]. Till

now, almost all computational tools focus on pA prediction
in 30 UTRs. Many tools, particularly those for DNA
sequences, usually consider random sequences from introns
as negative datasets for model training, which would cause

some real intronic pAs to be mistakenly regarded as negative
instances. Therefore, even for the pA prediction in 30 UTRs,
it is necessary to consider the prevalence of unconventional

pAs when constructing the negative dataset. Lately, some tools
for bulk RNA-seq or scRNA-seq have found a considerable
number of pAs in introns. By applying IPAFinder [94] on

pan-cancer data from bulk RNA-seq, 490 recurrent dynami-
cally changed intronic pAs were found. Sierra [43] utilized a
splice-aware strategy and identified a considerable number of

intronic peaks from scRNA-seq; however, the majority of
these peaks may be internal priming artifacts as they are prox-
imal to A-rich regions. SCAPTURE [106] also found > 16,000
candidate intronic pAs from 10� PBMC samples, while< 20%

pAs overlapped with known intronic sites and a large number
of false positives were present in lowly expressed genes. There-
fore, further careful inspection or filtering is critical to obtain

true non-30 UTR pAs or new intelligent algorithms are
demanded to effectively call non-30 UTR pAs.

Predicting tissue-specific pAs

APA plays a significant role in tissue-specific regulation of
gene expression [2,12]. Profiling APA dynamics or differential

APA usages under different physiological or pathological con-
ditions has become a routine analysis in most APA studies.
Computational prediction of tissue-specific pAs may be an
alternative yet cost-effective solution for analyzing tissue speci-

ficity of APA. The pA prediction problem described in this
review is essentially a binary classification problem, which
aims to distinguish between nucleotide sequences or genomic

regions that contain a pA and those do not. Studies are cur-
rently in progress to solve the problem of pA quantification,
which aims to predict the strength or dominance of a given

pA across tissues. Weng et al. [111] and Hafez et al. [129] pre-
dicted whether a given pA is tissue-specific or not, whereas
they did not tackle the question of alternative choice of APA
sites. One way to study tissue specificity of pAs is to explore

the differential usage of APA sites in a gene (e.g., proximal
and distal pAs). Several tools, such as Conv-Net [72], have
been proposed to predict the strength of APA sites. Leung

et al. [72] predicted relative dominance of pAs within
30 UTR in human tissues solely based on nucleotide sequences
using a DL model. However, these methods only make predic-

tions based on sequence features, while fail to consider sample
specificity and in vivo expression. In contrast, many tools for
bulk RNA-seq or scRNA-seq can be used for pairwise com-

parisons between two samples, while they are not very suitable
for profiling APA across multiple tissues. Ever-larger bulk
RNA-seq or scRNA-seq data comprising of growing number
of samples from diverse tissues are increasingly available,
which places new demands on developing new methods to effi-

ciently tackle the question of tissue specificity of APA.

Cross-species prediction of pAs

Traditional ML methods, such as those based on SVM, can
hardly adapt to different species, because they use hand-
crafted features learnt for a specific species. Although many

DL-based tools have been proposed to improve the perfor-
mance of pA prediction, most tools still need species-specific
real pA collection for model training. Consequently, these

tools may suffer from high risks of overfitting and are not
applicable to species without any prior pA annotations. There-
fore, it is a promising direction to design new transferrable
algorithms for cross-species pA prediction or to improve the

generalizability of existing tools, which allows a well-trained
model from a species with rich annotations to be transferred
to data from a different species without retraining or prior

knowledge. Annotation-assisted methods, compared to meth-
ods without using prior annotations, generally ensure higher
data quality and achieve better performance; however, their

application is limited to data from specific species or biological
conditions. Collection of more extensive pA annotations from
different sources would definitely contribute to predicting
novel sites and increasing the coverage of pAs in diverse cell

types, biological conditions, and species. Therefore, an alterna-
tive solution for predicting pAs in poorly annotated species
could be building an elegant model for well-annotated species

and then transferring the model to a different but related spe-
cies, even without an established pA collection. An initial
attempt has been made by some existing methods like Poly

(A)-DG [121], which extracts shared features from multiple
species and can be generalized to the target species without
fine-tuning. However, Poly(A)-DG was only tested between

four animals. Till now, tools applicable to plants are still lim-
ited. It is widely accepted that the sequence conservation in
PASs in plants is very low, where the most dominant
AAUAAA only appears in less than 10% of pAs [56]. Our

group recently developed a tool called QuantifyPoly(A) [62]
to profile genome-wide polyadenylation choices, which found
plant pAs generally exhibit higher micro-heterogeneity than

animal ones, and UGUA, UAAA, and/or AAUAAA are used
in a species-dependent manner. Still, more efforts are needed
to explore additional motifs and/or higher-order structures

associated with plant polyadenylation, and more intelligent
algorithms are demanded in order to better predict pAs in mul-
tiple species.

Predicting pAs by integrating multi-omics data

pAs can be derived from different kinds of data. For example,
30 seq has the unique advantage of acquiring high-quality pAs

transcriptome-wide, which contributes to a larger compendium
of authentic pAs. Third-generation sequencing technologies,
such as PacBio sequencing, are powerful in profiling full-

length transcriptome, which could provide a more accurate
transcriptome annotation. Widely conducted bulk RNA-seq
data can be used for capturing and quantifying pAs of low-

abundance transcripts, and the rapid growing scRNA-seq data
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support the identification of relatively rare transcripts in single
cells. In addition to the genome or transcriptome layers, APA
modulation has been found associated with other layers of

gene regulation, such as nucleosome positioning, transcription
rate, DNA methylation, and RBPs [2,130–132]. By integrating
multi-omics data, weak signals from one layer can be amplified

or noises be reduced to avoid false negative predictions by
referring to the complementary information from additional
layers. For instance, potential pAs identified from RNA-seq

without well-recognized PASs could be eliminated if there is
no evidence in 30 seq or full-length RNA-seq data. Initial
attempts have been made for APA analysis using multi-
omics data. scUTRquant [107] incorporates a cleavage site

atlas established from a mouse full-length Microwell-seq data-
set of 400,000 single cells [108] for filtering high-confidence
pAs predicted from 30 tag scRNA-seq. Leung et al. [72] pre-

dicted strength of pAs using nucleotide sequences, considering
features from additional layers like nucleosome positioning
and RBP motifs. IntMAP [96] is a unified ML-based frame-

work, which can fine-tune the contributions of RNA-seq and
30 seq data by tailoring the parameter k. Currently, DL models
have been widely used in predicting pAs from DNA sequences.

However, in many cases, DL models fail to make accurate pre-
diction, while patterns of RNA-seq coverage provide clear evi-
dence of polyadenylation, and vice versa [110]. Accordingly,
several DL-based tools have integrated bulk RNA-seq or

scRNA-seq with DNA sequences for pA prediction, such as
SCAPTURE [106] and Aptardi [98]. It is promising yet chal-
lenging to formulate one unified computational framework,

especially leveraging the strength of intelligent algorithms, to
integrate the quantitative information from multiple omics lay-
ers, e.g., genomic DNA, transcriptome data, methylation data,

and chromatin accessibility data, to identify and quantify pAs
genome-wide.

Predicting pAs at the single-cell level

With the rapid development of scRNA-seq technology, differ-
ent tools continue to emerge for pA identification in single
cells. Currently, most methods, like scAPA [101], Sierra [43],

and MAAPER [105], construct pseudo-bulk RNA-seq data
by pooling reads from cells of the same cell cluster (or cell
type) to address the high dropout rate and variability inherent

in scRNA-seq. Although many of these tools, like scAPA or
Sierra, can still quantify the expression of a pA in each cell
by counting reads within a poly(A) region, single cell-based

quantification may have a high noise level and missing values
due to biological and technical variances [105]. As such, APA
usage is characterized at the cell-cluster resolution rather than
the single-cell resolution, which somewhat contradicts the ulti-

mate goal of single-cell sequencing. Moreover, cell clusters or
cell types in these studies were inferred by the conventional
gene–cell expression profile, consequently, the APA analysis

is limited to predefined cell types and the result may be affected
by different cell type annotations. Alternatively, scDaPars [45]
quantifies single-cell APA usage based on the model for bulk

RNA-seq introduced in DaPars [17], and then recovers missing
APA usage by leveraging APA information of the same gene in
similar cells. Another limitation of most tools for scRNA-seq

is that they are only applicable to 30 tag-based scRNA-seq like
10� Chromium or CEL-Seq. Till now, only scDaPars can be
applied to both 30 tag and full-length scRNA-seq, e.g.,
Smart-seq2. However, although scDaPars was reported to be
able to quantify APA usage in individual cells independent

of gene expression, pAs were actually predicted from the bulk
RNA-seq tool DaPars that was not specifically designed for
scRNA-seq. Moreover, it is challenging to identify and verify

low-expression pAs in highly sparse scRNA-seq, particularly
those in rare cells. In addition, the tsunami of complex
scRNA-seq datasets with various tissue sources, batch effects,

and library sizes also have brought huge computational and
analytical challenges. Therefore, more efforts are needed to
develop new methods to address inherent issues in scRNA-
seq for establishing a more comprehensive landscape of pAs

at the single-gene and single-cell resolutions.
Competing interests

The authors have declared no competing interests.
CRediT authorship contribution statement

Wenbin Ye: Investigation, Data curation, Visualization,
Writing – original draft, Writing – review& editing.Qiwei Lian:

Data curation, Writing – review & editing. Congting Ye: Inves-
tigation, Writing – review & editing. Xiaohui Wu: Conceptual-

ization, Writing – original draft, Writing – review & editing,
Supervision, Project administration, Funding acquisition. All
authors have read and approved the final manuscript.
Acknowledgments

This work was supported by the National Natural Science
Foundation of China (Grant No. 61871463 to XW) and the

Natural Science Foundation of Fujian Province of China
(Grant No. 2020J01047 to CY).

Supplementary material

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.gpb.2022.09.005.

ORCID

ORCID 0000-0002-7811-2710 (Wenbin Ye)

ORCID 0000-0003-3366-6127 (Qiwei Lian)
ORCID 0000-0003-4803-2098 (Congting Ye)
ORCID 0000-0003-0356-7785 (Xiaohui Wu)

References

[1] Wu X, Bartel DP. Widespread influence of 30-end structures on

mammalian mRNA processing and stability. Cell

2017;169:905–17.

[2] Tian B, Manley JL. Alternative polyadenylation of mRNA

precursors. Nat Rev Mol Cell Biol 2017;18:18–30.

[3] Di Giammartino DC, Nishida K, Manley JL. Mechanisms and

consequences of alternative polyadenylation. Mol Cell

2011;43:853–66.

https://doi.org/10.1016/j.gpb.2022.09.005
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0005
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0005
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0005
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0005
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0010
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0010
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0015
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0015
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0015


Ye W et al / Survey on Poly(A) Site Prediction 81
[4] Tian B, Manley JL. Alternative cleavage and polyadenylation:

the long and short of it. Trends Biochem Sci 2013;38:312–20.

[5] Wu X, Liu M, Downie B, Liang C, Ji G, Li QQ, et al. Genome-

wide landscape of polyadenylation in Arabidopsis provides

evidence for extensive alternative polyadenylation. Proc Natl

Acad Sci U S A 2011;108:12533–8.

[6] Lianoglou S, Garg V, Yang JL, Leslie CS, Mayr C. Ubiquitously

transcribed genes use alternative polyadenylation to achieve

tissue-specific expression. Genes Dev 2013;27:2380–96.

[7] Ulitsky I, Shkumatava A, Jan CH, Subtelny AO, Koppstein D,

Bell GW, et al. Extensive alternative polyadenylation during

zebrafish development. Genome Res 2012;22:2054–66.

[8] Gruber AJ, Schmidt R, Gruber AR, Martin G, Ghosh S,

Belmadani M, et al. A comprehensive analysis of 30 end

sequencing data sets reveals novel polyadenylation signals and

the repressive role of heterogeneous ribonucleoprotein C on

cleavage and polyadenylation. Genome Res 2016;26:1145–59.

[9] Derti A, Garrett-Engele P, MacIsaac KD, Stevens RC, Sriram S,

Chen R, et al. A quantitative atlas of polyadenylation in five

mammals. Genome Res 2012;22:1173–83.

[10] Ozsolak F, Kapranov P, Foissac S, Kim SW, Fishilevich E,

Monaghan AP, et al. Comprehensive polyadenylation site maps

in yeast and human reveal pervasive alternative polyadenylation.

Cell 2010;143:1018–29.

[11] Hoque M, Ji Z, Zheng DH, Luo WT, Li WC, You B, et al.

Analysis of alternative cleavage and polyadenylation by 30 region
extraction and deep sequencing. Nat Methods 2013;10:133–9.

[12] Gruber AJ, Zavolan M. Alternative cleavage and polyadenyla-

tion in health and disease. Nat Rev Genet 2019;20:599–614.

[13] Oktaba K, Zhang W, Lotz TS, Jun DJ, Lemke SB, Ng SP, et al.

ELAV links paused Pol II to alternative polyadenylation in the

Drosophila nervous system. Mol Cell 2015;57:341–8.

[14] Blazie SM, Babb C, Wilky H, Rawls A, Park JG, Mangone M.

Comparative RNA-seq analysis reveals pervasive tissue-specific

alternative polyadenylation in Caenorhabditis elegans intestine

and muscles. BMC Biol 2015;13:4.

[15] Berkovits BD, Mayr C. Alternative 30 UTRs act as scaffolds to

regulate membrane protein localization. Nature 2015;522:363–7.

[16] Batra R, Manchanda M, Swanson MS. Global insights into

alternative polyadenylation regulation. RNA Biol

2015;12:597–602.

[17] Xia Z, Donehower LA, Cooper TA, Neilson JR, Wheeler DA,

Wagner EJ, et al. Dynamic analyses of alternative polyadenyla-

tion from RNA-seq reveal a 30-UTR landscape across seven

tumour types. Nat Commun 2014;5:5274.

[18] Han T, Kim JK. Driving glioblastoma growth by alternative

polyadenylation. Cell Res 2014;24:1023–4.

[19] Gupta I, Clauder-Munster S, Klaus B, Jarvelin AI, Aiyar RS,

Benes V, et al. Alternative polyadenylation diversifies post-

transcriptional regulation by selective RNA-protein interactions.

Mol Syst Biol 2014;10:719.

[20] Gruber AR, Martin G, Muller P, Schmidt A, Gruber AJ,

Gumienny R, et al. Global 30 UTR shortening has a limited

effect on protein abundance in proliferating T cells. Nat

Commun 2014;5:5465.

[21] Salamov AA, Solovyev VV. Recognition of 30-processing sites of

human mRNA precursors. Comput Appl Biosci 1997;13:23–8.

[22] Akhtar MN, Bukhari SA, Fazal Z, Qamar R, Shahmuradov IA.

POLYAR, a new computer program for prediction of poly(A)

sites in human sequences. BMC Genomics 2010;11:646.

[23] Legendre M, Gautheret D. Sequence determinants in human

polyadenylation site selection. BMC Genomics 2003;4:7.

[24] Cheng Y, Miura RM, Tian B. Prediction of mRNA polyadeny-

lation sites by support vector machine. Bioinformatics

2006;22:2320–5.

[25] Magana-Mora A, Kalkatawi M, Bajic VB. Omni-PolyA: a

method and tool for accurate recognition of poly(A) signals in

human genomic DNA. BMC Genomics 2017;18:620.
[26] Xia Z, Li Y, Zhang B, Li Z, Hu Y, Chen W, et al. DeeReCT-

PolyA: a robust and generic deep learning method for PAS

identification. Bioinformatics 2019;35:2371–9.

[27] Kalkatawi M, Magana-Mora A, Jankovic B, Bajic VB.

DeepGSR: an optimized deep-learning structure for the recog-

nition of genomic signals and regions. Bioinformatics

2019;35:1125–32.

[28] Arefeen A, Xiao X, Jiang T. DeepPASTA: deep neural network

based polyadenylation site analysis. Bioinformatics

2019;35:4577–85.

[29] Bogard N, Linder J, Rosenberg AB, Seelig G. A deep neural

network for predicting and engineering alternative polyadenyla-

tion. Cell 2019;178:91–106.

[30] Sherstnev A, Duc C, Cole C, Zacharaki V, Hornyik C, Ozsolak

F, et al. Direct sequencing of Arabidopsis thaliana RNA reveals

patterns of cleavage and polyadenylation. Nat Struct Mol Biol

2012;19:845–52.

[31] Jan CH, Friedman RC, Ruby JG, Bartel DP. Formation,

regulation and evolution of Caenorhabditis elegans 30 UTRs.

Nature 2011;469:97–101.

[32] Harrison PF, Powell DR, Clancy JL, Preiss T, Boag PR, Traven

A, et al. PAT-seq: a method to study the integration of 30-UTR

dynamics with gene expression in the eukaryotic transcriptome.

RNA 2015;21:1502–10.

[33] Park JE, Yi H, Kim Y, Chang H, Kim VN. Regulation of

poly(A) tail and translation during the somatic cell cycle. Mol

Cell 2016;62:462–71.

[34] Chang H, Lim J, Ha M, Kim VN. TAIL-seq: genome-wide

determination of poly(A) tail length and 30 end modifications.

Mol Cell 2014;53:1044–52.

[35] Shi Y. Alternative polyadenylation: new insights from global

analyses. RNA 2012;18:2105–17.

[36] Elkon R, Ugalde AP, Agami R. Alternative cleavage and

polyadenylation: extent, regulation and function. Nat Rev Genet

2013;14:496–506.

[37] Ji G, Guan J, Zeng Y, Li QQ, Wu X. Genome-wide identification

and predictive modeling of polyadenylation sites in eukaryotes.

Brief Bioinform 2015;16:304–13.

[38] Ha KCH, Blencowe BJ, Morris Q. QAPA: a new method for the

systematic analysis of alternative polyadenylation from RNA-

seq data. Genome Biol 2018;19:45.

[39] Ye C, Long Y, Ji G, Li QQ, Wu X. APAtrap: identification and

quantification of alternative polyadenylation sites from RNA-

seq data. Bioinformatics 2018;34:1841–9.

[40] Arefeen A, Liu J, Xiao X, Jiang T. TAPAS: tool for alternative

polyadenylation site analysis. Bioinformatics 2018;34:2521–9.

[41] Hashimshony T, Wagner F, Sher N, Yanai I. CEL-Seq: single-

cell RNA-seq by multiplexed linear amplification. Cell Rep

2012;2:666–73.

[42] Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW,

Wilson R, et al. Massively parallel digital transcriptional

profiling of single cells. Nat Commun 2017;8:14049.

[43] Patrick R, Humphreys DT, Janbandhu V, Oshlack A, Ho JWK,

Harvey RP, et al. Sierra: discovery of differential transcript usage

from polyA-captured single-cell RNA-seq data. Genome Biol

2020;21:167.

[44] Wu X, Liu T, Ye C, Ye W, Ji G. scAPAtrap: identification and

quantification of alternative polyadenylation sites from single-

cell RNA-seq data. Brief Bioinform 2021;22:bbaa273.

[45] Gao Y, Li L, Amos CI, Li W. Analysis of alternative

polyadenylation from single-cell RNA-seq using scDaPars

reveals cell subpopulations invisible to gene expression. Genome

Res 2021;31:1856–66.

[46] Szkop KJ, Nobeli I. Untranslated parts of genes interpreted:

making heads or tails of high-throughput transcriptomic data via

computational methods. Computational methods to discover

and quantify isoforms with alternative untranslated regions.

Bioessays 2017;39:1700090.

http://refhub.elsevier.com/S1672-0229(22)00121-8/h0020
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0020
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0025
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0025
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0025
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0025
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0030
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0030
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0030
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0035
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0035
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0035
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0040
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0040
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0040
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0040
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0040
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0040
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0045
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0045
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0045
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0050
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0050
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0050
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0050
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0055
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0055
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0055
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0055
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0060
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0060
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0065
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0065
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0065
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0070
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0070
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0070
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0070
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0075
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0075
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0075
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0080
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0080
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0080
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0085
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0085
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0085
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0085
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0085
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0090
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0090
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0095
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0095
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0095
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0095
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0100
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0100
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0100
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0100
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0100
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0105
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0105
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0105
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0110
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0110
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0110
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0115
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0115
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0120
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0120
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0120
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0125
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0125
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0125
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0130
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0130
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0130
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0135
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0135
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0135
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0135
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0140
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0140
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0140
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0145
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0145
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0145
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0150
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0150
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0150
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0150
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0155
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0155
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0155
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0155
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0160
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0160
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0160
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0160
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0160
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0165
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0165
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0165
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0170
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0170
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0170
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0170
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0175
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0175
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0180
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0180
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0180
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0185
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0185
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0185
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0190
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0190
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0190
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0195
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0195
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0195
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0200
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0200
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0205
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0205
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0205
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0210
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0210
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0210
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0215
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0215
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0215
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0215
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0220
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0220
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0220
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0225
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0225
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0225
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0225
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0230
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0230
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0230
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0230
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0230


82 Genomics Proteomics Bioinformatics 21 (2023) 67–83
[47] Yeh HS, Zhang W, Yong J. Analyses of alternative polyadeny-

lation: from old school biochemistry to high-throughput tech-

nologies. BMB Rep 2017;50:201–7.

[48] Chen W, Jia Q, Song Y, Fu H, Wei G, Ni T. Alternative

polyadenylation: methods, findings, and impacts. Genomics

Proteomics Bioinformatics 2017;15:287–300.

[49] Chen M, Ji G, Fu H, Lin Q, Ye C, Ye W, et al. A survey on

identification and quantification of alternative polyadenylation

sites from RNA-seq data. Brief Bioinform 2020;21:1261–76.

[50] Shah A, Mittleman BE, Gilad Y, Li YI. Benchmarking

sequencing methods and tools that facilitate the study of

alternative polyadenylation. Genome Biol 2021;22:291.

[51] Ye C, Lin J, Li QQ. Discovery of alternative polyadenylation

dynamics from single cell types. Comput Struct Biotechnol J

2020;18:1012–9.

[52] Zhang Y, Liu L, Qiu Q, Zhou Q, Ding J, Lu Y, et al. Alternative

polyadenylation: methods, mechanism, function, and role in

cancer. J Exp Clin Cancer Res 2021;40:51.

[53] Kandhari N, Kraupner-Taylor CA, Harrison PF, Powell DR,

Beilharz TH. The detection and bioinformatic analysis of

alternative 30 UTR isoforms as potential cancer biomarkers.

Int J Mol Sci 2021;22:5322.

[54] Wang R, Tian B. APAlyzer: a bioinformatic package for analysis

of alternative polyadenylation isoforms. Bioinformatics

2020;36:3907–9.

[55] Ye W, Liu T, Fu H, Ye C, Ji G, Wu X. movAPA: modeling and

visualization of dynamics of alternative polyadenylation across

biological samples. Bioinformatics 2021;37:2470–2.

[56] Tian B, Graber JH. Signals for pre-mRNA cleavage and

polyadenylation. Wiley Interdiscip Rev RNA 2012;3:385–96.

[57] Tabaska JE, Zhang MQ. Detection of polyadenylation signals in

human DNA sequences. Gene 1999;231:77–86.

[58] Ahmed F, Kumar M, Raghava GPS. Prediction of polyadeny-

lation signals in human DNA sequences using nucleotide

frequencies. In Silico Biol 2009;9:135–48.

[59] Ji G, Wu X, Shen Y, Huang J, Li QQ. A classification-based

prediction model of messenger RNA polyadenylation sites. J

Theor Biol 2010;265:287–96.

[60] Kalkatawi M, Rangkuti F, Schramm M, Jankovic BR, Kamau

A, Chowdhary R, et al. Dragon PolyA Spotter: predictor of

poly(A) motifs within human genomic DNA sequences.

Bioinformatics 2012;28:127–9.

[61] Wu X, Ji G, Zeng Y. In silico prediction of mRNA poly(A) sites

in Chlamydomonas reinhardtii. Mol Genet Genomics

2012;287:895–907.

[62] Ye C, Zhao D, Ye W, Wu X, Ji G, Li QQ, et al.

QuantifyPoly(A): reshaping alternative polyadenylation land-

scapes of eukaryotes with weighted density peak clustering. Brief

Bioinform 2021;22:bbab268.

[63] Liu H, Han H, Li J, Wong L. An in-silico method for prediction

of polyadenylation signals in human sequences. Genome Inform

2003;14:84–93.

[64] Chang TH, Wu LC, Chen YT, Huang HD, Liu BJ, Cheng KF,

et al. Characterization and prediction of mRNA polyadenylation

sites in human genes. Med Biol Eng Comput 2011;49:463–72.

[65] Xie B, Jankovic BR, Bajic VB, Song L, Gao X. Poly(A) motif

prediction using spectral latent features from human DNA

sequences. Bioinformatics 2013;29:i316–25.

[66] Graber JH, McAllister GD, Smith TF. Probabilistic prediction

of Saccharomyces cerevisiae mRNA 30-processing sites. Nucleic

Acids Res 2002;30:1851–8.

[67] Hajarnavis A, Korf I, Durbin R. A probabilistic model of 30 end
formation in Caenorhabditis elegans. Nucleic Acids Res

2004;32:3392–9.

[68] Ji G, Zheng J, Shen Y, Wu X, Jiang R, Lin Y, et al. Predictive

modeling of plant messenger RNA polyadenylation sites. BMC

Bioinformatics 2007;8:43.
[69] Shen Y, Ji G, Haas BJ, Wu X, Zheng J, Reese GJ, et al. Genome

level analysis of rice mRNA 30-end processing signals and

alternative polyadenylation. Nucleic Acids Res 2008;36:3150–61.

[70] Ji G, Li L, Li QQ, Wu X, Fu J, Chen G, et al. PASPA: a web

server for mRNA poly(A) site predictions in plants and algae.

Bioinformatics 2015;31:1671–3.

[71] Gao X, Zhang J, Wei Z, Hakonarson H. DeepPolyA: a

convolutional neural network approach for polyadenylation site

prediction. IEEE Access 2018;6:24340–9.

[72] Leung MKK, Delong A, Frey BJ. Inference of the human

polyadenylation code. Bioinformatics 2018;34:2889–98.

[73] Albalawi F, Chahid A, Guo X, Albaradei S, Magana-Mora A,

Jankovic BR, et al. Hybrid model for efficient prediction of

poly(A) signals in human genomic DNA. Methods 2019;166:

31–9.

[74] Yu H, Dai Z. SANPolyA: a deep learning method for identifying

poly(A) signals. Bioinformatics 2020;36:2393–400.

[75] Guo Y, Zhou D, Li W, Cao J, Nie R, Xiong L, et al. Identifying

polyadenylation signals with biological embedding via self-

attentive gated convolutional highway networks. Appl Soft

Comput 2021;103:107133.

[76] Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE,

Nkadori E, et al. Understanding mechanisms underlying human

gene expression variation with RNA sequencing. Nature

2010;464:768–72.

[77] Birol I, Raymond A, Chiu R, Nip KM, Jackman SD, Kreitzman

M, et al. Kleat: cleavage site analysis of transcriptomes. Pac

Symp Biocomput 2015:347–58.

[78] Bonfert T, Friedel CC. Prediction of poly(A) sites by poly(A)

read mapping. PLoS One 2017;12:e0170914.

[79] Campbell MA, Haas BJ, Hamilton JP, Mount SM, Buell CR.

Comprehensive analysis of alternative splicing in rice and

comparative analyses with Arabidopsis. BMC Genomics

2006;7:327.

[80] Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J,

Adiconis X, et al. Ab initio reconstruction of cell type-specific

transcriptomes in mouse reveals the conserved multi-exonic

structure of lincRNAs. Nat Biotechnol 2010;28:503–10.

[81] Le Pera L, Mazzapioda M, Tramontano A. 3USS: a web server

for detecting alternative 30 UTRs from RNA-seq experiments.

Bioinformatics 2015;31:1845–7.

[82] Huang Z, Teeling EC. ExUTR: a novel pipeline for large-scale

prediction of 30-UTR sequences from NGS data. BMC

Genomics 2017;18:847.

[83] Wilkening S, Pelechano V, Jarvelin AI, Tekkedil MM, Anders S,

Benes V, et al. An efficient method for genome-wide polyadeny-

lation site mapping and RNA quantification. Nucleic Acids Res

2013;41:e65.

[84] Wang R, Nambiar R, Zheng D, Tian B. PolyA_DB 3 catalogs

cleavage and polyadenylation sites identified by deep sequencing

in multiple genomes. Nucleic Acids Res 2018;46:D315–9.

[85] Zhu S, Ye W, Ye L, Fu H, Ye C, Xiao X, et al. PlantAPAdb: a

comprehensive database for alternative polyadenylation sites in

plants. Plant Physiol 2020;182:228–42.

[86] Gruber AJ, Schmidt R, Ghosh S, Martin G, Gruber AR, van

Nimwegen E, et al. Discovery of physiological and cancer-related

regulators of 30 UTR processing with KAPAC. Genome Biol

2018;19:44.

[87] Fahmi NA, Ahmed KT, Chang JW, Nassereddeen H, Fan D,

Yong J, et al. APA-Scan: detection and visualization of 30-UTR

alternative polyadenylation with RNA-seq and 30-end-seq data.

BMC Bioinformatics 2022;23:396.

[88] Kim M, You BH, Nam JW. Global estimation of the 30

untranslated region landscape using RNA sequencing. Methods

2015;83:111–7.

[89] Shenker S, Miura P, Sanfilippo P, Lai EC. IsoSCM: improved

and alternative 30 UTR annotation using multiple change-point

inference. RNA 2015;21:14–27.

http://refhub.elsevier.com/S1672-0229(22)00121-8/h0235
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0235
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0235
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0240
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0240
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0240
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0245
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0245
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0245
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0250
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0250
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0250
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0255
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0255
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0255
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0260
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0260
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0260
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0265
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0265
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0265
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0265
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0265
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0270
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0270
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0270
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0275
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0275
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0275
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0280
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0280
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0285
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0285
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0290
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0290
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0290
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0295
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0295
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0295
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0300
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0300
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0300
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0300
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0305
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0305
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0305
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0310
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0310
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0310
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0310
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0315
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0315
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0315
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0320
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0320
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0320
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0325
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0325
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0325
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0330
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0330
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0330
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0330
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0335
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0335
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0335
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0335
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0340
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0340
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0340
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0345
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0345
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0345
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0345
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0350
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0350
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0350
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0355
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0355
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0355
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0360
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0360
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0365
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0365
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0365
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0365
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0370
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0370
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0375
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0375
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0375
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0375
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0380
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0380
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0380
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0380
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0385
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0385
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0385
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0390
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0390
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0395
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0395
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0395
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0395
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0400
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0400
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0400
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0400
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0405
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0405
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0405
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0405
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0410
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0410
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0410
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0410
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0415
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0415
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0415
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0415
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0420
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0420
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0420
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0425
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0425
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0425
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0430
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0430
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0430
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0430
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0430
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0435
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0435
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0435
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0435
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0435
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0435
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0440
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0440
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0440
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0445
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0445
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0445
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0445


Ye W et al / Survey on Poly(A) Site Prediction 83
[90] Li L, Huang KL, Gao Y, Cui Y, Wang G, Elrod ND, et al. An

atlas of alternative polyadenylation quantitative trait loci con-

tributing to complex trait and disease heritability. Nat Genet

2021;53:994–1005.

[91] Feng X, Li L, Wagner EJ, Li W. TC3A: the cancer 30 UTR atlas.

Nucleic Acids Res 2018;46:D1027–30.

[92] Zhang J, Wei Z. An empirical Bayes change-point model for

identifying 30 and 50 alternative splicing by next-generation RNA

sequencing. Bioinformatics 2016;32:1823–31.

[93] Cass AA, Xiao X. mountainClimber identifies alternative tran-

scription start and polyadenylation sites in RNA-seq. Cell Syst

2019;9:393–400.

[94] Zhao Z, Xu Q, Wei R, Wang W, Ding D, Yang Y, et al. Cancer-

associated dynamics and potential regulators of intronic

polyadenylation revealed by IPAFinder using standard RNA-

seq data. Genome Res 2021;31:2095–106.

[95] Gruber AJ, Gypas F, Riba A, Schmidt R, Zavolan M. Terminal

exon characterization with TECtool reveals an abundance of

cell-specific isoforms. Nat Methods 2018;15:832–6.

[96] Chang JW, Zhang W, Yeh HS, Park M, Yao C, Shi Y, et al. An

integrative model for alternative polyadenylation, IntMAP,

delineates mTOR-modulated endoplasmic reticulum stress

response. Nucleic Acids Res 2018;46:5996–6008.

[97] Yang C, Li C, Nip KM, Warren RL, Birol I. Terminitor:

cleavage site prediction using deep learning models. bioRxiv

2020;710699.

[98] Lusk R, Stene E, Banaei-Kashani F, Tabakoff B, Kechris K,

Saba LM. Aptardi predicts polyadenylation sites in sample-

specific transcriptomes using high-throughput RNA sequencing

and DNA sequence. Nat Commun 2021;12:1652.

[99] Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins

A, Smets M, et al. Comparative analysis of single-cell RNA

sequencing methods. Mol Cell 2017;65:631–43.

[100] Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman

M, et al. Highly parallel genome-wide expression profiling of

individual cells using nanoliter droplets. Cell 2015;161:1202–14.

[101] Shulman ED, Elkon R. Cell-type-specific analysis of alternative

polyadenylation using single-cell transcriptomics data. Nucleic

Acids Res 2019;47:10027–39.

[102] Yang Y, Paul A, Bach TN, Huang ZJ, Zhang MQ. Single-cell

alternative polyadenylation analysis delineates GABAergic neu-

ron types. BMC Biol 2021;19:144.

[103] Zhou R, Xiao X, He P, Zhao Y, Xu M, Zheng X, et al. SCAPE:

a mixture model revealing single-cell polyadenylation diversity

and cellular dynamics during cell differentiation and reprogram-

ming. Nucleic Acids Res 2022;50:e66.

[104] Meyer E, Chaung K, Dehghannasiri R, Salzman J. ReadZS

detects cell type-specific and developmentally regulated RNA

processing programs in single-cell RNA-seq. Genome Biol

2022;23:226.

[105] Li WV, Zheng D, Wang R, Tian B. MAAPER: model-based

analysis of alternative polyadenylation using 30 end-linked reads.

Genome Biol 2021;22:222.

[106] Li GW, Nan F, Yuan GH, Liu CX, Liu X, Chen LL, et al.

SCAPTURE: a deep learning-embedded pipeline that captures

polyadenylation information from 30 tag-based RNA-seq of

single cells. Genome Biol 2021;22:221.

[107] Fansler MM, Zhen G, Mayr C. Quantification of alternative 30

UTR isoforms from single cell RNA-seq data with scUTRquant.

bioRxiv 2021;469635.

[108] Han X, Wang R, Zhou Y, Fei L, Sun H, Lai S, et al. Mapping

the mouse cell atlas by Microwell-seq. Cell 2018;172:1091–107.

[109] Levin M, Zalts H, Mostov N, Hashimshony T, Yanai I. Gene

expression dynamics are a proxy for selective pressures on

alternatively polyadenylated isoforms. Nucleic Acids Res

2020;48:5926–38.

[110] Li Z, Li Y, Zhang B, Li Y, Long Y, Zhou J, et al. DeeReCT-

APA: prediction of alternative polyadenylation site usage
through deep learning. Genomics Proteomics Bioinformatics

2022;20:483–95.

[111] Weng L, Li Y, Xie X, Shi Y. Poly(A) code analyses reveal key

determinants for tissue-specific mRNA alternative polyadenyla-

tion. RNA 2016;22:813–21.

[112] Ji G, Chen M, Ye W, Zhu S, Ye C, Su Y, et al. TSAPA:

identification of tissue-specific alternative polyadenylation sites

in plants. Bioinformatics 2018;34:2123–5.

[113] Ye C, Zhou Q, Hong Y, Li QQ. Role of alternative polyadeny-

lation dynamics in acute myeloid leukaemia at single-cell

resolution. RNA Biol 2019;16:785–97.

[114] Lu J, Bushel PR. Dynamic expression of 30 UTRs revealed by

Poisson hidden Markov modeling of RNA-Seq: implications in

gene expression profiling. Gene 2013;527:616–23.

[115] Wang W, Wei Z, Li H. A change-point model for identifying 30

UTR switching by next-generation RNA sequencing. Bioinfor-

matics 2014;30:2162–70.

[116] Katz Y, Wang ET, Airoldi EM, Burge CB. Analysis and design

of RNA sequencing experiments for identifying isoform regula-

tion. Nat Methods 2010;7:1009–15.

[117] Grassi E, Mariella E, Lembo A, Molineris I, Provero P. Roar:

detecting alternative polyadenylation with standard mRNA

sequencing libraries. BMC Bioinformatics 2016;17:423.

[118] Burri D, Zavolan M. Shortening of 30 UTRs in most cell types

composing tumor tissues implicates alternative polyadenylation

in protein metabolism. RNA 2021;27:1459–70.

[119] Bai Y, Qin Y, Fan Z, Morrison RM, Nam K, Zarour HM, et al.

scMAPA: identification of cell-type-specific alternative

polyadenylation in complex tissues. Gigascience 2022;11:giac033.

[120] Ye C, Zhou Q, Wu X, Yu C, Ji G, Saban DR, et al. scDAPA:

detection and visualization of dynamic alternative polyadenylation

from single cell RNA-seq data. Bioinformatics 2020;36:1262–4.

[121] Zheng Y, Wang H, Zhang Y, Gao X, Xing EP, Xu M. Poly(A)-

DG: a deep-learning-based domain generalization method to

identify cross-species poly(A) signal without prior knowledge

from target species. PLoS Comput Biol 2020;16:e1008297.

[122] Singh I, Lee SH, Sperling AS, Samur MK, Tai YT, Fulciniti M,

et al. Widespread intronic polyadenylation diversifies immune

cell transcriptomes. Nat Commun 2018;9:1716.

[123] Bullard JH, Purdom E, Hansen KD, Dudoit S. Evaluation of

statistical methods for normalization and differential expression

in mRNA-seq experiments. BMC Bioinformatics 2010;11:94.

[124] Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T. N6-

methyladenosine-dependent RNA structural switches regulate

RNA-protein interactions. Nature 2015;518:560–4.

[125] Schaum N, Karkanias J, Neff NF, May AP, Quake SR, Wyss-

Coray T, et al. Single-cell transcriptomics of 20 mouse organs

creates a Tabula muris. Nature 2018;562:367–72.

[126] de Lorenzo L, Sorenson R, Bailey-Serres J, Hunt AG. Non-

canonical alternative polyadenylation contributes to gene regu-

lation in response to hypoxia. Plant Cell 2017;29:1262–77.

[127] Lee SH, Singh I, Tisdale S, Abdel-Wahab O, Leslie CS, Mayr C.

Widespread intronic polyadenylation inactivates tumour sup-

pressor genes in leukaemia. Nature 2018;561:127–31.

[128] La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H,

Petukhov V, et al. RNA velocity of single cells. Nature

2018;560:494–8.

[129] Hafez D, Ni T, Mukherjee S, Zhu J, Ohler U. Genome-wide

identification and predictive modeling of tissue-specific alterna-

tive polyadenylation. Bioinformatics 2013;29:i108–16.

[130] Neve J, Patel R, Wang Z, Louey A, Furger AM. Cleavage and

polyadenylation: ending the message expands gene regulation.

RNA Biol 2017;14:865–90.

[131] Mayr C. Regulation by 30-untranslated regions. Annu Rev Genet

2017;51:171–94.

[132] MacDonald CC. Tissue-specific mechanisms of alternative

polyadenylation: testis, brain, and beyond (2018 update). Wiley

Interdiscip Rev RNA 2019;10:e1526.

http://refhub.elsevier.com/S1672-0229(22)00121-8/h0450
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0450
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0450
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0450
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0455
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0455
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0455
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0460
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0460
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0460
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0460
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0460
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0465
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0465
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0465
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0470
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0470
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0470
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0470
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0475
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0475
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0475
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0480
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0480
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0480
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0480
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0485
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0485
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0485
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0490
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0490
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0490
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0490
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0495
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0495
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0495
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0500
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0500
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0500
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0505
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0505
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0505
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0510
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0510
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0510
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0515
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0515
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0515
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0515
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0520
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0520
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0520
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0520
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0525
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0525
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0525
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0525
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0530
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0530
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0530
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0530
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0530
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0535
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0535
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0535
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0540
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0540
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0545
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0545
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0545
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0545
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0550
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0550
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0550
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0550
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0555
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0555
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0555
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0560
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0560
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0560
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0565
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0565
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0565
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0570
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0570
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0570
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0570
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0575
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0575
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0575
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0580
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0580
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0580
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0585
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0585
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0585
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0590
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0590
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0590
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0590
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0595
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0595
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0595
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0600
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0600
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0600
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0605
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0605
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0605
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0605
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0610
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0610
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0610
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0615
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0615
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0615
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0620
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0620
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0620
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0620
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0625
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0625
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0625
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0630
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0630
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0630
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0635
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0635
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0635
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0640
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0640
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0640
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0645
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0645
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0645
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0650
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0650
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0650
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0655
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0655
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0655
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0660
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0660
http://refhub.elsevier.com/S1672-0229(22)00121-8/h0660

	A Survey on Methods for Predicting Polyadenylation Sites from DNA Sequences, Bulk RNA-seq, and Single-cell RNA-seqSurvey on Poly(A) Site Prediction --
	Introduction
	Computational approaches for pA prediction
	Methods for predicting pAs from DNA sequences
	Methods based on traditional ML models
	Methods based on DL models

	Methods for predicting pAs from bulk RNA-seq data
	Methods that interrogate non-templated poly(A)-capped reads
	Methods based on transcript assembly
	Methods that rely on prior annotations of pAs
	Methods that infer pAs by detecting significant changes in RNA-seq read density
	Methods based on ML models

	Methods for predicting pAs from scRNA-seq data
	Methods based on peak calling
	Methods that rely on prior annotations of pAs
	Other methods for predicting pAs from scRNA-seq data

	Methods for APA analysis rather than pA prediction

	Discussion
	Performance of pA prediction models
	How reliable are the obtained results?
	Practical guidelines for choosing appropriate methods

	Conclusion and prospects
	Challenges in improving the performance of pA prediction
	Notes on benchmarking different methods for predicting pAs
	Predicting pAs in non-3' UTRs
	Predicting tissue-specific pAs
	Cross-species prediction of pAs
	Predicting pAs by integrating multi-omics data
	Predicting pAs at the single-cell level

	Competing interests
	CRediT authorship contribution statement
	Acknowledgments
	Supplementary material
	 ORCID
	References




