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Macromolecular modeling and design in Rosetta: recent 
methods and frameworks

A full list of authors and affiliations appears at the end of the article.

Abstract

The Rosetta software for macromolecular modeling, docking, and design is extensively used in 

laboratories worldwide. During two decades of development by a community of laboratories at 

more than 60 institutions, Rosetta has been continuously refactored and extended. Here we review 

tools developed in the last five years, including over 80 methods. We discuss improvements to the 

score function, user interfaces, and usability. Rosetta is available at www.rosettacommons.org.

Editorial summary

Tools developed over the past five years in the macromolecular modeling, docking and design 

software Rosetta are reviewed in this Perspective.

Introduction

The understanding that molecular structure determines biological function has motivated 

decades of experimental determination of protein structure and function. Many 

computational packages have been developed to guide experimental methods and elucidate 

macromolecular structure, including Rosetta. Rosetta offers capabilities spanning many 

bioinformatics and structural-bioinformatics tasks. Computational structural biology 

frameworks with similarly comprehensive scope are few, but key to progress in biology. 

Schrodinger1, the Molecular Operating Environment2, and Discovery Studio3 are 

computational chemistry platforms for advanced modeling and design for structural biology, 

drug discovery and material science, based on molecular mechanics, molecular dynamics 

and quantum mechanics calculations. The HHSuite4 includes tools for bioinformatics, 

sequence alignments, structure prediction and modeling. The BioChemicalLibrary5 (BCL) 

includes tools for structure prediction, drug discovery, and several sequence-to-structure 

methods using machine learning approaches. The Integrative Modeling Platform6 (IMP) 

models large macromolecular complexes by incorporating various types of experimental 

data. OpenBabel7 is a ChemInformatics toolbox supporting molecular mechanics 

calculations, being most heavily used for interconversion of file formats.
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Molecular dynamics packages like CHARMM8, AMBER9, GROMACS10 and others 

simulate most atoms explicitly with a physics-based energy function that relies on solving 

Newton’s equation of motion. These methods can be used for folding small proteins, model 

refinement, modeling phenomena such as ion flow through membrane channels, and 

modeling interactions with small molecules and are therefore highly complementary to 

Rosetta. OpenMM11 is an API (application programming interface) for setting up molecular 

simulations and can be used as a library or standalone application.

Many other tools are available for more specialized tasks, for instance for de novo modeling 

(AlphaFold12,13, QUARK14, RaptorX15), homology modeling (Modeller16, SwissModel17), 

fold recognition (iTasser18), protein-protein docking (HADDOCK19, Zdock20, ClusPro21), 

ligand docking (AutoDock22, FlexX23, Glide24) and numerous other tasks requiring 

molecular modeling. As the focus here is on Rosetta developments, a comprehensive list of 

related methods is listed in the Supplementary Note.

One of Rosetta’s advantages is inter-operability of its large number of applications; however, 

this makes it challenging to track the scope of functionality available to scientists who wish 

to use the software. This Perspective is meant to guide new, returning, or seasoned users; to 

help them find the right protocol hiding in the Rosetta haystack.

Development of Rosetta started in the mid-1990s; it was initially aimed at protein structure 

prediction and protein folding25. Over time, the number of applications grew to address 

diverse modeling tasks, from protein–protein or –small molecule docking to incorporating 

NMR data, loop modeling, protein design, and interaction with peptides and nucleic acids 

(Figure 1). Over more than 20 years, the community of developers and scientists, the 

RosettaCommons, grew from a single academic laboratory to laboratories at over 60 

institutions wordwide26. The software has undergone several transitions, including in 

programming language and implementation, with the latest protocols based on Rosetta3, 

first released in 200827. The score function has been continuously improved and has been 

described in 28 and 29. As part of our sustained focus on accessibility, usability, and 

scientific reproducibility, we developed several interfaces (PyRosetta30, RosettaScripts31, 

Foldit32), and emphasized publishing protocol captures33 to accompany manuscripts. As 

those interfaces have grown more versatile and modular, development has accelerated and 

branched in many directions. However, this interoperability, extensibility and modularity 

enable scientists to combine modules in a wide variety of combinations, making it difficult 

to keep up with all the developments within the software and the scientific community. Here 

we have compiled the latest method developments in Rosetta from the past five years, 

divided into several categories; we provide direction on where to find further information for 

specific modeling problems. The Supplementary Note contains more details on the protocols 

with extensive links to documentation, resources on the web, limitations, and competitors.

1. General overview and challenges

A typical Rosetta protocol is outlined in Figure 2A: the conformation of a biomolecule (the 

Pose) is altered, either deterministically or stochastically, via a Mover and the resulting 

conformation is evaluated by a ScoreFunction. The Move is accepted based on the 
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Metropolis criterion and the energy difference between the original and the new 

conformation:

if Enew < Eorig accept

if Enew ≥ Eorig accept with probability P = e− Enew − Eorig /T

Many independent trajectories are generated, and the final models are evaluated based on the 

scientific objective. This setup highlights common limitations in Rosetta protocols involving 

sampling, scoring (discussed in the score function section), or technical challenges. Many 

protocols suffer from under-sampling34, especially when flexibility is involved. Sampling is 

a limitation for structure prediction (especially for large structures), protein design and 

unconstrained global protein-protein docking. For example, even with local docking we are 

limited by backbone flexibility and performance deteriorates with larger flexibility in the 

binding interface. Small molecule docking similarly relies on correct identification of the 

binding interface and is limited by flexibility between unbound and bound states. Enormous 

conformational search spaces are also prohibitive for RNA modeling due to the size and 

combinatorics of their torsion space (see RNA section), membrane proteins due to their size, 

and carbohydrates because of branching and flexibility.

Some Rosetta applications suffer from (1) technical challenges in implementation, (2) a lack 

of documentation, protocol captures, or support, and (3) a need for more diverse chemistries 

for biomolecules. Technical challenges are either historical or due to lack of interest in the 

community to develop and advance methods in these unique areas.

2. Rosetta’s score function

Rosetta’s score function has been continuously improved over many years35 with guiding 

principles including: improving speed of computation, increasing extensibility, and 

improving accuracy across multiple tasks. The main score function is a linear combination 

of weighted score terms that balances physics-based and statistically derived potentials 

describing van der Waals energies, hydrogen bonds, electrostatics, disulfide bonds, residue 

solvation, backbone torsion angles, sidechain rotamer energies, and an average unfolded 

state reference energy (Figure 2B):

E = EvdW + Eℎbond + Eelec+Edisulf + Esolv + EBBtorsion + Erotamer + Eref

Some energy terms are decomposed into several components to parameterize each of them 

separately. For instance, the van der Waals energy is split into attractive and repulsive terms 

between different residues, in addition to an intra-residue repulsive term. A detailed account 

of the all-atom score function was published recently28.

The newest score function REF201529 reproduces thermodynamic observables (such as 

liquid-phase properties36 and liquid-to-vapor transfer free energies37) in addition to 
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structure38-based tests. It also utilizes a new, derivative-free optimization technique, which is 

suitable for robust optimization of >100 parameters. Further, a new energy term was added 

that takes into consideration non-ideality of bond lengths and angles in cartesian space39. 

The cartesian term39 is also the basis for a cartesian_ddG method that has been used to 

calculate ΔΔGs of mutations to assess changes in protein stability. Only the backbones and 

side chains of residues near the mutation site are allowed to move40. Due to the local 

optimization, this protocol is much faster than the previous gold-standard ddg_monomer41, 

while retaining the same level of accuracy. REF2015 is now compatible with an expanded 

palette of chemical building-blocks: canonical and non-canonical L-α-amino acids and their 

D-amino acid counterparts, exotic achiral amino acids, peptoids, and oligoureas, and can 

model metalloproteins42. Score functions that enable simultaneous modeling of protein and 

RNA are being explored43. REF2015 is now thread-safe and fully mirror symmetric, i.e. 

enantiomers in mirror conformations score identically. Guidance energy terms for design 

have been added to encourage certain features, such as specific amino acid 

compositions44,45, hydrogen bonding networks, or global or local net charges, and 

discourage others, such as repeat sequences that hinder NMR assignments, buried 

unsatisfied hydrogen bond donors and acceptors, or voids within the protein46.

Hydrogen bond networks are important for biomolecular structure and catalysis but have 

been challenging to design because of pairwise interactions that have multi-body, 

cooperative properties. The HBNet protocol47 has been used to design de novo coiled coils 

with interaction specificity mediated by designed hydrogen bond networks, including homo-

oligomers47, membrane proteins48, and large sets of orthogonal heterodimers49. An 

improvement to HBNet uses a Monte Carlo search to sample hydrogen bond networks with 

drastically improved performance50. We further developed a statistical potential to place 

highly-coordinated water molecules on the surface of biomolecules. On a data set of 153 

high-resolution protein-protein interfaces, the method predicts 17% of native interface 

waters with 20% precision within 0.5 Å of the crystallographic water positions51. The 

potential is accessible through the ExplicitWaterMover (former: WaterBoxMover) in 

RosettaScripts.

There are still several limitations to the score function: (1) it does not directly estimate 

entropy52, which has been shown to improve sampling efficiency53. However, rotamer bond 

angles, solvation, fragments and pair terms all implicitly model this component of the free 

energy, which at these temperatures and solvation densities account for more than half of the 

entropy. (2) In most cases, knowledge-based score terms are derived from high-resolution 

crystal structures, representing a single state on the energy landscape and do not represent 

flexibility well (compared to solution NMR); (3) knowledge-based terms are less 

interpretable and transferable than physics-based terms; (4) scoring performance scales with 

the number of score terms and has become slower, yet more accurate, over time; (5) the 

solvation model is implicit, hence fast, but hinders explicit modeling of ions, water 

molecules, or lipid environments; (6) several score functions for specific applications (RNA, 

membrane proteins, carbohydrates, non-canonical amino acids) are still developing.
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3. Major applications

Predicting protein structures—Rosetta was originally developed for de novo protein 

structure prediction, assembling fragments from known protein structures via a Monte Carlo 

procedure and evaluating the models with the score function. While the community’s main 

goals have moved to macromolecular design over the past decade, performance in the 

CASP13 blind prediction challenge remains respectable54, with ranking for refinement and 

prediction of multimeric complexes among the top three groups. Meanwhile, other groups 

have refined their tools exploiting evolutionary couplings and machine learning, for instance 

Google’s DeepMind developed AlphaFold12,13 (which uses Rosetta for refinement) with 

outstanding performance in the recent CASP1354. Another highly ranking method is the 

Zhang server built on iTasser14, and QUARK14.

Homology modeling was improved by using multiple templates in RosettaCM55 (now 

available on the new Robetta56,57 server), which hybridizes the most homologous portions 

from multiple templates into a single model, while modeling missing residues de novo55. 

Without a template, predicting protein structures de novo, remains one of the most 

challenging tasks in structural biology, even though the incorporation of evolutionary 

coupling constraints (for instance from GREMLIN58) has led to enormous improvements in 

model quality. An iterative hybridize approach improves sampling and uses a genetic 

algorithm that recombines models from an input pool to create models that have features 

from their parents but are also distinct. Creating several child models in each iteration, 

updating the input pool, and performing 30–50 iterations led to improved model accuracy 

because features that are scored favorably are repeatedly used in the recombination, such 

that the models in the pool converge over time. Iterative hybridization has been used to 

improve model quality of de novo predicted models59 as well as homology models60. Model 

refinement or generating ensembles of structures (useful for design) can be accomplished by 

several algorithms in Rosetta: FastRelax61, Backrub62, or vicinity sampling using KIC/Next-

Generation-KIC loop modeling 63,64. Loop modeling65 was implemented early in 

Rosetta66,67, with initial approaches relying on fragments sampling and iterative Cyclic 

Coordinate Descent (CCD)68 for chain closure. Later, a kinematic closure (termed “KIC”) 

approach relied on polynomial resultants to analytically solve for closed conformations, 

producing more native-like loops69,70. Next-Generation KIC (NGK)64 is a recent innovation 

that improves sampling by employing diversification (i.e. wider range of conformations) and 

intensification (i.e. focus around previously generated conformations), substantially 

increasing the fraction of near-native models64 and modeling longer loops. A related 

method, GeneralizedKIC44 (GenKIC) samples loop geometries between fixed endpoints 

including non-standard peptide chemistries or chemistries that conventional loop-modelling 

algorithms do not typically handle.

Modeling protein–protein complexes—Another early expansion of Rosetta’s 

functionality was RosettaDock, a method for predicting the structure of protein-protein 

complexes. The latest version, RosettaDock4.074 incorporates protein flexibility from pre-

generated protein ensembles, mimicking conformer selection. This has improved sampling 

efficiency by automatically adjusting the sampling rate based on the diversity of the input 

ensembles. Scoring has been improved by a six-dimensional coarse-grained scoring scheme 
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called motif_dock_score, employing score grids generated from known complexes in the 

Protein Data Bank (PDB). In local docking benchmarks with backbone deviations of up to 

2.2 Å, RosettaDock4.0 successfully docked ~50% of complexes74. For symmetric 

homomers, Rosetta SymDock275 uses the same six-dimensional scoring scheme as 

RosettaDock. Symmetry information can be extracted from a homologous complex, or from 

a global docking search for a given point symmetry using our symmetry framework152. An 

induced-fit based all-atom refinement relieves clashes in tightly-packed complexes to give 

physically realistic models. On a benchmark set of 43 complexes with different cyclic and 

dihedral symmetries, global docking on homology models had accuracies of 61% and 42% 

for cyclic and dihedral symmetries, respectively75. These accuracies can be dramatically 

improved when adding restraints.

Docking small molecule ligands into proteins—Structure-based drug design has 

become a key drug optimization tool and leverages the vast array of knowledge contained in 

the increasing numbers of deposited structures in the PDB. RosettaLigand76 has 

demonstrated success in predicting small molecule-protein interactions. Later in the drug 

development process, medicinal chemists optimize ligands based on structure-activity 

relationships (SAR) by synthesizing different ligands that share a core chemical scaffold and 

are assumed to bind to their target in a similar fashion153. RosettaLigandEnsemble79 

improves sampling during ligand docking by taking advantage of ligand similarities and 

docking a congeneric series of ligands simultaneously, allowing for a placement that works 

for all considered ligands while optimizing the binding interface for each ligand 

independently. Experimental SARs can help identify preferred binding modes. Small 

molecule ligands can also be used as competitive inhibitors of protein-protein interactions. 

However, a protein’s inhibitor-bound conformation often differs from the unbound or 

protein-protein bound conformation, thus Rosetta’s ability to model protein conformational 

flexibility is key. Rosetta’s pocket optimization approach identifies protein surface pockets 

and uses their volume as an additional scoring term: this allows the user to start from an 

unbound protein structure and bias sampling such that low-energy pocket-containing states 

are preferentially explored80,81. The sampled conformations match “druggable” alternate 

conformations observed in ligand-bound structures80,81, making these states excellent 

starting points for virtual screening. Pockets sampled on a protein surface can then be 

matched to complementary ligands by using the pocket as the starting point for 

pharmacophore-based screening154.

Modeling and designing antibodies and immune system proteins—Due to the 

therapeutic significance of antibodies, several antibody-specific and immune-specific 

protocols have been developed for structure prediction, docking and design (with specific 

protocols targeting IgG, T-cell receptors, displayed antigens of the Major Histocompatibility 

Complex (MHC) and other soluble antigens and immunogens). RosettaAntibody85–88 is a 

protocol for modeling of antibodies88. It identifies homologous templates, assembles them 

into a single structure and then models CDR H3 loops de novo while refining the VH-VL 

orientation155. Recent advances use multiple templates155, incorporate key structural 

constraints156,157 into CDR H3 modeling, model camelid antibodies87 and antibodies on the 

scale of the human repertoire158,159. AbPredict89 predicts antibody structures without 
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homologous templates. Instead, it samples backbone fragments and rigid-body orientations 

from known antibody structures, without relying on sequence homology, therefore 

accurately modeling cases with sequence identity as low as 10%. AbPredict2 is available as 

a webserver90. SnugDock93 is a related method for antibody-antigen docking, taking as 

input a plausible starting conformation and optionally an ensemble of antibodies/antigens. 

SnugDock then runs local docking to refine both the antibody–antigen interface and the 

heavy–light chain interface (within the antibody) and re-models the CDR H2/H3 loops at the 

interface. Recent advances include a CDR H3 structural constraint156,157 and docking 

camelid antibodies160. Limitations in antibody modeling depend on the task: docking is 

limited by knowledge of the binding site (global vs. local docking); structure prediction, 

design and refinement are limited by protein flexibility, and modeling of CDRs or other 

loops is challenging if they are longer than 12 to 15 residues.

RosettaAntibodyDesign94 (RAbD) is based on RosettaAntibody87 (see below) and allows 

design of specific CDRs of different clusters and lengths, sequence design using cluster-

based CDR profiles or conservative mutations, or de novo design of whole antibodies. 

RAbD uses North-Dunbrack CDR clustering161, reducing deleterious sequence mutations, 

and was benchmarked on 60 diverse antibody-antigen interfaces from complexes including 

both λ and κ light chains. Experimental benchmarking of two antibody-antigen complexes 

showed affinity improvements between 10 and 50-fold. Rosetta has been integrated with 

experimental immunogenic epitope data, MHC epitope prediction tools, and host genomic 

data to design proteins with reduced immunogenicity while retaining function and 

stability95. The approach implements machine learning-based epitope prediction for 28 

different alleles, restricts design to select 15mer epitope regions, and uses a greedy stepwise 

protein design96 to eliminate the most immunogenic epitopes with the least mutations, 

avoiding disruptive core mutations likely to destabilize the protein. Another method, 

AbDesign, splits experimentally determined antibody structures along conserved positions to 

create interchangeable segments and then recombines them to produce a diverse set of novel 

antibody models97,98. The models are docked to a target of interest, either locally to a 

specific epitope, or globally, followed by an optimization step comprised of rigorous 

backbone sampling and sequence design for improving model stability and binding affinity.

Designing new proteins and functions—Protein design162 relies on several of the 

same core functionalities needed for structure prediction, and synergy and interoperability 

between design and prediction models has always been a core Rosetta design principle. For 

example, this synergy is well illustrated by the biased forward folding method: During de 
novo protein design163, a test for the consistency of the designed sequence is whether ab 
initio structure prediction will yield the same structure that was used as a starting point for 

the design. However, computationally testing a large number of designs is prohibited by the 

vast conformational search space for ab initio structure prediction. To limit that space and 

test more designs, biased forward folding72 uses three (instead of 200) fragments per residue 

position with fragments being chosen based on the RMSD to the native structure used to 

instantiate the design process. Protein design is easier when starting from known structures 

and when redesigning for well understood objectives like thermostability 164. More difficult 

design objectives include de novo design (without a template structure) and design for novel 
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folds or functions. Successes in these cases require sampling of enormous conformational 

spaces, depending on the protein size. Another simplification of de novo design is 

thermostabilization of the protein, essentially creating rigid structures that are mostly non-

functional, by expanding the energy gap between folded and unfolded designs to facilitate 

structural characterization. To date, novel functional designs mostly exploit known structures 

and the next frontier is the design of novel functions onto de novo scaffolds. Moreover, 

nature typically does not design for the global minimum energy conformation (in terms of 

stability) because proteins require flexibility to carry out their functions.

Design of novel protein structures and functions towards therapeutic intervention is 

addressed by various methods in Rosetta: SEWING creates de novo designs by recombining 

parts of protein structures from randomly-selected helical building blocks99. SEWING’s 

requirement-driven approach allows users to specify features that should be incorporated 

into their designs during backbone generation without requiring a certain size or three-

dimensional fold. New features include incorporation of functional motifs such as protein-

binding peptides for protein interface design and ligand binding sites for ligand-binding 

protein design100. A similar algorithm has been implemented for antibody design 

(AbDesign, see above), which was generalized for enzyme design165. A more general 

approach is RosettaRemodel, performing protein design by rebuilding parts or all of the 

structure101 from fragments of known proteins structures. RosettaRemodel uses a blueprint 

file in which the user defines secondary and supersecondary structure of the desired fold. 

Remodel interfaces with various Rosetta protocols and allows de novo modeling, fixed-

backbone sequence design, refinement, loop insertion, deletion, and remodeling, disulfide 

engineering, domain assembly, and motif grafting.

A common task is not only design towards a certain goal (positive design), but additionally, 

design away from undesired features (negative design). Such a Multi-State Design166 (MSD) 

approach evaluates strengths and weaknesses of a single sequence on multiple backbones, 

for instance binding to one but not another protein partner. REstrained CONvergence103 

(RECON) allows each state to sample multiple sequences during the design process, which 

is iteratively applied by increasing the restraint weight to encourage sequence convergence. 

RECON achieves on average 70% sequence recovery (a 30% increase compared to MSD) 

for large multi-state design problems, such as antibody affinity maturation or predicting 

evolutionary sequence profiles of flexible backbones167,168.

Protein function can be designed by motif grafting, i.e. grafting a known motif or predicted 

active- or binding-site from a template structure onto a new protein. This approach has been 

used for antibodies and vaccine design104 using the fold_from_loops application, where the 

functional motif is used as a starting point of an extended structure that is folded following 

the constraints of a target topology. Iterative refinement is carried out via sequence design 

and structural relaxation before filtering and human-guided optimization. This protocol has 

been extended into the Functional Folding and Design (FunFolDes) protocol, including 

multi-segment motif grafting, different residue length motif insertion, incorporating 

restraints, and folding in the presence of a binding target105. Performance of the folding 

stage can be improved by selecting fragments according to the target topology via the 

StructFragmentMover.
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Designing interfaces between proteins and interaction partners—Protein design 

problems include interface design of proteins with proteins or small molecule ligands and 

predicting ΔΔGs of mutation (e.g. alanine scanning). Predicting ΔΔGs of mutations for 

protein stability or protein-protein interactions is difficult with low correlation coefficients 

(0.5–0.7)169, because the effect of the mutation is small compared to the total energy in the 

system, and because protein flexibility adds noise to the energies that can mask the effect of 

mutations. In alanine scanning (mutating into Ala), methods that use a “soft-repulsive” score 

function without modeling backbone flexibility170,171 typical outperform methods that allow 

protein flexibility and use hard-repulsive score functions172. FlexDDG106 improves protein-

protein interface ΔΔG predictions and generalizes them to residues other than Ala. The 

protocol creates conformational ensembles using backrub sampling173, then repacks 

sidechains, minimizes torsions and computes change in protein-protein interaction ΔΔG by 

averaging across the ensembles. On 1240 interface mutants, FlexDDG outperforms the 

earlier ddg_monomer application, which was created to predict changes in stability upon 

mutation, not interfaces.

Symmetric protein assemblies modeled using parametric design. Nature created super-

helical coiled-coils that are well-described by geometric equations using Crick 

parameters174, including variables for the radius of the bundle, major helical twist, minor 

helix rotation about the primary axis, etc. Several Movers such as MakeBundle, 

PerturbBundle, and BundleGridSampler allow designing helical bundles48,108 and β-barrels 

based on pre-defined or sampled parameters. These parametric methods do not rely on 

fragments libraries and can be applied to non-canonical coiled-coil heteropolymers.

Modeling peptides and peptidomimetics—The inherent flexibility of peptides 

imparts a large conformational search space to them, leading to challenging modeling 

problems; when peptide modeling is combined with another simulation, e.g. docking, the 

increase in conformational space makes the modeling task quite challenging by any method. 

PIPER-FlexPepDock111 is Rosetta’s global peptide docking protocol. It rigid-body docks 

fragments using PIPER FFT-based docking175, and refines the complex using 

FlexPepDock109. PIPER-FlexPepDock can generate peptide-protein complexes from a 

peptide sequence and a free receptor structure (Figure 3F). Performance decreases in case of 

receptor flexibility.

Cyclic peptide conformations can be sampled with simple_cycpep_predict, restricting the 

conformational search space through cyclization44,45,108 via the Generalized Kinematic 

Closure (GenKIC) algorithm (see “loop modeling” above). Simple_cycpep_predict does not 

rely on protein fragments and can model non-canonical chemistries (Figure 3B), being a 

generalization of earlier protocols. Experimental protein structure determination is 

challenging for proteins on solid surfaces such as biominerals, self-assembled monolayers, 

inorganic catalysts, and nanomaterials. RosettaSurface114 samples protein conformations ab 
initio in both the solution and adsorbed states (Figure 3D) to account for adsorption-induced 

conformational changes. Experimental data can be incorporated115 to improve scoring.

Using experimental data to direct modeling—Using experimental data in modeling 

can vastly restrict the conformational space, allowing the modeling of larger, more complex 
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biomolecules to greater accuracy. Electron density maps generated by cryo-electron 

microscopy (cryoEM) or X-ray crystallography have improved in quality and become 

substantially more available in the past decade and methods to incorporate them can produce 

high-resolution structures. To deal with variations in the resolution of these methods 

RosettaES118 samples enumeratively, not requiring initial assignment of densities; it 

gradually extends the model one residue at a time until all residues are assigned. At each 

iteration, short fragments are used to sample the nearby conformational space of the growing 

model, while undergoing a series of clustering and filtering steps based on the energy and fit 

to the density. If assignment is complete but the data are low-resolution, refinement into 

density maps is necessary. Several methods have been developed for density maps in the 

3.0–4.5Å resolution range. More recently, an automated fragment-guided refinement 

pipeline121 splits the density map into independent training and validation maps. It finds 

regions with poor density fit, iteratively rebuilds them with fragments using the training 

map, filters the models based on their fit to the validation map, model geometry from 

MolProbity and fit to the full map, and then optimizes against the full map. Further, the 

frameworks for electron density maps and carbohydrate modeling143 (below) were 

connected144, allowing refinement of carbohydrates into low-resolution density maps.

NMR data were incorporated into de novo structure prediction early on, embodied in 

RosettaNMR. Chemical shifts were used for fragment picking using CS-Rosetta122, which 

could be used with Nuclear Overhauser Enhancements (NOEs), Residual Dipolar Couplings 

(RDCs)176, Pseudo-Contact Shifts (PCSs)123,124,177 and Paramagnetic Relaxation 

Enhancement (PRE) data. Improvements, for instance through RASREC resampling178 

allowed the use of sparse179 or unassigned data180, easier-to-obtain data (backbone-only181), 

modeling larger and more complex proteins182, membrane proteins183, symmetric 

systems184, and combination with data from SAXS185, cryoEM186, distance restraints from 

homologous proteins187 and evolutionary couplings188. CS-Rosetta also has the 

AutoNOE189,190 module for automated assignment of NOESY data for use in structure 

calculations. RosettaNMR was recently overhauled and reconciled with CS-Rosetta and 

PCS-Rosetta to seamlessly integrate several types of NMR restraints (CS, RDC, PCS, PRE, 

NOE) in one consistent framework191 for structure prediction, protein-protein docking, 

protein-ligand docking, and symmetric assemblies.

Covalent labeling mass spectrometry data provides information on relative solvent exposure 

of residues, yielding information on protein tertiary structure. A low-resolution score term 

that allows for use of hydroxyl radical foot-printing has been implemented that can improve 

model quality in structure prediction126,127. Moreover, data from chemical cross-linking 

mass spectrometry has been incorporated into an automated workflow to identify protein-

protein interactions. The PyTXMS128 protocol combines the sensitivity of mass 

spectrometry to analyze complex samples with the power of Rosetta structural modeling and 

protein-protein docking to efficiently sample the vast conformational space and identify 

interactions (Figure 3C). A machine learning algorithm based on high resolution MS1 data 

guides the potential binding interface selection, being validated and adjusted by a repository 

of structural models and MS2 (data-dependent acquisition (DDA)) samples.
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Modeling nucleic acids and their interactions with proteins—DNA and RNA 

modeling requires addressing a multitude of challenges due to a lack of structures leading to 

under-developed score functions, low quality alignments, and a much larger sampling 

torsion space than for proteins (70 residue RNA comparable to 200 residue protein). In 

contrast to protein helices where side-chains display sequence information on the helix 

exterior, helical RNA sidechains point inwards, therefore hiding sequence information from 

the environment, making prediction of tertiary or non-local contacts more difficult. Non-

local contacts are mediated by loops, challenging for prediction algorithms. Several 

advances have been made in the representation of nucleic acids in Rosetta. The StepWise 
Monte Carlo protocol (SWM) has achieved RNA structure predictions reaching atomic 

accuracy131; the approach provides an acceleration over the original enumerative StepWise 
Assembly (SWA) method129,130. A version of SWA that rebuilds one nucleotide at a time 

enables fine-grained correction of errors in RNA coordinates fit into crystallographic or 

cryo-EM maps by Enumerative Real-space Refinement ASsisted by Electron density under 
Rosetta135,136 (ERRASER).

The most recent advances in RNA tools expand the fragment assembly protocol to support 

modeling RNA-protein complexes through simultaneous folding and docking134. RNA-

protein interactions are handled via additional knowledge-based score terms that supplement 

the low-resolution RNA score function. Free energy perturbations from RNA or protein 

mutations can be modeled with the Rosetta-Vienna ΔΔG protocol43. Structure coordinates 

can further be built into cryo-EM density maps for large RNA-protein complexes with 

DRRAFTER (De novo Ribonucleoprotein modeling in Real space through Assembly of 
Fragments Together with Experimental density in Rosetta)138. Redesign and prediction of 

protein-DNA interfaces192,193 has been accomplished with flexible protein backbones194, 

genetic algorithms192,194,195 and motif-biased rotamer sampling196,197. A potential 

limitation is the reliance on fixed DNA backbone conformations, which can be flexible. Key 

to successful protein-DNA design is a score function optimized197,198 for these highly 

charged and solvated interfaces. Rosetta supports prediction of specificity and affinity199, 

the prediction of DNA binding preferences of homologous proteins and multi-template 

modeling in RosettaCM55200.

Modeling membrane proteins—Membrane proteins constitute about 30% of all 

proteins and are targets for over 60% of pharmaceuticals on the market201. However, 

experimental difficulties have limited our understanding of their structures202. Previously, 

Yarov-Yarovoy203 and Barth204 implemented tools for low- and high-resolution structure 

prediction of membrane proteins, termed RosettaMembrane. These tools were re-engineered 

for compatibility with Rosetta327 into a platform called RosettaMP139. RosettaMP 

implements core modules for representing, sampling, and scoring proteins in the context of 

an implicit membrane. RosettaMP is compatible with key modeling protocols including 

docking, design, ΔΔG prediction169, PyMOL visualization205, and assembly of symmetric 

proteins. Additionally, a set of basic modeling tools140 allows scoring, transforming a 

membrane protein into the membrane coordinate frame, de novo modeling for single 

transmembrane span helices, introducing mutations, and visualization in the membrane. 

RosettaMP has enabled rapid development of new tools including structure-based detection 
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of lipid exposed residues in the membrane141 and domain assembly of full-length protein 

models from structures of transmembrane and soluble domains142. The RosettaCM protocol 

for multi-template homology modeling has also been adapted to membrane proteins33.

Describing membrane protein energetics is challenging as these proteins reside in an 

anisotropic environment and bury polar solvent molecules (e.g. water, ions) that stabilize the 

structure and participate in important conformational transitions. Implicit membrane models 

often fail to reliably model membrane protein interiors. The method SPaDES is based on a 

hybrid explicit-implicit solvent model that enhances the prediction and design of membrane 

protein structures206. Limitations to membrane protein modeling are similar but less severe 

than for RNA modeling: there are fewer structures in databases, fewer method developers in 

this field and hence fewer available tools. Consequently, the score function is less mature 

compared to the latest score functions for soluble proteins: the implicit solvent hydrophobic 

slab model is a coarse-gained representation of the membrane. Ongoing efforts expand this 

model by including pores, lipid specificity and different thicknesses207, yet many effects 

remain to be acknowledged such as measurement-specific or observed membrane 

geometries (micelles, bicelles, nanodiscs, vesicles, different pore types, fusion and fission of 

multiple membranes) and macroscopic physical phenomena like membrane tension and 

fluidity. Challenges in including these effects are experimental measurements for 

parameterization of these models and adaptation of a multitude of score terms.

Adding carbohydrates to the modeling process—Carbohydrates are fundamental to 

life208,209, but because of challenges in experimental characterization and computational 

sampling and scoring, their structures have been historically under-studied. The 

RosettaCarbohydrate framework143 models carbohydrate structures and complexes such as 

glycosylated proteins or protein–sugar complexes (Figure 3F) with the same algorithms one 

would use for proteins. RosettaCarbohydrate can handle commonly studied and uncommon 

carbohydrate structures, including linear, cyclic, and branched structures, sugar 

modifications, and conjugations. Methods exist for sampling ring conformations, packing 

substituents, refining glycosidic linkages, sampling from linkage “fragments”, and extending 

glycan chains. Scoring of saccharide-containing sugars includes a quantum-mechanically 

derived intrinsic backbone term210. Because saccharide residues are stored as distinct data 

structures, we can integrate bioinformatic and statistical data into these algorithms, opening 

the door for glycoengineering and design applications. RosettaCarbohydrate has been 

integrated with other frameworks, such as loop modeling (GenKIC and Stepwise Assembly), 

refinement (GlycanTreeModeler), symmetry, and RosettaScripts-accessible classes such as 

MoveMaps and ResidueSelectors. Linkages are automatically determined during PDB read-

in. Carbohydrates work with Cartesian minimization, and can be refined into electron 

density maps144. Limitations in the carbohydrate framework include the increased sampling 

space due to carbohydrate flexibility and branching, and need to model many different 

chemistries with possible branching and cyclization. Developments in this area have only 

recently started and much work has yet to be done.
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4. User interfaces and usability

Advances have also focused on improving usability of Rosetta through several user 

interfaces to suit different use cases and workflow styles (Figure 4). The command line was 

the first and is still the most-often used interface to Rosetta methods. Additionally, Rosetta 

features two popular scripting interfaces: RosettaScripts and PyRosetta. RosettaScripts31 

uses Extensible Markup Language (XML) to build complex protocols using core 

machinery27, without requiring knowledge of the codebase. PyRosetta30,145 is a collection 

of Python bindings to the source code, allowing flexible and fast custom protocol 

development, but requires familiarity with the underlying codebase. Other interfaces are 

InteractiveRosetta146 and the gaming interface Foldit Standalone147,149 (see Supplementary 

Note).

We devoted an enormous effort to rewrite and add documentation (Figure 5). A public-

facing Gollum wiki (https://www.rosettacommons.org/docs/latest/Home) houses various 

levels of documentation, such as application documentation, tutorials for beginning users, 

and static protocol captures that accompany manuscripts for scientific reproducibility (see 

Supplementary Note for links). The Gollum wiki is easily editable by members of the 

RosettaCommons which has drastically improved the quantity and quality of documentation.

A limitation of Rosetta is the need for a local installation and compilation in a Unix-like 

environment. Webservers provide a user-friendly alternative and a number of independent 

servers have emerged in our community. However, implementing and maintaining such 

servers comes at a substantial cost. To make it easier to provide protocol webservers, ROSIE 

(Rosetta Online Server that Includes Everyone)150,151 (http://rosie.rosettacommons.org/) 

implements a simple framework for “serverification” of protocols. ROSIE currently contains 

24 webservers, with additional protocols continually being added.

Conclusion

The Rosetta software is developed by a large, global community aiming to solve complex 

problems through real-time collaborative code development. In the last five years, great 

strides have been made in our software. More protocols enable modeling a broader range of 

biological and chemical macromolecular systems. Prediction accuracies have improved 

through advances in the score function, which is a combination of physics-based and 

knowledge-based potentials that were fit against known structures and thermodynamic 

observables. Incorporating experimental data into modeling has been facilitated and 

improved. Further, our community now develops more general, reusable, user-friendly, and 

scientifically reproducible protocols. This was motivated by the growth of the software and 

the developer community, the various user interfaces, the diversity of the community26, and 

the complexities of the protocols used to solve real-world problems. The improvements to 

documentation allow users to quickly start using or developing custom protocols, while 

facilitating user support for the various interfaces (command line, RosettaScripts, PyRosetta, 

etc.). Over the years, these applications have moved beyond tackling basic science questions 

(i.e. the protein folding and design challenges) to more application-based scientific 

developments. The myriad advances described above have made integration of Rosetta into 

existing experimental and computational scientific workflows increasingly useful and 
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standard, as evidenced by the large number of licenses (~30,000 academic and ~70 

commercial including most of the largest pharmaceutical companies), 11 spin-off companies 

that were created from the RosettaCommons26, and the ever-increasing number of citations 

from labs beyond those affiliated with RosettaCommons.

Rosetta development is ongoing and will continue to focus on expanding the scope of 

protein design and modeling by integrating high-throughput experimental data with high-

throughput computation, impacting score function development and aiding in developing 

novel therapeutic interventions211; restructuring the software for massively parallel 

computing architectures (e.g. GPUs, TPUs) and quantum computers212; greater use of 

machine-learning (e.g. deep-learning) approaches (e.g. for score function development); 

modeling more realistic cellular environments; and improving user interfaces to make 

Rosetta accessible to more scientists. The predictive powers that we have reviewed above 

can be leveraged not only to analyze and verify existing data but to inform experiments that 

will galvanize engineering industrial enzymes, enable the creation of novel biomaterials, and 

accelerate the discovery of new potent therapeutics.

Code availability

Rosetta is licensed and distributed through www.rosettacommons.org. Licenses for 

academic, non-profit and government laboratories are free of charge, there is a license fee 

for industry users.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Capabilities of the Rosetta macromolecular modeling suite
Some popular tasks that can be addressed in Rosetta (blue) and major systems that can be 

modeled (red). Note this is an incomplete list of Rosetta’s broad modeling capabilities.
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Figure 2: Main elements of Rosetta are scoring and sampling
(A) Three main elements are required in a Rosetta protocol. The Pose is the biomolecule, 

such as a protein, RNA, DNA, small molecule, or glycan, in a specific conformation. 

Residues in the Pose can be selected via ResidueSelectors and the behavior for side-chain 

optimization or mutation can be defined by TaskOperations. Specific Movers then control 

how the conformation of the Pose is changed, and the new conformation is subsequently 

evaluated by a ScoreFunction. The Metropolis criterion decides whether the new 

conformation is accepted during sampling. Many independent sampling trajectories are 

generated, and the final models are evaluated based on the purpose of the protocol. (B) The 

score function consists of a weighted linear combination of various score terms, highlighted 

in the figure and described above.
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Figure 3: Rosetta can successfully address diverse biological questions
(A) Curved β-sheet design: overlay of the designed homo-dimeric curved β-sheet (dcs-

E_4_dim_cav3) in rainbow and the crystal structure in gray (PDBID 5u35). The protein is 

designed de novo and features a curved β-sheet, a large pocket, and a homodimer 

interface72. (B) Parametric design: overlay of the de novo designed macrocycle 3H1 in blue 

and the NMR structure in gray (PDBID 5v2g). This “CovCore” (covalent core) miniprotein 

is held together covalently by a hydrophobic cross-linker at its core (in red for the design 

and gray for the NMR structure)108. (C) PyTXMS: the interactome of M1 protein (virulence 

factor of Group A streptococcus) and 15 human plasma proteins on the surface of bacteria 

(peptidoglycan layer (dark green), and the membrane (brown)). This 1.8MDa structure 

contains over 200 chemical cross-links128 and is measured in a complex mixture of intact 

bacteria and human plasma. All models are provided by Rosetta: M1 protein (gray), IgG 

(red), four fibrinogens (dark to light blue), six albumins (dark to light pink), coagulation 

factor XIII A [F13A] (purple), C4bPa (cyan), haptoglobin [HP] (brown), and alpha-1-

antitrypsin [SerpinA1] (plum). (D) RosettaSurface: model of an LK-α peptide 

(LKKLLKLLKKLLKL with a periodicity of 3.5 assuming a helical conformation) on a 

hydrophilic self-assembled monolayer surface. The peptide is unstructured in solution and 
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assumes helical structure115 when on the surface, as experiments show. (E) 

RosettaCarbohydrate: flexible docking of a carbohydrate antigen to an antibody. The crystal 

structure is in gray (PDBID 1mfa) and the model in blue, with the carbohydrate in green. 

Antibody coordinates were taken from the PDB and glycan coordinates started from a 

randomized backbone conformation and rigid-body orientation143. (F) PIPER-FlexPepDock: 

high-resolution model of a peptide-protein complex (model: blue; solved structure in gray, 

PDBID 1mfg). The model was generated from a peptide sequence (LDVPV, derived from 

the C-terminal tail of ErbB2R) and the unbound structure of the receptor (Erbin PDZ 

domain, PDBID 2h3l, colored in red)111.

Koehler Leman et al. Page 33

Nat Methods. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: User interfaces to the codebase
(A) Rosetta can be run from a terminal and offers three interfaces to the codebase. The top 

panel outlines the task to be accomplished: making two mutations in a protein and then 

refining the structure. The panels underneath show how this task can be accomplished in the 

different interfaces. The command line panel shows the executable, input files and options to 

run two specific applications. RosettaScripts is an XML-based scripting language that offers 

more flexibility by combining Movers and ScoreFunctions into a custom Protocol. 
PyRosetta offers direct access to the underlying code objects but requires knowledge of the 

codebase. (B) Point-and-click interfaces to the codebase. InteractiveRosetta is a graphical 

user-interface (GUI) to PyRosetta. It offers controls to the most popular protocols, file 

formats and options. Foldit is a videogame primarily used to crowd-source real-world 

scientific puzzles but can also be used on custom proteins of interest. It can run some 

popular applications via a game interface. ROSIE hosts a multitude of servers each 

executing a particular protocol. It currently includes servers for 21 Rosetta methods. [The 

InteractiveRosetta and Foldit panels were originally published in 213 and 147 under Creative 

Commons licenses that allows reproduction as is.]
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Figure 5: Main external documentation page
In 2015, our community performed a complete overhaul of our documentation. 

Documentation is now hosted on a Gollum wiki, which is version controlled and easily 

editable by members of our community. Accessibility and ability to edit the documentation 

has drastically improved the user-experience of the software.
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Table 1:

Overview of recent methods developed in the Rosetta software

Method Lab developed

Score function

REF2015 score function28,29 Frank DiMaio, David Baker

cartesian_ddG29 Frank DiMaio, Phil Bradley

HBNet47,50 David Baker, Brian Kuhlman

HBNetEnergy47 Richard Bonneau, David Baker*

AACompositionEnergy Richard Bonneau, David Baker*

AARepeatEnergy Richard Bonneau, David Baker*

VoidsPenaltyEnergy Richard Bonneau, David Baker*

NetChargeEnergy Richard Bonneau, David Baker*

BuriedUnsatPenalty Richard Bonneau, David Baker*

Protein structure prediction

fragment picker71 Dominik Gront*,**

RosettaCM55 David Baker

iterative hybridize59,60 David Baker, Sergey Ovchinnikov*

Loop modeling

NGK (next-generation KIC) 64 Tanja Kortemme

GenKIC (generalized KIC) 44 Richard Bonneau, David Baker*

LoopHashKIC Tanja Kortemme

Consensus_Loop_Design72,73 David Baker

Protein-protein docking

RosettaDock4.074 Jeffrey Gray

Rosetta SymDock275 (Ingemar André), Jeffrey Gray

Small molecule ligand docking

RosettaLigand76–78 Jens Meiler

RosettaLigandEnsemble79 Jens Meiler

pocket optimization80,81 John Karanicolas

DARC82–84 John Karanicolas

Modeling of antibodies and immune system proteins

RosettaAntibody85–88 Jeffrey Gray

AbPredict89,90 Sarel Fleishman

RosettaMHC91 Nik Sgourakis

TCRModel92 Brian Pierce

SnugDock93 Jeffrey Gray

Design of antibodies and immune system proteins
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Method Lab developed

RAbD94 (Rosetta AntibodyDesign) Bill Schief, Roland Dunbrack

Epitope removal95,96 David Baker, Cyrus Biotechnology

AbDesign97,98 Sarel Fleishman

Protein design

SEWING99,100 Brian Kuhlmann

RosettaRemodel101 Possu Huang*,**

LooDo102 Sagar Khare

RECON103 Jens Meiler

curved β-sheet design72 David Baker

biased forward folding72 David Baker

fold_from_loops104 Bruno Correia*,**

FunFolDes105 Bruno Correia

Protein interface design

FlexDDG106 Tanja Kortemme

Coupled Moves107 Tanja Kortemme & DSM Biotechnology Center

Parametric design48,108 Richard Bonneau*

Peptides and peptidomimetics

FlexPepDock109,110 Ora Schueler-Furman

PIPER-FlexPepDock111 Ora Schueler-Furman

PeptiDerive112 Ora Schueler-Furman

simple_cycpep_predict44,45,108 Richard Bonneau, David Baker*

MFPred113 Sagar Khare

RosettaSurface114–116 Jeffrey Gray

Modeling with experimental data

cryoEM de novo117 Frank DiMaio, David Baker

cryoEM: RosettaES118 Frank DiMaio

cryoEM: iterative refinement119,120 (formerly David Baker) Frank DiMaio

cryoEM: automated refinement121 Frank DiMaio

NMR: CS-Rosetta122 Nik Sgourakis

NMR: PCS-Rosetta, GPS-Rosetta123,124 Thomas Huber

RosettaNMR framework125: using RDC/PRE/PCS/NOE/CS for ab initio, 
protein-protein docking, ligand docking, symmetric assembly

Jens Meiler, Richard Bonneau (Jeffrey Gray)

mass-spec: HRF hydroxyl radical footprinting126,127 Steffen Lindert

mass-spec: PyTXMS128 Lars Malmstroem

RNA modeling

SWA (stepwise assembly) 129,130 Rhiju Das

SWM (stepwise Monte-Carlo) 131 Rhiju Das
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Method Lab developed

FARFAR (fragment assembly medium resolution structure prediction) 
132–134

Rhiju Das

ERRASER (refinement into EM density maps) 135,136 Rhiju Das

CS-Rosetta-RNA (modeling with NMR data) 137 Rhiju Das

RECCES (Reweighting of Energy-function Collection with Conformational 
Ensemble Sampling)

Rhiju Das

DRRAFTER (de novo modeling of protein-RNA complexes into EM 
densities) 138

Rhiju Das

Membrane proteins

RosettaMP framework139: mp_ddg, mp_dock, mp_relax, mp_symdock Jeffrey Gray, Richard Bonneau

RosettaMP toolkit140: mp_score, mp_transform, mp_mutate_relax, 
helix_from_sequence

Jeffrey Gray, Richard Bonneau

mp_lipid_acc141 Richard Bonneau

mp_domain_assembly142 Richard Bonneau

RosettaCM for membrane proteins33 Jens Meiler

Carbohydrates

RosettaCarbohydrate framework143,144 Jeffrey Gray, William Schief

User interfaces

PyRosetta30,145 Jeffrey Gray

RosettaScripts31,33 Sarel Fleishman*,**

InteractiveRosetta146 Chris Bystroff

Foldit Standalone32,147–149 Seth Cooper*,**, Firas Khatib*,**, Justin Siegel, Scott 
Horowitz, David Baker

ROSIE server150,151 Jeffrey Gray

Miscellaneous

Metalloproteins42 David Baker, Richard Bonneau*

Waters51 Frank DiMaio

SimpleMetrics William Schief

AmbRose Sagar Khare

RosettaRC William Schief

*
the main developer(s) in this lab was/were formerly in the lab of David Baker when this application was developed

**
the main developer now has their own lab
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