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ABSTRACT OF THE THESIS

Automatic Labeling and Representation of Birdsong for Speech Prosthesis

by

Aparna Srinivasan

Master of Science in Electrical Engineering
(Machine Learning and Data Science)

University of California San Diego, 2021

Professor Vikash Gilja, Chair

Songbirds are widely studied as an animal model to accelerate the development of neurally

driven speech prostheses. Consequently, the analyses carried out on the songbird model are

dependent on high-quality labeled datasets. Building such datasets is usually laborious, as it

involves manually annotating their vocal behavior, after which, neural activity can be decoded

into vocalizations. However, the direct translation to vocal behavior is quite challenging since

songbird vocalizations are typically recorded at high sampling rates to capture the rapid changes

in behavior.

In this thesis, such problems are addressed using data-driven approaches. To reduce

x



the efforts involved in manual annotations, deep learning models are explored for automatic

labeling of vocalizations. A model based on convolutional and recurrent layers called TweetyNet

is trained with a small amount of manually labeled data comprising features from audio. It

is shown to achieve high frame-level sensitivity and high temporal precision in annotating the

vocalizations of adult male zebra finches whose recordings were collected in-house. Alternatively,

a WaveNet-based fully convolutional model trained directly on audio, is also shown to provide

high temporal precision in annotations.

To minimize the complexities involved in the direct translation of neural activity to behav-

ior, an intermediate stage is introduced in the neural decoding pipeline. This stage will encode a

low-dimensional representation of the behavior from which vocalizations can be reconstructed. A

Vector Quantized Variational Autoencoder is trained to learn the latent representation of zebra

finch vocalizations. Additionally, from these latent representations, novel stimuli are generated

for use in psychophysical experiments.

While the stereotypical behavior of songbirds is widely studied, for practical vocal pros-

theses it is equally important to be able to decode the non-stereotypical behavior like calls,

which can be of multiple types. The different calls in zebra finches are identified using Uni-

form Manifold Approximation and Projection, and the spike counts are determined from their

corresponding neural activity. Gaussian classification of spike counts is shown to achieve high

accuracy corroborating the mutual information existing between spike counts and call type.

These techniques and analyses are believed to provide insights for the development of

songbird vocal prostheses.
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Chapter 1

Introduction

1.1 Motivation

Stroke, locked-in syndrome and neurodegenerative disorders often affect speech motor

control and can eventually lead to irreversible loss of ability to speak [1–4]. For such patients, the

quality of life could be improved by developing assistive devices like brain computer interfaces

(BCIs) that help restore spoken communication. Recent research has shown that it is possible

to directly decode speech articulatory information [5–7], vowels [8, 9] and even utterances from

invasive neural recordings [10–12]. However, research and development in human BCIs is

difficult not only due to the restrictions involved in conducting invasive clinical studies [13–15],

but also due to the complexity of speech [13, 16, 17]. Therefore, by developing and testing on

simpler animal models can be supplementary to clinically translatable communication prosthesis.

Songbirds have long been of interest to study sensory-motor learning. It has been observed

that they learn to sing the same way human infants learn to speak [18–21]. Consequently, the

neural mechanisms of motor control involved in song production can be informative of speech

production in humans. They typically present a small repertoire of vocalizations that include

calls [22], introductory notes [23] and syllables (elements of song) [24]. With songs that are
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simpler than human speech and relative ease of performing invasive neural recordings, songbirds

act as an ideal animal model for vocal behavior decoding that can accelerate the translation of

BCI-based communication technology to human clinical studies [25, 26].

1.2 Existing Work

Insights into the songbird model are gained by analyzing both the neural activity [26] and

the vocal behavior [27] from high-quality datasets with labeled instances of vocalizations. These

datasets typically require time-consuming manual annotations to ensure precision and quality

of labels. Common strategies for automated labeling like threshold based audio segmentation is

generally not robust due to background noise and fluctuations in amplitude. Similarly, template

matching approaches which identify vocalizations by parsing raw continuous recordings and

finding correlations with a suitable template are limited by the quality of the template and the

homogeneity of the recording conditions and behavior [28]. Therefore, techniques that are

designed to perform well on individual recordings can neither be scaled to large datasets nor

transferred to other bird individuals and species. These limitations can be circumvented by

training deep learning models with a small amount of hand-labeled data [29–31]. These models

learn the relevant information in vocalizations and once trained they can be used to automatically

label large datasets and generalize to other bird individuals.

At the core of BCIs for songbirds lie the decoders that translate neural activity to bird-

song [25]. To alleviate the complexities in translating high-dimensional data, decoding is typ-

ically performed with the low-dimensional representations of neural and behavioral record-

ings [26, 32–35]. Considering behavior, from its low-dimensional latent representation, the

high-dimensional data can be reconstructed for downstream applications like psychophysical and

closed-loop experiments. For vocalizations or audio, dimensionality reduction techniques like

autoencoders are typically employed, wherein they are trained in an unsupervised and data-driven
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manner to learn the representations that are deterministic points in the latent space [36, 37].

Further, as variational autoencoders [35, 38] learn latent distributions, novel vocalizations can

also be generated by sampling from them. The behavioral and neural responses to these novel

vocalizations can be studied by presenting them to songbirds [39,40]. Thus, these approaches can

encode the relevant information in songbird vocalizations into its latent representations.

1.3 Proposed Work

Considering the existing work on automatic labeling and representation of birdsong, the

focus of this thesis is on exploring their performance on an in-house dataset that comprises

simultaneous neural and audio recordings from adult male zebra finches. The aptly named

TweetyNet model is considered [29] for automatic labeling and its performance is benchmarked

using sensitivity and timing errors as metrics. The benefits of intra-species transferability are also

explored and experiments are carried out to determine the minimum amount of hand-labeled data

required to maximize the model performance. A WaveNet [41] based automatic labeler is also

proposed, that can be directly optimized on audio input thereby eliminating the need for feature

engineering.

An autoencoder of the variational type known as Vector Quantized Variational Autoen-

coder (VQVAE) [42] is explored for the latent representations of vocalizations. The model has a

vector quantization bottleneck that provides discretized latent representations for the input data.

The quality of the learned representations is tested by incorporating a pretrained VQ bottleneck

into the TweetyNet model and measuring its performance as a labeler. An example novel vocal-

ization is also generated from the latent representations provided by VQVAE. These analyses are

supplemented with an extensive discussion on suggested best strategies and design choices that

must be considered while employing such generative models.

Finally, with a curiosity to explore non-stereotypical behavior which has not been widely
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studied for vocal prostheses, the neural activity leading to the production of calls is analyzed

and quantified in terms of encoded information. The different types of calls [22, 43–45] in our

dataset are determined using Uniform Manifold Approximation and Projection (UMAP) [46].

Spike counts are computed from the preparatory neural activity and their causal relationship to

the behavior is determined with mutual information and classification experiments.

1.4 Chapter Structure

This thesis comprises three core chapters in addition to the Introduction and Conclusion.

In Chapter 2, the in-house dataset is introduced followed by an in-depth analysis on automatic

labeling methods. Chapter 3 presents VQVAE for latent representation, generation of novel

vocalizations and an extensive discussion on suggested strategies to design the models and

experiments. Chapter 4, describes the UMAP approach for determining call types and the

analyses on their preparatory neural activity.
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Chapter 2

Automatic Labeling of Vocalizations

Automated labeling discussed in this thesis is achieved using supervised deep learning

techniques, which can be broken into four major stages: collecting and annotating the dataset of

interest, preprocessing and feature engineering, modeling/training, and testing and evaluation of

results. In this chapter, the four stages are discussed with the design decisions relevant at each

stage. At the testing stage, the performance of the model is evaluated against different metrics

and additional experiments are carried out to assess its generalizability and efficacy in limited

training data paradigms.

2.1 Dataset Description

The herein presented dataset comprises electrophysiological measurements and audio

simultaneously recorded from three adult male zebra finches (z007, z017 and z020). 4-shank 16/32

site Neuronexus probes with 32-channels for z007 and 16-channels for the remaining two birds

were used for recording the electrophysiological data. The probes were implanted targeting the

premotor brain region HVC [47, 48]. The audio was recorded through a microphone (Earthworks

M30) connected to a preamplifier (ART Tube MP). The extracellular voltage waveforms and the

pre-amplified audio were amplified and digitized at 30kHz using intan RHD2000 acquisition
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system, Open Ephys and a custom software [49].

The audio recordings were parsed through a custom template matching algorithm to find

potential instances of vocal activity, which were then manually curated to remove false positives.

In these instances of activity, the vocal events were manually segmented and labeled. A unique

label was provided for each syllable, introductory note and call. There were also two labels

for silence: one for the gaps between song syllables, and another for the instances of silence

occurring outside of the periods of a song. Additional details regarding the recording setup and

labeling can be found in [26]. For this thesis, all silences are considered to be of the same type

and the annotated dataset was accessed via a custom in-house Python software BirdSongToolbox.

An overview of the dataset is provided in Table 2.1. A motif is a consistent stereotypical

sequence of syllables interleaved with silent periods that is learned from a tutor when the zebra

finches were young [50]. Beyond the syllables of the motif, the male zebra finches may also

produce additional syllables they optionally insert between successive repetitions of motifs. They

are called intra-motif notes. In this dataset, both z017 and z020 had one intra-motif note each. In

this thesis, they have been included as another syllable in the repertoire.

Table 2.1: Description of the dataset.

Bird z007 z017 z020
Repertoire 5 syllables, I, C 7 syllables, C 4 syllables, I, C

# Motif, I, C 220, 413, 578 181, -, 219 269, 426, 333
Avg. Motif duration (s) 0.6659 0.7761 0.3699

# days recorded 4 2 2
Total vocalization (s) 226.23 (∼3.7 min) 166.09 (∼2.7 min) 156.43 (∼2.6 min)

Total recording (s) 2368.19 (∼40 min) 1846.35 (∼31 min) 2287.61 (∼38.11 min)
# channels (electrophysiology) 32 16 16

2.2 Audio Preprocessing

Prior to analysis, audio recordings are generally filtered to remove background noise.

Figure 2.1 shows an exemplar spectrogram (in dB power) from around a song sample in the
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Figure 2.1: Spectrograms of audio recordings from z007, z017 and z020.
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vocalization instance for the three zebra finches. The background noise in the audio recordings

was reduced using a combination of thresholding and masking, based on the noise power at each

frequency. It was implemented using the Python package noisereduce [51]. Either the noise

filtered audio or the noise filtered mel spectrograms were used for training, depending on the input

requirements of the deep learning models. In case of the latter, a 1024-point short-time Fourier

transform (STFT) was computed on the noise filtered audio using a window size of 512, hop

length of 128 and Hanning window. The spectrograms were then band-limited to 350 - 7000Hz

and mapped to a mel basis with 64 bins. The timing of the vocal events in spectrograms was

appropriately mapped from their labels at 30kHz sampling rate using the STFT parameters. The

vocalization labels were one-hot encoded.

2.3 TweetyNet Model

Figure 2.2: TweetyNet

Since the spectrograms of the audio recordings (Figure 2.1) reveal formant-like structures

that are unique to each vocalization, a model that can capture such spatio-temporal relationships

would be a good candidate for automated labeling. TweetyNet [29] is one such deep neural

network that comprises two convolutional blocks [52], followed by a recurrent layer with Long

Short Term Memory (LSTM) units [53] and finally a fully-connected layer as shown in Figure 2.2.
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Each convolutional block has a 2D convolutional layer that captures the local spatial information

in the spectrograms and a maxpooling layer that compresses the captured information with the

local maximum thereby reducing the feature map size. The feature maps are padded with zeros to

ensure the temporal length of the input is retained for predictions. The learnt feature maps are

passed through the bidirectional LSTM layer that traverses its input in both forward and reverse

directions to learn the temporal patterns in the feature maps. Finally, the fully connected layer

predicts the vocalization label at each time step in the input.

2.4 WaveNet Model

Figure 2.3: WaveNet

While the TweetyNet model requires the input to be mel spectrograms, it is possible

to design models that operate directly on audio without the need for any feature engineering.

Sometimes, such models could reduce the efforts involved in finding the best features for rep-

resenting the information in audio. One such model is WaveNet [41], which is a deep neural
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network that was specifically designed for generating raw audio waveforms, thereby making it

fully probabilistic and autoregressive. However, it can also be employed as a discriminative model

that returns posterior probabilities for classification. The characteristic component of WaveNet

is causal convolution which ensures that the audio input is processed in sequence. Further, the

receptive field of the convolutions is increased by incorporating a dilation factor which allows the

filters to be applied over an area larger than their length by skipping input values with a certain

step. Unlike pooling and strided convolutions, dilation helps in retaining the same length as the

input.

As shown in Figure 2.3, a typical WaveNet model comprises layers of causal and dilated

1D convolutions with residual [54] and skip connections. Since they don’t have recurrent

connections, they are typically faster to train than recurrent neural networks especially when

applied to very long sequences. The residual connections help circumvent the vanishing gradient

problem [54]. At any layer k the dilation factor is 2k−1 and the convolutions are followed by

gated activation unit [55] given by,

z = tanh
(
Wf ,k ∗x

)
�σ

(
Wg,k ∗x

)
where * denotes a convolution operator, � denotes an element-wise multiplication op-

erator, σ is a sigmoid function, k is the layer index, f and g denote filter and gate, respectively,

and W is a learnable convolution filter. Finally, from the sum of all skip connections, the fully

connected layer predicts the vocalization label at every time step in the input.

2.5 Experimental Setup

The audio data was divided into a train and test set. The test set consisted of a vocalization

instance from each day of recording for each zebra finch. The train set comprised the remaining

vocalization instances. The audio (for WaveNet) or mel spectrograms (for TweetyNet) in the train

set were chunked into windows of length 500ms with a stride of 50ms. Chunks with no vocal
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events were discarded. The remaining chunks were randomly split into five folds for a stratified

five-fold cross validation setup with 80% for training and 20% for validation. In each fold, the

training, validation and test sets of data were z-score normalized. In case of mel spectrogram, the

mean and standard deviation were computed along each frequency bin. Further, to control the

range of values, log transformation was applied to the mel spectrograms.

After a reduced grid search, the optimal parameters for the TweetyNet model were found

to be the same as reported in [29]. The convolutional layers have 32 and 64 filters respectively

and filter size of 5× 5. The filters were convolved with stride of 1 and padding of 2. The

two maxpooling layers had pool size of 8× 1, essentially pooling the feature maps along the

frequency axis. Finally, the bidrectional LSTM and fully connected layer had 64 and 10 hidden

units respectively. The number of classes (no. of output units in the fully connected layer) was

chosen to be 10 since at most the zebra finches had a repertoire that consisted of seven syllables,

introductory note and call. Further, by retaining the same architecture for all individuals, transfer

learning experiments can be easily carried out to test the model’s generalizability. The activations

for the convolutional, LSTM and fully connected layers were Rectified Linear Units [56], tanh

and softmax respectively. The net receptive field of TweetyNet (after the two convolutional

blocks) is 36ms and the number of trainable parameters is 119,946.

The WaveNet model was designed to have six 1D convolutional layers with 64 filters

of size 15. The first layer of the model performed a pointwise convolution with 64 filters. The

convolutions were followed with gated activations as explained in Section 2.4. The sum of skip

connections from the six layers was fed to a fully connected layer with 10 hidden units and

softmax activation. The net receptive field of WaveNet (after the six convolutional layers) is 60ms

and the number of trainable parameters is 763,786.

Both models were trained with a five-fold cross-validation setup using categorical cross-

entropy loss and Adam optimizer [57] for a maximum of 50 epochs. Early stopping was invoked

if the validation loss did not improve over five consecutive epochs and the model with the best
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validation accuracy was saved. The average performance across folds is reported for the test

set. It must be noted that the frame-level performance is computed from spectrogram frames for

TweetyNet and audio frames for WaveNet.

2.6 Results and Discussion

The metrics described in this section have been derived from the confusion matrix with

entries at the frame level. Sensitivity or the true positive rate for each vocalization is measured as

the percentage of correct predictions out of all the frames with the vocalization.

2.6.1 Individually Trained Models

Figure 2.4: Frame-level sensitivity of TweetyNet and WaveNet across the repertoire of z007,
z017 and z020.

Figure 2.4 shows the frame-level sensitivity of TweetyNet and WaveNet classification

models to the vocalizations in each zebra finch. In case of TweetyNet, it is observed that the

sensitivity to all vocalizations is above 0.8 for z007 and above 0.9 for all the syllables in z017.

In z017, the sensitivity to call is observed to be the lowest due to the misclassification of call

frames as syllable ‘6’. The spectrograms for call and syllable ‘6’ as shown in Figure 2.1 had a

very similar structure which led to confusion during classification as reported in the confusion

matrix in Figure 2.5. For z020, it is observed that the frame-level sensitivity to vocalizations is
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highly fluctuating compared to other zebra finches. Particularly for calls, about 15% of its frames

were misclassified as silence and introductory note as shown in the confusion matrix in Figure

2.5. Further, this might have also been due to the significant background noise observed in z020

audio recordings as shown in Figure 2.1.

It is observed that the performance reached by the WaveNet classification model is

typically lower than that of TweetyNet. It must be noted that the two models are not comparable

since they operate on different inputs and the sensitivity has been computed on time frames

sampled at different rates. However, the performance trend across vocalizations is found to be

similar between WaveNet and TweetyNet. In case of z007 it is observed that the frame-level

sensitivity to all syllables except ‘5’ is above 0.7. The confusion matrix shown in Figure 2.6

shows that this is because 16% and 13% of syllable ‘5’ frames were misclassified as syllable ‘2’

and call respectively. In case of z017, the sensitivity to call is observed to be lower than that for

syllables due to the same reasons outlined for the TweetyNet model. Similarly, due to poor audio

quality, the frame-level sensitivity fluctuates across vocalizations of z020.

Figure 2.5: Normalized confusion matrices from TweetyNet for z007, z017 and z020.

Figure 2.5 and 2.6 show the normalized confusion matrices for the TweetyNet and

WaveNet models trained individually on each zebra finch. The confusion matrices are obtained

by dividing each element of the matrix with the sum of elements in the corresponding row i.e.,
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Figure 2.6: Normalized confusion matrices from WaveNet for z007, z017 and z020.

the number of true labels. Thus, the diagonal elements represent the sensitivity or the percentage

of frames that were correctly classified for each vocalization. It is observed that the confusion

matrices show similar values for both TweetyNet and WaveNet across all zebra finches, indicating

that the performance is driven by the same underlying property in the acoustics. Thus, a common

discussion is provided here that is applicable to both models.

In z007, it is observed that about 8-17% of the syllable frames have been misclassified as

either silence or call. A majority of such misclassifications were found to occur in one of the test

vocalization instances of z007 which had varying audio quality. The test vocalization instance had

a period of low amplitude and low noise (Figure 2.1) wherein the syllables were predominantly

classified as silence or call. This indicates that both TweetyNet and WaveNet models are not

robust to drastic changes in amplitude while recording. In case of z017, it is observed that the

sensitivity to call is the least at 0.59 for TweetyNet and at 0.43 for WaveNet. About 20% of the

call frames have been misclassified as syllable ‘6’. This stems from the similarity between ‘long

call’ and syllable ‘6’ which can be noticed from the spectrogram shown in Figure 2.1. In the case

of z020 it is observed that a typical reason for the drop in sensitivity is due to the misclassification

of vocalizations as silence. Additionally about 13% and 15% of call frames have also been

misclassified as introductory note by WaveNet and TweetyNet respectively. In general, the high
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sensitivities reveal that both models not only learn the patterns in the vocalization elements but

also the background noise in the recordings. Table 2.2 summarizes their overall frame-level

sensitivity i.e the average frame-level sensitivity across vocalizations.

Table 2.2: Overall frame-level sensitivity of TweetyNet and WaveNet for z007, z017 and z020.

Overall Sensitivity z007 z017 z020
TweetyNet 0.86 0.90 0.80
WaveNet 0.74 0.79 0.80

Table 2.3: Onset, offset and transient timing errors of TweetyNet and WaveNet for z007.

z007 1 2 3 4 5 I C Overall
TweetyNet

Onset (ms)
7.24 7.90 23.29 11.66 5.96 5.87 3.03 9.28

WaveNet 7.97 5.12 20.71 3.58 5.01 4.96 2.21 7.08
TweetyNet

Offset (ms)
9.67 9.67 23.90 9.50 7.74 7.77 3.99 10.32

WaveNet 5.86 7.65 8.35 4.10 8.71 5.95 3.39 6.29
TweetyNet

Transient (ms)
0 0 1.1 0.47 0.05 0.05 0 0.23

WaveNet 6.03 4.61 11.41 10.79 9.76 3.73 8.16 7.78

Table 2.4: Onset, offset and transient timing errors of TweetyNet and WaveNet for z017.

z017 1 2 3 4 5 6 7 C Overall
TweetyNet

Onset (ms)
1.72 4.41 5.21 2.78 1.63 3.27 4.84 24.31 6.02

WaveNet 2.11 3.38 1.88 2 1.164 2.24 3.16 7.53 2.93
TweetyNet

Offset (ms)
2.98 3.43 3.81 4.46 6.34 2.89 6.35 23.25 6.69

WaveNet 3.61 4.11 5.95 1.39 4.31 2.94 2.92 6.44 3.96
TweetyNet

Transient (ms)
0 0 0 0.25 0 0.17 0 2 0.30

WaveNet 1.54 8.99 8.64 7.10 4.74 18.16 4.27 34.29 10.97

Table 2.5: Onset, offset and transient timing errors of TweetyNet and WaveNet for z020.

z020 1 2 3 4 I C Overall
TweetyNet

Onset (ms)
5.30 1.56 1.47 0.46 9.14 17.68 5.93

WaveNet 6.98 2.49 0.59 0.83 1.72 12.56 4.2
TweetyNet

Offset (ms)
7.57 2.65 5.54 1.8 9.32 18.22 7.52

WaveNet 5.43 1.49 2.7 0.85 2.32 5.23 3
TweetyNet

Transient (ms)
0 0.16 0 0 0 1.68 0.30

WaveNet 2.65 4.12 1.93 12.38 2.24 15.30 6.44
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While sensitivity provides the percentage of frames correctly classified for each vocaliza-

tion, they do not reveal the temporal precision associated with detecting the onset and offset of

vocal events. Temporal precision in labeling is of crucial importance particularly in applications

like neural prosthetics that rely on neural decoding. When studying the causal relationship

between neural activity and output behavior, inaccuracies in determining the onset and offset

times of the behavior of interest lead to the observation of neural activity that may be unrelated.

This is particularly true when analyzing fast occurring behavior, like birdsong. Table 2.3, 2.4 and

2.5 detail the timing errors made by TweetyNet and WaveNet at detecting the onset and offset of

vocalizations along with any transient errors in classification during the vocalization. For onset

and offset errors, it is the number of frames that were misclassified before and after the actual

onset or offset of a vocalization respectively. For transient errors, it corresponds to the number of

frames misclassified within the vocalization. The number of frames was divided by the sampling

rate in the case of WaveNet or multiplied by 4ms (≈ spectrogram hop length / sampling rate) for

TweetyNet. The overall timing error is computed as the average error across all vocalizations.

From the tables it is observed that overall timing errors do not exceed 11ms for both TweetyNet

and WaveNet. Again, it must be noted that the two models cannot be compared as they operate on

different inputs. WaveNet has a lower (in bold) onset and offset errors than TweetyNet whereas it

is the opposite in case of transient timing errors. In fact, transient errors in the TweetyNet model

approach 0ms. Of all the timing errors presented, it is critical to minimize the onset and the offset

errors to ensure that the correct period of neural activity is decoded. By supplementing with

an ad-hoc post-processing stage based on the typical duration of vocalizations and silence, the

transient errors can be further minimized.

Between the two models explored here, TweetyNet is one of the best models for automatic

labeling. With roughly 120,000 learnable parameters, it trains faster and is not compute intensive

as the model is trained on mel spectrograms. On the other hand, the WaveNet takes longer to

train as it is a larger model that is applied to audio which is sampled at 30kHz. However, if
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WaveNet was to be compared to an equivalent deep learning model that had recurrent layers

for processing audio, then it is highly likely that it uses less resources as it consists of only

convolutional layers. Further, it eliminates the need for feature engineering which can introduce

an additional overhead in the labeling pipeline. Its performance can be boosted with more

training data (augmentation) and it can also be leveraged as a generative model. Given the current

limitations of the in-house dataset and based on the above analyses, additional experiments are

performed only on TweetyNet.

2.6.2 Transfer Learning

Since the zebra finches have a limited repertoire and a highly stereotypical song, there exist

similarities between the vocalizations of different individuals. These similarities can be exploited

to reduce the training time and the amount of training data required for automatically labeling a

new individual. This hypothesis is tested by carrying out a transfer learning experiment, wherein

the TweetyNet model trained on one individual is tested on a different individual. Subsequently,

the last fully-connected layer is randomly initialized and selectively retrained, while the remaining

layers are not updated with the gradients.

Table 2.6: Overall frame-level sensitivity of TweetyNet, pretrained on one individual and
transferred to another individual with selective retraining.

Overall Sensitivity
Selectively Retrained
z007 z017 z020

Pretrained
z007 0.86 0.72 0.57
z017 0.75 0.90 0.65
z020 0.74 0.75 0.80

Table 2.6 shows the overall frame-level sensitivity of the TweetyNet model that has been

pretrained on one individual followed by the last layer being selectively retrained on another

or same individual. It is observed that the overall sensitivity is the highest when the model is

retrained on the same individual and the performance is found to match that of the fully trained
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model reported in Table 2.2. Further, these models were found to achieve convergence much

faster during training. An overall sensitivity of 0.75 is achieved when the models are transferred

between z007 and z017. However, in the case of z020 it is observed that the transferred model

performs significantly lower than a model retrained on z020. This is because the audio recordings

of z007 and z017 are relatively less noisy than that of z020 and the dissimilarity in the vocal

behavior as shown in Figure 2.1. Consequently, the transferred model does not perform well

under mismatched noise conditions. Further, it is interesting to note that even though z020 has

the smallest repertoire, TweetyNet model transferred from z020 performs on par with the models

transferred between z007 and z017, indicating similarities in the vocalizations.

The benefits of transfer learning could be further extended by using models that have been

trained on multiple individuals. These could be followed with full retraining to achieve faster

convergence than a randomly initialized model.

2.6.3 Effect of Training Data Duration

As the TweetyNet model is a data-driven supervised learning technique, its performance is

expected to increase with more training data until it plateaus to a maximum reachable performance

after which additional training data has less/no impact on the performance. Therefore, the

minimum amount of data required for maximum performance can be determined by gradually

incrementing the duration of vocalizations in the training data. This could further reduce the

efforts towards manual labeling.

For this analysis, the vocalization instances were randomly selected and grouped un-

til the total vocalization duration equaled t seconds. If the total duration extended beyond

the requirement, then it was clipped at the target duration such that all syllables were still

present in the training set. For each individual, 5 such distinct groups were created for t ∈

{2,5,8,10,20,30,40,50,60,70,80,90} seconds. The groups of vocalization instances were

chunked accordingly and the models were trained (without cross-validation) as mentioned in
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Section 2.5. The average test set performance across the five models (one per group) is reported.

Figure 2.7: Overall frame-level sensitivity of TweetyNet with varying duration of training data.

Figure 2.7 shows the overall frame-level sensitivity of TweetyNet trained with varying

duration of training data. It is observed that the sensitivity saturates around 30s for z007, 60s for

z017 and 90s for z020. The need for more training data in case of z017 and z020 is anticipated as

their audio recordings are of much lower SNR than that of z007 as shown in Figure 2.1. Though

definitive conclusions cannot be drawn regarding the exact amount of training data that would

be required to automatically label the vocalizations of a new individual, this analysis provides

an insight that it is not necessary to manually annotate the entire dataset (> 2.5 minutes of

vocalizations). Coupled with transfer learning, the estimated amount of annotated data could be

further reduced.

In conclusion, the experiments and analyses on the TweetyNet reveal that it is a highly

sensitive model with low timing errors and that it can achieve high performance with small

amounts of hand-labeled data. It is hypothesized that the performance could be further improved

with data augmentation and transfer learning. While the WaveNet model was not explored in

such detail, it could be the optimal labeling strategy as it eliminates the need for audio feature

engineering and is bound to perform well under data-rich conditions.
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Chapter 3

Latent Representation of Vocalizations

Latent or low-dimensional representation of audio (mel spectrogram) can be realized

with dimensionality reduction techniques like UMAP [46] and t-SNE [58], or deep learning

approaches like autoencoders [36] and variational autoencoders (VAEs) [59]. In this chapter,

a particular type of variational autoencoder is explored, that retains its generative power while

discretizing the latent space. The capabilities of the model are tested in conjunction with the

automated labeling strategy discussed in Chapter 2. Additionally, its comparison to typical VAEs

and the design choices for representation are addressed in the discussion.

3.1 Vector Quantized Variational Autoencoder

Vector Quantized Variational Autoencoder (VQVAE) [42] is a type of generative model

that combines VAE with discrete latent representations via Vector Quantization (VQ). For the

discrete latent random variables z given the input data x, the posterior (q(z|x)) and the prior (p(z))

distributions are categorical and the samples drawn from these distributions correspond to the

indices of an embedding table. These embeddings (e j for j ∈ 1,2, ...,K) are then used as an

input to the decoder. The posterior categorical distribution probabilities are defined as one-hot

encodings as follows:
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Figure 3.1: Vector Quantized Variational Autoencoder

q(z = k|x) =

 1 for k = argmin j
∥∥ze(x)− e j

∥∥
2

0 otherwise

where ze(x) is the output of the encoder network. The distribution q(z = k|x) is determin-

istic, and by defining a simple uniform prior over z, the KL divergence between them becomes

log K. The representation ze(x) is then passed through the discretization bottleneck followed by

mapping onto the nearest element of embedding as follows:

zq(x) = ek, where k = argmin j
∥∥ze(x)− e j

∥∥
2

As shown in Figure 3.1, each element in the encoder output (size C×H×W ) is replaced

with the nearest of the K embeddings (of D dimensions; D <<C) to generate a sample of size

D×H×W for the decoder. Since there is no gradient defined for the above equation, the gradient

is approximated using the straight-through estimator [60] wherein the gradients are copied from

the decoder input to the encoder output. The loss function of the VQVAE model is formulated as,
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L = log p
(
x | zq(x)

)
+‖sg[ze(x)]− e‖2

2 +β‖ze(x)−sg[e]‖2
2

where,

• log p
(
x | zq(x)

)
is the reconstruction error measured as the mean squared error between the

input and the output in terms of variance.

• ‖sg[ze(x)]−e‖2
2 is the codebook loss which is used for learning the embedding space e and

updating the embedding vectors.

• ‖ze(x)−sg[e]‖2
2 is the commitment loss that helps control the volume of the embedding

space and ensures that the encoder commits to an embedding.

β is the commitment cost and sg stands for the stopgradient operator. When the model

is trained, the stopgradient operator acts as the identity function in the forward direction, but

stops the accumulated gradient from flowing through that operator in the backward direction,

thus effectively constraining its operand to be a constant that doesn’t get updated. The decoder

optimizes the reconstruction loss, the encoder optimizes the reconstruction and the commitment

loss and the embeddings are optimized by the codebook loss. Thus, the VQVAE can make

effective use of the latent space by successfully modeling relevant features that usually span

multiple dimensions in the data space as opposed to focusing on noise or imperceptible details.

3.2 VQVAE vs. VAE

In a typical VAE framework, the posterior and the prior are assumed to be continuous

normal distributions with diagonal covariance, which allows for the Gaussian reparameterization

trick to be used [59]. Further, the prior is unit Gaussian and is retained as a constant. Consequently,

at certain times VAEs can suffer from large variance. Whereas, in VQVAE, the latent space is
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discretized and assumed to have uniform prior. However, the prior is not static but learnt via

backpropagation. The model relies on vector quantization, which makes it simple to train and

prevents it from experiencing large variance.

The VAE loss is the combination of the reconstruction error and the KL divergence

between the learnt Gaussian distribution and prior (unit Gaussian). For VQVAE, since the prior is

uniform and the posterior is categorical the KL divergence is essentially a constant and equals log

K, where K is the size of the embedding space. Apart from the reconstruction error, the VQVAE

loss has 2 additional terms called codebook loss and commitment loss which help in updating

and controlling the size of the embedding space.

VAEs can sometimes experience “posterior collapse” especially when coupled with a

powerful autoregressive decoder. In such situations, the latents are often ignored, i.e. the “learnt”

latents become independent of the input and are constants and the decoder being extremely

powerful, tries to reconstruct the input by ignoring the latents. On the other hand, “posterior

collapse” does not arise in VQVAE since the nearest embedding to the encoder input is always

fetched and propagated to the decoder input, and is subsequently updated by backpropagating the

VQVAE loss.

Though VQVAE appears to be a better model for latent representation than a typical

VAE, the performance of both models depends on the dataset (size and quality), encoder-decoder

architecture and the dimensionality of the latent space. The VQVAE inherently introduces discon-

tinuities at the decoder input due to the discretization of the latent space. These discontinuities

can propagate and lead to poor reconstructions. Similarly, both the models can learn the back-

ground noise as well, since they try to minimize the reconstruction error. Thus, choosing an

optimum compression ratio (= input dimension / latent space dimension) is critical to optimize

their performance.
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3.3 Experimental Setup

A two-stage approach was followed to test the efficacy of VQVAE in learning discrete

latent representations for zebra finch vocalizations. The two stages were,

• Stage 1: An autoencoder of vanilla or VQVAE type is trained to minimize the reconstruction

error or the loss described in Section 3.1 respectively. The encoder consists of the two

convolutional layers of TweetyNet (without maxpooling) and the decoder was designed as

an inverted encoder with two transpose convolutional layers.

• Stage 2: The decoder of the autoencoder is replaced with TweetyNet’s decoder that

comprises the bidirectional LSTM and fully connected layer. The decoder is selectively

trained to optimize the categorical cross-entropy loss. The weights of the pretrained encoder

and the embeddings in case of VQVAE are kept frozen.

For VQVAE the size and the dimensions of the embedding space were chosen as 32. The

parameters of the layers from the TweetyNet model were retained as mentioned in Section 2.5.

Due to memory constraints that stemmed from a high dimensional latent Gaussian representation,

a TweetyNet based VAE was not realizable and hence is not included in the analyses. The

TweetyNet classification model with the VQ bottleneck is called ‘TweetyNet-VQVAE’. Similarly,

the TweetyNet classification model pretrained as a vanilla AE is termed ‘TweetyNet-AE’. During

Stage 1, all the models were trained as mentioned in Section 2.5 with the same 5-fold cross-

validation setup. At Stage 2, the training is dependent on the type of analysis and is explained in

the corresponding Section. For comparison, a TweetyNet model without the maxpooling layers is

fully trained and termed as ‘TweetyNet (no pooling)’.
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3.4 Results and Discussion

3.4.1 Effect of Amount of Training Data Duration

As outlined in Section 2.6.3, the same experiment is carried out with the new models

namely, TweetyNet-VQVAE, TweetyNet-AE and TweetyNet (no pooling). In case of the first two

models, the two-stage approach is followed as explained in Section 3.3. During Stage 2, when

the decoder is selectively trained, the duration of vocalizations in the training set is varied. The

average test set performance across the five models (one per group) is reported.

Figure 3.2: Overall sensitivity of TweetyNet, TweetyNet (no pooling), TweetyNet-AE and
TweetyNet-VQVAE with varying duration of training data.

Figure 3.2 shows the overall frame-level sensitivity for different duration of training data.

Generally, across all zebra finches, it is observed that the above-mentioned models have perfor-

mances that are very close to the original TweetyNet as well. The similar trend in performance

indicates that the embedding space in ‘TweetyNet-VQVAE’ has effectively learnt an embedding

space encoding the information in the mel spectrograms. Given the input has 64 mel bins and 118

( = 500ms at 30kHz sampling rate) time steps and the discrete latent space is 32 dimensional, the

VQVAE model learns a compressed representation that is 236 times smaller than the input. The

compression ratio is measured as the ratio of the input dimension to the latent space dimension.
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Comparing them with the original TweetyNet that had maxpooling layers (“TweetyNet”),

it is observed that they have a higher overall sensitivity than the latter when the duration of training

data is less than 20s for z007 and z020 and less than 5s for z017. The absence of pooling preserves

the high dimensional feature maps benefitting the model when trained on limited data. Overall,

the performance of the vanilla AE and the VQVAE are similar. While the AE model learns the

mapping function that provides the best reconstruction from the latent representation, the VQVAE

model learns discrete latent embeddings from which new vocalizations can be generated.

3.4.2 Vocalization Generation

The most powerful aspect of VQVAE is its generative capabilities that can be leveraged

to design new stimuli for psychophysical or closed-loop experiments. To analyze the quality

of the generated vocalizations, the discrete latent representations zq from TweetyNet-VQVAE

are obtained for two calls – short and long – from z007’s mel spectrograms. With w and 1−w

as the weights corresponding to latent representations for zq short and zq long respectively, novel

vocalizations are generated by reconstructing the weighted latent representation zq new. Here w is

varied from 0 to 1 in steps of 0.1 and the generated vocalizations are shown in Figure 3.3.

It is observed that as the weight associated with the latent representation of the long

call is increased the generated mel spectrogram also morphs into appearing more like a long

call. Introducing such variations in vocalizations can be of use in psychophysical experiments,

wherein the discriminability between vocalizations and their perception is typically measured by

monitoring the behavior and/or neural activity of participants. The reconstruction error between

the weighted input mel spectrograms and the generated vocalizations was found to be ≈ 0.02 in

terms of explained variance. Finally, the options are endless in terms of the weighting schemes

and the combination of input vocalizations to design new stimuli, which when created and played

in a sequence can be learnt by a young male zebra finch.
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Figure 3.3: An example vocalization generated from the weighted latent representation of a
long and a short call during the first stage of TweetyNet-VQVAE.

3.4.3 Audio Features for Latent Representation and Automatic Labeling

While the reconstruction errors of the TweetyNet-VQVAE model were low (≈ 0.02), when

the reconstructed mel spectrograms of the test set were inverted to audio using the Griffin-Lim

reconstruction algorithm [61], the resultant audio had different prosody and sounded extremely

noisy with amplified high-frequency harmonics. These harmonics could be attributed to reverbera-

tions within the semi-anechoic chamber in which the audio was recorded. The poor reconstruction

of audio indicates that the embedding space of VQVAE not only encodes the information in the

vocalizations but also the background noise. This can be circumvented by training the VQVAE

such that the embedding space does not fit the background noise. It must also be noted that

the current VQVAE approach leverages the TweetyNet architecture, which need not be the best

encoder-decoder architecture. Also, the reconstruction error in the loss function doesn’t include

any metric that relates to the quality of the reconstructed audio. Thus, there is scope for improve-

ment in terms of the choice of encoder-decoder models, the dimensionality of the embedding

space, the constraints that can be levied to prevent the embeddings from learning noise and by
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incorporating perceptual loss [40, 62, 63] while training. The discrete embeddings need to be

analyzed further to understand the discontinuity that they introduce in the latent representations.

On the other hand, as the use case of latent representation is to generate novel vocalizations

for psychophysical experiments, it brings into question whether mel spectrogram is the best

representation of birdsong. Since the mel frequency scale is based on the critical bands in

the human auditory system [64], it inherently introduces bias into the model. Further, as the

(mel) spectrograms are computed using STFT which involves windowing and striding, they

cannot capture the rapid changes within vocalizations. However, they are good features for

automatic labeling as they capture the patterns across both frequency and time which are visually

discernible between vocalizations and can be easily recognized by a deep learning model. Thus,

the bias established by feature engineering needs to be eliminated for the application of latent

representation and audio generation. One way of achieving this is by employing an end-to-end

WaveNet based architecture with a learnable latent distribution that directly encodes the useful

information in the audio.
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Chapter 4

Neural Analysis of Calls

Zebra finch calls can be broadly classified into two categories namely long and short,

among many others [65]. Apart from the difference in duration, a long call is a type of vocalization

that is learnt by young males (and not by females) while a variety of short calls are used by both

males and females at a later stage [22, 45]. In the in-house dataset, all call events have been

provided with the same label ‘C’ irrespective of their type. As shown in Figure 3.3, there exist at

least two types of calls in z007. In this chapter, the types of calls in our dataset are determined

with a manifold-based dimensionality reduction technique. The categories of calls thus obtained

are analyzed along with the information encoded in their neural activity.

4.1 Data Preprocessing

The mel spectrograms of the audio recordings were computed as mentioned in Section 2.5

and were segmented to just the calls, which were then log scaled and padded (equally appended

and prepended) with zeros to ensure all calls were of the same length.

The electrophysiological data was preprocessed as follows,

• Each electrode channel was filtered to 250 - 8000Hz with a 4th order Butterworth bandpass
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filter.

• For each channel the root mean square (RMS) of the signal was computed and at a threshold

of 3.5 × RMS, the signal was binarized to yield a spike train. To account for the refractory

period, any spike within 1ms from the previous one was not taken into consideration.

Considering up to 100ms before the onset of calls, the spike train from each channel was

summed every 10ms to get the spike counts, yielding a N×10 dimensional data with N being the

number of electrodes.

4.2 Uniform Manifold Approximation and Projection

The Uniform Manifold Approximation and Projection (UMAP) [46] technique constructs

a high dimensional graph representation of the data and then optimizes a low-dimensional

graph to be as structurally similar as possible. To construct the initial high-dimensional graph,

UMAP builds a weighted graph with edge weights representing the likelihood that two points

are connected. The points are connected by extending a radius from each point and connecting

the points with overlapping radii. The radius is chosen locally based on the distance between

each point’s nth nearest neighbor. As the radius grows, the graph gets built with decreasing

weights for connections. Finally, by stipulating that each point must be connected to at least its

closest neighbor, UMAP ensures that both local and global structures are preserved. Once the

high-dimensional graph is constructed, UMAP optimizes the layout in a low-dimensional space

to be as similar as possible.

In this thesis, UMAP was applied to the zero padded mel spectrograms of calls as described

in the previous section with the following parameter settings – 60 for the number of neighbors,

0.25 for minimum distance and a random seed for reproducibility.
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4.3 Results and Discussion

4.3.1 Types of Calls from UMAP

Figure 4.1: 2D projections of calls from z007, z017 and z020 using UMAP along with exemplary
spectrograms for a points in the projections. Each cluster of calls is given an unique label Ci.

Figure 4.1 shows the 2D representation of the calls projected by UMAP. The mel spectro-

grams of a few points are displayed around the plots. For z007, it is observed that four distinct

clusters are formed with the cluster C0 corresponding to that of long calls. Considering the

remaining three clusters (C1, C2, C3, it is observed that they are generally shorter in duration than

the calls in C0. Hence, they can be considered short calls. Further, there exists a lot of variability

within the calls in terms of their duration and the slope of the format-like structures in their mel

spectrograms. In case of z017 and z020, the two distinct clusters are observed to be corresponding

to long and short calls respectively. Thus, calls have been clustered into different types, primarily

long and short, in the 2D space by UMAP. Subsequently, the same process was repeated for the

above classified short calls. Even after a selective search on UMAP parameters, no additional

clustering within short calls was observed.

4.3.2 Spike Counts and Mutual Information

For each type of call as obtained with UMAP, the average spike count computed every

10ms, up to 100ms before the onset of the vocalization is shown in Figure 4.2 for z007 and Figure
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Figure 4.2: Spike counts across channels binned every 10ms, upto 100ms before the onset of
calls in z007.

Figure 4.3: Spike counts across channels binned every 10ms, upto 100ms before the onset of
calls in z017 and z020.

32



4.3 for z017 and z020. It is observed that the average spike count typically between 0 to 5 with

the ones corresponding to long calls being generally higher than that for short calls. Not all the

recorded channels show spiking activity. Further, the typical preparatory period is found to be

between [-20,0]ms.

Similarly, the mutual information between the spike counts of each channel and the type

of call is computed as follows,

I(N;L) = H(N)−H(N|L)

where, N refers to the spike counts or neural activity, L refers to the label, H(N) is the

entropy of the spike counts and H(N|L) is the conditional entropy of spike counts given the call

labels. The normalized mutual information (NMI) is measured as the mutual information I(N;L)

weighted by the mean of H(N) and H(L) (entropy of labels of calls). The above metrics were

computed via a 2D histogram approach. Since the maximum spike count in a 10ms bin was

typically under 5, the histogram bin size for the spike counts was chosen as 5 across all zebra

finches.

Figure 4.4 and 4.5 show the entropy of spike counts H(neural), and the conditional

entropy of spike counts given label H(neural|label), for every 10ms bin in the preparatory period

across all channels for the three zebra finches. First, it is noticed that the channels that have

high entropies correspond to the channels that also had high spiking activity, indicating that the

firing activity is of high variance. However, the mutual information between the spike counts

and labels is typically low as denoted by the non-overlapping regions between the two entropies.

The minimum and maximum NMI across all channels is shown in Figure 4.6. Overall, the NMI

between spike counts and call labels are found to be above 0 for z007 and around 0.25 for z017

and z020, indicating that there is a mutual dependence between them and that by observing one

of them, some information can be obtained about the other.

33



Figure 4.4: Entropy of spike counts H(neural) and the conditional entropy of spike counts
given call labels H(neural|label) across channels computed every 10ms, up to 100ms before the
onset of calls in z007. The difference, H(neural)−H(neural|label) is the mutual information
between spike counts and the type of call.

Figure 4.5: Entropy of spike counts H(neural) and the conditional entropy of spike counts
given call labels H(neural|label) across channels computed every 10ms, up to 100ms before
the onset of calls in z017 and z020. The difference, H(neural)−H(neural|label) is the mutual
information between spike counts and the type of call.
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Figure 4.6: Minimum and maximum normalized mutual information (NMI) between the spike
counts and the type of call across all channels computed every 10ms, up to 100ms before the
onset of calls in z007, z017 and z020.
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4.3.3 Gaussian Classification of Spike Counts

As the NMI analysis revealed that there exists some mutual information between the

spike counts and the call labels, a Bayesian classifier was set up to determine the discriminability

between the spike counts for different types of calls. For this, the spike counts across all channels

at a particular preparatory time bin were modeled as a multivariate Gaussian. The call types were

assumed to have uniform prior and the posterior probabilities were obtained as follows,

P(label|neural) = P(neural|label)P(label)
P(neural)

where P(neural|label) ∼ N(µCi,ΣCi) for each label i. P(label) = 0.5 for all the zebra finches

including z007, for whom the covariance for C0 and C1 were found to be non-invertible. Conse-

quently, the calls belonging to that type couldn’t be considered for classification. P(neural) =

∑i∈labels P(neural|i).

Figure 4.7: Sensitivity to the types of call and the accuracy of a multivariate Gaussian classifier
for z007, z017 and z020, modelled using the spike counts computed every 10ms, upto 100ms
before the onset of calls.

Figure 4.7 shows the sensitivity of the Bayesian classifier to call labels and its accuracy

at different bins of time in the preparatory period. For z007, it is observed that from -30ms to

onset of vocalization, the classifier is more sensitive to C1 than C0 whereas the sensitivity to both

the call types is above 0.8 for z017 and z020. The overall classification accuracy is found to be
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around 0.7, 0.8 and 0.82 for z007, z017 and z020 respectively, implying that the spike counts

during the preparatory period [-20,0]ms are indicative of the call type that will be vocalized.

In conclusion, all the above analyses have shown that UMAP can primarily categorize

calls into long and short calls. The spike counts for long calls are higher than those for short calls

during the preparatory period that extends up to 20ms before the vocal behavior. NMI analysis

revealed that there exists some mutual information between the spike counts and the call labels.

Finally, a Gaussian classifier with a uniform prior can help determine the label of the spike counts

with more than 70% accuracy.
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Chapter 5

Conclusion

This thesis has addressed three major components that are crucial in developing neurally

driven vocal prostheses for songbirds. These components are the automatic labeling of vocaliza-

tions in free behavior, the study of their latent representations and the information encoded in the

neural activity of non-stereotypical behavior like calls. For each component, experiments were

performed on an in-house dataset collected from adult male zebra finches.

Reviewing the deep learning approaches that have been leveraged for automatic labeling,

the TweetyNet model, consisting of convolutional layers coupled to a recurrent layer with bidirec-

tional LSTM units, was found to be highly sensitive to vocalizations. It showed high temporal

precision in the detection of onset and offset of vocalizations. In fact, transient misclassifications

within vocal events were close to 0ms. The model achieved maximum performance with less than

2 minutes of hand-labeled training data thereby significantly reducing the human effort involved

in manual labeling. Transfer learning experiments revealed that the similarities within intra-

species vocalizations can be leveraged to reduce training costs. A model based on the WaveNet

architecture was also proposed, which was purely convolutional and operated directly on audio

recordings thereby eliminating the need for feature engineering. Its sensitivity to vocalizations

was neither too high nor too low, but it was highly precise in detecting the onset and offset of
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vocalizations. Being a larger model with input that is typically recorded at high sampling rates, it

is more data-intensive but faster than an equivalent model with recurrent layers. The capabilities

of the WaveNet model need to be explored with augmented data, and the overall performance of

the labeling system can be improved with a post-processing stage for removing false positives.

For the latent representation of vocalizations, Vector Quantized Variational Autoencoder

(VQVAE) was explored as a viable technique. The quality of learnt latent representations was

tested with a two-stage approach which involved coupling a pretrained VQVAE with the LSTM

and the fully connected layers of the TweetyNet model. It was found that the resultant labeler

performed equivalently to the original TweetyNet, indicating that the latent vectors of VQVAE

encoded the relevant information from vocalizations. An exemplar novel vocalization was

generated from the weighted latent representations of two existing vocal events, which could then

be used in psychophysical experiments on songbirds. However, for such applications, models that

operate on raw audio without any feature engineering would eliminate any human bias in feature

design. Further, spectrograms of audio cannot typically capture the rapid fluctuations in vocal

behavior that are observed in songbirds. Therefore, future experiments need to be performed

directly on raw audio and one such approach is to use a WaveNet-based variational autoencoder.

Incorporating perceptual loss while training could further improve the quality of the reconstructed

or generated audio.

Finally, the last component of the thesis delved into analyzing the neural activity corre-

sponding to different types of calls. Using the Uniform Manifold Approximation and Projection

algorithm, at least 2 types of calls were observed for each zebra finch in the 2D space. These

types could be broadly referred to as long and short calls. The spike counts for long calls were

found to be higher than those for short calls during the preparatory period that spanned up to

30ms before the onset of vocal behavior. The mutual information analysis revealed that there is a

dependency between the spike counts and the call type. High classification accuracy was achieved

by a multivariate Gaussian classifier that modeled the spike counts across channels during the
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preparatory period. These experiments on calls have provided a starting point for further analysis

of non-stereotypical behavior.

These techniques need to be further optimized for size and latency as one moves towards

real-time neural decoding. The decoded sequence of vocalizations can be provided as auditory

feedback for closed-loop experiments or train young zebra finches.

40



Bibliography

[1] Keith A Josephs, Joseph R Duffy, Edythe A Strand, Mary M Machulda, Matthew L Senjem,
Ankit V Master, Val J Lowe, Clifford R Jack Jr, and Jennifer L Whitwell. Characterizing a
neurodegenerative syndrome: primary progressive apraxia of speech. Brain, 135(5):1522–
1536, 2012.

[2] E Gorobets, R Kulsharipova, and M Novak. Speech disorders in patients with cognitive
impairment caused by neurogenerative diseases: an overview. Journal of Language and
Literature, 7(2):177–180, 2016.

[3] Gerald J Canter. Speech characteristics of patients with Parkinson’s disease: I. intensity,
pitch, and duration. Journal of speech and hearing disorders, 28(3):221–229, 1963.

[4] Moira Mulligan, Joseph Carpenter, Joanne Riddel, Maureen Kenny Delaney, Gary Badger,
Patricia Krusinski, and Rup Tandan. Intelligibility and the acoustic characteristics of speech
in amyotrophic lateral sclerosis (ALS). Journal of Speech, Language, and Hearing Research,
37(3):496–503, 1994.

[5] Florent Bocquelet, Thomas Hueber, Laurent Girin, Christophe Savariaux, and Blaise Yvert.
Real-time control of an articulatory-based speech synthesizer for brain computer interfaces.
PLoS computational biology, 12(11):e1005119, 2016.

[6] Jonathan S Brumberg, Alfonso Nieto-Castanon, Philip R Kennedy, and Frank H Guenther.
Brain–computer interfaces for speech communication. Speech communication, 52(4):367–
379, 2010.

[7] Josh Chartier, Gopala K Anumanchipalli, Keith Johnson, and Edward F Chang. Encoding of
articulatory kinematic trajectories in human speech sensorimotor cortex. Neuron, 98(5):1042–
1054, 2018.

[8] Frank H Guenther, Jonathan S Brumberg, E Joseph Wright, Alfonso Nieto-Castanon,
Jason A Tourville, Mikhail Panko, Robert Law, Steven A Siebert, Jess L Bartels, Dinal S
Andreasen, Princewill Ehirim, Hui Mao, and Philip R Kennedy. A wireless brain-machine
interface for real-time speech synthesis. PloS one, 4(12):e8218, 2009.

41



[9] Kristofer E Bouchard and Edward F Chang. Neural decoding of spoken vowels from
human sensory-motor cortex with high-density electrocorticography. In 2014 36th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society, pages
6782–6785. IEEE, 2014.

[10] Miguel Angrick, Christian Herff, Emily Mugler, Matthew C Tate, Marc W Slutzky, Dean J
Krusienski, and Tanja Schultz. Speech synthesis from ECoG using densely connected 3d
convolutional neural networks. Journal of neural engineering, 16(3):036019, 2019.

[11] Gopala K Anumanchipalli, Josh Chartier, and Edward F Chang. Speech synthesis from
neural decoding of spoken sentences. Nature, 568(7753):493–498, 2019.

[12] Janaki Sheth, Ariel Tankus, Michelle Tran, Nader Pouratian, Itzhak Fried, and William
Speier. Generalizing neural signal-to-text brain-computer interfaces. Biomedical Physics &
Engineering Express, 7(3):035023, 2021.

[13] Qinwan Rabbani, Griffin Milsap, and Nathan E Crone. The potential for a speech brain–
computer interface using chronic electrocorticography. Neurotherapeutics, 16(1):144–165,
2019.

[14] Ned T Sahin, Steven Pinker, Sydney S Cash, Donald Schomer, and Eric Halgren. Sequential
processing of lexical, grammatical, and phonological information within broca’s area.
Science, 326(5951):445–449, 2009.
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