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Abstract

The Mnemonic Similarity Task (MST: Stark et al., 2019) is a modified recognition
memory task designed to place strong demand on pattern separation. The sensitivity
and reliability of the MST make it an extremely valuable tool in clinical settings. We
develop new cognitive models, based on the multinomial processing tree framework,
for two versions of the MST. The models are implemented as generative probabilistic
models and applied to behavioral data using Bayesian graphical modeling methods.
We demonstrate how the combination of cognitive modeling and Bayesian methods
allows for flexible and powerful inferences about performance on the MST. These
demonstrations include latent-mixture extensions for identifying individual differences
in decision strategies, and hierarchical extensions that measure fine-grained differences
in the ability to detect lures. One key finding is that the availability of a “similar”
response in the MST reduces individual differences in decision strategies and allows
for more direct measurement of recognition memory.

keywords: Mnemonic Similarity Task, multinomial processing trees, recognition memory,
Bayesian graphical models
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Introduction

The Mnemonic Similarity Task (MST: Stark et al., 2015, 2019) is a modified recognition
memory task designed to place strong demands on pattern separation. The most common
form of the task involves two phases. The first is a study phase, in which a participant
is presented with a sequence of stimuli, and is given a simple task to encourage active
encoding. The second phase is a test phase, in which a sequence of items are presented and
the participant must indicate whether or not they were presented on the study list. The key
innovation of the MST is that the test phase includes lure stimuli that are similar to, but
not the same as, studied stimuli. The degree of the similarity is often quantified, so that an
MST involves a range of different levels of lure stimuli. In one version of the MST, the only
possible response options are “old” and “new”, which means that lure stimuli are correctly
classified as new. In another version, the possible response options are “old”, “similar”, and
“new”, which means the lure stimuli are correctly classified as similar.

Through the introduction of lure stimuli, the MST provides a more fine-grained test of
recognition memory. Its sensitivity and reliability have made it an extremely valuable tool
in clinical settings for identifying hippocampal dysfunction associated with healthy aging,
dementia, schizophrenia, depression, and other disorders. The standard empirical measure
of lure performance is the Lure Discrimination Index (LDI), which is the difference in the
probability of a “similar” response to a lure compared to the probability of a “similar” re-
sponse to a new item. An alternative, and potentially complementary, approach to empirical
measures like the LDI is to use cognitive models of task behavior to make inferences about
people’s underlying memory systems and decision processes. Model-based approaches have
a long history in clinical assessment and have been applied to diagnostic tasks involving
recognition (Snodgrass & Corwin, 1988), recall (Alexander et al., 2016; Lee et al., 2020),
and semantics (Chan et al., 2001; Westfall & Lee, 2021).

Signal Detection Theory (SDT: Green & Swets, 1966; MacMillan & Creelman, 2004) is
widely used as a model of recognition memory in tasks that do not incorporate lure stimuli.
In these models, the old and new stimuli correspond to the SDT signal and noise distribu-
tions. One way to extend the SDT model to the MST would be to introduce additional
distributions located between the signal and noise distributions representing the various
levels of lure stimuli. This extension has been successfully used for the old-new task (e.g.
Villarreal et al., 2022). For the old-similar-new task, however, an extended SDT approach
also requires introducing a second decision criterion associated with the “similar” response.
This makes the strong assumption that a “similar” response is based on a recognition mem-
ory strength that is too strong for a “new” response but too weak for an “old” response.
Conceptually, as argued by Stark et al. (2019, p. 940), this assumption seems problematic.
When presented with a lure item, it seems at least possible that a participant actively
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remembers the similar item presented during study, and is able to discriminate that item
from the one being presented. Such a mental comparison would provide active evidence for
a “similar” response, contrary to the assumptions of a SDT model.

A different cognitive modeling framework is provided by discrete models based on multi-
nomial processing trees (MPTs: Batchelder & Riefer, 1980; Erdfelder et al., 2009; Kellen
& Klauer, 2014), which are also widely used to model standard recognition memory tasks.
The most common MPT model of recognition memory is the two-high threshold model. It
assumes that when an old item is presented, there is some probability that it is remembered
and an “old” response is made. If it is not remembered, the participant is assumed to guess,
which could lead to either an “old” or “new” response. On the other hand, if a new item is
presented, there is a probability it is remembered that this item was not studied, leading to
a “new” response. Otherwise, the same guessing process is used. The two-high threshold
model, in this sense, is consistent with the intuition that it is possible for an old item being
remembered, but also for a new item to be remembered not to have been studied (Klauer
& Kellen, 2018).

In this article, we develop new MPT models of the study-test MST tasks with both old-
new and old-similar-new response options. The models are implemented as graphical models
(Lee & Wagenmakers, 2013). This allows Bayesian methods of inference to be applied,
and also allows the core task models to be extended to provide accounts of individual
differences in lure discriminability and response strategies. We demonstrate these features
of the modeling approach in case studies using previously collected data. The structure of
the remainder of this article is as follows. In the next section, we develop the two basic
MPT models of the MST. We then describe the data used in the case studies. The first case
study focuses on the old-new MST. The second case study focuses on the old-similar-new
MST. We conclude by discussing how the models help measure and understand individual
differences in recognition memory, and emphasize the role of Bayesian graphical models
in allowing the flexible development of useful models while providing rigorous statistical
inference.

New MPT Models of the MST

MPT Model of the Old-New Task

The two-high threshold model can naturally be extended to the MST, using the prob-
ability trees shown in Figure 1. There are three trees, corresponding to old, new, and lure
stimuli. The processing of old stimuli is identical to the two-high threshold model, with
probabilities ρ of remembering and γ of guessing old. The processing of new stimuli is al-
most identical to the two-high threshold model, except that the probability of remembering
that an item was not studied is now ψ, which is potentially different from ρ. A weakness of
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old
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1− ρ

Figure 1. Probability tree representation of the MPT model for the old-new MST.

the two-high threshold model is that it has to assume for identifiability that these probabili-
ties are equal. It seems psychologically plausible, however, that these probabilities could be
different, and the additional information provided by the MST design and its introduction
of lure stimuli allows the equality constraint to be removed.

Most importantly, the MST model adds assumptions about processing lures. It is as-
sumed that the first step is an attempt to remember the studied item on which the lure is
based. If memory succeeds, there is then a probability δl that the presented lure is discrim-
inated from the remembered item. If both memory and discrimination succeed, a “new”
response is made. If memory succeeds but discrimination fails, an “old” response is made.
If the studied item is not remembered, the same guessing process applies as for old and new
stimuli. The δl discriminability applies to lures of type l, allowing for different probabilities
depending on how similar the lure is to the previously studied item.

Collectively, these assumptions mean that the probability of responding “old” to an old
item is

θ = ρ+ (1 − ρ) γ, (1)

because it could arise either by remembering or guessing. The probability of responding
“old” to a new item is

θ = (1 − ψ) γ, (2)

because it can only arise by guessing. Finally, the probability of responding “old” to a level
l lure item is

θ = ρ (1 − δl) + (1 − ρ) γ, (3)

because it could arise by remembering the relevant study item but failing to discriminate
it from the presented item, or by failing to remember and then guessing.

MPT Model of Old-Similar-New Task

The MPT model of the old-similar-new MST requires two additional changes, as shown
in Figure 2. The first is that guessing can produce “old”, “similar”, or “new” responses.
The model has probabilities for all three possibilities, γo, γs, and γn, with the constraint
γo + γs + γn = 1. The second change is that a “similar” response is made if a remembered
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Figure 2. Probability tree representation of the MPT model for the old-similar-new MST.

item is distinguished from a presented lure. In the old-new task, this response is “new”,
because all that can be indicated is that the item was not on the study list. In the old-
similar-new task, it can be identified as a lure item via a “similar” response.

The model now makes predictions about the probability of “old”, “new”, and “similar”
responses for each type of presented item. For an old item, these probabilities are

θ =
(
ρ+ (1 − ρ) γo, (1 − ρ) γn, (1 − ρ) γs)

, (4)

where the vector θ lists the probabilities for “old”, “new”, and “similar” responses, in that
order. For a new item, the probabilities are

θ =
(
(1 − ψ) γo, ψ + (1 − ψ) γn, (1 − ψ) γs)

. (5)

Finally, the probabilities for a level l lure item are

θ =
(
ρ (1 − δl) + (1 − ρ) γo, (1 − ρ) γn, (1 − ρ) γs)

. (6)

Experiment

Participants

A total of 21 participants (13 female, mean age 21 years, age range 18–24 years) were
recruited through the Sona Systems experimental management system at the University of
California at Irvine, which organizes the participation of students in science experiments for
course credit. All participants signed consent forms approved and conducted in compliance
with the Institutional Review Board of the University of California at Irvine.

Methods

Participants were given both old-new and old-similar-new versions of the MST using
different stimulus sets. In both tasks 128 images were studied while completing an in-
door/outdoor task to encourage active encoding (2.0s duration, 0.5s ISI). During testing,
192 images were presented (2.0s duration, 0.5s ISI), made up of 64 repeated old images, 64
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new images, and 64 lure images. The order of the task and the two stimulus sets assigned
to each task were counterbalanced across participants.

Participants indicated their responses via on-screen button clicks. We used a web-based
version of the MST (Stark et al., 2021) written in JavaScript using the jsPsych library
(De Leeuw, 2015) to allow for remote testing. It is a mature, free, stable library that has
been rigorously tested even for demanding reaction time-based experiments (De Leeuw &
Motz, 2016; Hilbig, 2016; Pinet et al., 2017). In addition, we integrated the task with the
open-source JATOS package (Lange et al., 2015) to provide a reliable means of securely
administering test sessions on the web and managing the data.

In the MST, lure images have an empirically-derived “mnemonic similarity” in relation
to their studied counterpart based on an independent assessment of how frequently each
image is incorrectly judged to be identical to the study image (Lacy et al., 2011; Yassa
et al., 2011). In the MST, this continuous probability is binned into five levels with level 1
lures being the most similar and level 5 lures being the least similar.

Behavioral Results

Accuracy ranged between 30% and 86% for the old-new task with a mean of 68%. and
between 22% and 84% for the old-similar-new task with a mean of 62%. The product-
moment correlation for participant accuracy across the two tasks was r = 0.77. This is
consistent with previous findings. For example, Stark et al. (2015) found LDI measures for
these tasks to have a correlation of 0.79.

MPT Model for the Old-New MST

Basic Model

Figure 3 shows a graphical model representation of the MPT model for the old-new
MST. In graphical models, nodes represent latent parameters and observed information,
and specify how they are assumed to be related to one other. Children depend on their
parents in the graph structure, and encompassing plates identify independent replications
of the graph structure. Using the notation adopted by Lee & Wagenmakers (2013), the
model parameters ρ, ψ, γ, and δ = (δ1, . . . , δ5) are shown as circular and unfilled nodes,
because they represent continuous latent parameters. Whether the stimulus item on trial t
is an old, new, or level l lure is represented by st. This node is square and shaded, because
it represents discrete observed information. The model parameters and item information
together determine the probability θt of an “old” response. This is shown as a double-
bordered node because it is a deterministic function of the parameters and item information.
Finally, the observed behavior on trial t is yt = 1 if the response is “old” and yt = 0 if the
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yt

θt st

γ ψ ρδ

t trials

ρ, ψ, γ, δl ∼ uniform
(
0, 1

)

θt =





ρ+ (1− ρ) γ if st = old

(1− ψ) γ if st = new

ρ (1− δl) + (1− ρ) γ if st = lure l

yt ∼ Bernoulli
(
θt
)

Figure 3. Graphical model representation of the MPT model for the old-new MST.

response is “new”. This is discrete and observed, and depends on the response probability
θt. The trial-level information—the item information, response probability, and observed
response—is encompassed by a plate that indicates the replication of this graph structure
across trials.

We implemented the graphical model in JAGS (Plummer, 2003), which is a high-level
scripting language that automates fully Bayesian inference based on computational meth-
ods. Throughout this article, we generally sampled models using 8 independent chains
with 1000 samples each after discarding 1000 burn-in samples. Convergence was assessed
by visual inspection of traceplots and the standard R̂ statistic (Brooks & Gelman, 1997).
JAGS scripts and MATLAB code for applying the models are provided in supplementary
information.

Descriptive Adequacy

Figure 4 summarizes the descriptive adequacy (or “fit”) of the model to each participant.
Each panel corresponds to a participant, and their behavior is shown by the orange line.
The line follows the item ordering old (O), level 1 lure (L1), level 2 lure (L2), . . . , level 5
lure (L5), and new (N). This ordering corresponds to decreasing similarity of the test item
to a studied item. The line then indicates the proportion of “old” responses to each item
type made by the participant. Optimal performance would be 100% “old” responses for
old items and 0% “old” responses for all other items. The participants are labeled A–U
and ordered in terms of decreasing overall accuracy across the panels. It is visually clear
that more accurate participants show closer to optimal behavior, with lines that decrease
as items become less similar.

The blue cross markers in Figure 4 show the mean of the posterior predictive distri-
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Figure 4. Descriptive adequacy of the MPT model for the old-new MST for all 21 partic-
ipants.

bution for the model and the lines above and below show the 95% credible interval. The
posterior predictive distribution can be interpreted as the model’s attempt to re-describe
the behavioral data. A descriptive adequate model should match the behavioral data. It
is clear that the MPT model does this well for almost all of the participants. It closely
matches the proportion of “old” responses to each item type, except for a couple of the
worst-performed participants (e.g., Participants S and T). Most importantly, the model is
able to capture the individual differences in participant behavior. For example, Participant
A mostly responds “new” to the lure items, while Participant Q mostly responds “old”. The
model is able to describe both of these extremes, and the intermediate sorts of behavior
shown by the other participants.

Inferences

Figure 5 shows the parameter inferences made by the models. The left panel shows
the relationship between the two memory parameters ρ and ψ. The right panel shows the
relationship between ρ and the guessing old probability γ. Each participant’s joint posterior
with respect to the pair of parameters is summarized by a marker for the posterior mean
and error bars for 95% credible intervals for each marginal posterior. The two memory
parameters are modestly correlated with each other, but are not identical. This is evidence
in favor of the modeling assumption to distinguish between remembering that an item
was studied versus remembering that an item was not studied. The memory and guessing
old parameters appear to vary independently across participants, consistent with them
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Figure 5. Parameter inferences of the MPT model for the old-new MST applied to the 21
participants.

measuring different memory and decision making processes.

Figure 5 superimposes colored squares that suggest a possible interpretation of the
individual differences revealed by the parameter inferences. Each color corresponds to
a potential interpretable subgroup. The yellow and green squares represent a different
sort of contaminant behavior. In the left panel, it is clear that Participants S, T, and
U in these subgroups have very low memory performance. In the right panel they are
separated into Participants S and T who guess “old” and “new” about equally often, and
Participant U (and potentially Q) who almost always respond “old”. Random responding
and repeated responding are two common sorts of contaminant behavior (Zeigenfuse & Lee,
2010), and seem likely explanations for the poor performance of these participants. These
interpretations are highly consistent with the observed behavior of Participants S, T, and
U in Figure 4.

The right panel of Figure 5 identifies subgroups among participants who performed well
in the task. The darker blue subgroup that includes Participants L, M, N, O, P, and R
are inferred to have higher base-rates of guessing “old” and often have worse memory. The
lighter blue subgroup includes the participants with the best memory and a lower probability
of guessing “old”. This second subgroup generally corresponds to the participants with the
greatest task accuracy.
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Figure 6. Graphical model representation of the MPT model for the old-new MST with a
hierarchical latent-mixture extension to allow for individual differences.

Extension to Model Individual Differences

One way to incorporate the exploratory suggestion of subgroups into formal modeling
is by extending the basic model to have hierarchical latent mixtures. As demonstrated
by Bartlema et al. (2014, see also Lee 2018), hierarchical latent-mixture models provide a
general statistical way of extending the cognitive models to account for two sorts of indi-
vidual differences. The latent mixture extension allows for qualitatively different subgroups
of participants, while the hierarchical extension allows for continuous variation within the
subgroups. The latent mixture extension thus addresses both the contaminant behavior and
the different types of attentive behavior. Intuitively, each component in the latent-mixture
model corresponds to one of the colored boxes, and represents a different task strategy. The
hierarchical extension then allows for variation in the parameters of participants within the
same component, and represents fine-grained variability in exactly how a strategy is exe-
cuted.

Figure 6 shows a graphical model that incorporates these extensions. There are five
components in the latent-mixture model, indexed by a latent discrete parameter zi for the
ith participant. The first two components correspond to attentive responding and focus
on individual differences in the memory ρi and guessing base-rate γi individual parame-
ters. These parameters are assumed to be drawn from overarching truncated Gaussian
distributions that are different depending on whether zi = 1 or zi = 2. In particular, the
subgroup means are constrained to to be different with the first “low memory” subgroup
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Figure 7. Subgroup inferences for each participant based on the hierarchical latent-mixture
extension of the MPT model of the old-new MST.

having lower mean memory µ1
ρ < µ2

ρ but greater base-rate of guessing “old” µ1
γ > µ2

γ than
the second “high memory” subgroup. Intuitively, this means zi = 1 corresponds to the
dark blue strategy in Figure 5, in which worse memory for old items is compensated for by
increasing guessing “old”, while zi = 2 corresponds to the light blue strategy in which old
items are remembered better and the base-rate of guessing “old” is lower. The remaining
three components correspond to different contaminant strategies, so that if zi = 3, there is
always a 50-50 probability of responding “old” (θ = 1

2), if zi = 4 there is a high probability
of responding “old” (θ = 0.99), and if zi = 5 there is a high probability of responding “new”
(θ = 0.01).

The latent subgroup indicator is sampled for each participant from a categorical dis-
tribution zi ∼ categorical

(
ϕ

)
so that ϕ = (ϕ1, . . . , ϕ5) represents the base rate of each

strategy. The base-rate itself is given a Dirichlet distribution ϕ ∼ Dirichlet
(
1, . . . , 1

)
which

corresponds to the assumption that all possible base-rates are equally likely. The memory
for absence ψi and the discriminability probabilities δi do not define the proposed strategy
differences and so continue to be allowed to vary independently across individuals.

Inferences

Figure 7 shows the inferences about subgroup membership, represented by the posterior
distribution of zi, made by the model for each participant. The subgroup inferences largely
match the proposed groupings in Figure 5. The most accurate Participants A–K are inferred
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to belong to the “high memory” group, and less accurate Participants L–R are inferred to
belong to the “low memory” group. The exception is Participant J, whose classification is
uncertain. There is also significant uncertainty for Participant H. For the remainder of the
participants the inferences about group membership are relatively confident, because the
most likely subgroup has most of the posterior mass. The three participants anticipated to
show contaminant behavior are inferred to belong to the appropriate “random” or “always
respond old” subgroups.

While the subgroup inferences make sense, given the assumption of the different possible
strategies, it is important to test for the evidence of these strategies as an account of
individual differences. In particular, evidence for dividing the non-contaminant participants
into two subgroups is important. (It could be argued that it is always useful to allow for
the possibility of contaminant behavior, even if it is not observed in a specific data set).
Evidence for two qualitatively different forms of task-attentive behavior is provided by the
Bayes factor comparing a model that includes the subgroups to one that does not.

We approximated this Bayes factor using the posterior distribution of ϕ1, which corre-
sponds to the base-rate of “low memory” participants. If this base-rate is zero, the model
reduces to having just one account of task-attentive behavior. Thus the Savage-Dickey
method for estimating Bayes factors, which compares the ratio of prior to posterior densi-
ties at the point in parameter space where a more general model reduces to a nested special
case, can be used (Wetzels et al., 2010). The Bayes factor is BF10 = 5, meaning that the
data are five times more likely under the model that incorporates the two subgroups. A
figure showing the posterior distributions of the base-rate probabilities ϕ is provided in the
supplementary information.

Extension to Model Discriminability

The inferred discriminabilities δi = (δi1, . . . , δi5) measure the ability of the ith person to
discriminate a remembered study item from a current item on a test trial. In the modeling
thus far, they are assumed to be independent. A stronger assumption would impose an
order constraint, corresponding to the idea that more similar lures are more difficult to
discriminate. Such an order constraint could be imposed in a strong way for each individual
δi1 < . . . < δi5, or in a weaker way in a hierarchically extended model by applying it to the
mean of group distributions for each level of lure.

We pursue an alternative approach using a model of the relationship between similarity
and discriminability. This is also a form of hierarchical extension, specifying additional
modeling assumptions about the relationship in terms of parameters that can vary across
individuals. In an exploratory way, we observed that the inferences about δi in the un-
constrained model showed a mostly monotonic and often S-shaped (sigmoidal) pattern of
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Figure 8. Modeled relationship between the similarity of a lure to a studied item and the
probability of discriminating the lure.

increase in the probability of discrimination as lures become easier to distinguish. A figure
showing these results is provided in the supplementary information.

On this basis, we propose the logistic model relating lure similarity to discrimination
probability

δil = 1
1 + exp

{
−βi

(
l

nl+1 − τi

)} , (7)

where τ can be interpreted as a threshold for discriminability and β can be interpreted
as a slope controlling how quickly discriminability increases. Figure 8 shows three specific
examples of this relation that help understand the interpretation of the parameters. The
lure similarity is normalized to lie between 0 and 1, so that the model is applicable to MST
designs with any number of lure levels. The five levels for the current experiment have been
mapped to normalized similarities of 1/6, . . . , 5/6. This is achieved by the

(
l

nl+1 − τ
)

term
in the shift of the logistic. Accordingly, smaller values of τi mean that the discriminability
probability begins to increase for more difficult lures. The specific examples show that for
τi = 0.25 there is already some probability of discriminating level 1 lures and discrimination
is near perfect for level 2 lures. For τi = 0.67, in contrast, level 4 lures are discriminated
about half the time and only the least similar level 5 lures are consistently discriminated.
The specific examples also show how slopes ranging from βi = 10 to βi = 20 impact the
rate of increase in discriminability.
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Figure 9. Graphical model representation of the MPT model for the old-new MST with
two subgroups of attentive participants and a logistic relationship between lure similarity and
discriminability.

Figure 9 shows a graphical model that implements the hierarchical extension for dis-
criminability. The key change is that δi now becomes a deterministic function of βi and τi.
In this model, only the latent-mixture components corresponding to attentive task behavior
are included. Participants S, T, and U identified as contaminants by the analysis in Figure 7
are excluded from the analysis.

This model remains descriptively adequate using the same approach to posterior predic-
tive analysis presented in Figure 4. This is an important finding, since the model has been
significantly extended by introducing the two strategies, and significantly constrained by
the logistic relationship between lure similarity and discriminability. A figure showing the
posterior predictive analysis for this model is provided in the supplementary information.

Inferences

Figure 10 summarizes the inferences about the relationship between lure similarity and
discriminability for each participant. The solid lines show the logistic function corresponding
to the inferred posterior means of the slope βi and threshold τi for the ith participant. The
violin plots show the posterior distributions for each lure level. The slopes are reasonably
similar: almost all of the participants have low discriminability for the most difficult level
1 lures, near perfect discriminability for the easiest level 5 lures, and a steady rate of
increase between those extremes. There is much more variability in the thresholds at which
the increase in discriminability begins. For example, Participants D and E begin to show
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Figure 10. The relationship between lure similarity and discriminability for each partici-
pant.

increasing discriminability for the level 2 lures, Participants G and H begin to increase
for the level 3 lures, and Participants K and L begin to increase for level 4 lures. The
interpretable variability in the threshold τi suggests that it is a useful measure of lure
discrimination. It can be interpreted as a measure of how similar or different lures need to
be so that a participant has some ability to discriminate them from remembered studied
items.

Figure 11 shows one way in which the model can be used to measure participants
memory based on their MST performance. The left panel summarizes the joint posterior
distribution of the memory ρ and threshold τ parameters. Markers correspond to posterior
means and error bars show 95% credible intervals. These two parameters capture the
different aspects of memory assessed by the MST. The memory parameter corresponds to
the ability to recall studied items. It essentially corresponds to the memory ability assessed
by a standard recognition memory task. In support of this, the correlations of the posterior
mean of ρ with a standard frequentist d′ measure of discriminability are r = 0.81 between
old and new items and r = 0.54 between old and lure items. The threshold parameter, on
the other hand, corresponds to the ability to discriminate remembered items from similar
ones presented at test. It corresponds to the pattern separation capabilities that the MST
aims to measure.

The results in Figure 11 show that these abilities vary largely independently across
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Figure 11. Inferences about remembering probabilities and discriminability thresholds for
all participants in the old-new MST (left panel), and summary behavior for four illustrative
participants (right panels).

the participants. Memory recall probabilities can vary from about 40% to about 80% and
thresholds can vary from about 20% to 80% across the normalized similarity scale. Four
illustrative participants are highlighted in Figure 11 to emphasize the usefulness of this
analysis. They approximately represent the four possibilities of low versus high memory
and low versus high discriminability. The behavioral performances of these participants,
as originally presented in Figure 4, are shown in the four right hand panels. Participants
N and L are inferred to have worse discriminability than Participants C and A, which is
evident behaviorally because they often respond “old” to lures. Participants N and C are
inferred to have worse memory than Participants A and L, which is evident behaviorally
because they fail to respond “old” to old stimuli more often.

MPT Model for the Old-Similar-New MST

Basic Model

We implemented the basic MPT model for the old-similar-new MST as a graphical
model, following the same approach used to implement the old-new model in Figure 1. A
figure showing the graphical model is provided in the supplementary information. The key
change is that the behavioral data now take the form yt = 1 if the participant responded
“old” on the tth trial, yt = 2 if they responded “new”, and yt = 3 if they responded “similar”.
In the same way, the trial information is extended to st = 1 for old study items, st = 2 for
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Figure 12. Inferences of basic old-similar-new MPT model, showing the relationship be-
tween the memory ρ, memory for absence ψ, guessing old γo, and guessing similar γs

parameters for the 21 participants.

new items, and st = 3 for lures. The choice probabilities θt are given by Equations 4, 5,
and 6 for “old”, “new”, and “similar” responses.

Inferences

Figure 12 summarizes the inferences from applying this basic model to the old-similar-
new MST data. There are two additional panels, showing the relationship between memory
ρ and the additional guessing similar γs parameter, and between the guessing old γo and
guessing similar γs parameters. Once again, there is a clear correlation between remember-
ing an item was studied and remembering it was not studied. The analysis of memory and
guessing parameters suggests that Participants R, S, and U may be contaminants. These
three participants have much lower memory than the others. Participants R and S guess
“old” more often than most other participants, perhaps to compensate for their poor mem-
ory. Participant U, on the other hand, appears to compensate by guessing “similar” with
high probability. This suggests the need to consider an additional form of contaminant
behavior based on repeatedly making “similar” responses.
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Unlike the old-new analysis in Figure 5, there is no obvious subgroup structure for the
memory and guessing behavior of the remaining attentive participants. They appear to
form a single group with high memory probabilities, low probabilities of guessing “old” and
moderate probabilities of guessing “similar”.

Extension to Model Individual Differences

We used the same modeling extensions and analyses as used for the old-new model.
First, we developed a latent-mixture extension that allowed for two subgroups of attentive
responding, defined in the same way as for the old-new model, and four possible types
of contaminants: random responding, repeatedly responding “old”, repeatedly responding
“new”, and repeatedly responding “similar”.

Inferences

A figure summarizing the inferences of this model, in the same form as Figure 7, is
provided in the supplementary material. Participant R is inferred to be a random responding
contaminant, and Participant U is inferred to be a repeated similar responding contaminant.
Participant S is the only one inferred to belong to the low memory subgroup. The model
comparison of the one vs two attentive subgroups, however, found some evidence in favor
of a single group, with a Bayes factor of 2.3. A figure showing the posterior distributions
for ϕ is provided in the supplementary information.

While this model comparison does not provide conclusive evidence, it does favor the
simpler account that there is only one qualitative form of attentive behavior in this version
of the task. Accordingly, we considered a modified latent-mixture account, using only the
mixture component for attentive behavior involving the model parameter, as the basis of
subsequent modeling. Under this account, Participant S is inferred to be completing the
task rather than being a contaminant.

Extension to Model Discriminability

Finally, we extended the model hierarchically to incorporate the same logistic relation-
ship between lure similarity and discriminability used for the old-new model. Figures show-
ing the inferred δil discriminabilities for each participant and lure both with and without
this constraining model are provided in the supplementary information.

Descriptive Adequacy

Figure 13 shows a posterior predictive analysis for checking the descriptive adequacy of
this final model for the 19 non-contaminant participants. MST behavior is now summarized
in terms of the probability of both “old” and “similar” responses for the different types of
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Figure 13. Descriptive adequacy of the extended MPT model for the old-similar-new MST
for the 19 non-contaminant participants.

test items. These are shown by the solid orange and broken light-blue lines, respectively.
The posterior predictive means are shown by plus and cross markers, respectively. There is
generally excellent agreement for both types of responses for all of the participants.

Inferences

Figure 14 shows that the old-similar-new model also provides interpretable inferences
about participants’ performance. The summary of the joint posterior distribution of mem-
ory ρ and the discriminability threshold τ again shows they can vary largely independently
across individuals. Four illustrative participants again highlight the usefulness of this anal-
ysis. Participants S and H are inferred to have worse discriminability than Participants A
and B. This is evident behaviorally because S and H often respond “old” to lures whereas
A and B often provide the correct “similar” response. Participants S and A are inferred to
have worse memory than Participants H and B. This is evident behaviorally because they
fail to respond “old” to old stimuli more often.

The results in Figure 14 show that the old-similar-new model continues to provide
the useful measurement demonstrated earlier for the old-new model. In particular, the
memory parameter ρ captures the ability to remember studied items, which is the key ability
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Figure 14. Inferences about remembering probabilities and discriminability thresholds for
all participants in the old-similar-new MST (left panel), and summary behavior for four
illustrative participants (right panels).

measured by recognition memory tasks. Conceptually, ρ corresponds to what the recognition
(REC) empirical measure is designed to measure. The REC is defined as the difference
between the rate of “old” responses to old stimuli and the rate of “old” responses to new
stimuli (Stark et al., 2013). The correlation between the posterior mean of ρ and the REC
measure for the non-contaminant participants is r = 0.90. The discriminability threshold
parameter τ captures the ability to distinguish between remembered and presented items
that are similar, which is the key pattern separation capability measured by the introduction
of lures to the MST. Conceptually, τ corresponds to what the lure discrimination index
(LDI) is designed to measure. The LDI is defined as the difference between the rate of
“similar” responses to lures and the rate of “similar” responses to new stimuli (Stark et al.,
2013). The correlation between the posterior mean of τ and the LDI measure for the
non-contaminant participants is r = −0.83.

Discussion

Model-based approaches to measuring people’s performance on diagnostic tasks have
the ability to make inferences about latent psychological variables that cannot be directly
measured. Models do this by formalizing and testing theoretical assumptions about task
behavior and the structure of individual differences. In this article, we applied the model-
based approach to the MST with the goal of measuring people’s ability to remember studied
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items, their ability to discriminate remembered items from presented lures, and their strate-
gic guessing behavior when their memory fails. We developed novel MPT models of both
the old-new and old-similar-new versions of the MST, showing that they were able to de-
scribe task performance at the individual level in a psychologically interpretable way, and
identify meaningful subgroups of participants, including contaminant behavior.

In applying the models to data we relied exclusively on Bayesian methods. These meth-
ods have a number of important advantages. The most fundamental advantage is that they
represent the uncertainty about inferences in a principled and complete way. The measure-
ment of psychological variables will always involve uncertainty, because data are limited and
noisy, and the models can only ever be useful approximations to true cognitive processes.
Posterior distributions represent not just the most likely parameter values representing
memory ability and decision making performance are, but how likely alternative values are.
This representation of uncertainty allows the confidence in substantive conclusions to be
calibrated appropriately.

The sequence of models we developed highlights another important advantage of Bayesian
methods, which is the flexibility to build more complete accounts of task performance and
individual difference (Bartlema et al., 2014; Lee, 2018). We used hierarchical latent-mixture
modeling to account for both qualitative and quantitative patterns of individual differences
in the old-new task, and a different sort of hierarchical extension to model the relationship
between lure similarity and discriminability. Bayesian methods, through Bayes factors and
posterior predictive checks, allowed these extended models to be justified in terms of the
behavioral data. The end results of the exploratory modeling process were MPT models
for both tasks that characterized individual memory in terms of two key parameters: the
probability of remembering items ρ and the ability to discriminate remembered items from
lures τ .

Beyond the meaningful measurement of individuals and groups, the model-based ap-
proach provides new insights into the merits of tasks themselves. For the experimental data
we considered, the old-similar-new task has the advantage of providing a simpler modeling
account of individual differences. It did not require considering two subgroups of attentive
behavior. It is possible this is a general advantage, since the presence of subgroups for
the old-new task emerges from different strategies participants use when they are unable
to remember and discriminate. The lack of a “similar” response option potentially is the
basis for these different strategies. When only “old” and “new” responses are available,
participants have to decide what level of perceived agreement is low enough to warrant a
“new” response even though there is some strength of remembrance. Only responding “old”
when they are certain of a match leads to different behavior than only responding “new”
when they are certain of no match leads to different responses, even for two participants
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with the same underlying memory properties. The availability of a “similar” response does
not eliminate the need for decision strategies, but it does lessen their impact. At least for
the current data, this made modeling significantly simpler.

A different perspective on the relationship between tasks is not to treat comparison as
a competition to reveal the best task, but to treat them as at least partly complementary
ways of measuring cognitive capabilities. As emphasized above, an advantage of model-
based approaches using Bayesian methods is that they can extend to capture task nuances.
Combining behavior on both the old-new and old-similar-new tasks to improve individual
measurement is a promising direction for future research. In the within-participants data
we used, the product-moment correlation of the posterior expectations across participants
between the two tasks is r = 0.45 for ρ and r = 0.53 for τ . Understanding what these
correlations mean is a challenging question, because there are many (not mutually exclusive)
possibilities. The lack of perfect correlation could arise from limitations in one or both tasks
controlling what can be measured, or because the cognitive models are too simple and miss
important characteristics of the underlying memory and decision processes, or because the
underlying cognitive properties generating task behavior are not stable. The model-based
approach to exploring these possibilities is to develop a joint or common-cause model that
attempts to account for behavior on both tasks simultaneously (Lee, 2018; Turner et al.,
2013). For example, latent-trait joint models provides a more complete way to assess the
relationships between parameters (Klauer, 2010), and complete common-cause models can
test possibilities such as memory components of the model being consistent across tasks but
decision processes changing to adapt to different task demands.

In its traditional frequentist form, the LDI measure from the MST is correlated with
age-related cognitive decline, with various MRI measures of hippocampal function and
connectivity, and has been used in clinical populations such as dementia, schizophrenia,
and depression (see Stark et al., 2019, for a review). It has proven effective in various
clinical trials including A4, tracking odds of clinical decline towards Alzheimer’s (Jutten
et al., 2021; Papp et al., 2021) and HOPE4MCI, showing drug treatment effects (Bakker
et al., 2015). Here, ρ and τ correlate well with REC and LDI and are meant to reflect
similar concepts. However, the potential advantage of the model-based ρ measure is that it
directly measures the latent process of remembering and does not consider “old” responses
caused by guessing. In the same way, the potential advantage of τ is that is describes how a
latent discrimination process changes with item similarity, in the situation where the item
has been remembered, and is unaffected by guessing. This more direct measurement may
make ρ and τ more sensitive measures of memory performance than empirical measures
like REC and LDI. Examining whether the mode developed here captures these established
effects better is an important direction for future research.
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