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Making brain–machine interfaces robust to
future neural variability
David Sussillo1,2,*, Sergey D. Stavisky3,*, Jonathan C. Kao1,*, Stephen I. Ryu1,4 & Krishna V. Shenoy1,2,3,5,6,7

A major hurdle to clinical translation of brain–machine interfaces (BMIs) is that current

decoders, which are trained from a small quantity of recent data, become ineffective when

neural recording conditions subsequently change. We tested whether a decoder could be

made more robust to future neural variability by training it to handle a variety of recording

conditions sampled from months of previously collected data as well as synthetic training

data perturbations. We developed a new multiplicative recurrent neural network BMI decoder

that successfully learned a large variety of neural-to-kinematic mappings and became more

robust with larger training data sets. Here we demonstrate that when tested with a

non-human primate preclinical BMI model, this decoder is robust under conditions that

disabled a state-of-the-art Kalman filter-based decoder. These results validate a new BMI

strategy in which accumulated data history are effectively harnessed, and may facilitate

reliable BMI use by reducing decoder retraining downtime.
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B
rain–machine interfaces (BMIs) can restore motor function
and communication to people with paralysis1,2. Progress
has been particularly strong towards enabling two-dime-

nsional (2D) computer cursor control, which may allow versatile
communications prostheses3–5. Cursor-control performance has
approached that of the native hand in recent macaque studies6,7,
but this was done under favourable laboratory conditions where
neural recordings are often stable both during and across BMI
sessions8–11. In contrast to these preclinical studies, one of the
major challenges impeding BMI use by human clinical trial
participants is the high degree of within- and across-day
variability in neural recording conditions (Fig. 1a)12–16. We use
the term ‘recording condition’ to broadly encompass the
combination of factors that together determine the relationship
between observed neural activity and intended kinematics. These
factors include the relative position of the electrodes and
surrounding neurons (diagrammed in Fig. 1b), variability in
sensor properties such as impedance or wiring quality, noise
sources and biological factors such as cognitive state or
medications. Existing neural decoding algorithms are poorly
suited to handle variability in recording condition, resulting in
intermittent performance and a need for frequent decoder
retraining4,5,13,17.

The clinical viability of BMIs would be much improved by
making decoders robust to recording condition changes18,19, and
several recent studies have focused on this problem (for example,
refs 4,10,20–29). We can broadly divide the conditions that a BMI
will encounter into one of two types: (1) conditions that are
completely different from what has been previously encountered;
and (2) conditions that share some commonality with ones
previously encountered. For existing BMI methods, both of these

situations necessitate some interruption of function while the
decoder is updated to handle the new condition. One strategy for
minimizing this interruption is to use adaptive decoders, which
update their parameters based on new data collected during the
BMI’s use (rather than collecting new training data for a de novo
decoder) to try to better match the new recording
condition4,10,20–29. In the first case, this is likely the best that
can be done. But in the second case, BMI interruption could in
principle be avoided altogether by a decoder capable of exploiting
the similarities between the current and previously encountered
conditions (Fig. 1c).

We were motivated to try this complimentary strategy because
chronic BMI systems do typically encounter recording conditions
in which there is some commonality with past recording
conditions8,10,13,14,27,28,30–32. Furthermore, these systems
generate and store months, or even years, of neural and
kinematic data as part of their routine use. Almost all of these
past data are left unused in existing BMI systems: decoders are
trained using the most recently available data, typically from a
block of calibration trials at the start of that day’s experiment, or
from a recent previous experiment33. Using this historical data
would be difficult for most BMI decoders, as they are linear
(for example, refs 2,6). Linear decoders are prone to underfitting
heterogeneous training sets, such as those that might be sampled
from months of data. To overcome this limitation, an essential
aspect of our approach is to use a nonlinear and computationally
‘powerful’ decoder (that is, one capable of approximating any
complex, nonlinear dynamical system), which should be capable
of learning a diverse set of neural-to-kinematic mappings.

Specifically, we tested whether one could gain traction on the
decoder robustness problem by exploiting this idle wealth of
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Figure 1 | Strategy for training a decoder robust to recording condition changes. (a) Example data from a BMI clinical trial showing sudden decoder

failure caused by a recording condition change. The black trace shows the participant’s closed-loop performance over the course of an experiment using a

fixed Kalman filter. An abrupt drop in performance coincides with a reduction in the observed firing rate (red trace) of a neuron with a high decoder weight.

Both the neuron’s firing rate and decoder performance spontaneously recover B40 min later. Adapted from Figure 7 of ref. 13. (b) A cartoon depicting one

hypothetical cause of the aforementioned change: micro-motion of the electrodes leads to Recording Condition 2, in which spikes from the red-shaded

neuron are lost. BMI recovery corresponds to a shift back to Condition 1. Over time, further changes will result in additional recording conditions; for

example, Condition 3 is shown caused by a disconnected electrode and an additional neuron entering recording range. (c) Recording conditions

(schematized by the coloured rectangles) will vary over the course of chronic intracortical BMI use. We hypothesize that oftentimes new conditions are

similar to ones previously encountered (repeated colours). Typically, decoders are fit from short blocks of training data and are only effective under that

recording condition (decoders D1, D2, y). Consider the goal of training a decoder for use at time ‘now’ (black rectangle on right). Standard practice is to

use decoder D1 trained from the most recently available data (for example, from the previous day or the start of the current experiment). D1 will perform

poorly if the recording condition encountered differs from its training data. To increase the likelihood of having a decoder that will perform well given the

current recording condition, we tested a new class of decoder, Dall, trained using a large collection of previous recording conditions.
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stored data using an artificial recurrent neural network (RNN).
We did this with a three-pronged approach. The first was the use
of the nonlinear RNN. The second was to train the decoder from
many months of previously recorded data. Third, to ‘harden’ the
decoder against being too reliant on any given pattern of inputs,
we artificially injected additional variability into the data during
decoder training.

The fact that conventional state-of-the-art decoding methods,
which tend to be linear or at least of limited computational
complexity34, work well for closed-loop BMI control of 2D
cursors demonstrates that the model mismatch of assuming linear
neural-to-kinematic mappings is well tolerated for a given
recording condition. Nevertheless, when neural-to-kinematic
mappings change over time, a conventional decoder trained on
many days’ data is almost certainly not going to fully benefit from
this abundance of the data. This is because it requires a nonlinear
algorithm to learn a set of different context-dependent mappings,
even if these individual mappings from neural firing rates to
kinematics were entirely linear (which they are not). Methods
such as linear Kalman filters can at best only learn an average
mapping, ‘splitting the difference’ to reduce error across days in
the training set. This approach is not well-suited for most of the
recording conditions. We therefore developed a new BMI decoder
using a nonlinear RNN variant called the multiplicative recurrent
neural network (MRNN) developed by Sutskever and colleagues35

using their Hessian-free technique for training RNNs36. Several
properties of the MRNN architecture, which was originally used
for character-level language modelling, make it attractive for this
neural prosthetic application. First, it is recurrent, and can
therefore ‘remember’ state across time (for example, during the
course of a movement), potentially better matching the
time-varying, complex relationships between neural firing rates
and kinematics37,38. Second, its ‘multiplicative’ architecture
increases computational power by allowing the neural inputs to
influence the internal dynamics of the RNN by changing the
recurrent weights (Fig. 2a). Loosely speaking, this allows the
MRNN to learn a ‘library’ of different neural-to-kinematic
mappings that are appropriate to different recording conditions.
The MRNN was our specific choice of nonlinear method for
learning a variety of neural-to-kinematic mappings, but this
general approach is likely to work well with many out-of-the-box
RNN variants, such as a standard RNN (for example, ref. 38) or
LSTM39. Our approach is also completely complementary to
adaptive decoding.

We evaluated decoders using two non-human primates
implanted with chronic multielectrode arrays similar to those
used in ongoing clinical trials. We first show that training
the MRNN with more data from previous recording sessions
improves accuracy when decoding new neural data, and that
a single MRNN can be trained to accurately decode hand
reach velocities across hundreds of days. We next present closed-
loop results showing that an MRNN trained with many days’
worth of data is much more robust than a state-of-the-art Kalman
filter-based decoder (the Feedback Intention Trained Kalman
filter, or FIT-KF40) to two types of recording condition changes
likely to be encountered in clinical BMI use: the unexpected
loss of signals from highly-informative electrodes, and day-to-day
changes. Finally, we show that this robustness does not come
at the cost of reduced performance under more ideal
(unperturbed) conditions: in the absence of artificial challenges,
the MRNN provides excellent closed-loop BMI performance
and slightly outperforms the FIT-KF. To our knowledge,
this is the first attempt to improve robustness by using a large
and heterogeneous training dataset: we used roughly two
orders of magnitude more data than in previous closed-loop
studies.

Results
MRNN performance improves with more data. We first tested
whether training the MRNN with many days’ worth of data can
improve offline decoder performance across a range of recording
conditions. This strategy was motivated by our observation that
the neural correlates of reaching—as recorded with chronic
arrays—showed day-to-day similarities (Supplementary Fig. 1).
For a typical recording session, the most similar recording came
from a chronologically close day, but occasionally the most
similar recording condition was found in chronologically distant
data. MRNN decoders were able to exploit these similarities:
Figure 2b shows that as more days’ data (each consisting of B500
point to point reaches) were used to train the decoder, the
accuracy of reconstructing reach velocities, measured as the
square of the Pearson’s correlation coefficient between true and
decoded test data set velocity, increased (positive correlation
between number of training days and decoded velocity accuracy,
r2¼ 0.24, P¼ 2.3e� 7 for monkey R (n¼ 99), r2¼ 0.20, P¼ 3.2
e� 9 for monkey L (n¼ 160), linear regression). In particular,
these results show that using more training data substantially
increased the decode accuracy for the ‘hard’ days that challenged
decoders trained with only a few days’ data (for example, test day
51 for monkey R). Further, this improvement did not come at the
cost of worse performance on the initially ‘easy’ test days. These
results demonstrate that larger training data sets better prepare
the MRNN for a variety of recording conditions, and that
learning to decode additional recording conditions did not
diminish the MRNN’s capability to reconstruct kinematics under
recording conditions that it had already ‘mastered’. There was not
a performance versus robustness trade-off.

We then tested whether the MRNN’s computational capacity
could be pushed even further by training it using the data from
154 (250) different days’ recording sessions from monkey R (L),
which spanned 22 (34) months (Fig. 2c). The MRNN’s offline
decode accuracy was r2¼ 0.81±0.04 (mean±s.d., monkey R)
and r2¼ 0.84±0.03 (monkey L) across all these recording
sessions’ held-out test trials. For comparison, we tested the
decode accuracy of the FIT-KF trained in two ways: either
specifically using reaching data from that particular day
(‘FIT Sameday’), or trained on the same large multiday training
data set (‘FIT Long’). Despite the multitude of recording
conditions that the MRNN had to learn, on every test day each
monkey’s single MRNN outperformed that day’s FIT Sameday
filter (monkey R (n¼ 154 samples): FIT Sameday
r2¼ 0.57±0.05, P¼ 1.2e� 153 signed-rank test comparing all
days’ FIT Sameday and MRNN r2; monkey L (n¼ 250 samples):
r2¼ 0.52±0.05, P¼ 2.1e� 319). Unsurprisingly, a linear FIT-KF
did not benefit from being trained with the same large multiday
training set and also performed worse than the MRNN (monkey
R: FIT Long r2¼ 0.56, P¼ 5.1e� 27 comparing all days’ FIT
Long to MRNN r2; monkey L: r2¼ 0.46±0.05, P¼ 9.3e� 43).

While these offline results demonstrate that the MRNN can
learn a variety of recording conditions, experiments are required
to evaluate whether this type of training leads to increased
decoder robustness under closed-loop BMI cursor control. In
closed-loop use, the BMI user updates his or her motor
commands as a result of visual feedback, resulting in distributions
of neural activity that are different than that of the training set.
Thus, results from offline simulation and closed-loop BMI
control may differ32,41–43. To this end, we next report closed-
loop experiments that demonstrate the benefit of this training
approach.

Robustness to unexpected loss of informative electrodes.
We next performed closed-loop BMI cursor-control experiments
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to test the MRNN’s robustness to recording condition changes.
The first set of experiments challenged the decoder with an
unexpected loss of inputs from multiple electrodes. The MRNN
was trained with a large corpus of hand-reaching training data up
through the previous day’s session (119–129 training days for
monkey R, 212–230 days for monkey L). Then, its closed-loop
performance was evaluated on a Radial 8 Task, while the selected
electrodes’ input firing rates were artificially set to zero. By
changing how many of the most informative electrodes were
dropped (‘informative’ as determined by their mutual informa-
tion with reach direction; see Methods), we could systematically

vary the severity of the challenge. Since this experiment was
meant to simulate sudden failure of electrodes during BMI use
(after the decoder had already been trained), we did not retrain or
otherwise modify the decoder based on knowledge of which
electrodes were dropped. There were no prior instances of these
dropped electrode sets having zero firing rates in the repository of
previously collected training data (Supplementary Fig. 2).
Thus, this scenario is an example of an unfamiliar recording
condition (zero firing rates on the dropped electrodes) having
commonality with a previously encountered condition (the pat-
terns of activity on the remaining electrodes).
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Figure 2 | An MRNN decoder can harness large training data sets. (a) A monkey performed a target acquisition task using his hand while multiunit spikes

were recorded from multielectrode arrays in motor cortex. Data from many days were used to train two MRNNs such that velocity and position were read

out from the state of their respective internal dynamics. These MRNN internal dynamics are a function of the binned neural spike counts; thus, the MRNN

can conceptually be thought of as selecting an appropriate decoder at any given time based on the neural activity. (b) We evaluated each MRNN’s ability to

reconstruct offline hand velocity on 12 (16) monkey R (L) test days after training with increasing numbers of previous days’ data sets. Training data were

added by looking further back in time so as to not conflate training data recency with data corpus size. In monkey R, early test days also contributed training

data (with test trials held out). In monkey L, from whom more suitable data was available, the training data sets started with the day prior to the first test

day. More training data (darker coloured traces) improved decode accuracy, especially when decoding more chronologically distant recording conditions.

We also plotted performance of a FIT Kalman filter trained from each individual day’s training data (‘FIT Sameday’, light blue). (Insets) show the same

MRNN data in a scatter plot of decode accuracy versus number of training days (99 data points for monkey R, 160 for L). Linear fit trend lines reveal a

significant positive correlation. (c) An MRNN (red trace) was trained with data from 154 (250) monkey R (L) recording days spanning many months. Its

offline decoding accuracy on held-out trials from each of these same days was compared with that of the FIT Sameday (light blue). We also tested a single

FIT-KF trained using the same large dataset as the MRNN (‘FIT Long’, dark blue). Gaps in the connecting lines denote recording gaps of more than ten days.

(Insets) mean±s.d. decode accuracy across all recording days. Stars denote Po0.001 differences (signed-rank test). The MRNN outperformed both types

of FIT-KF decoders on every day’s dataset.
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We found that the MRNN was robust to severe electrode-
dropping challenges. It suffered only a modest loss of perfor-
mance after losing up to the best 3 (monkey R) or 5 (monkey L)
electrodes (Fig. 3). We compared this with the electrode-dropped
performance of a FIT-KF decoder trained with hand-reaching
calibration data from the beginning of that day’s experiment6,40

(‘FIT Sameday’) by alternating blocks of MRNN and FIT
Sameday control in an ‘AB AB’ interleaved experiment design.
FIT Sameday decoder’s performance worsened markedly when
faced with this challenge. Across all electrode-dropped
conditions, Monkey R acquired 52% more targets per minute
using the MRNN, while Monkey L acquired 92% more targets.
Supplementary Movie 2 shows a side-by-side comparison of the
MRNN and FIT Sameday decoders with the three most
informative electrodes dropped.

Although the past data sets used to train the MRNN never had
these specific sets of highly important electrodes disabled,
our technique of artificially perturbing the true neural activity
during MRNN training did generate training examples with
reduced firing rates on various electrodes (as well as examples
with increased firing rates). The MRNN had therefore been
broadly trained to be robust to firing rate reduction on subsets
of its inputs. Subsequent closed-loop comparisons of MRNN
electrode-dropping performance with and without this training
data augmentation confirmed its importance (Supplementary
Fig. 3a). An additional offline decoding simulation, in which
MRNN decoders were trained with varying data set sizes with and
without training data augmentation, further shows that both the
MRNN architecture and its training data augmentation are
important for robustness to electrode dropping (Supplementary
Fig. 4). These analyses also suggest that when data augmentation
is used, large training data set size does not impart additional
robustness to these particular recording condition changes. This
is not surprising given that the previous data sets did not include
examples of these electrodes being dropped.

Robustness to naturally sampled recording condition changes.
The second set of closed-loop robustness experiments challenged
the MRNN with naturally occurring day-to-day recording
condition changes. In contrast to the highly variable recording
conditions encountered in human BMI clinical trials, neural
recordings in our laboratory set-up are stable within a day and

typically quite stable on the time scale of days (Supplementary
Fig. 2; ref. 10). Therefore, to challenge the MRNN and FIT-KF
decoders with greater recording condition variability, we
evaluated them after withholding the most recent several
months of recordings from the training data. We refer to this
many-month interval between the most recent training data day
and the first test day as the training data ‘gap’ in these ‘stale
training data’ experiments. The gaps were chosen arbitrarily
within the available data, but to reduce the chance of outlier
results, we repeated the experiment with two different gaps for
each monkey.

For each gap, we trained the MRNN with a large data set
consisting of many months of recordings preceding the gap and
compared it with two different types of FIT-KF decoders.
The ‘FIT Old’ decoder was trained from the most recent available
training day (that is, the day immediately preceding the gap); this
approach was motivated under the assumption that the most
recent data were most likely to be similar to the current day’s
recording condition. The ‘FIT Long’ decoder was trained from the
same multiday data set used to train the MRNN and served as a
comparison in which a conventional decoder is provided with the
same quantity of data as the MRNN. The logic underlying this
FIT Long approach is that despite the Kalman filter being
ill-suited for fitting multiple heterogeneous data sets, this
‘averaged’ decoder might still perform better than the FIT Old
trained using a single distant day.

We found that the MRNN was the only decoder that was
reliably usable when trained with stale data (Fig. 4). FIT Old
performed very poorly in both monkeys, failing completely
(defined as the monkey being unable to complete a block using
the decoder, see Methods) in 4/6 monkey R experimental sessions
and 6/6 monkey L sessions. FIT Long performed better than
FIT Old, but its performance was highly variable—it was usable
on some test days but failed on others. In Monkey R, the
across-days average acquisition rate was 105% higher for the
MRNN than FIT Long (P¼ 4.9e� 4, paired t-test). Monkey L’s
MRNN did not perform as consistently well as Monkey R’s, but
nevertheless demonstrated a trend of outperforming FIT Long
(32% improvement, P¼ 0.45), in addition to decidedly outperfor-
ming FIT Old, which failed every session. Although monkey L’s
FIT Long outperformed the MRNN on one test day, on all other
test days FIT Long was either similar to, or substantially worse
than, MRNN. Moreover, whereas the MRNN could be used to
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Figure 3 | Robustness to unexpected loss of the most important electrodes. Closed-loop BMI performance using the MRNN (red) and FIT Sameday

(blue) decoders while simulating an unexpected loss of up to 10 electrodes by setting the firing rates of these electrodes to zero. The mean and s.e.m.

across experimental sessions’ targets per minute performance is shown for each decoder as a function of how many electrodes were removed. Stars denote

conditions for which the MRNN significantly outperformed FIT Sameday across sessions (Po0.05, paired t-test). The text above each condition’s

horizontal axis tick specifies for how many of the individual evaluation days MRNN (red fraction) or FIT Sameday (blue fraction) performed significantly

better than the other decoder according to single-session metrics of success rate and time to target. Electrode-dropping order was determined by the

mutual information between that electrode’s spike count and target direction during arm-controlled reaches.
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control the cursor every day, FIT Long was not even capable of
acquiring targets on some days. Further tests of additional FIT
Old decoders confirmed that they generally perform poorly
(Supplementary Fig. 5). The lack of consistent usability by any of
the FIT-KF decoders (Old or Long) demonstrates that having
access to a large repository of stale training data does not enable
training a single Kalman filter that is robust to day-to-day
variability in recording conditions. In contrast, an MRNN trained
with this large data set was consistently usable.

To further demonstrate the consistency of these results, we
performed offline simulations in which we tested MRNN
decoders on additional sets of training and test data sets
separated by a gap. Each set was non-overlapping with the
others, and together they spanned a wide range of each animal’s
research career. We observed the same trends in these offline
simulations: MRNNs trained with many previous days of training
data outperformed FIT Old and FIT Long decoders
(Supplementary Fig. 6). In these analyses, we also dissected
which components of our decoding strategy contributed to the
MRNN’s robustness. We did this by comparing MRNNs trained
with varying numbers of days preceding the gap, with or without
training data spike rate perturbations. The results show that
training using more data, and to a lesser extent incorporating data
augmentation (see also closed-loop comparisons in Supplem-
entary Fig. 3b), contributed to the MRNN’s robustness to
naturally occurring recording condition changes.

High-performance BMI using the MRNN decoder. Finally, we
note that the MRNN’s robustness to challenging recording
conditions did not come at the cost of reduced performance
under more ‘ideal’ conditions, that is, without electrode dropping
or stale training data. During the electrode-dropping experi-
ments, we also evaluated the MRNN’s closed-loop performance
after being trained using several months’ data up through the
previous day. In this scenario, the MRNN enabled both monkeys
to accurately and quickly control the cursor. Supplementary
Movie 1 shows example cursor control using the MRNN. These
data also allowed us to compare the MRNN’s performance with
that of a FIT Sameday decoder in back-to-back ‘AB AB’ tests.
Figure 5a shows representative cursor trajectories using each
decoder, as well as under hand control. Figure 5b shows
that across 9 experimental sessions and 4,000þ trials with each
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Figure 5 | MRNN achieves high-performance under ‘ideal’ conditions.

(a) We compared cursor control using the MRNN (red) trained from many

data sets up through the previous day to the FIT Sameday (blue) trained

from data collected earlier the same day, without any artificial challenges

(that is, no electrodes dropped or stale training data). Cursor trajectories

are shown for eight representative and consecutive centre-out-and-back

trials of the Radial 8 Task. Grey boxes show the target acquisition area

boundaries, and the order of target presentation is denoted with green

numbers. For comparison, cursor trajectories under arm control are shown

in grey. From dataset R.2014.04.03. (b) Mean distance to target, across all

Radial 8 Task trials under these favourable conditions, as a function of trial

time using each cursor-control mode. Thickened portions of each trace

correspond to ‘dial-in time’, that is, the mean time between the first target

acquisition and the final target acquisition. These MRNN and FIT Sameday

data correspond to the drop 0 electrodes condition data in Fig. 3, and

include 4,094 (3,278) MRNN trials and 4119 (3,305) FIT Sameday trials

over 9 (8) experimental days in Monkey R (L).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13749

6 NATURE COMMUNICATIONS | 7:13749 | DOI: 10.1038/ncomms13749 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


decoder, Monkey R acquired targets 7.3% faster with the MRNN
(0.619±0.324 s mean±s.d. vs. 0.668±0.469 s, P¼ 4.2e� 6,
rank-sum test). Monkey L acquired targets 10.8% faster with the
MRNN (0.743±0.390 s versus 0.833±0.532 s, P¼ 1.5e� 3, rank-
sum test) across 8 sessions and 2,500þ trials using each decoder.
These online results corroborate the offline results presented in
Fig. 2c; both show that an MRNN trained from many days’
recording conditions outperforms the FIT Kalman filter trained
from training data collected at the start of the experimental
session.

A potential risk inherent to a computationally powerful
decoder such as the MRNN is that it will overtrain to the task
structure of the training data and fail to generalize to other tasks.
Most of our MRNN training data were from arm reaches on a
Radial 8 Task similar to the task used for evaluation (albeit with
50% further target distance). We therefore also tested whether the
MRNN enabled good cursor control on the Random Target Task,
in which the target could appear in any location in a 20� 20 cm
workspace (Supplementary Fig. 7). Monkey R performed the
Random Target Task on two experimental sessions and averaged
a 99.4% success rate, with mean distance-normalized time to
target of 0.068 s cm� 1. Monkey L performed one session of this
task at a 100% success rate with mean normalized time to target
of 0.075 s cm� 1. To provide context for these metrics, we also
measured Random Target Task performance using arm control.
Monkey R’s arm control success rate was 100%, with
0.055 s cm� 1 mean normalized time to target, during the same
experimental sessions as his MRNN Random Target Task data.
Monkey L’s arm control success rate was 97.7%, with
0.055 s cm� 1 mean normalized time to target, during one session
several days following his MRNN test.

Discussion
We developed the MRNN decoder to help address a major
problem hindering the clinical translation of BMIs: once trained,
decoders can be quickly rendered ineffective due to recording
condition changes. A number of complementary lines of research
are aimed at making BMIs more robust, including improving
sensors to record from more neurons more reliably (for example,
ref. 44); decoding multiunit spikes10,30,45 or local field
potentials31,32,46 that appear to be more stable control signals
than single-unit activity; and using adaptive decoders that update
their parameters to follow changing neural-to-kinematic
mappings4,10,20–29,47. Here we present the MRNN as a proof-
of-principle of a novel approach: build a fixed decoder whose
architecture allows it to be inherently robust to recording
condition changes based on the assumption that novel
conditions have some similarity to previously encountered
conditions.

We stress that all of these approaches are complementary in
several respects. For example, a decoder that is inherently more
robust to neural signal changes, such as the MRNN, would still
benefit from improved sensors, could operate on a mix of input
signal types including single- and multiunit spikes and field
potentials, and is especially well positioned to benefit from
decoder adaptation. When performance degrades due to record-
ing condition changes, both supervised10,21–23,25,27,29 and
unsupervised4,20,24,26 adaptive decoders need a period of time
in which control is at least good enough that the algorithm can
eventually infer the user’s intentions and use these to update its
neural-to-kinematic model. Improved robustness may ‘buy
enough time’ to allow the decoder’s adaptive component
to rescue performance without interrupting prosthesis use.
Here we have demonstrated the MRNN’s advantages over a
state-of-the-art static decoder, but comparing this strategy both

against and together with adaptive decoding remains a future
direction.

We demonstrated the MRNN’s robustness to two types
of recording condition changes. These changes were chosen
because they capture key aspects of the changes that commonly
challenge BMI decoders during clinical use. The stale training
data experiments showed that the MRNN was usable under
conditions where the passage of time would typically require
recalibration of conventional decoders such as the FIT-KF. We do
not mean to suggest that in a clinical setting one would want to—
or would often have to—use a BMI without any training data
from the immediately preceding several months. Rather, we used
this experimental design to model recording condition changes
that can happen on the time scale of hours in human BMI clinical
trials13. Possible reasons for the greater recording condition
variability observed in human participants compared with
non-human primates include: more movement of the array
relative to the human brain due to larger cardiovascular
pulsations and epidural space; greater variability in the state of
the BMI user (health, medications, fatigue and cognitive state);
and more electromagnetic interference from the environment.
The MRNN can take advantage of having seen the effects of these
sources of variability in previously accumulated data; it can
therefore be expected to become more robust over time as it
builds up a ‘library’ of neural-to-kinematic mappings under
different recording conditions.

The electrode-dropping experiments, which demonstrated
the MRNN’s robustness to an unexpected loss of high-importance
electrodes, are important for two reasons. First, sudden loss
of input signals (for example, due to a electrode connection
failure48,49), is a common BMI failure mode that can
be particularly disabling to conventional BMI decoders50.
The MRNN demonstrates considerable progress in addressing
this so-called ‘errant unit’ problem. Second, these
results demonstrate that the MRNN trained with artificially
perturbed neural data can be relatively robust even to a recording
condition change that has not been encountered in past
recordings.

The MRNN’s robustness did not come at the cost of
diminished performance under more ideal conditions. This result
is nontrivial given the robustness-focused decisions that went into
its design (for example perturbing the input spike trains in the
training set). Instead, we found that the MRNN was excellent
under favourable conditions, slightly outperforming a state-of-
the-art same day trained FIT-KF decoder. Taken together, these
results demonstrate that the MRNN exhibits robustness to a
variety of clinically relevant recording condition changes, without
sacrificing peak performance. These advances may help to reduce
the onerous need for clinical BMI users to collect frequent
retraining data.

One disadvantage of this class of nonlinear decoders trained
from large data sets, when compared with traditional linear
decoders trained on smaller data sets, is the longer training time.
In the present study, which we did not optimize for fast training,
this took multiple hours. This could be substantially sped up by
iteratively updating the decoder with new data instead of
retraining de novo and by leveraging faster computation available
with graphics processing units, parallel computing, or custom
hardware. A second disadvantage of the MRNN is that it appears
to require more training data to saturate its performance (Fig. 2b)
compared with conventional methods, such as FIT-KF, that are
trained from calibration data collected on the same day. We do
not view this as a major limitation because the motivation for
using the MRNN is to take advantage of accumulated previous
recordings. Nonetheless, it will be valuable to compare the
present approach with other decoder architectures and training
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strategies, which may yield similar performance and robustness
while requiring less training data.

The MRNN decoder’s robustness was due to the combination
of a large training data corpus, deliberate perturbation of the
training data and a computationally powerful architecture that
was able to effectively learn this diverse training data. While it
may seem obvious that successfully learning more training data is
better, this is not necessarily true. Older data only help a decoder
if some of these past recordings capture neural-to-kinematic
relationships that are similar to that of the current recording
condition. Our offline and closed-loop MRNN robustness results
suggest that this was indeed the case for the two monkeys used in
this study. While there are indications that this will also be true in
human BMI studies14, validating this remains an important
future question. The relevance of old data to present recording
conditions also motivates a different robustness-enhancing
approach: store a library of different past decoders and evaluate
each to find a decoder well-suited for the current conditions
(for example, ref. 10). However, since offline analyses are poor
predictors of closed-loop performance32,42,45,51, this approach
necessitates a potentially lengthy decoder selection process. Using
a single decoder (such as the MRNN) that works across many
recording conditions avoids switching-related downtime.

In addition to training with months of previous data, we
improved the MRNN’s robustness by intentionally perturbing the
training neural data. In the present study, we applied random
Gaussian firing rate scaling based on a general assumption that
the decoder should be broadly robust to both global and private
shifts in observed firing rates. This perturbation type proved
effective, but we believe that this approach (called data
augmentation in the machine learning community) can poten-
tially be much more powerful when combined with specific
modelling of recording condition changes that the experimenter
wants to train robustness against. For example, data augmenta-
tion could incorporate synthetic examples of losing a particularly
error-prone set of electrodes; recording changes predicted by
models of array micro-movement or degradation; and perhaps
even the predicted interaction between kinematics and changes in
cognitive state or task context. We believe this is an important
avenue for future research.

We view the success of our specific MRNN decoder imple-
mentation as a validation of the more general BMI decoder
strategy of training a computationally powerful nonlinear decoder
to a large quantity of data representing many different recording
conditions. This past data need not have been collected explicitly
for the purpose of training as was done in this study; neural data
and corresponding kinematics from past closed-loop BMI use can
also serve as training data4,10. It is likely that other nonlinear
decoding algorithms will also benefit from this strategy, and that
there are further opportunities to advance the reliability and
performance of BMIs by starting to take advantage of these
devices’ ability to generate large quantities of data as part of their
regular use.

Methods
Animal model and neural recordings. All procedures and experiments
were approved by the Stanford University Institutional Animal Care and Use
Committee. Experiments were conducted with adult male rhesus macaques
(R and L, ages 8 and 18 years, respectively), implanted with 96-electrode Utah
arrays (Blackrock Microsystems Inc., Salt Lake City, UT) using standard neuro-
surgical techniques. Monkeys R and L were implanted 30 months and 74 months
before the primary experiments, respectively. Monkey R had two electrode arrays
implanted, one in caudal dorsal premotor cortex (PMd) and the other in primary
motor cortex (M1), as estimated visually from anatomical landmarks. Monkey
L had one array implanted on the border of PMd and M1. Within the context
of the simple point-to-point arm and BMI reach behaviour of this study, we
observed qualitatively similar response properties between these motor cortical
areas; this is consistent with previous reports of a gradient of increasing

preparatory activity, rather than stark qualitative differences, as one moves
more rostral from M1 (refs 52–56). Therefore, and in keeping with standard BMI
decoding practices6,8,10,24,38,40,46, we did not distinguish between M1 and PMd
electrodes.

Behavioural control and neural decode were run on separate PCs using the
xPC Target platform (Mathworks, Natick, MA), enabling millisecond-timing
precision for all computations. Neural data were initially processed by Cerebus
recording system(s) (Blackrock Microsystems Inc., Salt Lake City, UT) and were
available to the behavioural control system within 5±1 ms. Spike counts were
collected by applying a single negative threshold, set to � 4.5 times the root mean
square of the spike band of each electrode. We decoded ‘threshold crossings’, which
contain spikes from one or more neurons in the electrode’s vicinity, as per standard
practice for intracortical BMIs1,4,6,7,10,15,16,31,38,40 because threshold crossings
provide roughly comparable population-level velocity decode performance to
sorted single-unit activity, without time-consuming sorting30,45,57–59, and may
be more stable over time30,45. To orient the reader to the quality of the neural
signals available during this study, Supplementary Note 1 provides statistics of
several measures of electrodes’ ‘tuning’ and cross-talk.

Behavioural tasks. We trained the monkeys to acquire targets with a virtual
cursor controlled by either the position of the hand contralateral to the arrays
or directly from neural activity. Reaches to virtual targets were made in a 2D
frontoparallel plane presented within a 3D environment (MSMS, MDDF, USC,
Los Angeles, CA) generated using a Wheatstone stereograph fused from two LCD
monitors with refresh rates at 120 Hz, yielding frame updates within 7±4 ms
(ref. 43). Hand position was measured with an infrared reflective bead tracking
system at 60 Hz (Polaris, Northern Digital, Ontario, Canada). During BMI control,
we allowed the monkey’s reaching arm to be unrestrained47,60 so as to not impose
a constraint upon the monkey that during BMI control he must generate neural
activity that does not produce overt movement61.

In the Radial 8 Task the monkey was required to acquire targets alternating
between a centre target and one of eight peripheral targets equidistantly spaced on
the circumference of a circle. For our closed-loop BMI experiments, the peripheral
targets were positioned 8 cm from the centre target. In hand-reaching data sets
used for decoder training and offline decode, the targets were either 8 or 12 cm
(the majority of data sets) from the centre. In much of Monkey L’s training
data, the three targets forming the upper quadrant were placed slightly further
(13 and 14 cm) based on previous experience that this led to decoders with
improved ability to acquire targets in that quadrant. To acquire a target, the
monkey had to hold the cursor within a 4 cm� 4 cm acceptance window centred
on the target for 500 ms. If the target was acquired successfully, the monkey
received a liquid reward. If the target was not acquired within 5 s (BMI control)
or 2 s (hand control) of target presentation, the trial was a failure and no reward
was given.

Although the data included in this study span many months of each animal’s
research career, these data start after each animal was well-trained in performing
point-to-point planar reaches; day-to-day variability when making the same
reaching movements was modest. To quantify behavioural similarity across the
study, we took advantage of having collected the same ‘Baseline Block’ task data
at the start of most experimental sessions: 171/185 monkey R days, 398/452
monkey L days. This consisted of B200 trials of arm-controlled Radial 8 Task
reaches, with targets 8 cm from the centre. For each of these recording sessions,
we calculated the mean hand x and y velocities (averaged over trials to/from a
given radial target) throughout a 700 ms epoch following radial target onset for
outward reaches and 600 ms following centre target onset for inward reaches
(inward reaches were slightly faster). We concatenated these velocity time series
across the 8 different targets, producing 10,400 ms x velocity and y velocity vectors
from each recording session. Behavioural similarity between any two recording
sessions was then measured by the Pearson correlation between the data sets’
respective x and y velocity vectors. Then, the two dimensions’ correlations were
averaged to produce a single-correlation value between each pair of sessions. These
hand velocity correlations were 0.90±0.04 (mean±s.d. across days) for monkey R,
and 0.91±04 for monkey L.

We measured closed-loop BMI performance on the Radial 8 Task using two
metrics. Target acquisition rate is the number of peripheral targets acquired
divided by the duration of the task. This metric holistically reflects cursor-control
ability because, unlike time to target, it is negatively affected by failed trials and
directly relates to the animal’s rate of liquid reward. Targets per minute is
calculated over all trials of an experimental condition (that is, which decoder was
used) and therefore yields a single measurement per day/experimental condition.
Across-days distributions of a given decoder’s targets per minute performance were
consistent with a normal distribution (Kolmogorov-Smirnov test), justifying our
use of paired t-tests statistics when comparing this metric. This is consistent with
the measure reflecting the accumulated outcome of many hundreds of random
processes (individual trials). As a second measure of performance that is more
sensitive when success rates are high and similar between decoders (such as the
‘ideal’ conditions where we presented no challenges to the decoders), we compared
times to target. This measure consists of the time between when the target appeared
and when the cursor entered the target acceptance window before successfully
acquiring the target, but does not include the 500 ms hold time
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(which is constant across all trials). Times to target are only measured for
successful trials to peripheral targets, and were only compared when success rates
were not significantly different (otherwise, a poor decoder with a low success
rate that occasionally acquired a target quickly by chance could nonsensically
‘outperform’ a good decoder with 100% success rate but slower times to target).
Because these distributions were not normal, we used the Mann–Whitney–
Wilcoxon rank-sum tests when comparing two decoders’ times with target.

In the Random Target Task each trial’s target appeared at a random location
within a 20 cm� 20 cm region centred within a larger workspace that was
40� 30 cm. A new random target appeared after each trial regardless of whether
this trial was a success or a failure due to exceeding the 5 s time limit. The target
location randomization enforced a rule that the new target’s acceptance area could
not overlap with that of the previous target. Performance on the Random Target
Task was measured by success rate (the number of successfully acquired targets
divided by the total number of presented targets) and the normalized time to target.
Normalized time to target is calculated for successful trials following another
successful trial, and is the duration between target presentation and target
acquisition (not including the 500 ms hold time), divided by the straight-line
distance between this target’s centre and the previously acquired target’s centre62.

Decoder comparison experiment design. All offline decoding comparisons
between MRNN and FIT-KF were performed using test data that were held out
from the data used to train the decoders. Thus, although the MRNN has many
more parameters than FIT-KF, both of these fundamentally different algorithm
types were trained according to best practices with matched training and test data.
This allows their performance to be fairly compared. Decode accuracy was mea-
sured as the square of the Pearson’s correlation coefficient between true and
decoded hand endpoint velocity in the fronto-parallel plane.

When comparing online decoder performance using BMI-controlled Radial 8
Target or Random Target Tasks, the decoders were tested using an interleaved
block-set design in which contiguous B200 trial blocks of each decoder were run
followed by blocks of the next decoder, until the block-set comprising all tested
decoders was complete and the next block-set began. For example, in the electrode-
dropping experiments (Fig. 3), this meant an ‘AB AB’ design where A could be
a block of MRNN trials and B could be a block of FIT Sameday trials. For the stale
training data experiments (Fig. 4), an ‘ABCD ABCD ABCDy ’ design was used to
test the four different decoders. When switching decoders, we gave the monkey
B20 trials to transition to the new decoder before starting ‘counting’ performance
in the block; we found this to be more than sufficient for both animals to adjust.
For electrode-dropping experiments, the order of decoders within each block-set
was randomized across days. For stale training data experiments, where several
decoders often performed very poorly, we manually adjusted the order of decoders
within block-sets so as to keep the monkeys motivated by alternating what
appeared to be more and less frustrating decoders. All completed blocks were
included in the analysis. Throughout the study, the experimenters knew which
decoder was in use, but all comparisons were quantitative and performed by the
same automated computer program using all trials from completed blocks. The
monkeys were not given an overt cue to the decoder being used.

During online experiments, we observed that when a decoder performed
extremely poorly, such that the monkey could not reliably acquire targets within
the 5 s time limit, the animal stopped performing the task before the end of the
decoder evaluation block. To avoid frustrating the monkeys, we stopped a block
if the success rate fell below 50% after at least 10 trials. This criterion was chosen
based on pilot studies in which we found that below this success rate, the monkey
would soon thereafter stop performing the task and would frequently refuse to
re-engage for a prolonged period of time. Our interleaved block design meant that
each decoder was tested multiple times on a given experimental session, which in
principle provides the monkey multiple attempts to finish a block with each
decoder. In practice, we found that monkeys could either complete every block or
no blocks with a given decoder, and we refer to decoders that could not be used to
complete a block as having failed. The performance of these decoders was recorded
as 0 targets per minute for that experimental session. The exception to the above
was that during an electrode-dropping experiment session, we declared both
FIT-KF Sameday and MRNN as having failed for a certain number of electrodes
dropped if the monkey could not complete a block with either decoder. That is, we
did not continue with a second test of both (unusable) decoders as per the
interleaved block design, because this would have unduly frustrated the animal.

We performed this study with two monkeys, which is the conventional standard
for systems neuroscience and BMI experiments using a non-human primate model.
No monkeys were excluded from the study. We determined how many
experimental sessions to perform as follows. For all offline analyses, we examined
the dates of previous experimental sessions with suitable arm reaching data
and selected sets of sessions with spacing most appropriate for each analysis
(for example, closely spaced sessions for Fig. 2b, all of the available data for Fig. 2c,
two clusters with a gap for stale training analyses). All these predetermined sessions
were then included in the analysis. For the stale training data experiments (Fig. 4),
the choice of two gaps with three test days each was pre-established. For the
electrode-dropping experiments (Fig. 3), we did not know a priori how electrode
dropping would affect performance and when each decoder would fail. We
therefore determined the maximum number of electrodes to drop during the
experiment and adjusted the number of sessions testing each drop condition during

the course of experiments to comprehensively explore the ‘dynamic range’
across which decoder robustness appeared to differ. For both of these experiments,
during an experimental session additional block-sets were run until the animal
became satiated and disengaged from the task. We did not use formal effect
size calculations to make data sample size decisions, but did perform a variety
of experiments with large numbers of decoder comparison trials (many tens of
thousands) so as to be able to detect substantial decoder performance differences.
For secondary online experiments (Supplementary Figs 3 and 7), which served
to support offline analyses (Supplementary Fig. 3) or demonstrate that the MRNN
could acquire other target locations (Supplementary Fig. 7), we chose to perform
only 1–3 sessions per animal in the interest of conserving experimental time.

Neural decoding using an MRNN. At a high level, the MRNN decoder transforms
inputs u(t), the observed spike counts on each electrode at a particular time, into a
cursor position and velocity output. This is accomplished by first training the
artificial recurrent neural network; that is, adjusting the weights of an artificial
recurrent neural network such that when the network is provided a time series
of neural data inputs, the data kinematic outputs can be accurately ‘read out’ from
this neural network’s state. The rest of this section will describe the architecture,
training and use of the MRNN for the purpose of driving a BMI.

The generic recurrent network model is defined by an N-dimensional vector of
activation variables, x, and a vector of corresponding ‘firing rates’, r¼ tanh x. Both
x and r are continuous in time and take continuous values. In the standard RNN
model, the input affects the dynamics as an additive time-dependent bias in each
dimension. In the MRNN model, the input instead directly parameterizes the
artificial neural network’s recurrent weight matrix, allowing for a multiplicative
interaction between the input and the hidden state. One view of this multiplicative
interaction is that the hidden state of the recurrent network is selecting an
appropriate decoder for the statistics of the current data set. The equation
governing the dynamics of the activation vector is of the form suggested in ref. 35,
but adapted in this study to continuous time to control the smoothness to MRNN
outputs,

t _x tð Þ ¼ � x tð Þþ Ju tð Þr tð Þþ bx :

The N�N� |u| tensor Ju(t) describes the weights of the recurrent connections
of the network, which are dependent on the E-dimensional input, u(t). The symbol
|u| denotes the number of unique values u(t) can take. Such a tensor is unusable for
continuous valued u(t) or even discrete valued u(t) with prohibitively many values.
To make these computations tractable, the input is linearly combined into F factors
and Ju(t) is factorized35 according to the following formula:

Ju tð Þ ¼ Jxf � diag Jfuu tð Þ
� �

� Jfx ;

where Jxf has dimension N� F, Jfu has dimension F�E, Jfx has dimension F�N,
and diag(v) takes a vector, v, and returns a diagonal matrix with v along the
diagonal. One can directly control the complexity of interactions by choosing F.
In addition, the network units receive a bias bx. The constant t sets the time scale
of the network, so we set t in the physiologically relevant range of hundreds of
milliseconds. The output of the network is read out from a weighted sum of the
network firing rates plus a bias, defined by the equation

z tð Þ ¼WOr tð Þþ bz ;

where Wo is an M�N matrix, and bz is an M-dimensional bias.

Table 1 | Network and training parameters used for the
closed-loop MRNN BMI decoder.

Monkey R Monkey L

Dt 20 ms 20–30 ms
t 100 ms 100–150 ms
N 100 50
F 100 50
strial 0.045 0.045
selectrode 0.3 0.3
gxf 1.0 1.0
gfu 1.0 1.0
gfx 1.0 1.0
E 192 96
Days of training data 82–129 189–230
Years spanned 1.59 2.77
Number of params in each MRNN 39502 9952
b 0.99 0.99

BMI, brain–machine interface; MRNN, multiplicative recurrent neural network.
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MRNN training. We began decoder training by instantiating MRNNs of network
size N¼ 100 (monkey R) and N¼ 50 (monkey L) with F¼N in both cases
(see Table 1 for all MRNN parameters). For monkey R, who was implanted with
two multielectrode arrays, E¼ 192, while for monkey L with one array, E¼ 96.
The non-zero elements of the non-sparse matrices Jxf,Jfu,Jfx are drawn indepen-
dently from a Gaussian distribution with zero mean and variance gxf/F,gfu/E, and
gfx/N, with gxf,gfu, and gfx set to 1.0 in this study. The elements of Wo are initialized
to zero, and the bias vectors bx and bz are also initialized to 0.

The input u(t) to the MRNN (through the matrix Ju(t)) is the vector of binned
spikes at each time step. Concatenating across time in a trial yields training data
matrix, Uj, of binned spikes of size E�Tj, where Tj is the number of times steps for
the jth trial. Data from five consecutive actual monkey-reaching trials are then
concatenated together to make one ‘MRNN training’ trial. The first two actual trials
in an MRNN training trial were used for seeding the hidden state of the MRNN
(that is, not used for learning), whereas the next three actual trials were used for
learning. With the exception of the first two actual trials from a given recording
day, the entire set of actual trials are used for MRNN learning by incrementing the
actual trial index that begins each training trial by one.

The parameters of the network were trained offline to reduce the averaged
squared error between the measured kinematic training data and the output of the
network, z(t). Specifically, we used the Hessian-Free (HF) optimization method36,63

for RNNs (but adapted to the continuous-time MRNN architecture). HF is an exact
second order method that uses back-propagation through time to compute the
gradient of the error with respect to the network parameters. The set of trained
parameters is {Jxf,Jfu,Jfx,bx,Wo,bz}. The HF algorithm has three critical parameters:
the minibatch size; the initial lambda setting; and the max number of conjugate-
gradient iterations. We set these parameters to one-fifth the total number of trials,
0.1 and 50, respectively. The optimizations were run for 200 steps and a snapshot
of the network was saved every 10 steps. Among these snapshots, the network with
the lowest cross-validation error on held-out data was used in the experiment.

We independently trained two separate MRNN networks to each output a
2D (M¼ 2) signal, z(t). The first network learned to output the normalized hand
position through time in both the horizontal (x) and vertical (y) spatial dimensions.
The second MRNN learned to output the hand velocity through time, also in the
x and y dimensions. As training data for the velocity decoder, we calculated hand
velocities from the hand positions numerically using central differences.

In this study, we trained a new MRNN whenever adding new training data; this
allowed us to verify that the training optimization consistently converged to a high-
quality decoder. However, it is easy to iteratively update an MRNN decoder with
new data without training from scratch. By adding the new data to the training
corpus and using the existing decoder weights as the training optimization’s initial
conditions, the MRNN will more rapidly converge to a new high-quality decoder.

Training an MRNN with many data sets and perturbed inputs. A critical
element of achieving both high performance and robustness in the MRNN decoder
was training the decoder using data from many previous recording days spanning
many months. When training data sets included data from 41 day, we randomly
selected a small number of trials from each day for a given minibatch. In this
way, every minibatch of training data sampled the input distributions from all
training days.

A second key element of training robustness to recording condition changes
was a form of data augmentation in which we intentionally introduced
perturbations to the neural spike trains that were used to train the MRNN. The
concatenated input, Û ¼ ½Ui; . . . ;Uiþ 4� was perturbed by adding and removing
spikes from each electrode. We focus on electrode c of the jth training trial, that is,
a row vector of data Û

j
c;: . Let the number of actual observed spikes in Û

j
c;: be nj

c .
This number was perturbed according to

n̂j
c ¼ ZjZcnj

c;

where both Zj and Zc are Gaussian variables with a mean of one and s.d. of strial and
selectrode, respectively. Conceptually, Zj models a global firing rate modulation
across all electrodes of the array (for example, array movement and arousal), while
Zc models electrode by electrode perturbations such as electrode dropping or
moving baselines in individual neurons. If n̂j

c was o0 or 42nj
c, it was resampled,

which kept the average number of perturbed spikes in a given electrode and
training trial roughly equal to the average number of true (unperturbed) spikes in
the same electrode and training trial. Otherwise, if n̂j

c was greater than nj
c, then

n̂j
c� nj

c spikes were added to random time bins of the training trial. If n̂j
c was less

than nj
c , then nj

c� n̂j
c spikes were randomly removed from time bins of the training

trial that already had spikes. Finally, if n̂j
c ¼ nj

c, nothing was changed.
The process of perturbing the binned spiking data occurred anew on every iteration

of the optimization algorithm, that is, in the HF algorithm, the perturbation n̂j
c ¼

ZjZcnj
c occurs after each update of the network parameters.

Note that these input data perturbations were only applied during MRNN training;
when the MRNN was used for closed-loop BMI control, true neural spike counts were
provided as inputs. Supplementary Figure 3 shows the closed-loop control quality
difference between the MRNN trained with and without this data augmentation.
Our data augmentation procedure is reminiscent of dropout64, however our data
perturbations are tailored to manage the nonstationarities in data associated with BMI.

Controlling a BMI cursor with MRNN output. Once trained, the MRNNs were
compiled into the embedded real-time operating system and run in closed-loop
to provide online BMI cursor control. The decoded velocity and position were
initialized to 0, as was the MRNN hidden state. Thereafter, at each decode time step
the parallel pair of MRNNs received binned spike counts as input and had their
position and velocity outputs blended to yield a position estimate. This was used to
update the drawn cursor position. The on-screen position that the cursor moves to
during BMI control, dx(t),dy(t), is defined by

dx tð Þ ¼ b dx t�Dtð Þþ gvvx t�Dtð ÞDtð Þþ 1� bð Þgppx tð Þ

dy tð Þ ¼ b dy t�Dtð Þþ gvvy t�Dtð ÞDt
� �

þð1� bÞgppyðtÞ

where vx, vy, px, py are the normalized velocity and positions in the x and y
dimensions and gv,gp are factors that convert from the normalized velocity and
position, respectively, to the coordinates of the virtual-reality workspace. The
parameter b sets the amount of position versus velocity decoding and was set to
0.99. In effect, the decode was almost entirely dominated by velocity, with a slight
position contribution to stabilize the cursor in the workplace (that is, offset
accumulated drift). Note that when calculating offline decode accuracy (Fig. 2),
we set b to 1 to more fairly compare the MRNN to the FIT-KF decoder, which
decodes velocity only.

We note that although (1) the MRNN’s recurrent connections mean that
previous inputs affect how subsequent near-term inputs are processed, and
(2) our standard procedure was to retrain the MRNN with additional data after
each experimental session, the MRNN is not an ‘adaptive’ decoder in the traditional
meaning of the term. Its parameters are fixed during closed-loop use, and therefore
when encountering recording condition changes, the MRNN cannot ‘learn’
from this new data to update its neural-to-kinematic mappings in the way that
adaptive decoders do (for example, refs 4,24,27). Insofar as its architecture and
training regime make the MRNN robust to input changes, this robustness is
‘inherent’ rather than ‘adaptive.’

Neural decoding using a FIT-KF. We compared the performance of the MRNN
with FIT-KF40. The FIT-KF is a Kalman filter where the underlying kinematic
state, z(t), comprises the position and velocity of the cursor as well as a bias term.
Observations of the neural binned spike counts, y(t), are used to update the
kinematic state estimate. With Dt denoting bin width (25 ms in this study), the
FIT-KF assumes the kinematic state gives rise to the neural observations according
to the following linear dynamical system:

z tþDtð Þ ¼ Az tð Þþw tð Þ

y tð Þ ¼ Cz tð Þþ qðtÞ
where w(t) and q(t) are zero-mean Gaussian noise with covariance matrices W and Q,
respectively. The Kalman filter is a recursive algorithm that estimates the state z(t)
using the current observation y(t) and the previous state estimate z(t�Dt). Previous
studies have used such decoders to drive neural cursors (for example refs 5,38,65).

The parameters of this linear dynamical system, A,W,C,Q, are learned in a
supervised manner from hand reach training data using maximum-likelihood
estimation, further described in refs 6,66. The FIT-KF then incorporates two
additional innovations. First, it performs a rotation of the training kinematics using
the assumption that at every moment in time, the monkey intends to move the
cursor directly towards the target. Second, it assumes that at every time step, the
monkey has perfect knowledge of the decoded position via visual feedback. This
affects Kalman filter inference in two ways: first, the covariance of the position
estimate in Kalman filtering is set to 0; and second, the neural activity that is
explainable by the cursor position is subtracted from the observed binned spike
counts. These innovations are further described in refs 6,40.

Mutual information for determining electrode-dropping order. When testing
the decoders’ robustness to unexpected electrode loss, we determined which
electrodes to drop by calculating the mutual information between each electrode’s
binned spike counts and the reach direction. This metric produced a ranking of
electrodes in terms of how statistically informative they were of the reach direction;
importantly, this metric is independent of the decoder being used. Let p denote
the distribution of an electrode’s binned firing rates, y denote the binned spike
counts lying in a finite set Y of possible binned spike counts, M denote the
number of reach directions and xj denote reach direction j. The set Y comprised
{0,1,2,3,4,5þ } spike counts, where any spike counts greater than or equal to 5 were
counted towards the same bin (‘5þ ’, corresponding to an instantaneous firing rate
of 250 Hz in a 20 ms bin). We calculated the entropy of each electrode,

H Yð Þ ¼ �
X

y2�

p yð Þ log pðyÞ;

as well as its entropy conditioned on the reach direction

H Y jXð Þ ¼ �
XM

j¼1

p xj
� �X

y2�

p y j xj
� �

log p y j xj
� �

:

From these quantities, we calculated the mutual information between the neural
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activity and the reach direction as Idrop(X;Y)¼H(Y)�H(Y|X). We dropped
electrodes in order from highest to lowest mutual information.

Principal angles of neural subspaces analysis. For a parsimonious scalar metric
of how similar patterns of neural activity during reaching were between a given pair
of recording days (used in Supplementary Fig. 1), we calculated the minimum
principal angle between the neural subspaces of each recording day. We defined the
neural subspace on a recording day as the top K principal components of the neural
coactivations. Put more simply, we asked how similar day i and day j’s motifs of
covariance between electrodes’ activity were during arm reaching. Specifically,
we started with a matrix Yi from each day i consisting of neural activity collected
while the monkey performed B200 trials of a Radial 8 Task (8 cm distance to
targets) using arm control; this task has been run at the start of almost every
experimental session conducted using both monkeys R and L since array
implantation. Yi is of dimensionality E�T, where E is the number of electrodes
and T is the number of non-overlapping 20 ms bins comprising the duration of this
task. We next subtracted from each row of Yi that electrode’s across-days mean
firing rate (we also repeated this analysis without across-days mean subtraction
and observed qualitatively similar results, not shown). To obtain the principal
components, we performed eigenvalue decomposition on the covariance matrix
YiYT

i (note, Yi is zero mean), and defined the matrix Vi as the first K eigenvectors.
Vi had dimensions E�K, where each column k is the vector of principal
component coefficients (eigenvector) corresponding to the kth largest eigenvalue of
the decomposition. Supplementary Figure 1 was generated using K¼ 10, that is,
keeping the first 10 PCs, but the qualitative appearance of the data were similar
when K was varied from 2 to 30 (not shown). Finally, the difference metric
between days i and j was computed as the minimum of the K subspace angles
between matrices Vi and Vj. Subspace angles were computed using the subspacea
MATLAB function67.

Data availability. All relevant data and analysis code can be made available by
the authors on request.
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