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Abstract

Breast cancer therapy based on amplifying a patient’s antitumor immune response depends on the 

availability of appropriate MHC class I-restricted, breast cancer-specific epitopes. To build a 

catalog of peptides presented by breast cancer cells, we undertook systematic MHC class I 

immunoprecipitation followed by elution of MHC class I-loaded peptides in breast cancer cell 

lines. We determined the sequence of 3,196 MHC class I-bound peptides representing 1,921 

proteins from a panel of 20 breast cancer cell lines including basal, luminal, and claudin-low 

subtypes. The data has been deposited to the ProteomeXchange with identifier PXD006406. After 

removing duplicate peptides, i.e., the same peptide eluted from more than one cell line, the total 

number of unique peptides was 2,740. Of the unique peptides eluted, more than 1,750 had been 
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previously identified, and of these, sixteen have been shown to be immunogenic. Importantly, only 

3 of these immunogenic peptides have been identified in breast cancer cells in earlier studies. 

MHC class I binding probability of eluted peptides was used to plot the distribution of MHC class 

I allele-specific peptides in accordance with the binding score for each breast cancer cell line. We 

also determined that the tested breast cancer cells presented 89 mutation-containing peptides and 

peptides derived from aberrantly translated genes, 7 of which were shared between four or two 

different cell lines. Overall, the high throughput identification of MHC class I-loaded peptides is 

an effective strategy for systematic characterization of cancer peptides, and could be employed for 

design of multi-peptide anticancer vaccines.

Introduction

Breast cancer is the most frequently occurring cancer in women in all racial and ethnic 

groups [1]. Despite the positive outcomes for most breast cancer patients, the side effects of 

current treatment are substantial [2–4], and lower toxicity treatments are needed. Further, for 

a significant minority of breast cancer patients, current treatments are inadequate. 

Substantial advances in the field of immunotherapeutics have resulted in approvals of both 

vaccines [5] and immune checkpoint inhibitors [6].

It is now recognized that invasive ductal carcinoma of the breast is a heterogeneous disease 

consisting of several major molecularly defined subtypes, including Luminal A, Luminal B, 

HER2, Basal, triple-negative, and the claudin-low subset [7, 8]. These subtypes have distinct 

clinical, genomic, and proteomic features; and it is becoming clear that there are differences 

between breast cancer subtype and response to specific therapeutic agents [9, 10]. Luminal 

tumor cells consisting of luminal A and B cells look like cells that start in the inner (luminal) 

cells lining the mammary ducts. Luminal A tumors have the best prognosis with high 

survival rate and low recurrence rate. Luminal B cells have poorer prognosis than luminal A 

cells and luminal B cells also tend to be estrogen receptor (ER) positive. Triple negative 

breast cancer consists of several subsets. One subset is basal-like. Basal-like tumor cells look 

like outer (basal) cells surrounding the mammary ducts. Most triple negative tumors cells are 

also basal-like and vice versa most basal-like tumor cells are also triple negative cells. Triple 

negative/basal-like tumors are often aggressive and have a poorer prognosis as compared to 

luminal A and B tumors. Claudin-low cells represent less common molecular subtypes of 

breast cancer. Claudin-low cells have more enriched cancer-stem cell-like features and 

higher activities of ER and progesterone receptor (PR) pathways than basal tumor cells. 

Claudin-low cells are also least differentiated among all subtypes of breast cancer cells and 

preferentially display a triple-negative phenotype. Claudin-low tumors are associated with 

poor survival. Human epidermal growth factor receptor 2 (HER2) subtype breast tumors can 

be HER2-positive (70%) and HER2-negative (30%). HER2 tumors are tend to be both ER- 

and PR-negative and have poor prognosis [11].

A powerful and safe approach to breast cancer therapy is to amplify the patient’s anti-tumor 

immune response by stimulating autologous T cells with antigen-presenting cells (APCs) 

loaded with breast cancer-specific antigens. T-cell based immunotherapeutic approaches 

require knowledge of cancer-specific antigens, and the capacity to determine which of these 

Rozanov et al. Page 2

J Proteomics. Author manuscript; available in PMC 2018 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cancer-specific antigens are presented by the cancer cells of the individual patient. During 

the past two decades, antigens from various tumor cells have been identified, and their MHC 

class I-restricted epitopes have been predicted and confirmed in T cell-based assays [12–15]. 

Current strategies to identify immunogenic tumor specific MHC class I-restricted epitopes 

rely on either expression analysis of tumor associated antigens (TAA) followed by synthesis 

of predicted peptides and T cell activation assays [16, 17], or elution of MHC class I-loaded 

peptides directly from tumors followed by mass spectrometry analysis, gene expression 

profiling, and in vitro T cell assays [18]. The first strategy largely depends on the accuracy 

of the predicting tool which is often compromised by the inability to take into account all of 

many factors such as proteasomal cleavage specificity, additional trimming at the N-

terminus of peptide, and transport of peptides into the endoplasmic reticulum [19]. 

Proteasomal cleavage is especially important in peptide prediction due to differences in 

regulation of gene expression and cleavage preferences of proteasomes in tumor cells 

compared to normal cells [20, 21]. The second strategy, while less subject to error, is limited 

because tumor cells extracted from cancer patients are often unavailable or only available in 

small quantities. To address these shortcomings, we used well established breast cancer cell 

lines to elute MHC class I-loaded peptides followed by identification of their sequences by 

mass spectrometry.

We describe systematic MHC class I immunoprecipitation followed by elution of MHC class 

I-loaded peptides from 20 breast cancer cell lines belonging to the four major subtypes. We 

determined the sequence of more than 2,700 unique non-mutated MHC class I-loaded 

peptides from 1,921 proteins as well as the sequence of 85 mutation-containing peptides and 

4 peptides derived from aberrantly translated genes. MHC class I binding probability of 

eluted peptides was also used to plot the distribution of non-mutated MHC class I allele-

specific peptides in accordance with the binding score. Finally, by analyzing the available 

peptide data set, we determined that more than 1,750 peptides have been identified in 

previous studies, and of these, sixteen peptides have been shown to be immunogenic.

Materials and Methods

Cell lines, antibodies, and reagents

Unless otherwise indicated, breast cancer and non-transformed cell lines used in this study 

were from American Type Culture Collection (Manassas, VA) (Table 1). Breast cancer T4 

cell line and non-transformed S1 cell line were from Dr. Bissell [22]. Unless special medium 

was required, cells were cultured in DMEM or RPMI supplemented with 10% FBS 

(DMEM/FBS or RPMI/FBS) and 10 µg/mL gentamicin. Unless otherwise indicated, all 

reagents were from Sigma (St. Louis, MO). Mouse MHC class I (HLA-A, B, C) antibody 

(clone W6/32) was from Cedarlane (Burlington, NC). Mouse HLA-A*02 antibody (clone 

BB7.2), N-octyl-β-D-glucopyranoside, SuperSignal West Pico chemiluminescent substrate, 

interferon (IFN)-α, IFN-γ, and protein G plus agarose were from Pierce (Rockford, IL). 

HRP-conjugated donkey anti-mouse IgG and Alexa Fluor 488-conjugated donkey anti-

mouse IgG were from Jackson ImmunoResearch (West Grove, PA).
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Western blotting and immunocytochemistry (ICC)

For Western blotting, samples were analyzed by staining with MHC class I (HLA-A, B, C) 

antibodies (clone W6/32) (1 µg/ml) overnight followed by HRP-conjugated donkey anti-

mouse IgG and Pico chemiluminescent substrate. For ICC analysis, cells were washed with 

PBS and stained for 2 h on ice using MHC class I (HLA-A, B, C) antibodies (clone W6/32) 

and HLA-A*02 antibodies (clone BB7.2) (5 µg/mL each) in DMEM/FBS. Cells were then 

washed with PBS, fixed for 15 min with 4% paraformaldehyde, blocked for 1 h in PBS 

supplemented with 1% casein, 0.05% Tween 20, and stained with Alexa Fluor 488-

conjugated donkey anti-mouse IgG for 2 h. Images were acquired on a fluorescence 

microscope (Olympus) and quantitated by scanR analysis software (Olympus). Nuclear 

DNA was stained with 4′,6-diamidino-2-phenylindole (DAPI).

Immunoprecipitation and elution of MHC class I-bound peptides and mass spectrometry 
(MS) analysis of eluted peptides

MHC class I-bound peptides were isolated according to published protocols [23–25] using 

mouse anti-human HLA (clone W6/32)-specific antibodies followed by acid treatment and 

concentration by vacuum centrifugation. Briefly, 108 cells were pelleted and lysed in 40 ml 

of PBS containing 50 mM n-octyl-β-d-glucopyranoside, 1 mM CaCl2, 1 mM MgCl2, 1 mM 

phenylmethylsulfonyl fluoride, 1 µg/ml leupeptin, 1 µg/ml pepstatin, and 1 µg/ml aprotinin 

for 1 h at 4°C. Insoluble material was removed by centrifugation. Next, supernatants were 

incubated overnight at 4°C with 200 µg of mouse anti-human HLA antibodies (clone 

W6/32) and 100 µl of a 50% Protein G plus agarose slurry (Pierce). Following washes, the 

beads were treated with 0.1% trifluoroacetic acid (TFA) for 30 min and eluted peptides were 

passed through 10 kDa cut-off filter units (Millipore). Flow through solutions were dried by 

vacuum centrifugation and dissolved in 5% formic acid. Peptides were separated using 

liquid chromatography with a nanoAcquity UPLC system (Waters), then delivered to an 

LTQ Velos linear ion trap mass spectrometer (Thermo Fisher Scientific) using electrospray 

ionization with a Captive Spray Source (Michrom Biosciences). Samples were applied at 15 

µl/min to a Symmetry C18 trap cartridge (Waters) for 10 min, then switched onto a 75 µm × 

250 mm nanoAcquity BEH 130 C18 column with 1.7 µm particles (Waters) using mobile 

phases water (A) and acetonitrile (B) containing 0.1% formic acid, 7–30% acetonitrile 

gradient over 106 min, and 300 nl/min flow rate. Data-dependent collection of MS/MS 

spectra used the dynamic exclusion feature of the instrument’s control software (repeat 

count equal to 1, exclusion list size of 500, exclusion duration of 30 sec, and exclusion mass 

width of −1.0 to +4.0) to obtain MS/MS spectra of the ten most abundant parent ions 

(minimum signal of 5,000) following each survey scan from m/z 400 to 1,400.

Mass spectrometry (MS) data analysis

Several releases of the stable human Swiss-Prot canonical protein databases were used 

(versions 2011.06, 2011.08, 2011.11, 2012.03, 2012.06) with about 20,200 sequences during 

the course of the project. The database releases were compared and all proteins associated 

with identified peptides were present in all databases so the results could be safely 

combined. We used sequence-reversed databases to estimate error thresholds [26]. After 

adding 179 common contaminant sequences, reversed sequences were constructed and 
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concatenated for final protein databases of roughly 40,800 sequences. Peptide identification 

was performed with SEQUEST/PAWS [27], using no enzyme specificity, average parent 

mass tolerance of 2.5 Da, monoisotopic fragment ion mass tolerance of 1.0 Da, and variable 

modification of +16 Da on methionine residues with a maximum of 2 modifications per 

peptide. The data from each cell line corresponded to a single liquid chromatography (LC) 

MS run. It is difficult to apply target/decoy statistical error control methods when dealing 

with small datasets. We combined set search score thresholds to exclude the main decoy 

score distributions similarly across all 22 datasets from all 20 cell lines into combined target 

and decoy score histograms to establish score thresholds to achieve an overall desired false 

discovery rate (FDR) of 4.65%. Score thresholds were set independently for peptides of 

different charge states (1+, 2+, and 3+). The individual sample FDRs varied from the overall 

FDR depending on the number of peptides present in each sample preparation and ranged 

from 2.8% to 7.8%. The MS proteomics data have been deposited to the ProteomeXchange 

Consortium (http://proteomecentral.proteomexchange.org) via the PRoteomics 

IDEntifications (PRIDE) database partner repository [28] with the dataset identifier 

PXD006406.

For the identification of recently predicted mutation-containing HLA peptides [29], the 

Thermo LTQ RAW files were converted to compressed text files using MSConvert of the 

ProteoWizard (version 3.0.11383) toolkit [30]. Comet (version 2017.01 rev. 2) [31] was used 

to search a custom FASTA database constructed from predicted HLA peptides [29] to assign 

peptide spectrum matches (PSMs). The Comet parameters were an average parent ion mass 

tolerance of 2.5 Da, a monoisotopic fragment ion mass tolerance of 1.0005 Da, no static 

amino acid modifications, variable oxidation of methionine (M+15.9949 Da), and no 

enzyme for the protein digestion. The FASTA database was created from the peptides listed 

in Supplemental Table 4 of [29]. The FASTA accession (key) was constructed by 

concatenating the cell line name, the protein identifier, and the peptide sequence. The 

protein sequence was the predicted HLA peptide sequence. There were 40,813 total 

predicted peptides. Common contaminants (179 sequences) were included, and decoy 

sequences added by sequence reversal. The final FASTA file had 81,984 sequences.

The Comet search scores were processed with the PAW pipeline [27]. PSMs were separated 

by cell line (a single mass spectrometer RAW file) and by charge state (1+, 2+, or 3+), and 

filtered to allow only matches to the full-length predicted HLA peptides (shortened peptide 

forms are scored during the no enzyme search). The separate PSM lists were then sorted 

from highest discriminant function score to lowest. Matches to the HLA peptides were 

accepted until the first decoy match score. The ranking by discriminant score and acceptance 

filtering were performed with Excel.

To identify altered peptides including peptides with insertions and deletions, we also used 

the Enosi pipeline [32]. The tool combines sample specific RNA-seq data with RNA-seq 

data from the TCGA project to create a custom database encoding mutations, splice variants, 

and other genomic lesions, and uses a two stage FDR controlled pipeline to identify altered 

peptides that are not part of the global reference.
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HLA typing

HLA typing—RNA-seq data were obtained from the Gene Expression Omnibus (GEO) 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48213). The HLA type of each 

cell line was identified by using paired end reads in fastq format as input to the seq2HLA 

tool [33].

MHC class I binding predictions and distribution of MHC class I allele-specific peptides

MHC class I binding predictions were made using IEDB analysis resource tool, which 

combines predictions from the Consensus method [34] consisting of Artificial Neural 

Network (ANN) [35, 36], Stabilized Matrix Method (SMM) [37], and Scoring Matrices 

derived from Combinatorial Peptide Libraries (Comblib) [38], and NetMHCpan [39] 

method. To predict peptide:MHC-I binding affinity, we used the Consensus method 

consisting of ANN, SMM, and Comblib if any corresponding predictor is available for the 

molecule. Otherwise, NetMHCpan is used. Based on availability of predictors and 

previously observed predictive performance, this selection tries to use the best possible 

method for a given MHC molecule. Thus, multiple methods were used to predict peptide 

binding affinity. If two methods predicted the binding affinity of the same peptide, the 

consensus value was taken.

Results

ICC and RNA-seq analyses of breast cancer cell lines

In addition to MHC class I-positive breast cancer cells, we sought to identify HLA-A*02-

positive cell lines because the HLA-A*02 allele occurs frequently in all ethnic groups. HLA-

A*02 has been identified in 35% of African-Americans and in 50% of Caucasians [40]. 

Each cell line was stained with the mouse anti-human HLA (clone W6/32) and HLA-A*02-

specific (clone BB7.2) antibody followed by Alexa Fluor 488–conjugated donkey anti-

mouse IgG. Control staining was performed with non-specific mouse IgG antibodies. 

Representative images of the stained MCF7 and MDA-MB-231 cells are shown in Figure 

1A. As expected, staining with control mouse IgG showed no signal. Typical quantitative 

data of HLA-A*02 for MCF7 and MDA-MB-231 is shown in Figure 1B. Quantitative levels 

of total MHC class I and HLA-A*02 expression in all analyzed breast cancer cell lines are 

shown in Supporting Information Figure S1.

The level of MHC class I and HLA-A*02 expression in MDA-MB-231 cells was arbitrarily 

set to 100%, and the expression level of MHC class I and HLA-A*02 in other lines was 

calculated as a percentage of MDA-MB-231 staining (Table 1). Cell lines were grouped by 

subtypes and by their measured HLA-A*02 protein throughout the manuscript. MHC class I 

status in selected cell lines was also determined using RNA-seq analysis. The data showed 

that, in most cases, MHC class I staining (protein expression) did not correlate with the level 

of MHC class I mRNA. In addition, MHC class I staining was below the limit of detection in 

MDA-MB-157, JIMT1, CAL-51, ZR75B, SKBR3, and BT474 cells despite the fact that 

MHC class I mRNA was present in these cells.
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We identified MHC class I alleles in the breast cancer cell lines by RNA-seq using seq2HLA 

[33] to map RNA-seq reads against a reference database of HLA alleles [29] (Table 1). Our 

HLA typing agrees with the data published by Boegel et al [29]; however, there is a 

discrepancy between our data and the data used by the TRON Cell Line Portal (http://

celllines.tron-mainz.de/) with regard to MCF-7 cell line. This discrepancy could arise if 

there were multiple, genetically unique subpopulations within the MCF-7 breast cancer cell 

line as described by Tan et al. [42]. The validity of our HLA typing was also confirmed by 

the observation of the same HLA-typing profile in LY2 cells, as both MCF7 and LY2 cell 

lines were derived from the same patient [43]. With regard to HLA-A*02 allele, there was 

general agreement between protein expression and genotype; however, some cell lines were 

phenotypically HLA-A*02-negative even though HLA-A*02 mRNA was present (Table 1).

MHC class I immunoprecipitation and elution of MHC class I-loaded peptides

To identify MHC class I-restricted peptides expressed on the cell surface, MHC molecules 

immunoprecipitated as described in Methods were analyzed by Western blotting using anti-

MHC class I antibodies (Supporting Information Figure S2). The major purpose of this 

Western blotting analysis was to confirm the robustness of our protocol to elute MHC class I 

ligands from the cell surface of breast cancer cells. The obtained results with MDA-MB-231 

cells showed that the selected antibodies were able to immunoprecipitate MHC class I 

molecules. In addition, we found that the selected antibodies were not able to deplete MHC 

class I molecules from the lysate of approximately 108 cells. Because the total level of MHC 

class I expression determined by immunocytochemistry is comparable in most analyzed cell 

lines (Table 1), we concluded that 108 cells expressed enough MHC class I molecules to 

saturate the used amount of MHC class I antibodies.

Flow through solutions of eluates from control IgG and anti-MHC class I samples were 

subjected to MS analysis. IgG control sample from HCC1187 cells contained few peptides 

(Supporting Information Figure S3). In contrast, anti-MHC class I sample from HCC187 

cells contained several hundred peptides. Immunoprecipitation and elution of peptides were 

repeated for all selected cell lines (Table 1) in independent experiments.

We used the PAW processing pipeline [27] to identify cell surface peptides and control 

peptide false discovery rates. Peptide summary reports are presented in Supporting 

Information Table S1. Peptides that map to a single protein are indicated as unique (TRUE 

in “Unique” column), while redundant peptides are indicated as non-unique (FALSE in 

“Unique” column). Common contaminating peptides and peptides eluted from both the 

control IgG agarose and empty agarose were removed from the Table S1. In addition, we 

found that some peptides were derived from MHC class I proteins themselves. We removed 

these peptides from our dataset because we could not exclude the possibility that these 

peptides were non-specifically captured due to the degradation of MHC class I proteins 

during immunoprecipitation and acid treatment. Indeed, we identified a few mouse IgG-

derived peptides in the eluted samples that were non-specifically captured during the 

treatment. Peptides and corresponding proteins were arranged according to the frequency 

that these peptides were observed (MS/MS total spectral counts). The total numbers of 

identified peptide spectral counts from target and decoy databases matches are also tallied in 
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a tab of Supporting Information Table S1. Peptide FDR were estimated from decoy 

(reversed) protein entries [26].

The data in the Table 1 suggest that high levels of cell surface MHC class I protein 

expression do not guarantee high levels of peptide loading. For example, in three 

independent experiments, only small number of peptides was recovered from MDA-MB-231 

cells, which expressed high levels of MHC class I. We did not identify any shared peptides 

between these three peptide identifications most likely because there was a large antigen 

excess as compared to the ability of antibodies to precipitate it (Figure S2). In addition, we 

assume that MDA-MB-231 cells have impaired MHC class I function. In support of our 

conclusion, the available RNAseq data showed that MDA-MB-231 cells harbor mutation-

containing genes bach1, cpsf1, and ier5, which are directly involved in antigen processing 

and presentation [44]. Mutations in these genes most likely result in defects in the 

expression of MHC class I-loaded peptides on the cell surface. It implies that MDA-MB-231 

cells mostly express MHC class I proteins without any loaded peptides like T2 cells that 

have defects in transporter associated with antigen processing (TAP) proteins. Thus, it would 

be hard to identify shared peptides that are presented via defected MHC class I presentation 

machinery. A total of 3,196 peptides were eluted from MHC class I molecules 

immunoprecipitated from the surface of breast cancer cells belonging to the 20 cell lines. 

After removal of duplicate peptides, i.e., the same peptide eluted from more than one cell 

line, the total number of unique peptides and corresponding proteins was 2,740 and 1,921, 

respectively. The identity and frequency of shared peptides in all cell lines are presented in 

the Supporting Information Table S2. We also included in the Supporting information Table 

S2 gene expression data of all corresponding proteins from which eluted peptides were 

derived.

Next, we asked if the eluted peptides contain antigenic mutations, which are primary targets 

for T cell response. For this purpose, our raw MS data was screened against a catalog of 

predicted mutation-containing HLA peptides (Supporting Information Table S3) [29]. We 

determined that among eluted peptides there are 85 peptides that contain mutation in their 

sequence. In addition, we used the Enosi pipeline, which can detect peptides derived from 

mutated proteins and from either proteins with deletions and insertions or aberrantly 

translated genes using RNA-seq data from the TCGA project [32]. We identified tow 

peptides derived from reverse translated genes tap1 (ATAPGLGGGPEPLGR) and ikbkap 
(EIISDPGVQGYSR) in HCC1806 cells as well as one peptide derived from translations of a 

+1 frame-shifted gene cp4 (AVASINSSEALR) in UACC812 cells and one peptide derived 

+2 frame-shifted gene clipr1 (TAFESITSSDQR) in HCC1806 cells (Supporting Information 

Table S4).

Data mining and validation

Analysis of our data showed that some peptides were frequently presented on the cell 

surface of different breast cancer cells (Supporting Information Table S2). As can be 

expected, peptides derived from proteins that are expressed at high levels in cancer and 

normal cells such as elongation factor 2 (EEF2), fructose-bisphosphate aldolase A 

(ALDOA), E3 ubiquitin-protein ligase RNF213 (RNF213), cytoplasmic dynein 1 heavy 
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chain 1 (DYHC1), helicase with zinc finger domain 2 (HELZ2), and eukaryotic translation 

initiation factor 3 subunit D (EIF3D) were most frequently presented in the context of MHC 

class I. However, many of the peptides were derived from low abundance proteins, 

furthermore, a subset of those had corresponding mRNA levels below the threshold of 

detection. Even mutation-containing peptides were derived from genes that have both high 

and low level of expression in the analyzed breast cancer cells. The presence of peptides 

from low-abundance genes implies some selectivity process. It is noteworthy that identical 

peptides were eluted from the cell surface of different cell lines confirming the 

reproducibility of the obtained results. To further elaborate on this issue, we identified 

peptides either specific or shared between different breast cancer subtypes, which could be 

of interest to design therapies targeted to specific breast tumor types (Supporting 

Information Table S5).

To determine if the eluted MHC class I-bound peptides had been identified in previous 

studies, we searched IEDB, which consists of more than 167,000 human unique peptides. 

IEDB is sponsored by the National Institute for Allergy and Infectious Diseases (NIAID) 

who launched a large-scale antibody and T cell epitope discovery program. Data sources to 

be integrated into the IEDB include publications in peer-reviewed journals, published 

patents, and direct submissions from institutions or companies. Each publication can also be 

classified by its general topic (e.g. infectious diseases, autoimmunity, allergy, 

transplantation, HIV or cancer). Thus, IEDB includes epitopes from a variety of sources and 

constitutes the most comprehensive database/resource for HLA ligands [45]. We determined 

that, of the 2,740 eluted unique peptides, 1,751 peptides have previously been shown to bind 

MHC class I proteins. Importantly, 16 of the peptides in our data set were active in T cell 

activation assays published earlier (Table 2) and half of these immunogenic peptides were 

shared between different breast cancer cell lines. Surprisingly, we found that these 

immunogenic epitopes were seldom related to breast cancer, and one of them was previously 

identified as a target of T cells in chronic lymphocytic leukemia (CLL) patients [57].

To find new breast cancer specific MHC class I-loaded epitopes that could have the ability to 

activate T cell response, we used gene expression profiling to determine the MHC class I-

presented genes that have alterations or elevated expression levels in breast tumors compared 

to normal cells. First, we determined genes whose expression is altered in invasive breast 

cancers by copy number amplification, homozygous deletion, mRNA upregulation or 

downregulation, and mutation using the cBioPortal for Cancer Genomics that contains large-

scale cancer genomics data sets (Supporting Information Table S6). We arranged all 

identified genes in accordance with the frequency of alterations in breast cancer samples. 

For further analysis we selected genes that have alterations in at least 20% of breast cancers.

Second, we used gene expression data from of 708 breast tumors and 329 normal tissues 

from TCGA (20), EBI (21), and GEO (22) to identify among MHC I-presented genes those 

genes that have preferential expression in breast cancer samples over normal samples. We 

averaged expression among all tumor and normal samples for each gene and arranged all 

genes by the level of differential expression in tumor and normal samples (Supporting 

Information Table S6). In this analysis we selected genes that have at least 2 times higher 

expression in breast tumors than in normal tissues. We also attempted to select breast cancer 
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specific candidate genes using gene expression data sets based on RNA-seq data for 62 

breast carcinoma cell lines and 6 non-transformed cell lines (Supporting Information Table 

S6). We averaged expression data for each gene across all breast carcinoma cell lines and 

non-transformed cells and for further analysis we selected genes that have 2 times higher 

expression in transformed than in non-transformed cells. Interestingly, most genes that were 

overexpressed in breast tumors as compared to normal tissues do not show a similar 

overexpression pattern in breast carcinoma cell lines as compared to non-transformed cells.

Next, we calculated the immunogenicity score for this set of proteins that were associated 

with cancer and compared it with that of the known 1217 immunogenic epitopes present in 

the IEDB database. To determine the immunogenicity score, we employed a tool that was 

used to predict immunogenicity of viral MHC class I ligands [59]. Previous studies 

demonstrated that this tool can be successfully used to predict immunogenicity of cancer-

related peptides [60]. We find that our cancer-related dataset contains a number of peptides 

that have score higher than 0.20, which is close to the top 20% most immunogenic known 

epitopes (Supporting Information Table S6). These peptides are good candidates for further 

testing in T cell-based immunogenicity assays.

The availability of comprehensive HLA-A, B, and C typing also allowed us to predict the 

binding probability of each peptide to the HLA molecules present in the corresponding cells 

including mutation-containing peptides and peptides derived from aberrantly translated 

genes (Supporting Information Table S7). For this purpose, we used a Consensus method 

[34] recommended by IEDB, which consists of ANN [35, 36], SMM [37], Comblib [38], 

and NetMHCpan [39]. It has been shown that the consensus method is superior to any single 

prediction technique tested [61]. The predicted affinity of each peptide was expressed as a 

percentile rank, generated by comparing the peptide IC50 value in relation to the 

corresponding HLA allele against those of a set of random peptides from the SWISSPROT 

database. Lower rank values indicate higher predicted peptide affinities. Next, we plotted the 

number of peptides (counts) in relation to these percentile ranks for each HLA allele (Figure 

2). For strong binders, we selected peptides with rank ranging from 0.1 to 1. Our data 

showed that UACC812, CAMA-1, SUM185PE, HCC1806, and T47D cells use only one 

HLA allele to present almost all high affinity peptides (rank 0.1–1), while other cells use two 

or more HLA alleles to load high affinity peptides. To distinguish binders from non-binders, 

we used rank 10. Based on these selection criteria, we determined the number and ratio of 

peptides that are not predicted to bind any HLA allele. The ratio of non-binders was in the 

range of FDR (Supporting Information Table 1) thereby confirming the validity of rank 10 to 

distinguish between binders and non-binders. We also determined the quantity of shared 

high affinity peptides between HLA alleles in corresponding cells and ratio of these shared 

peptides in relation to all eluted peptides (Figure 2). Our data showed that some high affinity 

peptides are shared between different HLA alleles while other peptides are not.

Discussions

We selected breast cancer for these studies because breast cancer is a global problem. 

Worldwide, approximately a quarter of all cancer cases in women are breast cancers. In 

addition, as a model of breast cancer we have approximately 70 breast cancer cell lines, 
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which are the focus of intensive molecular and phenotypic characterization [22, 43, 62]. 

Efforts to develop a breast cancer vaccine have largely focused on eliciting immune 

responses to HER2 [63–65]. It is unclear, however, whether HER2-derived epitopes are the 

most potent antigens for HER2-overexpressing breast cancer cells. Identification of new and 

potent T cell-activating epitopes expressed on the surface of cancer cells remains critical for 

development of successful immunotherapies. In this paper, we have demonstrated that 

established cancer cell lines can be used as a source to identify MHC class I-restricted and 

immunogenic epitopes. The previously identified immunogenic peptides that were present in 

our dataset do not harbor any mutations in their sequences, thereby their ability to activate T 

cells would be a result of alterations in either the expression or processing pattern as 

compared to normal cells.

We identified 2,740 unique peptides eluted from breast cancer cells and 1,921 corresponding 

proteins. Actually, few papers have described surveys of tumor-associated 

immunopeptidomes with identifications of more than 100 HLA-bound peptides [60, 66, 67]. 

For example, Bassani-Sternberg et al. [60] developed a high-throughput MS-based workflow 

that yielded more than 22,000 unique HLA peptides across seven cancer cell lines and 

primary cells. Authors used a similar approach, however, with 5 times more cells than we 

used in the immunoprecipitation experiments. Another distinction from our approach is the 

covalent binding of W6/32 antibody to Protein-A Sepharose beads that could improve the 

yield and purity of the eluted HLA-I complexes. We believe that the increased number of 

cells and use W6/32 antibody covalently bound to the beads resulted in approximately 10-

fold improvement in the yield of the eluted peptides as compared to our protocol. On the 

other hand, the dataset published by Bassani-Sternberg et al. [60] contained only four 

previously identified immunogenic epitopes while our dataset contains sixteen immunogenic 

epitopes identified in previous studies. This 4-fold difference in the number of immunogenic 

epitopes identified in our studies and in the work of Bassani-Sternberg et al. [60] can be 

result of either type of cancer cells used in the MHC class I immunoprecipitation and 

epitope elution experiments or difference in the experimental techniques. Most other related 

works identified far fewer MHC class I-bound ligands. One of the explanations for the 

inability to elute a large number of peptides from the cell surface can be related to 

downregulation of HLA ligand presentation machinery in cancer cells. There are many 

different ways used by cancer cells to escape immune attack. One of them is to reduce the 

cell’s ability to present HLA ligands on the cell surface. For example, our data and results 

published by others showed that approximately 40% of breast cancers lost MHC class I 

RNA expression [68]. MHC class I expression can also be downregulated at the post 

transcriptional level. In agreement, Table 1 showed that expression of MHC class I RNA 

does not always correlate with that of MHC class I protein abundance. In addition, HLA 

ligand presentation can be downregulated by reduction/loss of TAP expression that occur in 

29% of primary and 42% of metastatic breast cancers [68]. The available RNA-seq and 

immunohistochemistry data allowed us to relate HLA expression with the quantity of eluted 

peptides. RNA-seq and HLA expression data do not always correlate with the number of 

eluted peptides. Thus, we conclude that RNA-seq and protein expression data cannot be used 

to estimate the level of HLA-loaded peptides on the cell surface and additional factors 

should be taken into account.
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Our data suggest that in most cases the identified peptides were expressed at high or 

moderate levels on the cell surface. This observation is in agreement with the recently 

published results of Bassani-Sternberg et al. [60], who demonstrated a strong correlation 

between protein abundance and HLA-presentation. We have not seen any depletion of 

antigen after immunoprecipitation, and more frequent MHC class I/peptide complexes could 

occupy all antigen binding sites of the antibodies used for immunoprecipitations. The fact 

that only stable MHC class I/peptide complexes are efficiently transported to the 

extracellular membrane and have an extended half-live on the cell surface indicates that the 

level of peptide expression is closely linked to peptide affinity for the presenting MHC class 

I molecule [69]. In agreement, plotting the number of peptides in relation to percentile ranks 

demonstrated that the ratio of high affinity peptides (rank 0.1–1) is higher than that of lower 

affinity peptides for most HLA alleles which are preferentially used to present peptides. It is 

important; however, to identify low affinity peptides, which can be immunogenic [70]. There 

are some approaches to address this issue. The first approach is to increase the antibody/

antigen ratio and couple the antibodies to a solid support [60]. A second approach, far less 

specific, is to use a lectin-coated resin to capture all glycosylated MHC class I molecules 

[71]. A third, non-specific, approach is to elute peptides directly from cells as has been 

described previously [67, 72]. This technique is especially useful for clinical samples where 

tumor material is often available in only very small quantities.

Recently, Boegel et al. [29] showed that, on average, breast carcinoma cells harbor 

approximately 300 mutation-containing genes per genome, and the authors predicted that 

60–70% of the corresponding mutation-containing peptides can be efficiently presented by 

MHC class I molecules present in the same cells. To confirm that MHC class I molecules are 

loaded with mutation-containing peptides, we searched our raw MS data against database of 

the predicted antigenic mutations [29]. Interestingly, we determined that our eluted peptide 

pool includes 85 mutation-containing peptides, and 7 of them were shared between different 

breast cancer cell lines. These shared mutation-containing peptides could provide a basis to 

design a multi-peptide cancer vaccine. To identify peptides that are not present in normal 

cells, we also employed an algorithm specifically designed to identify altered peptides [32]. 

We identified four non-normal peptides that were derived from alternative translations of 

genes, including tap1 (reverse frame translation), c4a (+1 frame shifted translation), ikbkap 
(reverse frame translation), and glipr1 (+2 frame shifted translation). Altogether, ur data 

indicated that altered or mutation-containing peptides are presented at the level of 2–3% on 

the cell surface of breast cancer cells. Our data also suggest that it is feasible to identify 

immunogenic epitopes derived from wild type genes expressed in breast cancer cells. 

Importantly, our data also showed that either non-mutated immunogenic HLA ligands or 

mutation-containing neo-epitopes cab be shared between different cancer cells that do not 

have identical HLA alleles. The ideal candidate epitopes for vaccine development will be 

those that are commonly presented by tumor cells. Our data also confirmed that 

immunogenic epitopes can be shared between different cancer types including leukemia and 

epithelial cancers.

The knowledge of HLA genotype and probability of binding of each peptide to MHC class I 

present in the corresponding cells allowed us to plot the distribution of ranked MHC class I 

allele-specific peptides for each breast cancer cell line. Our data showed that breast cancer 
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cells use different quantity of MHC class I alleles to present high affinity peptides (rank 0.1–

1.0). For example, HCC1806, CAMA-1, SUM185PE, T47D, and UACC812 cells use only 

one MHC class I allele to present almost all high affinity peptides, while other cells use two 

or more MHC class I alleles to present high affinity peptides. Based on the inability of many 

MHC class I alleles to efficiently bind and present high affinity peptides, we propose that 

during breast cancer progression malignant cells loose MHC class I functionality to interfere 

with peptide presentation machinery and, as a consequence, avoid immune system attack. 

Our conclusion that interfering with MHC class I functionality can be used by cancer cells to 

escape the immune attack is supported by the published data showing that approximately 

40% of breast cancers lost MHC class I RNA expression [68].

The current work was driven mostly by our optimized technique to elute MHC class I-

loaded peptides from different breast cancer cells with an aim to build a potential HLA-I-

typed antigen collection. We understand that a limitation of our work is the absence of 

immunogenicity analysis of the eluted peptides. We proposed that the gap between the basic 

research and clinical utility of the project may be effectively closed by developing a high 

throughput protocol to identify immunogenic epitopes among eluted peptides. To 

accomplish this task, we developed a technique to attach a patient’s own PBMC-derived 

antigen-presenting dendritic cells (DCs) to the array matrix. The attached DCs can be 

maturated to present pre-printed peptides on the cell surface (Fig. 3). Subsequent ELISPOT 

assays using a patient’s own T cells will identify peptides that can induce the T cell-based 

immune response.

We envision that future design of personalized vaccines will be based on the HLA allele sub-

types of the individual patient and the ability of these HLA allele subtypes to present MHC 

class I-restricted peptides. Distribution profiles of presentation of known immunogenic 

epitopes by each MHC class I allele type will likely inform the design of multi-peptide-

based vaccines. In support of these conclusions, in a recent report, nine peptides were used 

as the basis for a multi-peptide vaccine against renal cell carcinoma cells [18].

Conclusions

In summary and in agreement with previous studies [60], our results demonstrate that 

established cancer cell lines can be used to identify tumor-specific and immunogenic MHC 

class I-restricted peptides. Because it is extremely difficult in most cases to obtain enough 

fresh tumor for efficient immunoprecipitation and MS analysis of eluted peptides, we used a 

more feasible cell line-based approach to elute peptides from the cell surface followed by 

sequence determination using MS.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance

By employing proteomic analyses of eluted peptides from breast cancer cells, the current 

study has built an initial HLA-I-typed antigen collection for breast cancer research. It was 

also determined that immunogenic epitopes can be identified using established cell lines 

and that shared immunogenic peptides can be found in different cancer types such as 

breast cancer and leukemia. Importantly, out of 3,196 eluted peptides that included 

duplicate peptides in different cells 89 peptides either contained mutation in their 

sequence or were derived from aberrant translation suggesting that mutation-containing 

epitopes are on the order of 2–3 % in breast cancer cells. Finally, our results suggest that 

interfering with MHC class I function is one of the mechanisms of how tumor cells 

escape immune system attack.
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Figure 1. 
A. Immunostaining of HLA-A*02. MCF7 and MDA-MB-231 cells were stained using 

HLA-A*02-specific antibody (clone BB7.2). As a control, cells were stained using non-

specific mouse IgG. Nuclei were visualized by DAPI. Original magnification, 400×. B. 

Quantitative representation of HLA-A*02 expression in breast cancer cell lines. Stained 

images were scanned and analyzed using ScanR Acquire and ScanR Analysis software, 

respectively. The bars represent the mean of intensities between several thousands of 

scanned cells. Error bars indicate the standard error of the mean.
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Figure 2. 
Binding probabilities of each peptide to the HLA allele present in the corresponding cells. 

Only 8–14-mer peptides were used for this analysis. Percentile rank for each peptide was 

generated by comparing the peptide's binding EC50 against those of a set of random 

peptides from SWISSPROT database. Numbers to the right of cell line name represent the 

number of analyzed peptides. Numbers below the MHC class I allele type indicate the ratio 

of ranked peptides in relation to all peptides. High affinity peptides (rank 0.1–1) are 

presented by two, three or four, and one MHC class I alleles. Numbers below plots and 

numbers in brackets represent quantity of shared high affinity peptides between different 

alleles and ratio of these shared peptides in relation to all eluted peptides, respectively. The 

number of peptides that are not predicted to bind any HLA allele (non-binders) and their 

ratio to all peptides are also indicated below the plots.
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Figure 3. 
Attachment and maturation of DCs on the array matrix. Upper panel. Immunocytochemistry 

analysis of attached DCs. Lower panel. Image of immature and mature DCs on the array.
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