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GENOMIC PREDICTION

Genomic Prediction Informed by Biological
Processes Expands Our Understanding of the
Genetic Architecture Underlying Free Amino Acid
Traits in Dry Arabidopsis Seeds
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Timothy M. Beissinger,‡,§ and Ruthie Angelovici*,1
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Urbana-Champaign, IL, ‡Division of Plant Breeding Methodology, Department of Crop Science, Georg-August-Universtät,
Göttingen, Germany, and §Center for Integrated Breeding Research, Georg-August-Universtät, Göttingen, Germany
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ABSTRACT Plant growth, development, and nutritional quality depends upon amino acid homeostasis,
especially in seeds. However, our understanding of the underlying genetics influencing amino acid content
and composition remains limited, with only a few candidate genes and quantitative trait loci identified to
date. Improved knowledge of the genetics and biological processes that determine amino acid levels will
enable researchers to use this information for plant breeding and biological discovery. Toward this goal, we
used genomic prediction to identify biological processes that are associated with, and therefore potentially
influence, free amino acid (FAA) composition in seeds of the model plant Arabidopsis thaliana. Markers were
split into categories based on metabolic pathway annotations and fit using a genomic partitioning model to
evaluate the influence of each pathway on heritability explained, model fit, and predictive ability. Selected
pathways included processes known to influence FAA composition, albeit to an unknown degree, and
spanned four categories: amino acid, core, specialized, and protein metabolism. Using this approach, we
identified associations for pathways containing known variants for FAA traits, in addition to finding new trait-
pathway associations. Markers related to amino acid metabolism, which are directly involved in FAA
regulation, improved predictive ability for branched chain amino acids and histidine. The use of genomic
partitioning also revealed patterns across biochemical families, in which serine-derived FAAs were associated
with protein related annotations and aromatic FAAs were associated with specialized metabolic pathways.
Taken together, these findings provide evidence that genomic partitioning is a viable strategy to uncover the
relative contributions of biological processes to FAA traits in seeds, offering a promising framework to guide
hypothesis testing and narrow the search space for candidate genes.
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Amino acids play a central role in plant growth and development, as
well as human and animal nutrition. In addition to serving as the
building blocks for proteins, amino acids are involved in essential
biological processes that include nitrogen assimilation, specialized
metabolism, osmotic adjustment, alternative energy, and signaling
(Rai 2002; Araújo et al. 2010; Angelovici et al. 2010, 2011; Wu and
Messing 2014). Therefore, it is no surprise that the homeostasis for
absolute levels and relative composition of the free amino acid (FAA)
pool is complex and depends, at least in part, on various factors such
as allosteric regulation, feedback loops of key metabolic enzymes in

amino acid synthesis pathways, and the rate of amino acid degra-
dation (Less and Galili 2008; Jander and Joshi 2010; Hildebrandt et al.
2015; Huang and Jander 2017; Amir et al. 2018). Studies have also
demonstrated that core metabolism has a significant impact on FAA
homeostasis. For example, alteration of the interconversion of py-
ruvate andmalate in tomato fruits caused a reduction in FAAs related
to aspartate (Osorio et al. 2013). In addition, processes related to
protein and specialized metabolism also influence FAA homeostasis,
especially in vegetative tissues (Hildebrandt et al. 2015; Barros et al.
2017; Huang and Jander 2017; Hirota et al. 2018; Hildebrandt 2018).
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Together, these lines of evidence highlight that FAA homeostasis is
likely determined by orchestration of multiple processes. However,
the relative contribution of each process to FAA composition remains
unclear.

The composition of the FAA pool is especially critical in dry seeds,
since it ensures proper desiccation, longevity, germination, and seed
vigor (Angelovici et al. 2011; Galili et al. 2014). Despite this, very little
is known about the function, genetic architecture, and regulation of
FAAs. The FAA pool comprises 1–10% of total seed amino acid
content in maize (Muehlbauer et al. 1994; Amir et al. 2018) and�7%
in Arabidopsis thaliana (Cohen et al. 2014; Amir et al. 2018).
Although the relative size of the FAA pool is small, manipulation
of FAAs in seeds can have a substantial contribution to crop seed
nutritional biofortification (Galili and Amir 2013). Nevertheless,
several studies have also shown that manipulation of specific FAAs
can have pleiotropic effects on growth and germination, indicating
their metabolism is intertwined with other key metabolic processes in
the seeds (Galili and Amir 2013; Amir et al. 2018). Thus, uncovering
more about the relative influence of these metabolic processes
can help tailor a more effective approach to FAA manipulation
and biofortification.

Like many other primary metabolites in dry seeds, FAAs are
complex traits with extensive variability and high heritability across
natural populations. Multiple genome-wide association (GWA) stud-
ies have identified several candidate loci for amino acid traits, both
independently (Riedelsheimer et al. 2012) and in conjunction with
QTL studies (Angelovici et al. 2013, 2016). However, the number and
effect size of loci detected so far explained only a fraction of the
observed phenotypic variation for amino acid traits, with some traits
proving harder to dissect than others. For example, Angelovici et al.
(2013, 2016) found the strongest associations for traits related to
histidine and branched-chain amino acids (BCAAs), but weak signals
for most other FAA traits. The findings that amino acid traits
frequently have several associated loci and that these loci explain a
small proportion of the genetic variation suggest a highly polygenic
architecture with many loci of small effect (Korte and Farlow 2013).
Additional evidence for metabolic traits indicates that, although
many genetic markers may contribute to overall genetic variation,
many of these markers are preferentially located in genes that are
connected to a biological pathway(s) (Lango Allen et al. 2010).

While linkage mapping and GWA studies are typically under-
powered to identify variants that are rare and/or of small effect,
genomic prediction methods perform well when traits are highly
complex (Meuwissen et al. 2001; Goddard et al. 2009; de Los Campos
et al. 2013). Genomic prediction models are trained on a subset of
individuals with genotypic and phenotypic data, enabling researchers
to predict breeding values for genotyped individuals that have an
unknown phenotype (Meuwissen et al. 2001; Heffner et al. 2009).
Since its development nearly two decades ago (Meuwissen et al.

2001), genomic prediction has dramatically altered the speed and
scale of applied genetic and breeding research (Daetwyler et al. 2013).
The efficacy of genomic prediction results from its simultaneous use
of all genotyped markers and indifference to the statistical signifi-
cance of individual markers, in contrast to analyzing markers one-at-
a-time for significance as is done for linkage mapping and GWA
studies (Heffner et al. 2009). This allows the inclusion of information
from all loci to make predictions, instead of basing conclusions only
on loci that achieve genome-wide significance, and therefore captures
more of the additive genetic variance.

One of the most widely used methods for prediction of com-
plex traits is genomic best linear unbiased prediction (GBLUP)
(Meuwissen et al. 2001), which assumes that all variants share a
common effect size distribution. Recent extensions of the GBLUP
model, such as MultiBLUP (Speed and Balding 2014), genomic
feature BLUP (Edwards et al. 2015, 2016; Sarup et al. 2016; Fang
et al. 2017), and BayesRC (MacLeod et al. 2016), incorporate genomic
partitions as multiple random effects, allowing effect size weightings
to vary across different categories of variants. These partitions can be
derived from prior biological information, such as physical position,
genic/nongenic regions, pathway annotations, and gene ontologies.
Further, genomic partitioning is most successful when a given
partition is enriched for causal variant(s) (Sarup et al. 2016), pro-
viding a framework for guided hypothesis testing. To this end, models
that incorporate genomic partitioning have enabled researchers to
determine the relative influence of genomic features (e.g., chromo-
some segments, exons) and/or biological pathways on the variance
explained for complex traits. For example, annotations for several
biological pathways were used to determine which pathways were
associated with udder health and milk production in dairy cattle
(Edwards et al. 2015). Similarly, gene ontology categories were
leveraged to explore the genetic basis of different phenotypes in
Drosophila melanogaster (Edwards et al. 2016). In maize, applications
of genomic partitioning models have revealed that SNPs located in
exons explain a larger proportion of phenotypic variance compared to
other annotation categories (Li et al. 2012) and that genomic pre-
diction is improved for multiple traits by incorporating information
from gene annotations, chromatin openness, recombination rate, and
evolutionary features (Ramstein et al. 2020). The inclusion of prior
biological information from transcriptomics, GWA studies, and
genes identified in silico also improved predictions of root traits in
cassava (Lozano et al. 2017).

In this study, we evaluated genomic partitioning as a method to
estimate the relative contribution of metabolic pathway annotations
to variation for FAA traits in dry seeds of Arabidopsis thaliana. This
approach enabled us to incorporate prior knowledge of FAA bio-
chemistry based on metabolic pathways and to identify annotation
categories with a disproportionate contribution to the genomic
heritability of FAA content and composition. The ultimate objective
of this work was to discover metabolic pathway annotations that
explained significant variation and improved predictive ability, with
the underlying assumption that the corresponding genomic regions
are important for determining seed metabolic associations and
constraints. These findings can then be considered in future designs
to support seed amino acid biofortification.

MATERIALS AND METHODS

Plant materials and trait data
For this study, we reanalyzed data of the absolute levels (nmol/mg
seed), relative compositions, and biochemical ratios for FAAs in dry
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Arabidopsis thaliana seeds (see Table S1 for a list of traits). These
traits were previously measured by Angelovici et al. (2013, 2016) for
313 accessions of the Regional Association Mapping panel (Nordborg
et al. 2005; Platt et al. 2010). Seeds were obtained from the Arab-
idopsis Biological Resource Center (ABRC, https://abrc.osu.edu/, see
Table S2 for stock numbers). The panel was grown in three in-
dependent replicates, each at 18� to 21� (night/day) under long day
conditions (16 h of light/8 h of dark). Following the desiccation
period, dry seeds were harvested and stored in a desiccator at room
temperature for at least six weeks prior to analysis to ensure full
desiccation (Angelovici et al. 2013).

Absolute levels of FAAs (nmol/mg seed) were quantified using
liquid chromatography–tandemmass spectrometry multiple reaction
monitoring (LC-MS/MS MRM; see Angelovici et al. 2013, 2017 for
further details). Eighteen of the 20 proteinogenic amino acids were
measured, including composite phenotypes for the sum of all FAAs
measured (total FAAs) and for each of five biochemical families as
determined by metabolic precursor (Figure S1, Table S1). This prior
knowledge of biochemical relationships among FAAs was also used to
determine metabolic ratios, which can represent, for example, the
proportion of a metabolite to a related biochemical family or the ratio
between twometabolites that share a metabolic precursor (Sauer et al.
1999; Weckwerth et al. 2004; Wentzell et al. 2007). The inclusion of
metabolic ratios was based on evidence from multiple studies, which
reported novel or more significant associations when using metabolic
ratios as compared to absolute levels of metabolites (Wentzell et al.
2007; Harjes et al. 2008; Vallabhaneni and Wurtzel 2009; Wurtzel
et al. 2012; Lipka et al. 2013; Gonzalez-Jorge et al. 2013; Angelovici
et al. 2013, 2017; Owens et al. 2014).

For each amino acid, relative composition was calculated as the
absolute level over the total. Additional ratio traits were determined
based on biochemical family affiliation (Angelovici et al. 2017). Traits
and their respective abbreviations are described in Table S1. Overall,
the 65 traits included 25 absolute FAA levels (individual amino acids
and composite traits), 17 relative levels (ratio of the absolute level for
an amino acid compared to total FAA content), and 23 family-
derived traits (ratio of the absolute level for an amino acid to the total
FAA content within a given family).

Following the guidelines for multi-stage genomic prediction
(Piepho et al. 2012), the best linear unbiased estimates (BLUEs)
for each accession were used as the phenotypic data in this study and
were calculated using the HAPPI-GWAS pipeline (Slaten et al. 2020a)
in R v3.6.0 (R Core Team 2016). First, outlier removal was performed
by fitting a mixed effects model using the ‘lmer’ function in the ‘lme4’
package (v1.1-21, Bates et al. 2015), with the raw trait values as the
response variable, replicate included as a random effect, and accession
included as a fixed effect. Studentized deleted residuals were then used
to identify outliers (Kutner et al. 2004). Following outlier removal, the
Box-Cox transformation (Box and Cox 1964) was applied for each
trait to avoid violating model assumptions of normally distributed
error terms and constant variance. Finally, to remove phenotypic
variability arising from environmental conditions, the BLUE for each
accession was obtained from the fitted mixed model described above,
which was applied across all three replicates. The BLUEs for each trait
were used as the response variables in all subsequent prediction
models.

Genetic data
The accessions used in this study were previously genotyped using a
250k SNP panel (v3.06, Atwell et al. 2010). The software PLINK (v1.9,
Purcell et al. 2007) was used to filter for minor allele frequency

(MAF) . 0.05, reducing the number of SNPs from 214,051 to
199,452. Principal component analysis was performed on this filtered
SNP set using the ‘prcomp’ function in R. The first two principal
components explained 5.6% of the variance (Figure S2) and were
included as fixed covariates in the prediction models.

Selection of pathway SNPs
To examine specific metabolic pathways, SNPs were selected based on
annotation categories from the MapMan annotation software
(Thimm et al. 2004) for the TAIR10 version of Arabidopsis
(Berardini et al. 2015). We focused broadly on 20 pathways, which
spanned four categories: amino acid metabolism (three pathways),
core metabolism (three pathways), specialized metabolism (five
pathways), and protein metabolism (nine pathways) (Table 1), all
of which are known to be involved in FAA metabolism to some
extent. The SNP positions were first matched to the corresponding
Ensembl gene id using the ‘biomaRt’ package (Durinck et al. 2005,
2009) in R.We then selected all SNPs within a 2.5 kb range of the start
and stop position for each gene, which is within the range of the
estimated average intergenic distance in Arabidopsis (Zhan et al.
2006) and includes upstream promoter regions. Relative SNP posi-
tions for each pathway are provided in Figure S3. Pathways and
MapMan annotation categories, including the number of genes and
SNPs represented, are described in Table 1. We used MapMan
annotations for all genes except BCAT2 (At1g10070), which was
moved from the amino acid synthesis pathway to the amino acid
degradation pathway along with other SNPs in the same haploblock
(chromosome 1, 3274080 to 397645 bp). This decision was based on
previous work, which showed that bcat2 mutants accumulate higher
levels of branched-chain amino acids in seeds, thereby demonstrating
that BCAT2 has catabolic activity (Angelovici et al. 2013).

Prediction models
The Linkage Disequilibrium Adjusted Kinship (LDAK) software
(v5.0, Speed et al. 2012, http://dougspeed.com/ldak/) was used to
implement two models for genomic prediction of each trait: GBLUP,
which uses a single marker-based additive genetic relatedness matrix,
and MultiBLUP, which incorporates multiple marker-based additive
genetic relatedness matrices, each calculated with different subsets of
genome-wide markers (Speed and Balding 2014).

Genomic prediction was performed for all markers (p = 199,452)
using a GBLUP model, in which individuals were included as a
random effect and the additive genetic relatedness matrix was used as
part of the variance-covariance matrix among the individuals
(Whittaker et al. 2000; Meuwissen et al. 2001). First, the pairwise
genetic similarity between individuals was estimated using a genomic
similarity matrix (GSM), or kinship matrix (VanRaden 2008; Astle
and Balding 2009):

K ¼ XX9=p; (1)

where X is an n x p design matrix of SNP genotypes, X0 is the
transpose of X, n is the total number of individuals, and p is the total
number of markers. The GBLUP model was then fit with the random
effects model:

Y ¼ mþ Zuþ e; (2)

where Y is the vector of phenotypic values for n individuals, m is the
overall mean, Z is a design matrix connecting observations to
genotypes, u is the vector of random genetic effects distributed
as u � Nð0;Ks2

GÞ, and e is the random error term distributed as
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e � Nð0; Is2
e Þ, where K is the GSM representing the correlation

structure of u, I is a n· n identity matrix, and s2
G and s2

e are
variances.

The MultiBLUP model (Speed and Balding 2014) was used to
incorporate biological pathway information into genomic predic-
tion. As an extension of the GBLUP model, MultiBLUP is a multi-
kernel model that subdivides genetic effects into at least two random
effects, where different subsets of markers are used to calculate
GSMs for each random effect. In this study, the MultiBLUP model
included a random genetic effect corresponding to sets of markers
within a single biological pathway (m) and a second random genetic
effect corresponding to the remaining markers not included in the
given pathway (;m). Using notation from equation (2) and Speed
and Balding (2014), the MultiBLUPmodel within the context of this
work is:

Y ¼ mþ Zum þ Zu;m þ e; (3)

where um is the vector of random genetic effects distributed as
um � Nð0;Kms2

mÞ, with Km representing the kinship matrix calcu-
lated using markers within a given biological pathway and s2

m
denoting the corresponding variance component; u;m is the vector
of random genetic effects distributed as u;m � Nð0;K;ms2

;mÞ, with
K;m representing the kinship matrix calculated using markers out-
side of the given biological pathway and s2

;m denoting the corre-
sponding variance component; and Y , Z, m, and e are as previously
described.

For our purposes, kinship matrices were estimated using the
LDAK software for either all SNPs (GBLUP) or each SNP partition
(MultiBLUP, i.e., separately for SNPs belonging to a single pathway
and all other remaining SNPs). For each pathway, the extent of
collinearity due to LD was determined by examining Spearman’s
rank correlation between the off-diagonal elements of the kinship
matrices for the pathway SNPs and remaining genomic SNPs. For

estimates of genomic heritability, values were constrained to be
within the interval [0,1]. Additionally, the parameter a, which
models the relationship between heritability and MAF, was set to
⍺ = 0 under the assumption that SNPs with lower MAF contribute
less to heritability than SNPs with higher MAF (Speed et al. 2017).
In relation to Equation 2 and 3, the parameter ⍺ adjusts the expected
contribution of each SNP to heritability, with a value of ⍺ = -1
assuming that heritability does not depend on MAF (see Speed et al.
2017 for details).

Estimation of genomic heritability
For both GBLUP and MultiBLUP, average information restricted
maximum likelihood (REML, see Speed and Balding 2014 for details)
was used to compute variance component estimates for s2

m, s
2
;m; and

s2
e . The maximum number of iterations to achieve convergence was

set to 500. This process was repeated for each trait and pathway
combination. In the case of the GBLUP model, ŝ2

m is the estimate of
variance for all SNPs. These estimates were used to calculate genomic
heritability as the ratio of additive genomic variance explained for a
given marker set (s2

m) over the total variance explained (the sum of
s2
m, s

2
;m;and the residual variance, s2

e ):

h2m ¼ s2
m

s2
m þ s2

;m þ s2
e
: (4)

For the MultiBLUP model, the proportion of genomic heritability
explained was calculated as:

h2m
h2m þ h2;m

; (5)

where h2m is the genomic heritability explained by SNPs in a given
genomic partition and h2;m is the genomic heritability explained by
all other SNPs not included in the partition.

n■ Table 1 Summary of selected biological pathways

Pathway Number of genes Number of SNPs MapMan BINCODE

Amino Acid Metabolism
amino acid synthesis 376 2084 13.1
amino acid degradation 160 1094 13.2
amino acid transport 144 939 34.3
Core Metabolism
glycolysis 148 858 4
TCA cycle 167 926 8
ATP synthesis (alternative oxidase) 10 66 9.4
Specialized Metabolism
isoprenoids 269 1788 16.1
phenylpropanoids 161 845 16.2
nitrogen containing 39 229 16.4
sulfur containing 113 733 16.5
flavonoids 171 1062 16.8
Protein Metabolism
amino acid activation 203 1231 29.1
protein synthesis 1383 7290 29.2
protein targeting 624 3689 29.3
protein postranslational modification 1407 8794 29.4
protein degradation 996 6405 29.5

ubiquitin 2691 16000 29.5.11
protein folding 138 814 29.6
protein glycolysis 87 459 29.7
protein assembly 44 312 29.8

Pathways include genes and SNPs within a 2.5 kb buffer before the start and after the stop position of each gene.

4230 | S. D. Turner-Hissong et al.



n■ Table 2 Genomic prediction results for 65 free amino acid (FAA) traits using a GBLUP model

Predictive ability (r) Reliability (r
2

h2)

Trait type Metabolic family Trait mean SE mean SE slope (bias) RMSE

absolute aspartate asp 0.341 0.028 0.157 0.020 0.936 0.055
met 0.384 0.027 0.224 0.024 1.051 0.0243
thr 0.099 0.022 0.075 0.013 0.756 0.1348
AspFam 0.327 0.031 0.159 0.022 1.042 0.0266

BCAA_pyruvate ala 0.317 0.022 0.178 0.021 1.119 0.249
ile 0.328 0.021 0.206 0.023 1.046 0.0583
leu 0.353 0.019 0.179 0.017 1.035 0.1261
lys 0.270 0.024 0.122 0.017 0.921 0.4597
val 0.397 0.019 0.242 0.022 1.027 0.1007
BCAA 0.388 0.019 0.252 0.023 1.042 0.101
PyrFam 0.351 0.021 0.249 0.026 1.108 0.12

glutamate arg 0.323 0.029 0.146 0.023 0.923 0.0552
gln 0.178 0.025 0.114 0.018 1.032 0.5348
glu 0.356 0.020 0.234 0.023 0.990 0.0072
his 0.359 0.020 0.149 0.014 0.880 1.0529
pro 0.310 0.021 0.182 0.021 1.010 0.0405
GluFam 0.389 0.020 0.199 0.018 0.916 0.0297

serine gly 0.349 0.023 0.344 0.038 1.072 0.1086
ser 0.241 0.021 0.142 0.019 1.078 0.0016
SerFam 0.320 0.022 0.247 0.028 1.030 0.0112

aromatic phe 0.326 0.021 0.178 0.019 1.084 0.0202
trp 0.317 0.018 0.209 0.021 1.019 0.0877
tyr 0.334 0.027 0.212 0.026 1.046 0.0266
ShikFam 0.411 0.015 0.229 0.016 1.023 0.0146
Total 0.392 0.022 0.193 0.018 1.015 0.019

relative aspartate asp_t 0.405 0.022 0.189 0.017 0.933 0.0386
met_t 0.313 0.025 0.157 0.017 1.021 0.0162

BCAA_pyruvate ala_t 0.261 0.026 0.154 0.022 1.239 5.1795
ile_t 0.218 0.021 0.127 0.017 1.085 0.0197
leu_t 0.296 0.022 0.122 0.015 1.093 0.0957
lys_t 0.196 0.023 0.125 0.019 1.112 0.8788
val_t 0.319 0.022 0.271 0.030 1.106 0.0138

glutamate arg_t 0.276 0.037 0.220 0.042 1.056 0.0145
gln_t 0.108 0.022 0.118 0.019 1.322 5.0853
glu_t 0.264 0.021 0.168 0.020 1.008 0.0355
his_t 0.259 0.024 0.123 0.016 1.076 37.6486
pro_t 0.253 0.019 0.134 0.017 1.022 0.0228

serine gly_t 0.268 0.026 0.567 0.082 1.127 0.0155
ser_t 0.076 0.023 0.118 0.019 1.452 0.0185

aromatic phe_t 0.355 0.016 0.169 0.014 1.047 0.0181
trp_t 0.205 0.024 0.110 0.015 0.940 0.0381
tyr_t 0.116 0.027 0.146 0.018 1.112 0.0118

family aspartate asp_AspFam 0.141 0.031 0.134 0.022 1.309 0.0782
ile_AspFam 0.165 0.029 0.139 0.021 1.197 0.0772
lys_AspFam 0.358 0.027 0.164 0.021 0.933 0.0189
met_AspFam 0.468 0.020 0.244 0.018 1.060 0.001
thr_AspFam 0.118 0.024 0.090 0.013 1.049 0.0552
AspFam_Asp 0.171 0.022 0.052 0.007 1.042 0.027

BCAA_pyruvate ala_PyrFam 0.216 0.019 0.092 0.013 0.905 0.0222
ile_BCAA 0.250 0.020 0.083 0.011 0.914 0.0348
leu_BCAA 0.251 0.024 0.091 0.012 1.076 0.075
leu_PyrFam 0.303 0.021 0.114 0.015 0.975 0.0244
val_BCAA 0.268 0.020 0.091 0.011 0.848 0.0224
val_PyrFam 0.298 0.019 0.232 0.024 0.858 0.0153

glutamate arg_GluFam 0.205 0.032 0.193 0.029 1.243 0.0659
gln_GluFam 0.167 0.034 0.195 0.039 1.076 0.0218
glu_GluFam 0.139 0.022 0.153 0.022 0.992 1.1693
GluFam_glu 0.203 0.034 0.202 0.030 0.881 0.0665
his_GluFam 0.186 0.023 0.102 0.015 1.012 24.2851
pro_GluFam 0.289 0.024 0.155 0.018 1.004 0.0329

(continued)
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Assessing model performance
The performance of the prediction models was determined using ten-
fold cross validation with a onefold holdout, with the same training
and testing sets used for both the GBLUP and MultiBLUP models.
For each cross validation, the genomic estimated breeding value
(GEBV) was derived from marker data for the excluded individuals
based on estimates of random genetic effects for the individuals in the
training set. This process was repeated five times for a total of 50 cross
validations per trait and pathway combination. Predictive ability was
then calculated as rðĝ; gÞ; where ĝ represents the GEBVs and g
represents the BLUEs for each trait. Reliability, which is the co-
efficient of determination (r2) scaled by heritability, was calculated as
r2
h2 (Rincent et al. 2012). Bias was calculated as the simple linear
regression slope estimate between the GEBVs and BLUEs for each
trait, with a slope estimate of one indicating no bias. Lastly, the overall
root mean squared error (RMSE), which measures prediction bias
and variability, was calculated as the square root of the mean for the
squared difference between the BLUEs and GEBVs across all cross-

validations,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg2ĝÞ21þ���þðg2ĝÞ2k

k

q
; where k is the number of cross-vali-

dations. Predictive abilities for the MultiBLUP and GBLUP models
were compared using a one-sided, paired Welch’s t-test for unequal
variances.

Generation of an empirical null distribution
To test if a metabolic pathway explained more variation than
expected by chance, we generated an empirical null distribution
for each trait and pathway combination. The null hypothesis was
that a given biological pathway will explain a similar amount of trait
variance as the same number of SNPs in randomly selected gene
groups (Edwards et al. 2015). To establish a null distribution, we first
defined 1000 random gene groups for each pathway, where the target
number of SNPs in each random gene group was comparable to the
size of the pathway. Ranges for the number of genes and SNPs
sampled for each pathway are provided in Table S3. For each random
subset, all SNPs within 2.5 kb of the start and stop positions of a
randomly selected gene were sampled. This process was repeated by
randomly sampling genes one at a time until the target number of
SNPs for each subset was achieved. Genes within a given pathway
were excluded from the random sampling procedure for that path-
way. As discussed in Edwards et al. (2015), this approach does not
explicitly model variation in other parameters (e.g., allele frequencies,
LD), but it is expected that these differences are captured to some
extent by the sampling process.

Next, we used two metrics to test if SNPs in a given pathway
explained more genomic variance than expected by chance and
increased model fit for each trait: (1) the proportion of genomic
heritability explained by a pathway compared to the random gene
groups described above, and (2) the likelihood ratio (LR) test statistic

as a measure of pathway model fit compared to the model fit of
random gene groups. The proportion of heritability explained was
calculated as described previously in equation (5) and the LR test
statistic was calculated as twice the difference between the log likeli-
hood of the MultiBLUP model and the log likelihood of the GBLUP
model. For each pathway and trait combination, the values for
proportion of heritability explained and the LR test statistic were
compared to the empirical cumulative distribution function for the
corresponding 1000 random gene groups using the ‘ecdf’ function in
R. To determine if the observed value was greater than the random
values for each metric, P-values were computed with a one-sided test
using the ‘t_test’ function in the R package ‘rstatix’ (Kassambara 2020).

Correction for multiple testing
For each trait, the Benjamini-Hochberg procedure (Benjamini and
Hochberg 1995) was used to adjust for multiple testing across
pathways (n = 20) at a 10% false discovery rate (FDR). Multiple
testing correction was performed with the ‘p.adjust’ function in R for
the proportion of heritability explained, the LR test statistic, and
predictive ability.

Identifying biological pathways of interest
In summary, a pathway was considered of interest for a trait if the
MultiBLUP model passed all three of the following criteria:

1. The proportion of heritability explained was significantly greater
than empirical values for random gene groups of the same size
(FDR-adjusted P-value # 0.10),

2. The LR test statistic was significantly greater than empirical values
for random gene groups of the same size (FDR-adjusted P-value#
0.10),

3. The MultiBLUP model significantly improved predictive ability
compared to the GBLUP model (FDR-adjusted P-value # 0.10).

Together, criteria (1) and (2) established that a given pathway
improved model fit better than a random set of SNPs. Criteria (3) was
imposed to ensure that there was a meaningful difference in pre-
dictive ability when pathway information was incorporated via
MultiBLUP compared to the naive GBLUP model that incorporated
no pathway information.

Data availability
Genotype data were previously published (Atwell et al. 2010) and
were accessed from https://github.com/Gregor-Mendel-Institute/
atpolydb/wiki The scripts and phenotypic data supporting the con-
clusions of this article are publicly available as a Snakemake workflow
(v5.4.2, Köster and Rahmann 2012) on GitHub at https://github.com/
mishaploid/aa-genomicprediction (archived at https://doi.org/10.5281/
zenodo.4048850). Free amino acid traits and details on ratio

n■ Table 2, continued

Predictive ability (r) Reliability (r
2

h2)

Trait type Metabolic family Trait mean SE mean SE slope (bias) RMSE

serine gly_SerFam 0.305 0.025 0.351 0.048 1.172 0.0634
ser_SerFam 0.325 0.024 0.364 0.047 1.179 0.0461

aromatic phe_ShikFam 0.218 0.028 0.149 0.021 1.097 0.0607
trp_ShikFam 0.187 0.024 0.111 0.015 1.028 0.0658
tyr_ShikFam 0.257 0.028 0.144 0.022 0.945 0.0331

Traits are grouped by the type of trait (absolute level, relative to total FAA content, and family ratio) and metabolic family based on shared precursor. SE, standard error;
RMSE, root mean squared error.
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calculations are provided in Table S1. A list of ABRC stock names and
accession numbers for each individual is in Table S2. Supplemental
material available at figshare: https://doi.org/10.25387/g3.13003589.v1.

RESULTS AND DISCUSSION
In this study, we applied a genomic partitioning model to evaluate the
contribution of metabolic pathways to FAA traits in seeds. The
combination of a genomic partitioning framework and the model
system Arabidopsis allowed us both to test the feasibility of this
approach and to further examine the relative contribution of each
pathway to the genetic basis of FAA traits in seeds. Additionally,
because FAA traits are part of core metabolism that is highly
conserved, we hypothesize that our findings can be used to develop
hypotheses in crop systems, where there is potential to contribute to
the biofortification of essential amino acids.

Genomic prediction was most effective for absolute
levels of free amino acids
We first established the efficacy of standard GBLUP in a diversity
panel of 313 Arabidopsis individuals, which represents a substantial
proportion of the known genetic variability present in Arabidopsis
(Nordborg et al. 2005). Because this setting is distinct from the closed
breeding populations of dairy cattle, maize, and other agricultural
species where genomic prediction is often applied (e.g., Heffner et al.
2009; Wolc et al. 2016; Weller et al. 2017), we were interested in
testing how well genomic prediction would work in this panel. We
were also interested in testing the utility of genomic prediction for
FAA traits, which are highly conserved.

Using the GBLUP model, we observed low to moderate predictive
ability for the amino acid traits measured (Table 2). Of these 65 FAA
traits, 30 had a predictive ability greater than 0.3 (Figure 1, Table 2).
In general, prediction was effective for a greater number of absolute
level FAA traits, with 21 out of 25 absolute traits having a predictive
ability. 0.3 (84%), compared to relative levels (4 out of 17, 24%) and
family-derived ratios (5 out of 23, 22%). The family ratio of methi-
onine (met_AspFam) had the highest predictive ability (r = 0.47),
while the relative level of serine (ser_t) had the lowest predictive
ability (r = 0.08) (Table 2). The observation of moderate prediction
accuracies for many of these traits (Figure 1, Table 2) suggests that
there is linkage disequilibrium (LD) between markers and causal loci,

providing evidence that genomic prediction can be successfully
applied in this system.

Annotations for biological pathways explained
significant variation and improved predictive ability of
free amino acid traits in seeds
We next applied a genomic partitioning approach, MultiBLUP, to
investigate the association of different metabolic annotation cate-
gories with FAA traits in dry Arabidopsis seeds. The focus was
specifically on categories which are thought to influence FAA ho-
meostasis, but where the degree of this influence is unclear, especially
in dry seeds (Skirycz et al. 2010, 2011; Hildebrandt et al. 2015;
Hildebrandt 2018).

The pathway annotations listed in Table 1 were used to subset
SNPs and spanned the broad categories of amino acid, core, spe-
cialized, and protein metabolism. When partitioning these pathways
in the MultiBLUP model, 18 trait-pathway combinations were
flagged as potentially related based on comparison to a null distri-
bution (Figure 2A, Table 3). The observation that specific pathways
improved model fit based on the LR test statistic, explained a
significant proportion of genomic heritability, and improved pre-
dictive ability suggests that these pathway annotations may have
biological relevance for FAA traits.

For the trait-pathway combinations that passed the significance
criteria, the MultiBLUP model generally reduced bias and RMSE
compared to the GBLUP model (Table 3). For six of these trait-
pathway combinations, the predictive ability for the MultiBLUP
model was also over 5% higher than for the GBLUP model (Table
3, bold). This substantial increase in predictive ability was observed in
the pyruvate/BCAA family for absolute levels of leucine (leu, 5.3%)
and isoleucine (ile, 7%) when the model included SNPs in the amino
acid synthesis pathway. The highest increase in predictive ability was
observed when incorporating the amino acid degradation pathway
for traits in the glutamate family, which included the relative level
and family-based ratio for histidine (his_t, 7.6%; his_GluFam,
9.7%). A similar increase in predictive ability was observed when
including SNPs related to phenylpropanoids for the family ratio of
tyrosine (tyr_ShikFam, 6.9%) and when including SNPs related
to protein amino acid activation for the family ratio of glycine
(gly_SerFam, 7.5%).

Figure 1 Genomic prediction performed well for a higher proportion of absolute traits compared to relative and family-based ratio traits. Boxplots
show free amino acid traits with predictive ability (r) . 0.3 based on genomic best linear unbiased prediction (GBLUP). Black triangles indicate the
genomic heritability for each trait. Colors indicate whether the trait is an absolute level, relative level, or family-based ratio. Each point represents an
individual cross-validation.
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Amino acid synthesis and degradation pathways were
significantly associated with several FAA traits
The homeostasis of FAAs is regulated by multiple allosteric enzymes
and feedback loops (Less and Galili 2008; Jander and Joshi 2010;
Hildebrandt et al. 2015; Huang and Jander 2017; Amir et al. 2018).
However, the homeostasis of some FAAs, such as proline, can also be
determined by environmental conditions. For example, proline may
serve as either an osmoprotectant under stress or an energy source
during development, and its elevation is mostly from active synthesis
(Szabados and Savouré 2010; Hayat et al. 2012). In addition, previous
work has suggested that an overarching metabolic switch occurs
during late maturation to desiccation, when amino acid synthesis is
active (Fait et al. 2006). Hence, our initial hypothesis was that FAA
traits would be strongly associated with pathway annotations within
core and amino acid metabolism.

For amino acid metabolism, our initial hypothesis was supported
by significant associations between the amino acid degradation
pathway and with six traits, which spanned the aspartate, glutamate,
and pyruvate/BCAA families (Figure 2B). Two BCAA traits, ile_t and
val_BCAA, were associated with amino acid degradation, consistent
with previous work which identified a large effect QTL that explained
12–19% of the variance for BCAA traits (Angelovici et al. 2013).
Based on this previous work, the causal gene was identified as the
catabolic branched-chain amino acid transferase 2 (BCAT2;
At1g10070) (Angelovici et al. 2013). Our results recapitulate this
finding, showing that the amino acid degradation pathway, which
contains the BCAT2 haploblock, explained both a significant pro-
portion of heritability (41%) and improved predictive ability for

BCAA traits (e.g., by 3.9% for ile_t) (Table 3). In contrast, the only
additional associations that were identified were between amino acid
synthesis and BCAA traits, despite no prior evidence that QTL for
BCAAs contain genes related to amino acid synthesis (Angelovici
et al. 2013). Surprisingly, these were also the only associations that
were identified for amino acids synthesis, despite evidence that levels
of several FAAs and transcription of their biosynthetic genes are
elevated toward desiccation (Fait et al. 2006). This observation could
arise from one of several reasons: 1) the elevation of transcription for
amino acid biosynthetic genes does not lead to a corresponding
elevation in metabolic pathway products, 2) our sample size and
statistical approach was unable to resolve other traits associated
with amino acid synthesis, or 3) we are unable to cleanly partition
pathway SNPs from background genome wide markers. Nonethe-
less, our results imply that amino acids synthesis may be more
important for BCAAs than for other FAA traits at this stage of
development.

We also observed that annotations for amino acid degradation
were associated with histidine and methionine FAA traits (Figure 2B,
Table 3), which, to our knowledge, has not been reported in previous
QTL studies for seed FAAs. Both histidine and methionine are
essential amino acids, which are deficient in most crop seeds, and
therefore of special interest for biofortification and crop improvement
(Galili and Amir 2013). Notably, very little is currently known about
the pathway for histidine degradation in plants. Taken together, these
findings suggest that the MultiBLUP approach can not only recapture
previous observations for FAA traits, but can also generate new
insights into their genetic regulation.

Figure 2 Biological pathways explain significant variation and improve predictive ability for free amino acid traits when incorporated into a
MultiBLUP model. (A) Venn diagram showing which trait-pathway combinations passed significance criteria (FDR adjusted P-value # 0.10) for
proportion of heritability explained (Prop. h2), likelihood ratio test statistic (LRT), and improved predictive ability forMultiBLUP compared to GBLUP.
The bottom right corner indicates the number of combinations that did not pass any significance criteria. The Venn diagram was constructed using
the ‘seqsetvis’ package in R (Boyd 2019). (B) Points indicate trait-pathway combinations that passed all three significance criteria. The diameter of
each point is proportional to the amount of genomic variance explained by pathway SNPs in the MultiBLUPmodel. Traits are included on the y-axis
and are grouped by metabolic family (aspartate, glutamate, pyruvate/BCAA, serine, aromatic). Pathways are included on the x-axis and separated
into amino acid, core, specialized, and protein metabolism categories.
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Both amino acid and core (or primary) metabolism are tightly
interconnected. For example, amino acids in the glutamate family are
known to play a central role in core metabolism, mainly by func-
tioning as precursors for energy generation via glycolysis, amino acid
metabolism, and the TCA cycle. However, we found no associations
for any FAA traits with the core/primary metabolic pathways tested
in this study, which included glycolysis, the TCA cycle, and ATP
synthesis via alternative oxidase (Figure 2B, Table 3).

Gene annotations for specialized metabolism are
associated with FAA precursors
The synthesis of specialized metabolites involves many FAAs. For
example, methionine and aromatic amino acids (i.e., phenylalanine,
tryptophan, and tyrosine) are precursors for alkaloids, phenylpro-
panoids, and glucosinolates. Levels of these specialized metabolites
are often dependent on the availability of their FAA precursors (Tzin
and Galili 2010; Maeda and Dudareva 2012). However, less is known
regarding whether the extensive natural variation of these specialized
metabolites produces a feedback effect on FAA precursors, especially
in seeds. Previous work in vegetative tissues has found that pertur-
bation of the synthesis for secondary metabolites produces a pleio-
tropic effect on other types of metabolism, including FAAs (Chen
et al. 2012; Slaten et al. 2020b), but the nature of such interactions is
not well understood.

Consistent with knowledge of precursors for specialized metab-
olites, we observed that aromatic FAAs were associated with cate-
gories belonging to specialized metabolism (Figure 2). This included
associations for the combined absolute levels of FAAs in the shiki-
mate family (ShikFam) with the pathway for sulfur-containing
compounds and between the family ratio of tyrosine (tyr_ShikFam)
with the phenylpropanoid pathway. When partitioning SNPs from
the phenylpropanoid pathway in the MultiBLUP model, we observed
a 6.9% increase in predictive ability for tyr_ShikFam (Table 3),
suggesting SNPs in this pathway have a substantial contribution to
the variation for Tyr_ShikFam or are in strong LD with one or more
causal variants. We also found an unexpected association between
isoprenoid metabolism and the relative ratio of isoleucine (ile_t),

which is part of the BCAA family (Figure 2B). The metabolic
relationship is less clear in this case, as isoleucine is not directly
involved in phenylpropanoid metabolism, and provides an avenue for
further investigation.

A recent metabolic GWA study identified an unanticipated
association between glucosinolate biosynthesis and levels of free
glutamine in seeds of Arabidopsis (Slaten et al. 2020b). This finding
was further validated by evidence that elimination of seed glucosi-
nolates significantly impacted levels of glutamine during early seed
development (Slaten et al. 2020b). Notably, when partitioning SNPs
for sulfur-related metabolism, the family-based ratio for glutamine
(GluFam_glu) passed significance criteria for proportion of herita-
bility explained (40.5%, FDR corrected P-value = 0.10) and predictive
ability (3.7% increase compared to GBLUP, FDR corrected P-value =
0.006), but not for the LR test statistic (5.48, FDR corrected P-value =
0.12). This observation reinforces that additional studies, especially
with greater statistical power, may identify more connections with
biological relevance.

Annotations for protein metabolism are associated with
serine family FAAs
It stands to reason that FAA homeostasis will be influenced by protein
metabolism since FAAs serve as the building blocks for proteins.
Consistent with this expectation, significant increases in FAAs are
observed under many abiotic stresses and suggested to result from
protein autophagy and turnover (Hildebrandt et al. 2015; Barros et al.
2017; Huang and Jander 2017; Hirota et al. 2018; Hildebrandt 2018).
In contrast, the opaque2 null mutant in maize exhibits a reduction in
the most abundant seed storage proteins and a significant elevation of
many FAAs, despite an unchanged composition of protein-bound
amino acids (Wang and Larkins 2001; Schmidt et al. 2011), indicating
a complex relationship between the free and bound amino acid pools
for protein metabolism. Hence, it is unclear to what extent protein
metabolism affects FAAs, particularly in seeds where protein com-
position is critical for nutritional quality.

Interestingly, we find that protein metabolism annotations are
associated with five FAA traits, which spanned the glutamate,

Figure 3 Pathway size influences the proportion of heritability explained and predictive ability when using aMultiBLUPmodel. (A) Spearman’s rank
correlations between off-diagonal elements of the kinship matrices for each pathway and the remaining genomic SNPs. Pathways are sorted from
top to bottom by increasing size (number of SNPs). (B) Difference in predictive ability between the MultiBLUP and GBLUP models compared to the
proportion of heritability explained by each pathway for all 1300 trait-pathway combinations (65 traits, 20 pathways). The diameter of the points is
proportional to the number of SNPs in the pathway and color indicates whether or not a trait-pathway combination passed significance thresholds
for proportion of heritability explained, likelihood ratio test statistic, and predictive ability.
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pyruvate/BCAA, and serine families, and included the composite trait
for total FAA content (Figure 2, Table 3). Notably, no aromatic FAA
traits were associated with protein metabolic annotation categories,
while the serine family FAA traits were exclusively associated with
this group of pathways. Further, the family-based ratio for glycine
(Gly_SerFam) showed an increase in predictive ability of 7.5% when
partitioning SNPs related to amino acid activation in the MultiBLUP
model (Table 3). This suggests that genes related to amino acid
activation, such as tRNA synthetases, may contribute to the homeo-
stasis of glycine and serine. Overall, even though most protein
metabolism occurs at seed maturation, we found evidence that
annotations for protein metabolism influence FAAs in dry seeds,
suggesting that FAA levels at this stage may reflect prior events
occurring earlier in seed development.

Pathway size influences proportion of heritability
explained, model fit, and predictive ability
To examine the relationship between pathway size, LD, and variance
partitioning, we compared off-diagonal elements of the kinship
matrices for pathway SNPs and remaining genomic SNPs (Figure
3A). Spearman’s correlations ranged from 0.17 for the ATP synthesis
via alternative oxidase category (e_alt_oxidases, 66 SNPs, 0.03% of
total SNPs) to 0.85 for the protein degradation by ubiquitin category
(degradation_ubiquitin, 16000 SNPs, 8.02% of total SNPs) (Figure
3A). In general, pathways containing a greater number of SNPs
displayed more collinearity with SNPs not contained in the pathway.
Similar to observations for genomic partitioning based on gene
ontology terms for locomotor activity in Drosophila (Rohde et al.
2018), we observe that pathways which increased predictive ability
also explained a large proportion of genomic heritability, whereas
pathways with a greater number of SNPs explained less genomic
heritability and did not improve predictive ability (Figure 3B).
Further, as suggested by Rohde et al. (2018), pathways which
explained all of the genomic heritability likely represent an over-
estimation caused by high similarity between the relationship ma-
trices for the pathway and background genomic SNPs.

CONCLUSIONS
Overall, we find that predictive ability for FAA traits was improved by
incorporating prior knowledge from metabolic pathway annotations
for several FAA traits, adding to a growing body of literature that
demonstrates the utility of genomic partitioning in the study and
prediction of complex traits. This study further highlights that
specific metabolic pathways are associated with natural variation
of FAA traits across amino acid families. The amino acid degradation
pathway was significantly associated with traits in the BCAA/pyru-
vate, glutamate, and aspartate families, while specialized metabolism
was associated with traits in the aromatic family and protein me-
tabolism was associated with traits in the serine, pyruvate/BCAA, and
glutamate families. Thus, although the FAA metabolic network is
tightly connected, the predominant genetic architecture underlying
variation for specific FAA traits varies, at least for this stage of seed
development. Overall, this study furthers our understanding of the
contribution from specific metabolic pathway genes to amino acid
trait variation and offers an additional strategy to investigate other
complex metabolic traits, both in Arabidopsis and other species.
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