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Abstract: Background: In boys with Duchenne muscular dystrophy (DMD), cardiomyopathy has become
the primary cause of death. Although both positive late gadolinium enhancement (LGE) and reduced left
ventricular ejection fraction (LVEF) are late findings in a DMD cohort, LV end-systolic circumferential strain
at middle wall (Ecc) serves as a biomarker for detecting early impairment in cardiac function associated
with DMD. However, Ecc derived from cine Displacement Encoding with Stimulated Echoes (DENSE) has
not been quantified in boys with DMD. We aim to: (1) use cine DENSE to quantify regional Ecc in LGE
negative (-) boys with DMD and healthy controls; and (2) compare Ecc with LVEF in terms of differentiating
DMD boys with LGE (-) from healthy boys. Methods: 10 LGE (-) boys with DMD and 12 healthy boys were
enrolled prospectively in an IRB-approved study for CMR at 3T. Navigator-gated cine DENSE was used to
obtain short-axis mid-ventricular data and estimate global and regional Ecc. Group-wise differences were
tested via a Wilcoxon rank-sum test. Within-group differences were tested via a Skillings-Mack test followed
by pairwise Wilcoxon signed-rank tests. A binomial logistic regression model was adopted to differentiate
between DMD boys with LGE (-) and healthy boys. Results: When compared to healthy boys, LGE (-)
boys with DMD demonstrated significantly impaired septal Ecc [−0.13 (0.01) vs. −0.16 (0.03), p = 0.019]. In
comparison to the Ecc in other segments, both groups of boys exhibited significantly reduced septal Ecc and
significantly elevated lateral Ecc. Septal Ecc outperformed LVEF in distinguishing DMD boys with LGE (-)
from healthy boys. Conclusions: Reduced septal Ecc may serve as an early indicator of cardiac involvement
in LGE (-) DMD boys prior to reduced LVEF and a positive LGE finding.

Keywords: Duchenne muscular dystrophy; cardiomyopathy; cardiovascular magnetic resonance
imaging; late gadolinium enhancement; strain imaging; MRI tagging; left ventricular ejection fraction

1. Introduction

Duchenne muscular dystrophy (DMD) is a life-threatening hereditary disease, oc-
curring in approximately 2.63 to 11.66 out of every 10,000 male births [1]. DMD results
in progressive skeletal, respiratory, and cardiomyopathy challenges, eventually leading
to loss of respiratory function and ambulation, as well as heart failure [2]. Due to the
advancements in respiratory clinical management, cardiomyopathy has emerged as the
primary cause of mortality in DMD [3].

Cardiac magnetic resonance imaging (CMR) exams have proven useful for evaluating
cardiac involvement in the later stages of DMD. Late gadolinium enhancement (LGE) is the
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current gold standard CMR technique that helps identify focal myocardial fibrosis. Positive
LGE findings are associated with systolic dysfunction [4]. However, positive LGE findings are
a mid- to late-stage finding in DMD [5,6], with an average onset at 15.2 ± 5.1 years [4] and
highly variable associated outcomes [7,8]. Identifying the onset and progression of cardiac
involvement for a specific boy is becoming more important as therapeutic options are evaluated
and become increasingly available. Additionally, LGE MRI requires contrast administration,
which has modest acceptance by pediatric subjects and their families and adverse effects, while
rare, should be considered. Accordingly, there is an increasing interest to find non-contrast CMR
biomarkers to assess early cardiac engagement in DMD boys prior to the appearance of LGE.

As a non-contrast biomarker, declined left ventricular ejection fraction (LVEF < 45%)
serves as a significant predictor of fatal and nonfatal cardiovascular outcomes [9]. However,
the onset of a measurable decline in LVEF is also a late outcome with an average onset at
16.2 ± 4.8 years [10]. Decreased EF also has a variable onset during the lifetime of a specific
DMD patient. For example, LVEF was relatively preserved (LVEF > 45%) in many pediatric
subjects with DMD and the presence of positive transmural LGE findings [11]. Because the
onset and progression of DMD cardiomyopathy is subtle and highly variable [7], we aim to
identify a sensitive non-contrast biomarker for assessing cardiac engagement in DMD boys
prior to the impairment in LVEF or a positive LGE finding.

Alternatively, other emerging non-contrast CMR biomarkers have shown promise in
identifying and tracking the progression of cardiomyopathy in DMD [12]. Reduced (less
negative) peak mid-wall circumferential strain (Ecc) derived from CMR tagging has also been
identified as an early non-contrast biomarker able to distinguish between DMD patients and
normal controls before the occurrence of reduced LVEF or a positive LGE finding [12–14].
Additionally, mid-ventricular Ecc was reported to be a sensitive biomarker of cardiac dysfunction
prior to reduced LVEF or a positive LGE finding [15–17]. Impaired myocardial contractility
was indicated by decreased (less negative) circumferential strain early [14]. Alternatively, cine
Displacement Encoding with Stimulated Echoes (DENSE) is a well-validated technique for
quantifying left ventricular (LV) Ecc [18]. DENSE has proven to be sensitive to changes in Ecc in
acute myocardial infarction (MI) and hypertrophic cardiomyopathy [19]. Additionally, DENSE
outperforms tagging with noticeable imaging and post-processing advantages [20]. To date,
however, no report is currently available for Ecc derived from cine DENSE in a DMD cohort.
Thus, we aim to: (1) To characterize and compare global and regional LV Ecc between healthy
boys and LGE negative (-) boys with DMD (without detectable focal myocardial fibrosis); and
(2) To identify a binomial logistic regression model able to differentiate DMD boys with LGE (-)
from healthy boys using LV Ecc and LVEF.

2. Methods
2.1. Study Enrollment

LGE (-) boys with DMD (N = 10, 12.5 ± 3.0 years) and sex-matched and age-matched
healthy controls (N = 12, 13.0 ± 2.0 years) were prospectively enrolled in a multi-center
study. The study was compliant with Health Insurance Portability and Accountability Act,
(HIPAA) and approved by the University of California, Los Angeles Institutional Review
Board (IRB #16-000297) between January 2017 and January 2020. Parental consent and
informed consent (or assent) statements were obtained from each participant. Healthy
controls and boys with DMD were recruited at one of two children’s hospitals via referral.
The demographics of the two groups is summarized in Table 1.

Table 1. Demographics of DMD boys with LGE (-) and healthy controls.

Controls
N = 12

DMD
N = 10

Age (years) 13 (4.0) range (9–21) 12.5 (6.0) range (9–21)
Male (%) 100% 100%

Height * (cm) 165 (22) 133 (18)
Weight (kg) 51 (18) 46 (28)
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Table 1. Cont.

Controls
N = 12

DMD
N = 10

BMI (kg/m2) 18.7 (6.7) 25.7 (12.6)
BSA * (m2) 1.53 (0.37) 1.27 (0.49)

Heart Rate (bpm) 78 (30) 93 (23)
Ambulatory (%) 12 (100%) 3 (30%)

Ventilatory Support (%) 0% 0%
Data is reported as median and interquartile range (IQR); HR, heart rate; BMI, body mass index; BSA, body
surface area. * p < 0.05 compared to controls.

2.2. CMR Imaging

All subjects participated a 3T CMR exam (Skyra, Siemens Healthineers, Erlangen,
Germany) using identical software, coils, and imaging protocols.

Cine Imaging. Standard functional imaging was acquired using a free-breathing ret-
rospectively binned balanced steady state free precession (bSSFP) cine sequence [21,22]
(6/8 partial Fourier and parallel imaging with acceleration factor of 4, matrix = 192 × 144,
spatial resolution = 1.9 × 1.9 mm2, temporal resolution = 64.4 ms, TE/TR = 1.2/2.4, flip
angle = 40◦, bandwidth = 930 Hz/Px, slice thickness = 8 mm).

Cine DENSE Imaging. Acquisitions of mid-ventricular LV short-axis slices were per-
formed with a navigator-gated free-breathing cine DENSE sequence [20] (2-point phase
cycling, spatial resolution = 2.5 × 2.5 × 8 mm3, TE/TR = 1.2/15, ke = 0.08 cycles/mm,
spirals = 10, number of averages = 3, scan time ~2.5 min). Free-breathing acquisitions are im-
portant in patients with current or anticipated respiratory dysfunction owing to the impact
of respiratory dysfunction on ventricular mechanics compared to breath holding [23].

LGE Imaging. Patients were imaged post-contrast (0.1 mMol/kg gadobenate dimeglumine,
MultiHance) using a free breathing motion corrected phase sensitive inversion recovery (PSIR)
sequence [24] (parallel imaging with acceleration factor of 2, matrix = 192 × 120, spatial res-
olution = 1.4 × 1.4 mm2, temporal resolution = 35.1 ms, TE/TR = 2.01/2.83, flip angle = 20◦,
bandwidth = 800–1300 Hz/Px, slice thickness = 6 mm). Images were acquired with full LV short
axis coverage, as well as the vertical and horizontal long axis (VLA, HLA) views.

2.3. Post-Processing and Analysis

Cine and LGE Analysis. Two expert clinicians (PR or AP, both >8 years of experience)
calculated LVEF from bSSFP cine images using commercial segmentation software (Circle
CVI42, Circle Cardiovascular Imaging Inc., Calgary, AB, Canada) or Medis (Medis Cardio-
vascular Imaging). In DMD, a normal LVEF was classified as LVEF ≥ 55%, while a mild
LVEF was defined as an LVEF between 45% and 54% [10,25]. The clinicians assessed the
LGE images for the absence of positive LGE findings to identify the LGE (-) boys with
DMD from amongst a larger cohort of enrolled subjects. The experts then computed the
following functional metrics: LV end systolic and end diastolic volume (LVESV, LVEDV),
LVEF, LV mass (LVM), RV end systolic and end diastolic volume (RVESV, RVEDV), RVEF,
and RV mass (LVM). Indexed measures (LVESVi, LVEDVi, LVMi, RVESVi, RVEDVi, and
RVMi) were derived by dividing by the estimated body surface area (BSA).

Cine DENSE Analysis. LV borders were semi-automated segmented over the entire
cardiac cycle (Figure 1A) via the open-source DENSEanalysis tool [26,27]. The strain analy-
sis was proceeded with the pipeline described by Spottiswoode et al. [28]. In brief, after
semi-automatic phase unwrapping, the 2D Lagrangian displacement field was estimated,
spatially differentiated, and used to compute the regional strain tensor, thereby resulting
in Ecc at each voxel. Subsequently, regional Ecc was averaged within four wall segments
(septal, inferior, lateral, and anterior wall segments, Figure 1D). Reduced (less negative) Ecc
indicates impaired end-systolic Ecc of the mid-ventricular LV myocardium.
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Figure 1. Representative end-systolic 2D cine DENSE CMR images and end-systolic strain maps
from one mid-ventricular short-axis slice of left ventricle viewed from the apex. (A) A magnitude-
reconstructed image; (B) a phase image encoded for x-displacement; (C) a phase image encoded for
y-displacement; (D) diagram of mid-ventricular myocardial segmentation on LV free wall; (E) example
of Ecc strain distribution in septum (sep), anterior wall (ant), lateral wall (lat), and inferior wall (inf).

2.4. Statistics

All statistical analyses were conducted in MATLAB (p-value < 0.05). All data are pre-
sented as median (IQR). A Wilcoxon rank-sum test was used to compare the demographics
and LVEF for two cohorts, the LGE (-) boys with DMD and healthy controls. For each
wall segment, a Wilcoxon rank-sum test was used to test group-wise differences in the LV
regional Ecc. For each group, a Skillings-Mack test followed by pairwise Wilcoxon signed-
rank tests were used to test the regional differences in Ecc among the four wall segments.

Binomial Logistic Regression. A binomial logistic regression model tested whether global
and regional Ecc and LVEF can distinguish between DMD boys with LGE (-) and healthy
boys. Receiver operating characteristic (ROC) curves were used to present the results. The
predictive capability of each biomarker was demonstrated by the area under the curve
(AUC). Finally, a generalized linear regression model incorporating Ecc and LVEF was
computed and compared to each biomarker individually using ROC analysis and AUC.

Best Fitting Regression Model. A framework for constructing a best fitting regression
model was adopted to determine which predictors from LV and RV functional metrics
had the greatest impact on predicting either global or regional Ecc that is significantly
different in DMD boys with LGE (-) compared to healthy boys. Additional materials
explain the framework in detail (Supplementary Material S1) and describe the mathematical
formulations used in this analysis (Supplementary Material S2).

3. Results
3.1. Demographics

Compared to healthy boys, LGE (-) boys with DMD were significantly shorter
[133 (18) cm vs. 165 (22) cm, p = 0.0007], resulting in significantly smaller BSA values
[1.27 (0.49) m2 vs. 1.53 (0.37) m2, p = 0.032] (Table 1).

3.2. LV and RV Volume and Function

Four out of the 10 boys with DMD presented with mild LVEF (45–55%), but there was
no significant difference in LVEF between the LGE (-) boys with DMD and healthy controls
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[58 (4) vs. 55 (10), p = 0.149]. 3 out of the 10 presented with mild RVEF (40–50% [29]).
Of these, 2 had both mild LVEF and RVEF. There were no significant differences in the
median of LVEF, LVEDVi, LVESVi, LVMi, RVEF, RVEDVi, RVESVi, or RVMi between the
two groups, but the DMD boys with LGE (-) had significantly lower RVM, RVEDV, and
RVESV compared to healthy boys (Table 2).

Table 2. Summary of LV and RV volume and function, as well as differences between healthy controls
and DMD boys with LGE (-).

Control
N = 12

DMD LGE (-)
N = 10 p-Value Control

N = 12
DMD LGE (-)

N = 10 p-Value

LVEF (%) 58 (4) 55 (10) 0.149 RVEF (%) 54 (8) 54 (9) 0.921
LVEDVi (mL/m2) 84 (17) 87 (25) 0.972 RVEDVi (mL/m2) 83 (22) 81 (36) 0.249
LVESVi (mL/m2) 36 (5) 40 (15) 0.699 RVESVi (mL/m2) 39 (11) 34 (20) 0.223

LVMi (g/m2) 38 (14) 32 (12) 0.062 RVMi (g/m2) 31 (7) 25 (10) 0.199
LVEDV (mL) 141 (64) 93 (33) 0.057 RVEDV (mL) 142 (53) 87 (32) 0.004 *
LVESV (mL) 59 (25) 42 (17) 0.149 RVESV (mL) 61 (18) 37 (18) 0.004 *

LVM (g) 57 (45) 39 (12) 0.008 RVM (g) 49 (17) 31 (13) 0.006 *

* p-value ≤ 0.05 is significant.

3.3. Global and Regional Ecc

In Figure 1E, strain maps from representative subjects were used to display end-
systolic Ecc at middle wall. Both healthy boys and DMD boys with LGE (-) exhibited
regional differences in Ecc. Compared with the Ecc in other circumferential segments,
septal Ecc was impaired significantly and lateral Ecc was significantly higher (Figure 2).
Septal Ecc was significantly impaired in LGE (-) boys with DMD compared to healthy boys
[−0.13 (0.01) vs. −0.16 (0.03), p = 0.019] (Figure 2), but lateral wall Ecc was not significantly
different between the LGE (-) boys with DMD and healthy controls. Additionally, there was
no significant correlation between age and Ecc in the DMD cohort [Pearson’s correlation
coefficient R2 = 0.036].
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and anterior Ecc, while lateral Ecc was significantly elevated compared to septal, inferior, and an-
terior Ecc. Additionally, the DMD patients with LGE (-) exhibited significantly impaired septal
Ecc compared to healthy controls. * p-value ≤ 0.05 is significant for a comparison within either control
or DMD boys with LGE (-) using Skillings-Mack test and then Wilcoxon signed-rank test for pairwise
comparisons. # p-value ≤ 0.05 is significant for a comparison between DMD boys with LGE (-) and
controls using Wilcoxon rank-sum test.

3.4. Binomial Logistic Regression

The AUC for septal Ecc was much larger than that of LVEF (AUC = 0.80 vs. AUC = 0.69).
The use of septal Ecc in combination with LVEF improves the predictive capability of LVEF
alone to distinguish between DMD boys with LGE (-) and healthy boys (AUC = 0.83 for
LVEF combined with septal Ecc and 0.69 for LVEF) (Figure 3).
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Figure 3. Receiver Operator Characteristic (ROC) curves for septal Ecc and LVEF derived from a
binomial logistic regression model to differentiate LGE (-) boys with DMD from healthy boys. Larger
area under the curve (AUC) values implies better performance in classification. Septal Ecc has the
largest AUC among all individual biomarkers in differentiating DMD boys with LGE (-) from healthy
boys. The combined logistical regression model of septal Ecc and LVEF outperforms each individual
biomarker in distinguishing DMD boys with LGE (-) from healthy boys.

3.5. Best Fit Regression Model

Figure 2 indicates that Septal Ecc was significantly decreased in LGE (-) boys with
DMD compared to healthy boys. A framework for determining the best fitting regression
model was used to identify all predictors that are significantly correlated to the septal
Ecc that are also significantly different between the two cohorts. As shown in Step 1 of
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Table 3, LVEF, LVEDV, and RVEDV were found to have significant predictor-by-group
effects in predicting the pooled septal Ecc. Subsequently, none of them were found to be
highly correlated (R2 > 0.7) to the others (Step 2 of Table 3). Lastly, the best fitting regression
model for predicting the septal Ecc in two cohorts:

Pooled Septal Ecc ~ Group + LVEF + LVEDV + RVEDV + LVEDV× RVEDV + LVEF× Group (1)

where the p-values are p = 0.013 for Group, p = 0.008 for LVEF, p = 0.011 for LVEDV, p = 0.010
for RVEDV, p = 0.010 for LVEF × Group, and p = 0.009 for LVEDV × RVEDV.

Table 3. Step-wise results for the framework of discovering all biomarkers contribute to predicting
the septal Ecc in DMD boys with LGE (-) and healthy controls.

All Available Predictors in
the Study

Age, HR, Height, Weight, BSA, BMI, LVM, LVMi, LVESV, LVEDV, LVEF, LVESVi, LVEDVi,
RVM, RVMi, RVESV, RVEDV, RVEF, RVESVi, RVEDVi

Step 1: Exclude derivable predictors

Remaining Predictors Age, HR, Height, Weight, BSA−1, BMI, LVM, LVEDV, RVM, LVEF, RVEDV, RVEF

Step 2: Calculate predictor-by-group effect for each predictor

Regression Model Pooled Septal Ecc ~ constant + group + X + group × X

Predictors (X)
Interaction Term (group × X)

Coefficients p-value
LVEF 0.006 0.034 *

LVEDV −0.00075 0.019 *
RVEDV −0.00068 0.044 *

Remaining Predictors LVEF, LVEDV, RVEDV

Step 3: Calculate inter-predictor correlations

Predictors R2

LVEF & LVEDV 0.014
LVEF & RVEDV 0.021

LVEDV & RVEDV 0.500
Remaining Predictors LVEF, LVEDV, RVEDV

Step 4: Perform stepwise backward regression using the Akaike information criterion

Best Fitting Regression Model Pooled Septal Ecc ~ Group + LVEF + LVEDV + RVEDV + LVEDV×RVEDV + LVEF × Group

Terms Coefficients p-value
(constant) 0.7329 0.012 *

Group −0.3647 0.013 *
LVEF −0.0130 0.008 *

LVEDV −0.0015 0.011 *
RVEDV −0.0011 0.010 *

LVEDV × RVEDV 0.00001 0.009 *
LVEF × Group 0.0067 0.010 *

* p < 0.05 is significant.

4. Discussion

As per our knowledge, this is the first report of reporting Ecc using free-breathing cine
DENSE in LGE (-) boys with DMD with comparison to age-matched healthy boys. This
is also the first report of a multi-variable binomial logistic regression model using only
biomarkers not requiring an exogenous contrast agent to be implemented and tested in
boys with DMD.

In our study, the DMD patients with normal LVEF and negative LGE were 11.8 ± 2.2 years
old, comparable to the age of a similar cohort in the study by Hor et al. (13.6 ± 3.3 years
old [16]). The DMD patients with mild LVEF and negative LGE were 13.3 ± 1.7 years
old, which falls between the ages of similar patient groups in the study by Hor et al.
(15.3 ± 4.4 years old [16]) and the study by Ashford et al. (10.6 ± 3.01 years old [14]). Sep-
tal Ecc was significantly lower (less negative) and lateral Ecc was significantly higher (more
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negative) both in LGE (-) boys with DMD and healthy controls. Previously, comparable
results were reported using tagging in DMD patients and healthy controls [14,16]. The
regional heterogeneity in Ecc is likely caused by regional differences in loading conditions
(e.g., the septum is loaded by both RV and LV pressures, whereas the LV lateral wall
is loaded by the LV pressure alone), tethering effects of the RV, ventricular interdepen-
dence [30], and microstructural differences between the septal and lateral wall [31–33]. In
addition, septal Ecc in DMD boys with LGE (-) was significantly impaired compared to that
of healthy boys. The best fitting regression model revealed that decreased LVEF, LVEDV,
and RVEDV predicted the significantly reduced septal Ecc in LGE (-) boys with DMD com-
pared to controls. This may be due to any of several reasons. First, the lower end diastolic
volumes may not have optimal sarcomere length for contraction (Frank–Starling mecha-
nism [34]), which could lead to impaired myocardial contractility as indicated by reduced
Ecc. Second, reduced septal Ecc was significantly correlated to decreased biventricular end
diastolic volumes prior to the presence of focal fibrosis (LGE (+)), which may contribute to
the fact that septum is the physical interface between two ventricles, where the mechanics
of the two ventricles interact and the ventricles can affect each other. The septum was also
previously reported as a highly ventricular interdependent functional unit [35]. However,
the LV free wall Ecc was not significantly correlated to decreased biventricular end diastolic
volumes because it may compensate similar to patients with septal infarction [36]. Lastly,
the predictive effect of the best fitting regression model suggests that the reduced septal
shortening may be contributed to abnormal biventricular end-diastolic loading conditions.
Considering that the LV and RV are connected to the pulmonary circuit and the pulmonary
circuit may not be normal in these patients, the changes in end-diastolic loading conditions
may be attributed to chronic pulmonary insufficiency [37,38]. A previous study showed
that respiratory system dysfunction resulting from DMD may also impact the biventricular
end-diastolic loading conditions [37]. The decreased septal Ecc was likely attributed to
the preceding respiratory system dysfunction, which may exacerbate the progression of
cardiomyopathy in DMD patients. Future study should take the correlation of septal Ecc
and pulmonary function data into account. Additionally, the effect of respiratory mechanics
on the right ventricle and the septal function needs further study.

For the classification task of differentiating DMD boys with LGE (-) from healthy
controls, septal Ecc outperformed LVEF. Additionally, the combination of septal Ecc and
LVEF outperformed septal Ecc alone or LVEF alone.

Importantly, septal Ecc could be used as an earlier biomarker than LGE and LVEF
for indicating the subtle beginning of LV cardiac engagement in DMD without the need
for an exogenous contrast agent. Thus, this may enable more frequent, earlier, and better
patient-specific treatment decisions.

Limitations. First, this multi-center study is limited by its sample size due to the
challenges in recruiting boys with a complex and rare genetic disease as well as well-
matched healthy controls. Nevertheless, the statistical methods provide significant findings.
The best fit regression model necessarily overfitted septal Ecc due to the procedures of
multiple testing and refitting. This may lead to optimistic p-values. Further evaluation of
the regression model is needed. Finally, this study is limited by single-time-point evaluation
of the subjects. Future work will include the evaluation of within-subject longitudinal
changes in Ecc assessment to characterize the progression of cardiac involvement and to
determine if Ecc could be longitudinal imaging end-points for clinical trials.

5. Conclusions

Using free-breathing cine DENSE, we showed septal Ecc was significantly decreased
in DMD boys with LGE (-) compared with healthy boys. Declines in septal Ecc were
significantly correlated to changes in LVEF, LVEDV, and RVEDV. Additionally, a binomial
logistic regression model that combined septal Ecc and LV ejection fraction sensitively
distinguished (AUC = 0.83) DMD boys with LGE (-) from healthy controls absent the
need for an exogenous contrast agent. Thus, reduced septal Ecc may serve as an early
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non-contrast biomarker indicating the subtle beginning of cardiomyopathy in pediatric
subjects with DMD prior to significantly reduced LVEF and a positive LGE finding.
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