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Abstract

Dimensionality in dipolar quantum systems

by

Simon Alexander Meynell

Engineered quantum systems are a powerful tool for quantum sensing and simulat-

ing otherwise intractable many-body quantum systems. Defects in the solid-state have

emerged as one particularly useful class of platforms for tackling these goals, and the

nitrogen-vacancy (NV) center in diamond is an especially noteworthy example owing to

its ease of addressability and functionality across a broad range of conditions. However,

engineering the system dimensionality and the underlying Hamiltonian is required to

achieve good sensitivity and effective simulation. In this thesis, we will discuss systems

of disordered interacting spins across three, two, and one dimensions. A special focus

will be on methods for engineering these systems, and, especially in Chapters 3 and 4,

we will discuss some of the interesting physics one can probe using confinement (in 1

and 2D) and periodic drive (in 3D). The methods of engineering we will explore are pri-

marily chemical vapor deposition (CVD)-based, and we will also discuss the primal role

of miscut in determining the quality of CVD growth. For three-dimensional ensembles,

we will highlight a new sequence, ϵ-CPMG, and discuss the way in which this sequence

can be used to characterize competing interactions in disordered dipolar ensembles. For

two-dimensional systems, we will discuss how to generate 2D confinement and the many-

body physics one can study using a careful analysis of decoherence profiles. Step bunches

and hillocks will be considered as two possible methods for patterning low-dimensional

geometries of spins, and, in the case of the step bunch, we will highlight some interesting

physics that arises from the patterned one-dimensional structure.
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Chapter 1

The nitrogen-vacancy center in

diamond

For nearly 80 years, humans have made widespread use of devices whose design principles

rely on predictions from quantum mechanics. Some particularly ubiquitous examples

from this period include the transistor[3], the laser[4], and the light-emitting diode[5].

However, while this “quantum revolution” has produced a plethora of useful technologies,

until very recently, most of these would utilize only “incoherent” quantum mechanics.

A second class of quantum devices has emerged over the past two decades: those that

seek to exploit coherent state manipulation. This “second quantum revolution”[6] offers

fundamentally different types of devices: those that rely on the unusual physics associated

with superposition and entanglement, giving rise to applications in chemistry[7, 8, 9, 10],

sensing[11, 12, 13, 14, 15, 16, 17], and, famously, computing[18, 19, 20, 21, 22].

Coherence is at the heart of any quantum mechanical experiment utilizing superposi-

tions or entanglement. Often, a qubit or system of qubits is characterized by a coherence

time, the timescale over which the phase becomes scrambled. A system prepared in a

superposition with a well-known phase will lose that phase over this timescale, which

1



The nitrogen-vacancy center in diamond Chapter 1

can be described through statistical correlation functions like g(1), and often measured

using a spin echo (or Hahn echo)[23]. Thus, what is usually meant by “quantum coher-

ence” is phase coherence, that is, the extent to which the phase of a state is well-known

to the experimenter. Quantum logic gates performed well after this timescale will gen-

erally be ineffective and so the total available time for any computational or sensing

task by a qubit will be set by this coherence time. Physically, the exact mechanisms

for coherence loss are not fully understood but are usually the result of interactions[24],

thermalization[25, 26], and entanglement[27]1 with an uncontrolled environment. Despite

the great importance[28] of the concept, in formal discussions such as those in textbooks,

mentions of coherence are often conspicuously absent or limited to discussions about

coherent light[29, 30].

The preservation of coherence and the remarkable strides humans have made over the

past two decades in pushing towards ever-longer[31, 32] single-qubit coherence times and

ever-larger quantum network sizes[33]2, coupled with remarkable advances in control[18]

herald a large impact for the second quantum revolution. While many of the future

applications for coherent quantum systems are still nascent, coherent sensing is already

witnessing a boom in use cases. This is, in large part, due to many years of nuclear

magnetic resonance (NMR) development and the requisite pulse sequence engineering

for that development. Quantum sensors include scanning superconducting quantum in-

ference devices (SQUIDs)[11, 13, 17, 34], quantum dots[35], trapped ions[15], Rydberg

atom arrays[16], and solid-state defects, notably, the nitrogen-vacancy (NV) center in

diamond[36, 37, 38, 39, 14, 40].

The NV center, which is the unifying topic of this thesis, has attracted an explosion of

interest in recent years, resulting in at least two commercially available turnkey scanning

1These are not really three different sources of decoherence so much as they are different ways of
describing the same fundamental mechanisms.

2Hour long coherence times and 1000 km channel lengths.
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NV systems[41, 42]. While these systems are focused on ex-situ sensing3, this thesis will

discuss, primarily, the NV as an in-situ sensor. We will investigate the environment of

the NVs and the mechanisms that contribute to their decoherence using two primary

methods: pulse sequence engineering and dimensional confinement.

1.1 Solid-state defects

Solid-state defects[43] are a class of qubits consisting of a point defect in a larger,

crystalline body. Ideally, the crystal provides a quiet4 environment and the defect acts

as a means to localize electronic states whose spin[44, 45], charge[46, 47], nuclear[48, 49],

phononic[50, 51], or orbital[52] properties can be read out. Optical addressability is a

chiefly desirable feature for any solid-state defect qubit, as well. The ability to interface

with photonic degrees of freedom allows for convenient state readout and the possibility

of entangling with photons[53] to mediate long-distance entanglement between nodes on

a quantum network.

Diamond is an attractive host owing to its exceptionally large band gap (EG =

5.5 eV)[54] and high Debye temperature (ΘD = 2240 K)[55], leading to a very quiet

environment. Diamond hosts the most well-studied solid-state defect, the nitrogen-

vacancy (NV) center in diamond, consisting of a substitutional nitrogen adjacent to

a vacancy. However, the NV is only one of many optically fluorescent point defects5

3That is, sensing an external target. In scanning NV systems, a probe containing an NV center is
brought to some system of interest (often, though not necessarily, a condensed matter system of interest)
and scanned over the target to form a spatially resolved map of (usually) magnetic fields.

4What I mean by quiet is free of fluctuating fields. Because the NV couples to electric, phononic,
and magnetic degrees of freedom, we would like free charges, phonons, and fluctuating spins to be kept
to as low a density as possible (except in the case of certain types of spins, as we will see later in this
thesis, which can be deliberately introduced as a platform for exploring many-body spin physics).

5These are commonly referred to as color centers because of their quality of giving diamonds their
color. Diamonds with a yellow color are rich in nitrogen[56], blue indicates high levels of boron[57], and
pink is usually associated with plastic deformation[58] or (in the case of the very rare Golconda diamonds
named from their historical origin of Golconda, India[59]) due to absorption by NV centers[60].
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in diamond[61, 62]. Another spin-photon qubit candidate that has garnered significant

interest is the silicon-vacancy (SiV) center. The SiV benefits from a strong spin-phonon

coupling[63] and, notably in comparison to the NV center, a high probability of emission

into the zero-phonon line[64, 65], making it especially well-suited for quantum infor-

mation tasks. In addition to the SiV, there are the other (less well-studied) group-IV

defects[66] such as the tin-vacancy (SnV)[67, 68], the germanium-vacancy (GeV)[69, 70],

and the lead-vacancy (PbV)[71, 72]. These other group-IV defects are similar to the SiV

but have larger ground state splittings due to the larger sizes of the constituent atom.

Silicon is another promising material for hosting solid-state spin defects that has

emerged in recent years[73]. The T-center (Si-T)[74] in particular has attracted a great

deal of interest owing to its long coherence times[75] and demonstrated compatibility

with silicon-on-insulator chips[76, 74]. In addition to the T-center, the G-center[77, 78]

and W-center[79] are also under active investigation. The largest advantage for silicon-

based defects is the wealth of resources available for on-chip photonic circuit generation.

Silicon fabrication has undergone decades of refinement and integrated photonic circuits

have reached a point of maturity - integrating spin defects into a photonic circuit allows

for scalable generation[80] of devices for quantum information tasks.

Monolayers of hexagonal boron nitride (hBN) make an unusual host for solid state

defects owing to their fundamentally 2D nature. Recently, Gong et al.[81] demonstrated

coherent manipulation of vacancy-related defects in hBN with coherence times of ∼

70 ns. Carbon-related defects[82] in hBN are also expected to be potentially powerful

spin defects, though research into these defects is still in a young state. Silicon carbide

(SiC)-based defects[83] offer another route to scalable[84] solid-state qubit networks, but

SiC photonic circuits are still in the research phase of development[85, 86], and it will

still be many years before industrial foundry production of all-SiC photonic circuits.

4



The nitrogen-vacancy center in diamond Chapter 1

1.2 The NV center

That the nitrogen-vacancy (NV) center in diamond is the most well-studied6 quantum

solid-state defect, there can be no doubt7. A more interesting question, then, is why?

What is it about the NV center that has resulted in it garnering such a colossal amount

of interest compared to the other solid-state defects? It is tempting to state that it is

simply because so many of the intensely challenging materials challenges have already

been worked out. Materials barriers such as optimal creation methods[87, 88, 89, 1, 90],

proper surface termination[91, 92], (charge) state dynamics[46, 47, 93], and integration

with nanostructures[14, 94, 95] are, if not completely solved, demonstrably surmountable

challenges for the NV. However, this answer is sort of kicking the question down the

road8. So then, is the remarkable success of the NV simply a historical accident? Or is it

due to some special features that the NV possesses? I will argue that the prominence of

the NV is not because of historical fiat but rather due to two important attributes: ease

of generation and ease of measurement9. The importance of these two factors is made

clear through a brief diversion into the history of the NV center.

Like many impactful discoveries in physics, the study of the NV center has rather

humble beginnings. Researchers have studied the defect since at least 1965 when it was

first described in the Ph.D. thesis of L. du Preez[96] at University of the Witwatersrand

in Johannesburg, South Africa10. At this time, the composition of the NV was not

6As of writing.
7The next leading candidate, the SiV, is probably an order of magnitude less studied. Though

certainly not the most reliable metric, a quick search on Google Scholar gives ∼ 10000 results for ”NV
center” diamond and only ∼ 900 for ”SiV center” diamond.

8Because we can always ask why have these been worked out so early for the NV in contrast to other
candidates. This answer is a bit tautological as well - these materials challenges have been overcome
because the NV is so well-studied.

9Long coherence times did not hamper excitement either, though, I think even if NV coherence were
limited to 100s of nanoseconds (rather than ms), the NV would still be very popular.

10This thesis is not available online and, so far as I can tell, there is only one copy of this document
in the world (available only at University of the Witwatersrand). So, to any NV enthusiasts who find
themselves in Johannesburg: I think it might be a fun field trip to track down this historical document.
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Figure 1.1: a) A ball and stick diagram of the nitrogen-vacancy (NV) center in dia-
mond. The NV consists of a substitutional nitrogen adjacent to a carbon vacancy. b)
The location of the NV− center in the larger band structure of diamond relative to
other important defects (see Ref. [101]).

known and the defect was referred to as simply, the 1.945 eV vibronic band in diamond.

In his thesis, du Preez had (remarkably) already worked out an optimal method for

generating NV centers. The du Preez recipe, which is nearly identical to the one we

use at UCSB today, was to find a diamond containing isolated substitutional nitrogen,

irradiate the diamond with electrons, and then anneal at temperatures above 900 K.

After the discovery by du Preez, the study of this defect was carried out in large part

by researchers in the United Kingdom. Clark et al.[97] have the first published results

building on du Preez’s 1965 discovery. These results were followed shortly by substantial

progress made by G. Davies et al.[98, 99], who, using a clever annealing experiment, stress

measurements, and symmetry arguments, quickly identified a single possible candidate

for the 1.945 eV vibronic band. The candidate structure that Davies identified in 1976,

which we now understand to be wholly correct, was a substitutional nitrogen adjacent

to a vacancy[100] (shown in Figure 1.1 a)).

Figure 1.1 b) shows the band structure of diamond and where the NV center sits
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relative to some other common defects[101]. The 1.945 eV transition that had piqued

the interest of Clark, Davies, and du Preez was the NV− electronic transition between

two orbital states. The pair of nitrogen and vacancy has two primary charge states,

the neutral NV (NV0) and the negatively charged variant (NV−, that has the 1.945 eV

transition), hereafter referred to as the “NV”11.

Following the discovery of the NV structure in 1976, research into the spin states

of the NV would be immediately forthcoming. In 1977, Loubser et al.[103] would bring

Johannesburg back to the forefront of NV research with an ESR study into the electronic

structure. Loubser incorrectly concluded that an excited state triplet with a ground state

singlet was responsible for their ESR measurements. In 1983, Collins et al.[104] would

measure the excited state lifetime to be a shockingly short, 13 ns, giving the first hint that

the Loubser explanation was not correct. In December of 1991, the level structure for

the NV12 would be conclusively shown by Michigander researchers Redman et al.[105] to

be two spin-triplets with a dark intersystem[106] crossing. The electronic level structure

of the NV has remained largely unchanged13 since the 1991 Redman result[105].

The NV electronic level structure[108] is shown in Figure 1.2 a). The ground state

triplet manifold (often referred to as the 3A2 state), consists of an ms = 0 ground state

with two degenerate14 ms = ±1 excited states. Contrary to many spinful systems, there

is a large zero-field splitting. The degeneracy between the ms = 0 and ms = ±1 states is

lifted due to a large spin-spin coupling that gives rise to a crystal field, D = 2.87 GHz[109].

Upon excitation with a green laser, the orbital state will be pumped to the same spin-

11Though NV charge state manipulation can be useful in some measurement environments (notably
spin-to-charge readout[102] is extremely efficient for long measurement schemes), the vast majority of
NV work uses the NV− charge state. Throughout most of the literature and this thesis, unless explicitly
stated otherwise, the term “NV” refers to the negatively charged variant.

12By this time, the (not-very-catchy) name 1.945 eV vibronic band was discarded and the Davies
structure was firmly agreed upon. From this point onward, the NV is called either the NV or the N-V
(as is the case in the Redman 1991 paper).

13Details of the excited state structure[107] and dark intersystem[106] crossing were filled out later.
14In the absence of a field.
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Figure 1.2: a) The electronic level structure of the NV center. A green laser pumps the
system to the excited state where it decays either radiatively (small downward pointing
arrows) or non-radiatively (large grey arrows). The selectivity of the non-radiative
decay to the spin state allows for optically detected magnetic resonance (ODMR). b)
ODMR of an NV center with the corresponding (14N) hyperfine transitions illustrated
below. c) ODMR of an NV ensemble across a wide frequency range. Pairs of peaks
indicate pairs of electronic ms = 0 ↔ ms = ±1 transitions. The multiple pairs are
due to the multiple possible orientations the NV can take.
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state in the excited manifold. After a period of ∼ 13 ns[104], the system will decay

to the ground state, releasing a 1.945 eV photon. However, approximately ∼ 30% of

the time15, should the NV be pumped to one of the ms = ±1 states in the excited

manifold, it will decay non-radiatively16 through two singlet states, 1A1 and 1E. After

traversing the dark path, the electronic state will decay into either the ms = 0 ground

state or the ms = ±1 states[108]. There are two essentially important elements to this

structure: first, the photoluminescence (PL) of the NV center depends on the spin state

(and so the spin state can be read out optically), and second, continuous repumping

via a 532 nm laser is guaranteed to initialize the NV into the ms = 0 state. These two

elements result in an easy-to-address spin and make possible optically detected magnetic

resonance (ODMR)[111] along with more complicated pulse sequences.

In 1997 Gruber et al.[111] observed ODMR on NVs for the first time. Through an

application of a magnetic field, they were able to show that the resonant frequencies of

the ms = 0 ↔ ms = ±1 transitions could be detected using only a confocal microscope

and an RF generator. This demonstration heralded the widespread study of NV centers,

made possible through the inexpensive and relatively easy-to-build confocal microscope.

Figure 1.2 b) shows an example of ODMR on an NV at room temperature in ambient

conditions. The three peaks here correspond to hyperfine transitions. Figure 1.2 c) shows

a wide spectrum of NV peaks, with an applied magnetic field of ≈ 40 G. The transitions

shown here come in pairs, where each element in the pair corresponds to either the

ms = 0 ↔ +1 or 0 ↔ −1 transition. The splitting between the two peaks corresponds

to the projection of the magnetic field along the NV-axis (the NV axis can point along

15Actually, it is only the difference in decay paths for the ms = ±1 transitions and the ms = 0
transitions that is ≈ 30%. There is a non-negligible branching ratio for the ms = 0 transition. See Table
XIII in Ref. [110].

16Actually, this is only mostly non-radiative. The 1A1 →1 E decay releases a far infrared photon[106]
which is usually filtered out.
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Figure 1.3: Rabi oscillations for an ensemble of NV centers. Bloch sphere represen-
tations of the state, along with arrows pointing (approximately) to the corresponding
part of the Rabi oscillation are listed along the top.

the set of ⟨111⟩)17.

By the early 2000s, all-optical, coherent manipulation of NV centers had already

reached an advanced stage. Early experiments by Jelezko et al.[112] and Childress et

al.[113] would demonstrate coherent interactions between NV centers and nearby nuclear

spins. Controlled entanglement between electronic spins and proximal nuclear spins hints

towards the exciting possibility of coupling the spin-photon interface of the NV center

(and its high sensitivity) with the long quantum memories of the nucleus. Coherent ma-

17While 6 peaks are shown in this figure, we expect 8 in total. The extra two are probably overlapping
with two of the others.
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nipulation, as in these demonstrations requires the Rabi protocol[114, 19], a fundamental

building block for quantum control. Figure 1.3 shows an example of a Rabi oscillation in

an ensemble of NV centers. An NV Rabi sequence consists of a green initialization into

the |0⟩ state followed by an RF pulse of length τ at a frequency equal to the transition of

the qubit basis states one is hoping to use (in our example, we will say we are driving the

transition |0⟩ ↔ |1⟩). Under the application of the RF, the state will proceed along the

Bloch sphere[19] at a constant rate, called the Rabi frequency, Ω. The qubit will travel

along a great circle that includes the states |0⟩, |1⟩, and two points along the equator

(called |±x⟩). By choosing a set time to keep the RF on, an experimenter can prepare

any arbitrary state along the Bloch sphere, as shown in Figure 1.3. In this thesis (and

the extended literature), when we refer to a π-pulse or a π/2-pulse (or π-gates), this is

what we mean. The RF is on for a set time, τ , such that 2πτΩ = π or π/2.

As NV center experimental methodology and practices matured, sensing would begin

to occupy an increasingly large portion of the field. Early, proof-of-concept experiments

would increasingly give way to experiments where the NV would act as a tool to study

some “other” physics, rather than acting as the object of study itself. Most of these

sensing tasks would take the form of magnetic field sensing, though the NV can sense a

variety of fields including electric, temperature, and strain. Though ensembles of NVs

can be used for sensing tasks[115, 116], the most dramatic advance in NV sensing would

come with the advent of single NV magnetometry. Single NV magnetometry refers to

experiments where a shallow, single NV is interrogated while proximal to a target of

interest that acts on the NV in some way, changing its observable properties. The

fundamentally atomic nature of the NV ensures that the best possible achievable spatial

resolution is, fundamentally, atomic18. In the early 2010s, two different modes of single

18In practice, spatial resolution for scanning NVs is far from atomic. The limit to the spatial resolution
comes from how close you can bring the NV to the target of interest. Usually, this works out to be
∼ 50− 100 nm.
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NV sensing would arrive. The first type, appearing in 2011 by Grinolds et al.[117], uses

fixed shallow NVs and a target that is attached to a scanning probe. In this scheme, the

NVs sit in a bulk diamond and the sample is scanned over top. The main disadvantage

of this scheme is that it must be possible to affix the sensing target to the scanning

probe, fundamentally limiting the accessible pool of sensing targets. The second scheme,

introduced by Maletinsky et al.[37] in 2012, uses a fabricated diamond nanopillar with a

single NV at the apex. Scanning this tip over the sample (or, more commonly, scanning

the sample beneath the tip), allows the experimenter to build an image over an arbitrary

sensing target, allowing for a much broader set of possible experiments.

While the early examples of scanning NV magnetometry were room-temperature,

in 2016, scanning NV magnetometry would be extended to the low temperature and

ultra-high vacuum regime by Pelliccione et al.[14]. Low-temperature NV magnetometry

opened up the possible systems available for sensing to a wide range of temperatures and

pressures (mK →∼ 600 K[118, 119] and UHV →∼ 100 GPa[14, 120, 121, 122]).

While most of the early examples of scanning NV magnetometry were DC-sensing

(in the case of CWESR, a fundamentally incoherent mode), coherent sensing remains an

attractive prospect for scanning NV sensors. AC sensing sequences offer field sensitivities

2−10× higher than the DC counterpart[110, 123]. These sequences are often either spin

echoes[23] or more complicated sequences[124] built around the central idea that Erwin

Hahn proposed in 1950. A spin echo (or sometimes, Hahn echo) is a pulse sequence

initially developed for NMR, whose primary function is to remove random DC magnetic

fields that result in uncontrolled dephasing.

An ensemble19 of equatorial NVs will begin to acquire random uncontrolled phases.

These uncontrolled phases are due to slightly different B-fields acting on each NV in

19Either a time ensemble (i.e., averaging the same NV over many different instances) or a space
ensemble (i.e., a single (or many) instance(s) of averaging many different NVs distributed over space).
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the ensemble; because the rate of phase accumulation is proportional to these random

fields, the distribution of phases will grow over time until the ensemble has completely

dephased. Erwin Hahn’s insight was that a π-pulse would reverse the sign of each of

the B-fields in the ensemble and, thus, reverse the rate of phase accumulation. Hahn

found that if the π-pulse was sandwiched between two waiting times, τ , the spins would

spontaneously rephase due to the exact cancellation of these random magnetic fields

across the ensemble - he called this rephasing an “echo”.

Figure 1.4 shows a schematic for a spin echo, the pulse sequence, and data on an NV

ensemble that will be discussed later in Section 4.3. An NV spin echo consists of a green

initialization pulse to prepare the |0⟩ state followed by a π/2-pulse to rotate the NV onto

the equator of the Bloch sphere. After an evolution of time, τ , we perform a π-pulse and

then allow the system to accumulate phase for another time, τ . Finally, we perform a

π/2-pulse and a green laser pulse for state readout. This sequence is useful in a sensing

context because, while it perfectly cancels all DC components, it amplifies the signal at

a frequency, f = 1/2τ .

Not only can spin echo-based sequences be used to sense ex-situ targets, but so too

can they be used to sense targets within the diamond itself to explore fundamental many-

body physics. The NV is currently a prime candidate for exploring topics in many-body

quantum physics[125]. Alongside the push towards sensing at the start of the 2010s,

the prospect of shifting from exploring NV-specific physics to using the well-understood

NVs to study fundamental physics started to become feasible. By 2013 and 2014, Cai et

al.[126], and Ju et al.[127] had made serious proposals for NV center quantum simulation.

Today, many groups are pursuing NV center ensembles as a means of gaining insight into

otherwise intractable problems in many-body quantum physics. This topic will form the

central point of discussion for this thesis.

In the following pages, we will discuss methods for engineering ensembles of NV
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Figure 1.4: An example of a spin echo measurement on an ensemble of NV centers.
Along the top are Bloch sphere representations of the ensemble state (with the multiple
arrows representing multiple instances within the ensemble). A refocusing π-pulse
results in a coherence “echo”. The data depicts the coherence of a state as the time
between the initial and final π/2-pulses and the central π-pulse is varied. The “1/e
time”, that is, the time at which the coherence reaches 1/e, is commonly called the
T2. The decay depicted here is for a 1D ensemble, as described later in Section 4.3
and follows a stretched exponential form. The detail of this decay provides a window
into the many-body dynamics of the system.
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centers with a focus on the role that dimensionality plays in many-body quantum physics.

We will discuss how dimensionality, that is, the confinement of a quantum many-body

system to lower dimensional spaces, gives rise to unusual physics unobtainable in higher

dimensions. We will cover methods for engineering systems in 3D, 2D, and 1D, as well

as methods utilizing periodic drive to generate long-lived coherent ensembles, generate

modified Hamiltonians, and probe the material environment. Finally, we will discuss a

method for coherence extension: confinement to a 1D chain, where the small interaction

boundary limits the rate of decoherence and results in finite coherence ∼ 100× longer

than T2.

I now return to the question posed at the start of this section: what is it about the

NV center that has resulted in it garnering such a colossal amount of interest? I do not

think it is an accident that the NV recipe developed by du Preez in 1965, before anybody

even understood what the NV was, has remained almost intact to the present day. The

NV is remarkably easy to create, easy to measure, and easy to keep around20. While I do

not wish to claim state-of-the-art NV center measurements are easy - anybody who has

attempted low-temperature scanning NV magnetometry can surely confirm that they are

not - I do wish to underscore the profound accessibility of the NV center.

The compatibility of the NV with conventional confocal microscopy and coherent

operation in virtually any environment means that the NV is eminently accessible. I

can think of no other qubit platform where a person can go from an empty lab and

∼ $10k USD to bonafide, coherent qubit manipulation in only a few weeks. Discussions

on the NV center as a pedagogical tool for teaching quantum mechanics have become

more common[128, 129] (even appearing at the Quantum Foundry in UCSB), and I do not

20While it is, unfortunately, possible to lose a good NV sample, it is almost impossible to destroy
a good diamond sample (owing to the robustness of the host material). Barring destruction due to
burning the diamond, there is very little that will result in the death of a deep NV. Even shallow NVs,
which can be charge-destabilized due to fluctuations from a noisy surface, are often recoverable through
retermination and/or cleaning of the surface.
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think it is unrealistic to hope that one day, experimental demonstrations of superposition

and entanglement may become commonplace in the high school classroom.

I recall one winter afternoon, as I was giving a tour of the UCSB Quantum Foundry

facilities, I stopped outside of our diamond growth tools to explain some of the principles

of quantum mechanics. As I was describing the concept of a superposition, one of the

students asked, incredulously, whether I had ever created such a state. “Every day,” was

my reply. Perhaps, one day, that reply will be met with less surprise.
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Chapter 2

Diamond growth and the role of

substrate miscut

Since the discovery that diamond consists only of carbon in 1772 by the French chemist

Antoine Lavoisier[130, 131, 132], the tantalizing idea that diamond could be synthesized

has gripped early chemists and materials scientists 1. By the 1940s, serious efforts in the

United States began to create the first reproducible synthetic diamonds. On the morn-

ing of December 16th, 1954, after most of the researchers in the General Electric (GE)

laboratories had already left for Christmas vacation, American chemist Howard Tracy

Hall began his final test of a high pressure (5 GPa) and high temperature (1250◦C)

chamber[133]. After the test, when Hall broke apart the dusty crucible within his cham-

ber, he found many sparkling tiny particles amongst the soot. These would turn out

to be the first ever reported 2 reproducible synthetic diamonds - the technique used

1Antoine Lavoisier was a pioneering chemist in the field of combustion. It was well known that
diamond could resist heat in a vacuum but would burn when exposed to air. Lavoisier used his theory of
combustion to show that upon burning diamond, the only byproduct was carbon dioxide - an experiment
(unfortunately) sometimes replicated by graduate students during material processing.

2Actually, the first known synthetic diamonds produced were in Stockholm in 1953 by the com-
pany ASEA (Allmänna Svenska Elektriska Aktiebolaget), nearly a year before Howard Tracy Hall [134].
However, the board at ASEA did not believe anybody else was close to achieving repeatable synthetic
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in these proof-of-concept experiments is very similar to what we would eventually call

high-pressure, high-temperature (HPHT) diamond growth. However, these early demon-

strations were not industrially scalable and did not result in gem-quality crystals. It

would still be many years and require several breakthroughs before commercially viable

synthetic diamonds entered the market.

The breakthrough that finally allowed gem-quality, commercially viable synthetic di-

amonds was chemical vapor deposition (CVD), which will be the main subject of this

chapter. Chemical vapor deposition is a non-equilibrium technique that proceeds in a

low-pressure environment using a seed substrate held at an elevated temperature. Hy-

drogen and methane gas are introduced into the chamber, and the hydrogen is energized

using one of a few possible methods. The two most common methods are hot-filament

CVD (HFCVD) and plasma-enhanced CVD (PECVD) [135]. For HFCVD, a hot filament

is placed close to the seed substrate, producing atomic hydrogen close to the substrate.

PECVD produces atomic hydrogen using a microwave-driven plasma at frequencies usu-

ally ranging from 100s of MHz to ∼ 2.5 GHz.

Though CVD diamond growth was patented in 1958[136], it was not until the 1980s

that the process would be sufficiently refined to produce gem-quality diamond [135, 137].

It took even longer for this process to become commercially viable and did so primarily

due to the availability of cost-effective microwave sources[135]. Today, the growth of

synthetic diamond has become an increasingly significant global endeavor for several

applications ranging from wide bandgap semiconductors for devices with better energy

efficiency [138], quantum sensing and simulation applications (the focus of this thesis)

and, notably, jewelry.

The methods and details of the CVD growth employed in this thesis can be found in

diamond creation, so they did not come forward to patent or publicize their results and instead opted
for secrecy. Because of this, today, most credit GE and Hall as the first to create synthetic diamond.
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the theses and work of Kenichi Ohno[139], Bryan Myers[140], and Claire McLellan[141].

In this chapter, we will briefly summarize the methods we use for CVD growth and NV

creation (primarily developed by the authors listed above). Most of the chapter will

focus on the physics of step flow growth and how substrate miscut plays a significant

determining role in that physics. The discussions in this chapter will form the basis for

the discussion in Chapter 4 - we will find that substrate miscut can lead to inhomogeneous

incorporation and low dimensional systems.

2.1 Introduction to CVD diamond growth

The main antagonist to a diamond grower is that diamond is not the equilibrium state

of carbon at standard temperatures and pressures 3 - but rather, graphite is the ground

state for carbon [142, 143]. Consequently, a synthesizer of the diamond must fabricate

an environment far from standard conditions and then provide a seed substrate from

which the growth may proceed. Sufficiently high temperatures and high pressures can

mimic the conditions found in the earth’s upper mantle, where diamond forms naturally.

Another way to generate out-of-equilibrium conditions is to create a plasma around a

diamond seed substrate. The ionizing plasma creates highly reactive species that readily

incorporate onto the seed substrate. Figure 2.1 a) shows a phase diagram for carbon

adapted from Ref. [143]. CVD growth of diamond usually occurs at temperatures of

∼ 800◦C.

CVD growth is attractive because it allows for good control of impurity concentra-

tion relative to HPHT growth4. CVD-grown diamond can, with relative ease, achieve

3In contrast to, for example, silicon, which does not require out-of-equilibrium chemistry to form the
diamond-lattice phase.

4Although, especially in recent years, HPHT growth’s high concentration of nitrogen impurities has
become a selling point in the NV center community. Still, for the best control over impurities, CVD
is not matched. As of now, HPHT can only be used to create large 3D ensembles of dense nitrogen
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Figure 2.1: a) Phase diagram for carbon (adapted from Ref. [143]). The red dashed
line indicates the phase boundary between diamond and graphite. For low pressures,
carbon tends to form graphite preferentially. The temperatures of CVD growth are
shown on the bottom, though CVD generally occurs at low pressures - the size of the
box has been exaggerated for clarity. The star indicates the temperature and pressure
conditions where Howard Tracy Hall first synthesized diamond in 1954. b) Image
showing a diamond sample undergoing PECVD crystal growth. c) Photograph of a
grown diamond sample (S001).

impurity concentrations of ≲ ppb, and so in applications where precision in the depth

and concentration of dopants is important, CVD is the better choice. The purity of the

gases used can limit the impurity concentration in CVD growth, whether the gas lines

are leak-tight, impurities that may have aggregated on the chamber walls, or the purity

of the seed substrate or sample holder5.

and can not be used for the localization required for probe fabrication or 2D layers, as will be discussed
elsewhere in the text.

5Etching and redeposition of the seed substrate can result in higher impurity concentration if the
seed substrate has high impurity concentration.
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2.1.1 Diamond growth recipe

For details on the optimization of the growth parameters below, I will refer the reader

to Kenichi Ohno’s thesis[139] and Ref. [88]. For the growths described in this section,

we used a SEKI AX6300 PECVD tool. Figure 2.1 b) shows a photograph of a sample

inside the chamber during growth. For a detailed description of the growth, I refer to

Claire McLellan’s and Kenichi Ohno’s theses[141, 139]. We will briefly summarize the

steps for growth below.

• Load sample and pump down overnight (to ≲ 1e− 8 Torr)

• Start the hydrogen plasma (3 Torr, 25 sccm hydrogen, 450 W microwave RF power).

• Raise the plasma to 25 Torr and 400 sccm hydrogen. Set the RF power to 750 W

while tuning the microwave impedance.

• Raise the sample temperature to 800 ◦C and wait for 15 minutes. During this step,

the hydrogen plasma will etch the surface slightly.

• Introduce methane at a flow rate from 0.1 sccm to 0.3 sccm6. This is the buffer

layer that separates the high-quality grown diamond from the disordered substrate.

• If one wants to dope with nitrogen, we introduce nitrogen gas for doping at a flow

rate of 0.1 sccm or higher. High flowrates of nitrogen can destabilize 001 growth.

• Turn off the nitrogen and grow an undoped capping layer7. Figure 2.1 c) shows an

photograph of a (2 × 2 mm) grown sample (S001).

6I have found that higher methane flow rates result in highly abnormal growths.
7This capping layer can be made small if near-surface NVs are desired. For experiments that do

not require interfacing with a surface, it’s generally best to grow the thickest capping layer possible to
remove surface noise from the NV layer.
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2.2 Step flow and miscut

One of the major difficulties in diamond growth (and crystal growth in general) is the

profoundly large parameter space one needs to optimize over. Temperature[144, 145, 146,

147], pressure[144, 148], gas phase composition[149, 148], gas flow rate[150, 151, 152], the

presence of nitrogen dopants[153, 154] , microwave power[155], substrate position within

the plasma[156], and many, many more parameters all effect the morphology and quality

of growth in dramatic and often difficult-to-predict ways. Our goal is to maintain good

coherence and properties for our qubits which require very high-quality films; a goal we

approach using our low-growth-rate recipe. In this section (and the rest of the chapter)

we will explore the effect of a single intrinsically important parameter in growth: the

density of step edges (controlled via the substrate miscut).

In layer-by-layer deposition schemes, high-quality crystal growth often begins with

step flow growth. Because during the polishing process, the (001) plane of the diamond

is never perfectly parallel to the polishing plane, there always exists some finite density

of atomic steps with a step density, ns equal to,

ns = sin(θ)/a, (2.1)

where a is the atomic height of the step and θ is the polar miscut angle, defined by,

arccos(001 · n̂) = θ, (2.2)

where, n̂ is the surface normal vector.

Figure 2.2a) shows a schematic depiction of step flow growth. Here, the methane

is radicalized by the plasma and reacts on the surface, creating carbon adatoms. These
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Figure 2.2: Diagram of CVD step flow growth. a) During growth, adatoms arrive
on the surface due to interactions between the hydrogen plasma and the methane.
The hydrogen creates reactive methane groups that land on the surface, creating a
hydrogen adatom. These adatoms sample the surface stochastically. Because the
coordination is highest at the step edges, the carbon adatoms incorporate most easily
there. As more and more adatoms incorporate at the step edges, these edges will tend
to “flow” outward, resulting in so-called step flow growth. b) A diagram of a vicinal
surface. The miscut is defined as the deviation of the surface normal from the desired
crystallographic direction.
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adatoms explore8 the surface of the seed substrate until they encounter a step edge, where

they tend to stick because the higher coordination makes incorporation energetically

favorable. As more and more adatoms stick to the step edges, the step edges will tend

to “flow” outwards, building a single crystal surface one atomic layer at a time[160, 139].

To achieve well-ordered step flow, which generally results in a well-ordered crystal free

of too many defects, a slow adatom arrival rate must be achieved. This slow arrival

rate is required because if the adatoms arrive too quickly, they will tend to find other

adatoms before finding a step - this results in other, disordered, growth modes9. One

such disordered growth mode is the hillock defect, which will be discussed in a later

section.

The step velocity (and hence, the adatom arrival rate) can be determined by mea-

suring the growth rate as a function of miscut. This is made clear by the relationship

between the growth rate along the surface normal vg and the growth rate along the step

direction, vs,

vg = vs sin θ ≈ vsθ. (2.3)

2.2.1 Measuring miscut via X-ray diffraction

The importance of miscut in determining the morphology, growth rate, defect incor-

poration and surface quality in CVD growth is, therefore, well-founded, and so we will

8I will note that the mechanism behind the surface exploration is not entirely clear. There was some
controversy in the mid-90s about the mechanism behind step flow[157, 158, 159]. There are two main
mechanisms that I am aware of: chemically mediated diffusion as proposed by Frenklach et al. and
hydrogen mediated etching and redeposition. I know of no convincing experimental demonstration of
the sole dominance of either mechanism, and for the purposes of this thesis, we can treat the adatoms
as stochastically sampling the seed substrate surface by one mechanism or another. I bring it up as a
footnote because, as far as I am aware, it is an interesting puzzle that has yet to be convincingly solved.

9See Tsao’s Chapter 6 in Materials Fundamentals of Molecular Beam Epitaxy[161] for a discussion
on morphology’s relationship to growth modes. The text itself is focused on MBE instead of CVD, but
nevertheless, much of the step flow MBE intuition and insight also applies to step flow in CVD.
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spend some small time discussing the principles behind how we measure the miscut. The

miscut is defined as the angle between the surface normal and the crystal lattice, and so

both the vector corresponding to the surface normal and the vector corresponding to a

lattice direction must be co-determined accurately.

Figure 2.3a) shows a schematic diagram of the miscut measurement. We accomplish

this using X-ray diffraction (XRD) for the lattice and X-ray reflection for the surface

normal. At low angles, a clean and well-polished diamond surface is mirror-like for

X-rays, so the surface reflection can align the surface normal to the lab z-axis set by

the instrument. First, the source and detector beam axes must meet at the surface of

the diamond. This can be ensured by aligning the source and detector beam axes to

the lab x-axis set by the instrument and then gradually raising the diamond sample.

Because diamond is semi-transparent to the beam, extra care must be had during this

step relative to a more typical XRD procedure. Figure 2.3b) shows an illustration of

typical data obtained during this step and the correct z-position to place the sample.

Next, two steps must be performed iteratively until good alignment of n̂ is achieved.

The first step is a rocking curve about a shallow angle (≲ 1◦) where the source angle

is kept constant, and the detector angle is swept - the maximum count rate indicates

the position where the X-ray source and detector make equal angles with respect to the

surface normal. The second step is to set your detectors to the maximum found in the

first step and then rotate the angle about the x-axis - the maximum here is the point

where n̂ is best aligned to ẑ in the zy-plane.

The n̂ alignment procedure is summarized below:

• Set the beam and detector axes to run along the lab x-axis, i.e., set them to ω = 0

such that both axes are perfectly horizontal.

• Raise the sample while monitoring the intensity. There should be two notable
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Figure 2.3: a) A schematic of the experimental setup for measuring the miscut using
an X-ray diffractometer. b) An illustration showing how to align the z-position of the
sample within the apparatus. The purple “+” shows the position where the X-ray
beam should be centered. This is different from usual X-ray alignment and requires
manual input since the diamond is semi-transparent. c) An example of data used to
infer the direction of the miscut. The deviation of the Bragg peak from the expected
location (assuming zero miscut) as a function of the azimuthal angle, ϕ shows a
cosinusoidal dependence. The amplitude of the cosine indicates the magnitude of the
polar angle, and the phase indicates the in-plane direction of the miscut.
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drops in the intensity vs z - the first drop corresponds to the upper surface of the

diamond.

• When the intensity drops to the midpoint between the intensity when the diamond

fully obscures the beam and when the beam is unblocked, this means the beam is

half-occluded and thus centered on the sample surface.

• Iterate over the next two steps:

• Perform a shallow angle rocking curve (ω ≲ 1◦)

• Optimize counts at this angle by rotating the sample about the x-axis (often called

χ in XRD instruments)

Following this, the vector n̂ will be well-aligned to the laboratory z-axis.

Next, we need to determine the direction of the 001 crystallographic direction. This

is accomplished using the usual Bragg criterion[162]. We perform rocking curves[163]

about the 00410 (fixing the source axis to the expected peak location and sweeping the

detector axis). The location of the maximum intensity as the detector axis is swept will

not be exactly at the expected position but instead will have a slight deviation ∆ω. This

deviation corresponds to the angular deviation in the projection of the 001 axis on the

plane formed by the source and detector axes (the zx-plane). By rotating the sample and

repeating the alignments above, we obtain the projected polar deviation as a function of

the azimuthal angle, ϕ, which will (for small miscuts) have the form,

∆ω = θ cos(ϕ + ϕ0), (2.4)

where θ is the polar miscut and ϕ0 indicates the direction of the miscut with respect

10Because 004 is the first peak that is not destroyed by interference
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to the in-plane crystal axes (e.g. 110). An example of one of these measurements is

shown in Fig.2.3c).

2.2.2 Varying miscut

Crystal growth is, in general, a complicated affair, and inferring statistical trends

can be difficult. A single sample can represent weeks of work; each growth corresponds

to at least one day of growth with a few days in preparation before growth, and the

characterizing measurements post-growth can, also, take many days to perform. There-

fore, acquiring large enough numbers of statistics to infer meaningful trends can take

a very long time. To make matters more complicated, day-to-day variations introduce

confounding variables11. Because of the time cost associated with sample growth, there

is always the temptation to vary multiple parameters at the same time, and indeed, when

one looks back to try and tease out a trend from years of samples, many of the param-

eters were intentionally varied. Because the control space for growth is so large, finding

a series of samples where every possible control variable is kept constant except for one

is often extremely difficult. To combat this problem, one can attempt to vary a single

control parameter within a single growth, which can eliminate many of the systematic

errors introduced by day-to-day variation. By measuring the miscut using XRD and

indicating the in-plane direction, when we send the samples to Syntek for polishing[164],

we ask for polishing along a specific direction at an angle. Their accuracy is usually

extremely good, and they are able to generate specific miscut angles with an accuracy of

δθ < 0.05◦.

To test the effects of miscut, we accomplished this “single-sample” variation by intro-

11I will not discuss all of these but will list a few: the position of the sample within the chamber,
sample temperature (which we can control), the cleanliness of the chamber (which degrades on a several-
month scale), the cleanliness of the sample before loading into the chamber, the relative concentration
and purity of the gases.
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Figure 2.4: Sample S014, which was polished with five different miscuts, each 0.5◦

different from each other, to systematically study the effect of miscut within a single
growth. a) Optical image of S014 where the different miscut regions are visible. b)
Atomic force microscopy (AFM) image close to a boundary region.

ducing multiple miscut regions on a single sample, each separated by 0.5◦. Figure 2.4a)

shows an optical image of this sample, called S014, with the various miscuts12 noted.

Figure 2.4b) shows an atomic force microscopy (AFM) image of the sample close to a

boundary, confirming the 0.5◦ miscut difference.

Sample S014 was grown with the following recipe:

• 0.1 sccm 99.999% 12C isotopically enriched methane and 400 sccm H2

• Nitrogen doping used 5 sccm 98% purified 15N

12When performing the XRD measurement of S014, you can actually detect all five miscuts in a single
sweep during the n̂-alignment step.
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• A three-hour nitrogen-free diamond buffer layer

• A six-hour nitrogen-doped layer

• A four-hour nitrogen-free capping layer

2.2.3 Nitrogen incorporation, growth rate and miscut

Next, we analyze the carbon incorporation (through the growth rate dependence) and

the nitrogen incorporation as a function of miscut. We measure both aspects primarily

through secondary-ion mass spectroscopy (SIMS). SIMS is a destructive technique where

an ion beam (Cs, in this case) ablates the surface of the sample, producing a secondary

beam of ions from the ablated material. Mass spectroscopy is performed on the ablated

material to analyze the material composition, and as more material is ablated away,

deeper parts of the sample are probed. Measuring the composition as a function of time

for a fixed ablation rate results in a composition as a function of depth.

First, we consider the isotopically purified carbon layer (composed primarily of 12C).

We measure the content of the 13C, which has a natural abundance of 1.1% but is sub-

stantially lower in the grown layers, although it should be noted that the concentration

is far from what would be expected for the 99.999% isotopically purified methane used.

Figure 2.5a) shows the concentration of 13C as a function of depth for the five different

miscut regions with the curves offset from each other for clarity. Curiously, there is a dip

in 13C concentration during the doping step at around halfway through the grown layer

and at the very start of growth 13. We do not observe any dependence on the isotopic

13These dips in concentration provide hints at what may be causing the increased level of 13C relative
to the source gas. Further hints at the cause of the enhanced level come from the observation that the
isotopic purity improves with larger methane flow rates. This indicates that the enhanced level of 13C
is not due to enhanced impurities in the source gas or leaks in the methane lines but instead originates
from some other source, possibly either the seed substrate itself or aggregate carbon on the walls of
the chamber. An estimate from the impurity concentration relative to the source gas gives an effective
background impurity flow rate of 0.02 sccm.

30



Diamond growth and the role of substrate miscut Chapter 2

0 0.5 1 1.5

102

103

104

[15
N

] m
ax

 (c
ou

nt
s/

se
c)

40
50
60
70
80
90

100

d 0 
(n

m
)

103

107

[13
C

]  
(k

C
ou

nt
s/

se
c)

105

θ (degrees)

δ-dopedd0

θ = 1.66°

θ = 1.16°

θ = 0.66°

θ = 0.34°

θ = 0.16°

diamond
substrate

bu�er

cap

a) b)

c)

0 50 100
Depth (nm)

Figure 2.5: Secondary-ion mass spectroscopy data (SIMS) for various miscuts. a) The
concentration of 13C over a grown layer for each of the five miscuts. Curves are each
offset for clarity. b). The regions with lower levels of 13 are the grown layers, from this
we can gauge the layer thickness and hence, the growth rate. b) The layer thickness
as a function of miscut. The linear dependence indicates a site-limited type of growth,
which is only possible if surface diffusion is playing a minor role. c) The incorporation
of nitrogen as a function of miscut. Note that the y-axis is log-scale, indicating an
exponential increase in incorporation. This is suggestive of a non-linear incorporation
mechanism.
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purity with miscut, but we can readily see that the layer size is greatest for higher mis-

cuts - indicating that the growth rate is higher for larger miscuts. This is evidence that

we are in the step flow regime of growth and are limited by available sites (as opposed

to purely limited by available adatoms, which is the case for conventional MBE). The

observation of site-limited physics indicates a surface exploration mechanism other than

simple MBE-like surface diffusion. If the adatoms explore the surface via continuous

removal and redeposition, this would result in a scaling like the one observed in Figure

2.5b), whereas a model where adatoms stick and randomly walk until they hit a site,

results in an adatom-limited regime. One can understand why this must be so with a

simple argument: if every surface adatom eventually encounters a step edge, then the

growth cannot be limited by available sites and rather must be limited only by available

adatoms. However, continuous removal and redeposition of adatoms would result in the

linear scaling with miscut that we observe.

The nitrogen incorporation also increases with miscut but, interestingly, increases su-

perlinearly as opposed to linearly, as in the case of carbon incorporation. The superlinear

dependence of nitrogen incorporation with miscut indicates mechanisms alternative to

simple step incorporation is playing an important role. As discussed in later sections,

step bunches become more important at higher miscuts, resulting in rough, defective sur-

faces. A possible explanation for the superlinear dependence of nitrogen incorporation

could be nitrogen’s preferential incorporation at sites with a high density of defects.

2.3 Morphology and miscut

Morphological features on the sample can play a large role in determining many as-

pects of NV center physics. Because the NV is sensitive to lattice strain[165], and crystal

defects are well-known to induce lattice strain[166], crystal defects will impact the prop-
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erties of NVs[94]. For ensembles of NV centers, the effect of severe strain inhomogeneity

is most likely to manifest in the form of broadened ESR lines (large T∗
2) due to the fact

that each individual NV experiences a slightly different strain environment, which shifts

the lines for each NV. In this section, we will examine the important role that miscut

plays in determining the morphology of the growth and the effects of morphological fea-

tures on NV center ensembles. In addition, we will discuss a model for hillock formation

in relationship to step flow and show how high miscuts can suppress hillock formation

altogether.

2.3.1 Hillocks and unepitaxial defects

Hillock defects are a type of growth defect so named because they resemble the

distinctive mesa-like grassy hills common in Great Britain. These crystal defects are

pyramid-like with flat tops (though occasionally they can have points as well)14. An

AFM image of a hillock is shown in Figure 2.6a) showing a flat-topped hillock.

Figure 2.6b) shows a schematic cross-section of a hillock’s structure. The sides of

the hillocks are regions of high step density and, based on the argument in the previ-

ous section, will have enhanced nitrogen incorporation. Because of the hillock’s faster

growth rate than the bulk material, nitrogen layers within the hillock will appear at a

lower depth than layers outside. The star represents the point-like origin of the hillock.

Possible candidates for the origin of the hillock could be screw dislocations as seen in

GaN films[167], point defects in the form of contaminants controlled by the plasma as

suggested by Tallaire et al.[168], or possibly a twin-mediated defect origin where the

hillock is nucleated at a twinned crystal formed via a mechanism similar to that seen in

silicon growth[169] by the Wagner, Hamilton Seidenstick (WHS)[170, 171] mechanism.

14Most often, all the hillocks of a particular growth will look similar. So it is not often that one has
flat-topped and pointed hillocks in the same growth.
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Figure 2.6: a) An AFM of a flat-topped hillock showing a high degree of symmetry.
b) Schematic diagram of a hillock. The nominal layer thickness d0 is different within
the hillock due to the faster growth rate. Hillocks likely originate at point-like defects
in the diamond, indicated by the star. c) SEM image of a hillock with an unepitaxial
defect at the hillock’s center. These two defects almost certainly originated from
the same point-like origin. d) Optical image showing the morphological features of a
high-miscut region of the sample. Step-bunch-like features have developed, resulting
in an uncontrolled and rough surface.
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An unepitaxial defect is a crystal of diamond that has no set epitaxial relationship

with the underlying substrate. These defects are often (roughly) spherical in their propor-

tions and grow much more rapidly than the surrounding epilayer. Evidence supporting

the Tallaire[168] mechanism for hillock formation, can be found in the fact that many

of the hillock defects have unepitaxial defects at their centers. A scanning electron mi-

croscopy image of an unepitaxial defect at the center of one of the hillocks is shown in

Figure 2.6c).

One final class of morphological defects that we will discuss are the long, step-bunch-

type defect shown in Figure 2.6d). These tend to occur on samples with exceptionally

high miscut ≳ 1.5◦. Step bunches will be discussed in a later chapter but are distinct

in character from the defects shown here, which appear as a cross between bunches and

hillocks. There are still hillocks in this high miscut image (upper right); however, these

hillocks have a highly anisotropic appearance due to the high miscut, resulting in material

“piling up” on one side of the hillock.

Figure 2.7a) and b) show optical images of a grown diamond sample for two different

miscuts. The higher miscut region has a lower density of hillocks. Figure 2.7c) shows the

hillock density as a function of miscut for multiple samples.

To explain the dependence of hillock density on miscut, we can invoke a simple model.

First, let us assume that hillocks take some time to form into a stable configuration that

will grow without bound and let us call this time, TH . Next, we will assume that hillocks

may only form on the flat regions between adjacent steps. This distance between steps is

L. If the step has sufficient time to reach the hillock before the hillock can stably form,

then the hillock site will be covered by the step, and step flow will proceed normally.

However, if the hillock has time to fully form into a stable configuration, it will persist

indefinitely because it has a higher growth rate than the surrounding crystal.

If the hillock origin sites are randomly distributed across the step, then the probability
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Figure 2.7: Hillock density is intimately related to miscut. a) and b) show optical
images of two regions with different miscuts. The lower angle miscuts have a higher
density of hillocks. c) The density of hillocks as a function of the miscut. This
follows a linear relationship. The inset depicts schematically the reason for the linear
relationship; as adjacent steps become closer together (as is the case in high miscut
samples), the hillocks no longer have sufficient time to fully form.
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that the hillock will form will be given by,

P = 1 − vsTHθ

s
, (2.5)

where s is the step height and vs is the step velocity. Whether the hillock origin sites

appear before growth begins or are the result of particulate matter landing on the surface

during growth is only relevant for an overall prefactor 15. The total density of hillocks,

ρH , will be given by,

ρH = ρH,0(1 − vsTHθ

s
), (2.6)

where ρH,0 is the total hillock nucleation site areal density.

Interestingly, there is a critical angle at which no hillocks have sufficient time to form.

This angle is related to the step velocity, the hillock formation time, and the distance

between steps as,

θC =
s

vsTh

(2.7)

Our data suggests a critical angle of ∼ 1.85◦. Using the step velocity16 extracted from

Figure 2.5b), we obtain a hillock formation time of ∼ 100 ms.

15This may not be true for heavily step bunched samples. Time-dependent physics may begin to play
an important role because during step bunching, steps tend to aggregate into larger clusters, leaving
more space between them. This will result in a larger L as a function of time. However, TH is only
well-defined for a given value of s - i.e., larger values of s result in larger values of TH . You may think
these two competing effects will cancel each other out exactly (because if two steps bunch, L gets twice as
big, but so does s). They do not cancel exactly, though, because of the hillock’s much faster growth rate
relative to the bulk substrate. In summary, I expect that as step bunching becomes a more important
effect, higher miscut samples will tend to have more hillocks than expected using the model in this
section.

16A better estimate for the step velocity could be obtained via a study without nitrogen and a constant
growth rate throughout the entire growth. Given the nitrogen apparently affected the growth rate, this
estimate may be off by factors of a few. This is intended to be illustrative of the method and to give an
order of magnitude estimation.
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2.3.2 Nitrogen and NVs in defects

As evidence in figure 2.5c), nitrogen tends to preferentially incorporate along step

edges. Because hillocks have an extremely high density of steps around their edges, it

is natural to expect that nitrogen incorporation will be enhanced within hillock edges.

Figure 2.8a) shows SIMS data on the θ = 0.66◦ section of the diamond surface. Two

Gaussian peaks are visible. We attribute the first peak to the intentionally doped layer in

the bulk. The second peak we attribute to hillock-incorporated nitrogen. Because SIMS

averages over an area of 100 × 100µm2, we will inevitably have some hillocks within any

given scan region. The hillock nitrogen appears deeper than the intentionally doped

nitrogen because of the hillock’s much larger growth rate relative to the bulk. Despite

the hillocks occupying a small area compared to the bulk surface, the peak from defect-

incorporated nitrogen is far larger than the intentionally doped peak, suggesting that the

incorporation at hillocks is substantially higher than what can be achieved in the bulk.

We confirm this using spatially resolved microSIMS co-localized with an optical image of

hillocks. In nanoSIMS, the dopant concentration is measured as a function of not just z

but also x and y, giving a full 3D map of the constituent materials. Figure 2.8b) shows

nanoSIMS data (left) co-localized with an optical image of four hillocks (right). The

concentration of nitrogen is substantially higher at the hillocks.

Finally, we consider the properties of NV ensembles within the hillocks. Figure 2.9

shows a confocal image (right) with a co-localized optical image (inset) and optically

detected magnetic resonance (ODMR) measurements on three different regions (left).

Remarkably, the linewidths within the hillock are comparable to the linewidths of the

single NVs in the surrounding area. However, the spectrum of the NVs within an un-

epitaxial defect is significantly broadened and disordered, resulting in no clear spectral

lines.
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Figure 2.8: a) A SIMS depth profile in the θ = 0.66◦ region. The first Gaussian peak
is due to intentionally doped nitrogen and the second peak is due to incorporation in
defects (mostly hillocks). b) Spatially resolved nanoSIMS data (left) with a co-local-
ized optical image (right). The hillocks have increased levels of nitrogen incorporation
relative to the bulk, corroborating the hypothesis that the second, large peak in the
depth profile is primarily due to hillock-related incorporation.
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Figure 2.9: Measurements of NV centers inside growth defects in comparison to NV
centers grown in the epilayer outside of defective regions. The linewidth of NVs within
the hillocks is comparable to the linewidth of single NVs. The NVs within unepitaxial
defects show considerably broad and disordered peaks, likely due to an environment
of considerable strain inhomogeneity.
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Because the ODMR is suggestive of good properties within hillocks, and the density of

NVs in hillocks is substantially higher than NVs in the bulk, this opens up the possibility

of using hillocks as a means for achieving high-density ensembles of interacting NVs. The

nitrogen tends to organize around the edges of the hillock, and so, for sufficiently dense

ensembles, it may be possible to treat the “ring” of NV centers as a 1D system with

periodic boundaries, opening up the possibility of testing exact theoretical predictions

in many-body quantum mechanics for disordered systems. Moreover, confinement to

lower dimensional systems leads to the dipolar interactions averaging to different values.

For example, in 2D and 3D ⟨100⟩ grown samples, the dipolar interaction averages to 0,

whereas in 1D ⟨100⟩ samples, in general, it does not (for an extended discussion on this

topic, see Chapter 4).

2.4 Conclusions

“Patterned” arrangements of NV centers, even if patterned by nature instead of the

experimenter, provide a platform for exploring physics outside of what is normally acces-

sible with homogenous 2D or 3D arrangements. I find the prospect of using hillocks for

this purpose to be an exciting one, especially as the system is brought to low tempera-

tures where spin transport lengths may realistically approach the perimeter of a hillock.

In a later chapter, we will discuss 1D systems of NV centers arranged along step bunches

and the interesting spin-transport and decoherence physics that arises from this special

arrangement, but I want to emphasize now that the hillock is not so different from the

step bunch. Indeed, it is not unreasonable to imagine that a hillock is very much like a

step bunch with periodic boundaries.

Given that, like hillocks, step bunches have enhanced nitrogen incorporation, and

both can coexist on the same sample, building qubit networks out of hillock-step bunch
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Figure 2.10: A proposal for a hillock-step bunch network. Individual collections of
NVs patterned via the hillock edges can be interlinked via long coherence lengths
in step bunches (as discussed in a later chapter). State preparation in one hillock
(perhaps via hyperpolarization) could naturally transfer to adjacent hillocks via step
bunch channels.

intersections seems like an interesting possibility. Figure 2.10 shows a schematic depic-

tion of a possible experiment using this proposed geometry. In this scheme, the hillocks

would act as vertices, and the step bunches would act as edges. The hillock NVs would

be relatively easy to prepare and initialize into a specific common state; then, the exper-

imenter could wait a set amount of time and measure a different hillock down the chain

and infer the transfer of potentially coherent information.

There are some obstacles to realizing this in a grown NV system. First, for the length

scales in this problem to be accessible, the hillock size must be small, and the hillock

density must be large. Second, the NV density must be very high, and it would be

useful to have aligned NVs. The dipole-dipole coupling, which relates the speed at which

NVs can entangle with one another to the distance between NVs, is ∼ 52 MHz nm3.

For two NVs that are 10 nm apart, this results in a state transfer time of 52 kHz. In
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this scenario, for ballistic transfer, it would take 2 ms to entangle two NVs 1 µm apart.

At low temperatures, T1 timescales can approach seconds, so hillock networks are not

completely outside the realm of possibility at low temperatures 17. Moreover, one can

also use nitrogen spins (P1 centers) as the medium for entanglement transfer. Nitrogen

tends to be substantially more dense than NVs (due to the far-from-unity conversion rate

of nitrogen to NV), so higher values of dipolar coupling are generally achieved.

There is an admittedly well-motivated temptation in crystal growth, and indeed, most

experimental science, to eliminate phenomena that are hard to explain or control, ugly

or otherwise outside of expectation. The hillock falls neatly into this category of “ugly”

phenomena. I have presented in this chapter a general method to eliminate them: aiming

for an intermediate miscut that is sufficiently high to suppress hillock formation but not

so high that uncontrolled step bunching begins to overtake the growth. Indeed, for

many applications, perfectly smooth surfaces are desired. For scanning probes assembled

out of grown diamond, morphological features on the surface of the probe only serve

to weaken the overall spatial resolution. For near-surface NVs designed to be interfaced

with deposited spins, morphological features complicate an already exceptionally difficult

engineering task. Still, I can’t help but root for the hillock. Like the Giant’s Causeway in

Northern Ireland[172], Saturn’s polar hexagon[173], planetary motion[174], or the spiral

shell of an ammonite[175], the hillock is a beautiful example of symmetry and patterns

arising out of a chaotic, energetic maelstrom (in this case, a plasma). Moreover, it may

one day present itself as an underdog platform for yet unrealized configurations of spins,

extremely high dopant densities, and nanostructures where the difficult engineering steps

are performed by nature itself.

17At least for T1-limited processes like polarization transfer. For coherent quantum state transfer, I
think the question is more open. It depends on which channels are determinant in the decoherence -
i.e., if all of the decoherence is coming from elements within the network, then it is not truly lost. If it
is coming from other sources outside of the network, e.g., surfaces, then it is irrecoverable.
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Chapter 3

Three-dimensional systems of NVs

In 1981, in a keynote lecture delivered at MIT at a conference on the Physics of Com-

putation, Richard Feynman[176] proposed the idea of a quantum simulator. In this talk,

later published as a lightly edited letter[177], Feynman outlines the basic problem of sim-

ulating quantum mechanical systems and proposes a solution: using a proxy quantum

system (or a quantum computer) to simulate the otherwise intractable quantum system.

The problem can be stated very simply; as any undergraduate physics student is well

aware, the difficulty in solving the mechanics of a single qubit is manifestly simpler than

solving the mechanics of two interacting qubits. As we move to systems of size N , the

dimension of the matrix we have to diagonalize (if indeed, we wish to try diagonalization)

scales like 2N . For N = 37, the memory required to store the elements of a single Hamil-

tonian is around 1000 zettabytes1. While many-body complexity is certainly present in

classical systems, the scaling is made especially heinous in quantum mechanics because of

the exponential scaling of the Hilbert space’s dimension. Feynman proposed a different

approach: quantum computers. This natural yet profound insight spurred the effort to

gain insight into natural quantum phenomena through proxy systems, called simulators.

1One ZB is 1021 bytes. 1000 ZB is probably ∼ 10× more data than the entire internet as of 2020[178,
179], though this number is surprisingly difficult to estimate.
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Eventually, experimental control would catch up to Feynman’s prediction. These

experimental realizations[180] have come in the form of (Rydberg) atoms[181, 182, 183,

20] and ions[184, 185], nuclear spins[186], electronic spins (as in quantum dots)[187],

and superconducting circuits[188, 189]. The scope of problems available to quantum

simulators is large and includes problems from condensed matter[190, 191, 192, 193, 194,

195, 196], subatomic many-body physics[197], open quantum systems[198, 199], and,

notably2, quantum chemistry[8, 10, 9].

However, an important point must be made about two different types of quantum

simulators. The majority of the realizations listed above are performed using so-called

“analog” quantum simulators. This class of simulators is close to what Feynman envi-

sioned in his 1981 lecture when he said, “I want to talk about the possibility that there

is to be an exact simulation, that the computer will do exactly the same as nature” [177].

In this mode of simulation, an easy-to-control analogous proxy system is used whose

physics is governed by identical (or nearly identical) physics as the less-controlled system

under question. This is in contrast to another (potentially easier to scale) type of quan-

tum simulator, called a “programmable” or “digital” quantum computer. These types

of quantum networks perform operations, often most easily represented by circuits3, to

simulate the evolution of some qubit or multi-qubit state under a preprogrammed Hamil-

tonian. The advantage of a digital simulator is that it is versatile relative to the analog

variant. The disadvantage of digital simulation is that it is substantially more techni-

cally challenging and requires a large number of qubits within a programmable quantum

computer.

2It seems to me that quantum simulation of problems in quantum chemistry is likely to be a partic-
ularly fruitful endeavor, though possibly one of the more technically demanding use cases as well. I say
that it seems especially fruitful because a future workflow could be very straightforward. I can imagine
future chemists widely using quantum simulation in the same way that DFT is used now. For this
approach to be truly scalable, though, I suspect it must proceed via programmable quantum simulation,
rather than the analog-based (that is, where one quantum system mimics another) approach.

3See Nielsen and Chuang[19] for more information.
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In this chapter, we will discuss systems of NVs as platforms for analog quantum

simulators. We will focus on 3D ensembles, that is, systems where the density of spins

is roughly isotropic and homogeneous throughout the diamond. We will discuss how

Floquet engineering can be used as a “control knob” for Hamiltonian engineering in the

service of quantum simulation. Finally, we will demonstrate these techniques using a

novel pulse sequence designed to characterize the relative abundances of material defects

within the diamond.

3.1 Ensembles of NV centers as quantum simulators

The nitrogen-vacancy (NV) center has been used as a basic element in a quantum

simulator as far back as 2013, where Cai et al.[126] used a network of interacting nuclear

spins on the surface of a diamond as the simulated system with the NV centers below the

surface as the control element. Since Cai’s demonstration, there have been several[127,

200, 201] instances of explicit quantum simulation using the easy-to-prepare NV center

as a control element acting as either (or both) a tool for initialization or/and readout.

In this thesis, I discuss two subtly distinct simulation schemes involving NV centers.

These two schemes are shown schematically in Figure 3.1. The first scheme, which I call

type A, is explicitly using the NV center bath as the simulation medium. In this type,

interactions between NVs may be important and modify the NV’s Hamiltonian directly.

Spins external to the NV bath modify the dynamics of the NV in the form of an imposed,

possibly time-dependent field along the z-axis. Type B NV simulation involves using a

different spin bath as the simulator and the NV as the readout; in this thesis, the spin-1/2

substitutional nitrogen (P1 centers) will be the simulator bath. For this type, the NV is

not intended to participate in the bath dynamics but rather to act as an observer of the

dynamics in the “dark” bath of fluctuating spins.
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Figure 3.1: A schematic outlining two methods of quantum simulation utilizing en-
semble NV centers. a) Type A simulation refers to simulation where the NV centers
are both used for control and readout, but also are active participants in the simu-
lation itself. b) Type B simulation refers to simulation where the NV centers act as
only tools for control and readout and sense an external bath, which is the object of
simulation.
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The advantage of type A NV simulation is that the system can be, in principle, per-

fectly initialized, and global rotations on the bath can be perfectly4 applied. The disad-

vantage of type A NV simulation is that the scope of available problems one can simulate

is limited: only problems involving spin-1, disordered, and dipole coupled stochastically

arranged spins are available, though as will be discussed later on, different arrange-

ments of these spins through their dimensionality provides a surprisingly large array

of interesting physics and Hamiltonian engineering can be used to generate a variety

of Hamiltonians. Conversely, type B NV simulation provides the experimenter with a

much broader array of systems to explore. For example, patterned spinful molecules on

DNA origami[202, 203] on the surface of a diamond with shallow NVs would fall into

this second type of simulation. The breadboard-like ability to arrange spins in arbitrary

configurations opens up a wide range of possible lattice types and spin-spin couplings. In

later chapters in this thesis, we will discuss type B simulation, though we will discuss it in

the context of an ensemble of NV centers coupled to a bath of P1 centers. The advantage

of studying a bath of P1 centers is mainly that the P1 centers are considerably denser

than the NVs, and so allow for larger values of spin-spin couplings, J . This chapter will

focus on type A NV simulation in the presence of a periodic[204] drive.

3.1.1 The suitability of NV ensemble quantum simulation

NV centers hold promise for quantum simulation because of their access to rela-

tively large numbers of constituent qubits. Further, they are made accessible owing

to the relative ease with which one can perform simulation - no vacuum chambers or

low-temperature cryostats are required. On top of this, simulating open systems with

ensembles of NVs is not only easy but virtually required (which can be an advantage

or a disadvantage). NV ensemble quantum simulation is also mainly limited to tack-

4Or, as perfect as your pulse engineering allows.
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ling problems where disorder plays a large role, although it is possible to engineer order

through pulse sequencing. Additionally, as of writing, NV simulation is limited to analog

quantum simulation rather than programmable or digital simulation.

3.1.2 The governing Hamiltonian for an ensemble of NV centers

We will derive the Hamiltonian for an ensemble of dipole-dipole coupled NV centers

in the presence of a disordered bath of fluctuating external spins (that manifest as fluc-

tuating local fields5). First, let us consider the interaction Hamiltonian between NVs.

The dipole-dipole operator between spins S⃗i and S⃗j is given by,

Ĥdip,i,j =
µ0γiγjℏ2

4π|r⃗i,j|3
[3(S⃗i · r̂i,j)(S⃗j · r̂i,j) − S⃗i · S⃗j], (3.1)

where µ0 is the permeability of free space, γi and γj are the gyromagnetic ratios of the

two spins, and r⃗i,j is the vector connecting the two spins (and r̂i,j is the corresponding

unit vector). This expression is sometimes rewritten in the convenient “NMR Dipolar

Alphabet” form with spherical coordinates (r, ϕ, θ), where ϕ is the azimuthal angle and

θ is the polar angle. This “Alphabet” expression has the form,

Ĥdip,i,j =
µ0γiγjℏ2

4π|r⃗i,j|3
[A + B + C + D + E + F ], (3.2)

where,

5I think it’s reasonable to ask how appropriate it is to treat the (in principle) coherent coupling of
P1s and NVs in the semi-classical fluctuating field picture discussed in this section. As we will see, this
treatment does a good job for large numbers of spins and open systems. As the number of “dark” spins
relative to NVs becomes small, or the system becomes highly confined (as we will see in the later 1D
chapter), this treatment may be less reasonable.

49



Three-dimensional systems of NVs Chapter 3
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This form is especially convenient because it allows us to immediately simplify as

we invoke the secular approximation. Upon invoking the secular approximation, we can

eliminate all the terms that do not commute with the total Sz operator, Sz,tot =
∑

Sz,i.

Upon inspection, this only leaves us with A and B. By using S+ = Sx + iSy and

S− = Sx − iSy, keeping only A and B, and simplifying Eqn. 3.1, we arrive at the

modified dipole-dipole Hamiltonian under the secular approximation,

Ĥdip =
µ0γiγjℏ2(3 cos2 θ − 1)

4π|r⃗i,j|3
(Sx,iSx,j + Sy,iSy,j − 2Sz,iSz,j). (3.4)

This is sometimes written in the equivalent form,

Ĥdip =
µ0γiγjℏ2(3 cos2 θ − 1)

4π|r⃗i,j|3
(S⃗i · S⃗j − 3Sz,iSz,j), (3.5)

where the S⃗i · S⃗j term is the Heisenberg Hamiltonian. Because the NV center is

spin-1, this expression is modified slightly due to normalization factors within the spin-1

S+ and S− operators when we write the Hamiltonian in the reduced ms = +1, ms = 0

manifold. Since we are operating in the reduced manifolds, we use the usual spin-1/2
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Pauli matrices going forward. These normalization factors (present for any non spin-1/2

system), change this expression in two ways: they change the overall normalization of the

prefactor, and they change the relative strength of the σx,iSx,j +σy,iSy,j terms relative to

the σz,iσz,j term. The prefactors in front of these two terms are often called Jz and J⊥,

such that J⊥(σx,iσx,j+σy,iσy,j)+Jz(σz,iσz,j). Thus, for spin-1/2, we have Jz/J⊥ = −2 and

for spin-1, we have Jz/J⊥ = −1. Our NV interaction Hamiltonian can then be written

as,

Ĥdip,i,j = Ji,j(σx,iσx,j + σy,iσy,j − σz,iσz,j), (3.6)

where Ji,j = µ0γiγjℏ2(3 cos2 θ − 1)/2π|r⃗i,j|3.

The second part of the Hamiltonian is an on-site random fluctuating field at the

NV due primarily to other spins in the lattice. In this treatment, we lump every field

from every spin into a single time-varying term, Bi,z(t) which is the z-component of the

classical field at the position of the ith NV. In this approximation, the dynamics present

within the external spin bath are folded into a single correlation time, τc, and the field is

calculated from summing over the classical dipolar field from an ensemble of spins that

fluctuated on a timescale, τc. This term has the form,

Ĥdis,i = Bi,z(t)σz,i. (3.7)

Putting these together for the ensemble of K spins gives a total Hamiltonian of the

form,

Ĥ = Ĥdis + Ĥdip =
K∑
i

Bi,z(t)Sz,i +
K∑
i<j

Ji,j(σx,iσx,j + σy,iσy,j − σz,iσz,j), (3.8)
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Figure 3.2: Schematic representation of the ϵ-CPMG sequence discussed in this chap-
ter. A green laser is used to initialize the ensemble into a |0⟩ state. Afterwards
a π/2-pulse prepares a |+y⟩ state. We next apply a series of π/2 + ϵ-pulses along
the y-axis, before mapping the the state on to a population difference with a final
π/2-pulse and a projective green readout. This final readout acts as the initialization
for the subsequent pulse sequence. We run the pulse sequence in pairs, with the second
pulse sequence using a −π/2-pulse to measure the state differentially. The values for
τ in the two sequences are usually symmetrized to keep the AOM duty cycle constant
over an entire measurement (not pictured).

where
K∑
i

denotes a sum over every spin in the ensemble and
K∑
i<j

denotes the double sum

over pairs of i, j while avoiding double counting. The first term in the total Hamiltonian,

Ĥdis =
∑

i Bi,z(t)Sz,i, we will refer to as the “disorder” part and the remaining term,

Ĥdip =
∑

i<j Ji,j(σx,iσx,j + σy,iσy,j − σz,iσz,j), we will call the “dipolar” part. For type A

NV simulation, this is our native Hamiltonian. Type B simulations will be discussed in

a later chapter.

3.2 The ϵ-CPMG sequence

In this section, we will discuss a modified version of the Carr-Purcell-Meiboom-Gill

(CPMG) sequence called the ϵ-CPMG sequence and consider the effects of this sequence

on an ensemble of NV centers. We will consider the system’s evolution through the lens of

average Hamiltonian theory (AHT), whereby an effective time-independent Hamiltonian

replaces a time-dependent one.

The pulse sequence described in this chapter is called the ϵ-CPMG sequence and
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is shown schematically in Figure 3.2. A 532 nm green laser pulse of ∼ 20 µs6 is used to

initialize the NV ensemble into the |0⟩1⊗|0⟩2⊗...⊗|0⟩K state. Following the initialization,

a π/2-pulse along the x-direction creates the |+y⟩1⊗|+y⟩2⊗ ...⊗|+y⟩K state. With this

y-state prepared, we apply a series of π + ϵ-pulses along the y-direction. The rotation

angle, modified through ϵ, is controlled by changing the length of the RF pulse; e.g.,

longer pulses result in larger rotation angles. For the special case where ϵ = 0, this is the

conventional Carr-Purcell-Meiboom-Gill sequence[207, 208], which is maximally effective

at decoupling disorder. For ϵ = ±π/2, we obtain the Ostroff and Waugh sequence

[209, 210]. The Ostroff and Waugh sequence is maximally effective at decoupling dipolar

effects in the Hamiltonian. For cases where both dipolar effects and disordered on-site

fields are important, we expect an intermediate ϵ to give optimal decoupling.

After the series of π+ϵ-pulse, we apply a final π/2-pulse along the x-axis. Finally, we

perform a projective readout with the green laser using a readout time of 400 ns. A copy

of the sequence is then performed with the final π/2-pulse about the −x-axis instead

to measure the coherence (this allows us to do a differential measurement). Usually,

the second copy of the sequence is performed with a symmetrized τ , such that the total

sequence time is held constant7.

3.2.1 Long-lived coherences

We first examine the effects of ϵ-CPMG on an ensemble of NV centers in sample

C041, a chemical vapor deposition (CVD)-grown diamond sample. This sample has a

6Ensembles typically require much longer initialization times compared to single NV centers. This is
not, as is commonly believed, because of absorption in the dense ensemble of NV centers. The absorption
cross-section for a single NV is incredibly small[205], and it is easy to check that absorption is playing a
minimal role. Still, it is easy to check that ensembles require substantially longer initialization times. My
hypothesis for why this is the case is because, for ensemble measurements, you are often still capturing
photoluminescence from the wings of the Gaussian. These wings have lower laser power, and so require
extra time to initialize. See Section II A in Ref[206] for a discussion of this effect.

7This is to keep the AOM duty cycle constant as a changing AOM duty cycle can cause systematic
laser power fluctuations during an on-pulse.

53



Three-dimensional systems of NVs Chapter 3

5 10 15 20 25

Time (µs)

0

0.5

1

Co
he

re
nc

e

 τ = 250 ns
 τ = 357 ns
 τ = 750 ns
Spin echo

ττ

π/2x π/2x

ε-CPMG

N

πy+ ε

a)
e-

e-

e-

e-Diamond

Electron irradiation

BNV

Other spins

b)

Figure 3.3: Long-lived coherences generated in NV ensembles using the ϵ-CPMG
sequence. a) Schematic diagram of the sample, showing multiple electron irradiation
spots with varying dosage. Within these spots, systems of coupled NVs and “dark”
spins generate the dynamics described in the text. b) Coherence as a function of total
sequence time for ϵ-CPMG with three different values of τ with a comparison to a
spin echo for reference. In all measurements, ϵ = 0 is targeted, but some amount of
finite rotation offset is present and gives rise to the long-lived coherences.

∼ 2 µm thick nitrogen-doped layer and was irradiated in several-µm-scale spots with

electrons of varying dosage and energy. Electron irradiation can control the density

of NV centers through the dosage of electrons[211, 212], which displace carbon atoms

during irradiation, leaving behind vacancies. Upon annealing8, the vacancies become

mobile until they encounter a nitrogen atom (in our case, those within the delta-doped

layer).

8The vacancies become mobile at ∼ 650◦C. We anneal at > 800◦C in a forming gas mixture of argon
and hydrogen to remove containment oxygen, which will etch the surface. The forming gas is essential
(rather than pure argon) because the hydrogen combines with any trace oxygen that leaks in. Ultra-high
vacuum annealing (with sufficiently low partial pressures of oxygen) will also result in unetched surfaces.
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Spot Dosage Energy

A 1021 (e−/cm2) 200 keV
B 1020 (e−/cm2) 200 keV
L 1022 (e−/cm2) 145 keV

Table 3.1: Summary of spot dosages and energies investigated with ϵ-CPMG. We also
investigate the background NVs outside of the irradiation spots.

We created several spots of varying NV density to control the strength of dipolar

interactions within the same sample, as shown schematically in Figure 3.3 a). Table 3.1

shows electron irradiation dosages and energies for the different spots.

Figure 3.3 b) shows the results of the ϵ-CPMG sequence on spot A for ϵ = 0 (e.g., a

conventional CPMG). Varying values of τ are used with the coherence plotted against the

total time, 2τN . These are compared to the coherence of a conventional spin echo[23].

The coherence times for the ϵ-CPMG sequence are substantially longer than those for

the spin echo. The rest of the chapter will be an in-depth discussion of the mechanisms

responsible for the long-lived coherence observed.

Ensembles of NV centers under the ϵ-CPMG sequence have a substantially longer

coherence time than those under a conventional spin echo. These long-lived coherences

are the result of an ϵ-dependent effective field and will be discussed in detail later. The

reasons for the long-lived coherence, even at a target of ϵ = 0, are small uncontrolled

errors arising from the following sources:

1. The π-pulse timing accuracy is ∼ 0.5 ns

2. Due to thermal drifts, over the course of a single experiment, the π-pulse time can

vary by 0.5 − 1 ns

3. The π time varies over the size of a confocal spot because the RF field from the

wirebond varies with distance. This can give a variation of 2 ns over a confocal
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spot.

4. Because our π-pulses have a finite duration, a rotation error of 4◦ will be introduced.

Given that our total π time for ϵ = 0 is ∼ 46 ns, these four sources result in a total

uncontrolled ϵ of ±6◦. Effects 2), 3), and 4) will cause random errors that result in

behavior where the measurement is averaged over many values of ϵ distributed over a

Gaussian of width 6◦. A finite ϵ results in an effective field that points along the y-axis,

proportional to ϵ as ϵ → 0. We will derive the ϵ-dependent effective field in a later

section, but we illustrate first the importance of the finite ϵ by comparing ϵ-CPMG to

another sequence, ϵ-alternating-phase CPMG (APCPMG).

Alternating-phase CPMG (APCPMG) is a sequence designed to eliminate the effects

of rotation offsets by alternating the phase of the π-pulse train in CPMG[213] (that is,

alternating between +π and −π rather than applying only one type). Though APCPMG

has the same filter function as CPMG[214, 215, 216], the alternating sign of ϵ due to the

alternating phase, negates any effect of accumulating ϵ. The two sequences, ϵ-CPMG

and ϵ-APCPMG, are shown schematically in comparison in Figure 3.4 a).

A plot of the coherence as a function of total time is shown in Figure 3.4 b) with a

spin echo for comparison. The CPMG coherence persists for substantially longer than

during the APCPMG sequence, where it decays on a timescale similar to the spin echo.

The similarity between APCPMG and the spin echo indicates that from the perspective

of filter function formalism, in the absence of ϵ-related effects, the ϵ-CPMG sequence is

identical to the spin echo (though the data indicates that they are dissimilar). Therefore,

the extended coherence can not be the result of a narrower filter function because of the

additional pulses relative to a spin echo. The inset of Figure 3.4 b) shows the trajectory

of the state under rotations for the two sequences to illustrate how APCPMG cancels

the effect of finite ϵ. For pulses under ϵ-CPMG, the finite rotation error accumulates
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Figure 3.4: A demonstration of the importance of finite pulse rotation offset in the
preservation of long-lived coherences with ϵ-CPMG. a) Schematic of the two sequences,
ϵ-CPMG, and ϵ-APCPMG. The alternating phase in APCPMG is designed to cancel
the accumulating pulse rotation offset, ϵ. b) Coherence as a function of total sequence
time for ϵ-CPMG and ϵ-APCPMG compared to a spin echo. In all cases, ϵ = 0 is
targeted but some degree of rotation offset persists. The ϵ-APCPMG sequence decays
on a similar timescale to the spin echo, indicating the importance of the finite rotation
offset for the long-lived coherences in ϵ-CPMG.
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with every pulse - for N pulses, there will be an accumulated “extra” phase of Nϵ. For ϵ-

APCPMG, for N -pulses, there will only be an accumulated “extra” phase of ϵ, regardless

of the total number of pulses.

3.2.2 ϵ-dependence

We next consider the effect of an intentionally introduced finite ϵ and examine the

effects of ϵ-CPMG on spots of varying density. Figure 3.5 a) shows confocal images of the

three spots described in Table 3.1 and a confocal image of the background NV centers.

Figure 3.5 b) shows the coherence as a function of ϵ for N = 10 for each of the different

spots and the background. A double-hump feature emerges at intermediate ϵ between 0

and 90◦. This can be understood by considering the two limiting cases introduced earlier:

the CPMG limit of ϵ = 0 and the Ostroff and Waugh limit of ϵ = π/2. Because ϵ = 0

maximally decouples disorder and ϵ = π/2 maximally decouples dipolar interactions,

when both components are important, then intermediate values of ϵ tend to maximize

the ensemble coherence. For the background NVs (BG), the maximum coherence is

found at ϵ = 0, as would be expected, given that the NV density is low. As the density of

NVs is increased across the three spots, the maximum coherences move outward towards

ϵ = ±π/2.

We confirm that the intermediate values of ϵ extend coherence even out to late time

by measuring the coherence as a function of ϵ for a variety of values of N across each

of the different spots. This data is shown for spot A in Figure 3.5 c). As N is varied,

once the accumulated time becomes sufficiently large, the double-hump feature develops

and persists. The position of the double hump is related to the relative strength of the

dipolar interactions relative to the disorder, i.e., ⟨|Ji,j|⟩/⟨|Bi|⟩. The strengths of both

terms affect the timescale over which the ensemble decays. This suggests the possibility
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Figure 3.5: a) Confocal images showing the three irradiation spots studied with the
background for reference. b) The coherence as a function of ϵ for each of the spots
and the background. The double-hump feature emerges because of dipole-dipole in-
teractions within the NV bath. Interpulse spacing is held constant at τ = 250 ns.
c) Coherence as a function of epsilon for various values of N , showing the overall
time dependence of the system. The system approaches the true thermal equilibrium
(a fully mixed state) on the spin-locking timescale, T1,ρ. Interpulse spacing is held
constant at τ = 250 ns.
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of using this sequence to measure the strength of these terms in the Hamiltonian (which

we will discuss in the next section). By measuring the coherence as a function of both

N and ϵ, both the relative strengths (through the epsilon dependence) and the overall

strength (through the N dependence) can be uniquely determined.

3.2.3 Extracting materials parameters with ϵ-CPMG

In this section, we use the ϵ-CPMG sequence to measure the strength of terms in the

Hamiltonian and infer the density of NV centers and other spinful defects (assumed to

be P1 centers). While it is possible to quantitatively extract the densities of competing

disordered and dipolar spin baths using other methods, a unique determination of these

parameters using ϵ-CPMG harbors key advantages, such as technical simplicity, robust-

ness to pulse errors in the form of rotation offsets, and the ability to simultaneously probe

NV density and disorder without assuming one to be dominant.

We will briefly describe the other methods for measuring these terms before explain-

ing the method through which we quantitatively extract the strength of the terms in the

Hamiltonian. Double electron-electron resonance (DEER) is a widely used technique,

developed by Russian chemists Milov et al.[217, 218] in the early 1980s that can be used

to measure distributions of electron spins[212, 219, 220, 221]. DEER measures total

disorder by addressing each individual bath spectrally, but it is hampered by inhomo-

geneous broadening and fast-varying noise. Because conventional (P1) DEER measures

electron spin distances, it can be used to infer the disorder coupling in the NV bath.

Measuring dipolar couplings via NV-NV DEER (as opposed to NV-P1) is also possible,

but only for high-density ensembles, and requires significant engineering to control the

alignment of RF fields with the different NV groups. Instantaneous diffusion (ID) refers

to a phenomenon where ensembles of spins dephase faster than expected due to dipolar
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couplings within the bath. The rate of diffusion can be used to measure the strength of

the dipole-dipole interaction through an extension of T2 under non-π-pulses. However,

techniques relying on this phenomenon cannot easily measure disorder. Other decoupling

techniques, such as XY8 or DROID [124], can also be used to measure the strengths of

terms in the Hamiltonian but are technically complicated, require arbitrary wave gener-

ators and assumptions about the bath. These techniques are not robust to pulse errors

in the same way that ϵ-CPMG is naturally robust because it exploits pulse errors.

Conversely, ϵ-CPMG does not require complex sequencing (only a string of π-pulses

with the same phase) and allows for simultaneous determination of disorder and dipo-

lar coupling. However, our technique does require numerical modeling for quantitative

measurement.

The numerical method is summarized below:

• The NVs are initialized in the |+y⟩1 ⊗ |+y⟩2 ⊗ ...⊗ |+y⟩K state

• The NVs are time-evolved according to the Hamiltonian in Eqn. 3.8. This dynamics

are determined by three primary sources:

1) Dipolar interactions between NVs (Ji,j)

2) Larmor precession from local on-site fields determined by the spin-1/2 de-

fects, which can be either +1/2 or -1/2 and have no coherent dynamics

3) Periodic rotations about the y-axis by an angle of π + ϵ (the ϵ-CPMG se-

quence).

• Stochastically, with a characteristic correlation timescale, τc, each spin-1/2 defect

is flipped. This timescale is determined by the density of the bath as described in

Ref. [222]. These bath dynamics are crucial to the decoherence dynamics of the
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Spot [NV]ID [P1]DEER [NV]ϵ−CPMG [spin-defect]ϵ−CPMG

A 2.7 ± 0.08 ppm 3.8 ± 0.2 ppm 2.1 ± 0.3 ppm 23.2 ± 0.5 ppm
B 2.2 ± 0.21 ppm 10.5 ± 0.2 ppm 1.3 ± 0.4 ppm 17.4 ± 0.9 ppm
L 1.0 ± 0.2 ppm - 0.6 ± 0.3 ppm 16.1 ± 0.7 ppm

Table 3.2: Comparison of spin densities for spots A, B, and L as obtained from
instantaneous diffusion (ID), DEER (Ref. [212]) and from ϵ-CPMG, showing good
agreement in the NV density. The fact that the total spin-defect density extracted via
ϵ-CPMG is higher than the P1 density extracted via DEER can be explained through
the fact that the irradiation can introduce additional defects.

NV centers. Without dynamics, the effect of the spin bath can be exactly canceled

for ϵ = 0.

• Finite pulse duration is simulated through a finite π + ϵ rotation time, which is

difficult to incorporate in theoretical analyses. For a detailed analysis of the effect

of finite pulses, see Ref. [223]

Figures 3.6 a-c) show the data for spots A, B, and L with the numerics plotted

with them. Plots of χ2 for these fits are shown in Figures 3.6 d-e), with the region of

best fit indicated by the red, dashed ellipse and the point of best fit indicated by the

star. There exists a unique region that clearly minimizes the χ2 metric. The two free

parameters in the numerics are the density of NV centers and the density of spinful

defects in the diamond, which control the strength of the dipolar and disorder terms,

respectively. For each pair of parameters, we simulate the full coherence dynamics and

calculate the χ2 metric. We compare the dynamics only for N : N > 3 because for the

first few cycles of the sequence, the details of the initialization are expected to matter

- imperfect initialization is not considered in these simulations. Averaging over many

spatial configurations of the NV and bath ensemble is essential [224, 225]; otherwise, the

dynamics can be heavily influenced by close pairs of NV and spin-1/2 defects.

To benchmark this technique, we compare densities extracted from the numerics in
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Figure 3.6: Simulations of long-lived coherences. a), b), c): Plots of the coherence as a
function of ϵ for spots A, B, and L, each with differing densities. Different values of N
are shown. Circles indicate the experimental data and dashed lines are the numerics
for the parameters {ρNV , ρbath} that minimized χ2. d), e), f): χ2 contour plots as a
function of ρNV and ρbath. The dashed circle shows the region of good fit, and the
star indicates the set of parameters used for the dashed lines in a), b), and c).
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table 3.2 to those extracted on the same spots with DEER and instantaneous diffusion

from Ref. [212]. The NV densities extracted using ϵ-CPMG fall within 1 or 2 standard

deviations. The spin defect densities measured via ϵ-CPMG are larger than those mea-

sured with DEER on P1 centers, as is expected because ϵ-CPMG measures the total

number of spinful defects, whereas DEER is capable of only measuring a specific species.

This difference is especially noteworthy in the spot with the highest irradiation dosage,

spot A. We confirm the hypothesis that the difference in density can be explained from

the presence of other spinful by examining the DEER spectrum for spot A. The spectrum

is shown in Figure 3.7. The 1/8 and 3/8 labels indicate groups of 15N P1 centers (there

are two nuclear spin states and four Jahn-Teller distortion groups, making 8 species).

Labels A and B in Figure 3.7 denote two species with a g-factor of ∼ 2, indicating an

electronic spin without large hyperfine couplings. The large g = 2 peak can only be fit

using two Lorentzians, indicating that there are at least two groups of electronic spins

affecting the dynamics. Because these peaks are similar in size to the P1 peaks, it is

likely that spin-defect density extracted via P1 DEER decoherence would be a large un-

derestimate of the total density (as measured by ϵ-CPMG). These extra spin-defects may

be the result of the high irradiation dosage.

3.2.4 Average Hamiltonian for ϵ-CPMG

In this section, we will discuss the qualitative shape of the coherence vs. ϵ and present

an analytical treatment using average Hamiltonian theory. The aim of this section is to

construct a model described by a single parameter that relates the relative strength of

⟨J2
i,j⟩ and ⟨B2

i ⟩. Extracting the quantitative value for spin densities and NV densities

is beyond the scope of the analytic treatment and is best suited for numerics; here we

will only obtain the relative strengths. We will fit each of the three spots with the
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Figure 3.7: Double electron-electron resonance data for spot A. Above shows the
sequence for generating the data, and below shows the DEER spectrum. The peaks
labeled 1/8 and 3/8 correspond to P1 resonances. The central peaks correspond to
g = 2 Larmor precession. This peak can only be fit using two Lorentzians and so
corresponds to at least two different types of spinful defects. This data corroborates
the explanation for the discrepancy in the spinful defect and the P1 densities listed in
Table 3.2.
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model derived in this section, and we will find the strength of the dip close to ϵ = 0

strongly on the strength of the dipole-dipole coupling, ⟨J2
i,j⟩. We derive an effective,

time-independent Hamiltonian by considering the evolution over two cycles. Appendix

A discusses two other theoretical approaches, one which considers the evolution over

many cycles and derives many terms in the Magnus expansion[226, 227] and another

method using the Lindblad formalism[228, 229].

We examine the time-evolution operator over two cycles for the native Hamiltonian

in Eqn. 3.8. The time evolution operator consists of the usual time-evolution under a

Hamiltonian, Ĥ for a time τ , where in this case, 2τ is the time between pulses. Each

pulse is modeled via a conventional rotation operator, R̂y(θ) along the y-axis with an

angle θ = π + ϵ. Thus, we write the time evolution for two cycles as,

Û2 = e−iĤτ R̂y(π + ϵ)e−2iĤτ R̂y(π + ϵ)e−iĤτ (3.9)

= e−iĤτ R̂y(ϵ)e
−2iH̃τ R̂y(ϵ)e

−iĤτ , (3.10)

where H̃ = R̂y(π)ĤR̂y(π) = −Ĥdis + Ĥdip. The on-site field, Bz
i , is the magnetic field

for spin i and, unlike the numerical treatment, is assumed to be time-independent. We

use the Magnus expansion[226, 227] and expand about ϵ = 0, because this is the regime

where dipolar effects are most pronounced.

The first two terms in the Magnus expansion are given by,

H̄
(0)
eff =

1

N

N−1∑
m=0

Ĥm,

H̄
(1)
eff = − iτ

2N

N−1∑
m<n

[Ĥm, Ĥn],

(3.11)
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Figure 3.8:

where i is the imaginary unit, N is the total number of pulses, m and n are the

evolution period index, and Ĥm is the Hamiltonian during the mth evolution period. A

schematic showing this for ϵ-CPMG is shown in Figure 3.8.

Our zeroth order term will be given by,

H̄
(0)
eff =

2ϵ
∑

σy
i

4τ
+ Ĥdip = Beff

M∑
i

σy
i + Ĥdip. (3.12)

Higher order terms will be generated by the commutators between Ĥ, ϵσy

τ
, and H̃.

We compute the average coherence along the y-direction for K addressed NV centers.

After equilibrating, the coherence, C, will be given by,

C =
1

M
⟨

M∑
i

σy
i ⟩ =

1

M
tr

[
M∑
i

σy
i e

−βH̄eff

]
/Z

≈ −β

MZ
tr

[
M∑
i

σy
i H̄eff

]
=

−βBeff

Z
.

(3.13)

We use, ρ = e−βH̄eff/Z, where Z is the partition function and β is given by an

effective spin-temperature, β = 1/kBT . We make the assumption βH̄eff ≪ 1, that is, the

spin temperature is large. The temperature is determined by the initial value of the y

magnetization. We relate the initial and final energies through,
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K∑
i

Beff = ⟨H̄eff⟩ ≈
−β

Z
tr
[
H̄2

eff

]
. (3.14)

Using Eqn. 3.13 and 3.14, we arrive at the expression,

C =
KB2

eff

tr
[
H̄2

eff

] . (3.15)

Finally, to arrive at an expression for tr [H2
eff ], we examine lowest order terms and

expand about ϵ = 0. This results in the following expression,

tr
[
Ĥ2

eff

]
= tr

[
Ĥ2

dip

]
+ tr

[
K∑
i

(Beffσ
y
i )2

]
+

higher order terms

= K(J2 + B2
eff) + higher order terms

= K(J2 + D2
1ϵ

2 + D2
2ϵ

4 + D2
3ϵ

6),

(3.16)

where D1,2,3 are fit coefficients. Using Eqn. 3.15 and 3.16 and simplifying in terms of

unique fit parameters, we have:

C =
Aϵ2

(J/D1)2 + ϵ2 + (D2/D1)2ϵ4 + (D3/D1)2ϵ6
. (3.17)

The value of the dipolar coupling Ji,j, as defined in Eqn. 3.16, diverges for a truly

homogeneous ensemble because the spin-spin spacing is allowed to go to zero. In reality,

the spin-spin spacing cannot go to zero because the lattice sets a minimum lower bound.

While the carbon-carbon spacing might be considered an absolute lower bound (since the
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Figure 3.9: a) The coherence as a function of ϵ across different spots, as in Figure
3.5 b). This data is compared to an analytical model (solid line) that parameterizes
the curves in terms of J . b) The value of J over another parameter that describes
the strength of other terms in the average Hamiltonian (such as disorder), D1. A
comparison of the fit parameter J/D1 to the ratio of the NV density to the spin
defect density obtained via numerical modeling (ϵ-CPMG) in the main text. These
have the expected linear relationship.

two spins are not permitted to sit on the same site), the bound is actually higher; when

two defects become close on the scale of the lattice, effects from strain, orbital overlap,

and charge instability lead to deviations from normal behavior (usually in the form of

charge state destabilization or level structure changes). If we impose a Ji,j frequency

cutoff, these problems are resolved[230, 231, 224, 225].

The fits using the average Hamiltonian model are shown in Fig. 3.9 a) for each of

the four regions studied. A Gaussian smoothing with a width of σ = 6◦ to account for

the random uncertainties discussed earlier in this chapter smooths the function and leads

to a non-zero coherence at ϵ = 0. The parameter (J/D1) relates the strength of the

dipolar contribution to other terms, including Beff and we compare it to the numerically

extracted ratio of NV density to spin defect density from ϵ-CPMG. We find that the two
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have the expected linear relationship.

Finally, I will spend some amount of time discussing how the time dependence of the

analytical treatment fits into the assumptions of thermal equilibrium. Implicit in the

treatment above is the assumption that the system has come to thermal equilibrium,

but the data clearly depends on N (and thus, time), so, how do we reconcile this? It

is not entirely easy. The true thermal equilibrium is a mixed state with zero remaining

coherence. We assume the system reaches this true equilibrium on a T1,ρ timescale (the

spin locking timescale). However, in the above analysis, we assume that the system

reaches a prethermal equilibrium on a T2 timescale. This can be seen in Figure 3.3 b),

where the system decays quickly like the spin echo data until it reaches the long-lived

portion where it decays like T1,ρ. We assume that the prethermal equilibrium state is

the one that the density matrix, ρ = e−βH̄eff/Z, describes9. At this point, the system

is said to depend only on the initial state in the sense that the initial energy depends

on the initial state, but all other details are “forgotten”. Because time evolution is not

taken into account for the analytical treatment, it would not be appropriate to try and

fit a single surface across multiple values of N using the techniques presented in this

section; we fit only for N = 10. Perhaps the thermalization could be treated by using a

time-dependent temperature10, but this is beyond the scope of the present work.

9This definition is somewhat circular. We invoke thermal equilibrium when introducing the density
matrix in this way but then say that thermal equilibrium is when this density matrix describes the
system.

10For example, the system of NVs is prepared at an initial temperature, Tinitial and coupled to an
external bath of unprepared NVs at temperature Tfinal. On a timescale of T1,ρ, the system approaches
thermal equilibrium. For sufficiently fast T2, the system may be considered at all times to be in prether-
mal equilibrium.
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3.3 Conclusions

I began this chapter with a discussion on quantum simulation in the context of many-

body ensembles of spins, and I have ended it with a prescription for determining the den-

sities of various defects in diamond. A reader could be forgiven for wondering about the

connection between these two concepts and why I made the deliberate choice to discuss

quantum simulation at the start of the chapter instead of, say, an introduction to meth-

ods for determining defect densities or some other more materials-focused introduction.

I want to clarify that here before moving on to my closing thoughts on the sequence

demonstrated in this chapter.

While the ϵ-CPMG sequence provides an easy-to-use method for determining densities

of defects, my perspective is that the especially exciting part of the results presented in

this chapter are the tests of many-body quantum mechanics theory. At present, there

are no methods to analytically or computationally solve the dynamics for thousands of

disordered spins, all of which may be coupled to each other - the Hilbert space is simply

too large. Because of this, theoretical technique development is required to understand

the evolution of real systems and how these systems approach thermal (or prethermal)

equilibrium. Moreover, these theoretical techniques all require simplifying assumptions to

be made tractable, and so, these assumptions require tests against experiments. Requisite

control over quantum systems with large numbers of constituent qubits is very recent,

so the space for testing many-body quantum mechanics is ripe. The techniques and

results presented here are only a small step toward answering how to predict many-body

quantum behavior in a large (and growing) community. We have tested and benchmarked

two different approaches for predicting the behavior of disordered quantum systems, both

a semi-classical numerical treatment and a thermal analytical treatment.

Additionally, the ϵ-CPMG sequence (like many Floquet sequences) allows the ex-
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perimenter to engineer the Hamiltonian. In our case, we can introduce a field along the

y-direction controlled via a single, simple parameter in an XXZ-type Hamiltonian. Here,

the applications for quantum simulation are made clear. As more pulse sequences are

developed, so too is the space of available Hamiltonians made larger. Using systems of

NVs (or other spins) as test beds for many-body dynamics under specific Hamiltonians

will become increasingly accessible as the appropriate theoretical treatments and pulse

sequence engineering are further developed. For example, one can add additional param-

eters to the ϵ-CPMG sequence, such as pulses along both x and y with correspondingly

different values of ϵ, i.e., ϵx and ϵy or, as will be discussed in the next chapter, via di-

mensional engineering, geometric constraints can be placed on spin ensembles allowing

for the creation of entirely new phases.
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Chapter 4

Lower dimensional systems of NVs

Though the term “arrow of time” was coined in 1927 by Arthur Eddington[232], the

relationship between the time-reversal symmetric laws of classical physics and the ap-

parent time-reversal-symmetry breaking of natural systems (and thermodynamic theo-

ries) was well-understood before then. The answer to the question of how microscopi-

cally time-reversible mechanisms give rise to macroscopically time-irreversible phenom-

ena came with the development of the particularly beautiful theory of thermostatistical

mechanics[233], developed in large part by James Clerk Maxwell[234, 235] and Ludwig

Boltzmann[236, 237]1. The ergodic hypothesis, that is, the amount of time that a system

spends in some region of a phase space is proportional to the volume of that region, is key

to how time irreversible phenomena emerge. At long times, for ergodic systems, every

microstate of the system will be explored equally often.

However, there is a corollary here: non-ergodic systems may defy thermalization.

1I do not mean to discount the contributions of other pioneering physicists in the field of statistical
and thermal physics, like William Thomson (Lord Kelvin), and Josiah Gibbs. Rather, in this section, I
wish to draw special attention to Maxwell and Boltzmann because both were especially concerned with
answering the question of how macroscopic time irreversibility emerges from microscopically reversible
laws. Boltzmann, in particular, spent a great deal of time on this question and has a series of lectures
published late in his life that answer the question in a clear and cogent manner[236]. See the sections in
chapter VII, especially section 89: Relation to the second law of thermodynamics.
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One particularly striking example of a non-ergodic2 system is a permanent magnet, i.e.,

a ferromagnet. Ferromagnets3 are kept from ergodically exploring their full phase space

by large energy barriers.

Quantum systems also obey fundamentally time-reversible laws4, and so a natural

question to ask is whether it’s possible to engineer quantum systems that resist ther-

malization. The means by which quantum systems approach thermalization is itself a

rich area of study[238, 239, 240], but beyond the scope of this section. Instead, I will

briefly discuss one method to achieve athermal behavior: many-body localization. In

1952, American physicist Philip Anderson proposed a disorder-mediated mechanism[241]

through which quantum systems would never thermalize. Anderson proposed that trans-

port on a disordered lattice could be halted entirely; this would later become known

as Anderson localization. In contrast to periodic potentials, which give rise to Bloch

functions[242] as their solution, low-density, disordered lattices permit only highly local-

ized electronic states. Figure 4.1a) and b) show a comparison between a periodic lattice

and a Bloch state that has a periodic character. In contrast, for a disordered lattice, as

shown in b), the electron occupies only a single site (and the probability of finding that

electron away from the site decays exponentially.

In Anderson’s seminal paper[241], he mapped the problem of a particle wandering on

a disordered lattice to spins diffusing in a disordered, dipolar system. This problem is

usually distinguished from the problem of low-density particle problem through the term

“many-body localization” (MBL)[243, 244, 245, 246, 247, 248, 249, 250, 251]. MBL is a

phenomenon highly related to conventional, low-density Anderson localization. Rather

2Not ergodic on human timescales.
3There is a deep connection between the spontaneous time-reversal symmetry breaking of ferromag-

nets and their non-ergodicity.
4A little bit of care is appropriate here. Wavefunction collapse, as in the Copenhagen interpretation,

is not time reversible. An Everett interpretation would state that measurement is only apparently
irreversible. In any case, unitary Hamiltonian evolution sans measurement is reversible.
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than treating a single particle navigating around a disordered landscape, we can instead

consider spin excitations in an interacting dipolar ensemble[250]. Figure 4.1 c) shows a

1D chain of spins. In this example, spins i and j will be coupled like Ji,jσ̂iσ̂j such that

the total Hamiltonian is given by,

Ĥ =
∑
i<j

δj−1,iJi,jσ̂iσ̂j, (4.1)

where the Kronecker delta, δj,i, is included to ensure only nearest neighbor couplings

are counted5. The energy associated with flipping spin i, σ̂−
i , will be, ∆E = 2(Ji−1,i +

Ji,i+1). Suppose we prepare all the other spins into the state |↑⟩ and introduce a single

excitation, |↓⟩ at site i. In that case, that excitation can diffuse left and right only

through the operators, σ̂+
i σ̂

−
i − 1 or σ̂+

i σ̂
−
i + 1. These will have an energy cost of ∆E =

2(Ji−2,i−1 +Ji,i+1) or 2(Ji−1,i +Ji+1,i+2) respectively. Suppose the elements Ji,j are drawn

from a random distribution. In that case, the spin excitation can be treated as though

it is traversing a disordered energy landscape whose local energies are set by the nearest

neighbor J-couplings.

Dimensionality plays an important role in spin systems, an idea that goes as far

back as Ernst Ising’s now legendary thesis, published (in part) as a short article[252] in

1925. Ising showed that no phase transition or spontaneous ferromagnetism can exist for

spin systems in one dimension. Much later, in 1944, Lars Onsager would exactly solve

the Ising model in two-dimensions[253] and show that for 2D systems, Ising’s model did

yield a phase transition. Localization is also strongly affected by dimensionality[254].

True Anderson localization is prohibited in systems of dimension larger than two[248].

Because interactions are strongly affected by dimensionality, mechanisms for decoherence

5Though Anderson considered dipolar 1/r3 interactions, he found that in the 1/r3 limit transport
was slow, though could still occur. For interactions falling off faster than 1/r3, however, he found that
localization could occur.
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a)

b)

c)

i i+1i-1

Ji-1,i Ji,i+1Ji-2,i-1 Ji+1,i+2

Figure 4.1: a) A periodic potential results in periodic wavefunctions known as Bloch

states of the form ψ(r⃗) = eik⃗·r⃗u(r⃗), where u(r⃗) is a periodic function of position, r⃗,
where the function has the same periodicity as the lattice. b) In potential landscapes
that are disordered, for systems with a low density of particles, electronic wavefunc-
tions may become localized. c) Many body localization can occur in disordered dipolar
systems. In this case, spin excitations traversing the dipolar system behave like a par-
ticle traversing a disordered energy landscape.
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are similarly strongly affected[255, 256]. Additionally, the confinement of spin ensembles

to lower dimensions can open up new phases[257, 258] because, for example, the expected

value of the dipolar interaction can change dramatically across different dimensionalities.

Consider two classical magnetic dipoles in an isotropic 3D bath, m⃗1 = m⃗2 = m(0, 0, 1)

connected by an arbitrary vector, r⃗ = rr̂ = r(cosϕ sin θ, sinϕ sin θ, cos θ). Figure 4.2 a)

shows a schematic illustration of this. In the examples discussed here, every spin points

along the same axis because this is realistic for the ensembles discussed in this thesis, as

the externally applied magnetic field will set the quantization axis. The energy of these

two spins will be given by,

U(r, θ, ϕ) = − µ0

4πr3
(3(m⃗1 · r̂)(m⃗2 · r̂) − m⃗1 · m⃗2) = f(r)(3 cos2 θ − 1), (4.2)

where f(r) = −µ0m
2/4πr3 is introduced for notational simplicity.

Taking the integral over 4π steradians gives,

∫ 2π

0

∫ π

0

f(r)(3 cos2 θ − 1) sin θ dθdϕ = 0. (4.3)

We next examine the case of a 2D ensemble of spins organized in the xy-plane. For

NVs in 001 diamond, all of these spins will point along the [1, 1, 1] axis in the coordinate

system shown in Figure 4.2 b). Here, our dipolar energy will be given by,

U(r, ϕ) = f(r)((cosϕ + sinϕ)2 − 1), (4.4)

and integrating it over 4π steradians, we find,
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r = (cosΦ, sinΦ, 0)

m1 = m(0, 0, 1)

m2 = m(0, 0, 1)a) b)

z

x

m1 = m(1, 1, 1)/√3

m2 = m(1, 1, 1)/√3

z

y

x

r = (cosΦ sinθ, sinΦ sinθ, cosθ)

Figure 4.2: Schematic showing two different types of dipolar ensembles. a) The average
value of J in a 3D ensemble can be found by integrating Eqn. 4

over 4π steradians. For a 3D ensemble, ⟨J⟩ = 0. b) A two-dimensional ensemble may
have non-zero or zero ⟨J⟩ depending on the orientation of the spins with respect to the
plane. For 100 diamond, ⟨J⟩ = 0, but for other orientations (such as 111), it is non-zero.
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∫ 2π

0

∫ π

0

f(r)((cosϕ + sinϕ)2 − 1)δ(θ − π/2) sin θ dθdϕ,

=

∫ 2π

0

f(r)((cosϕ + sinϕ)2 − 1) dϕ = 2f(r)

∫ 2π

0

cosϕ sinϕ dϕ = 0,

⇒ ⟨Ji,j⟩ = 0.

(4.5)

We understand the averaging here to be a configurational averaging over an isotropic

and uniform density confined to the plane where the Dirac delta function δ(θ) is included

to account for the spins being confined to the xy-plane. In both the 3D isotropic case

and the 2D 001 sample case, the dipolar interactions have a net zero value. Interactions

averaging away in 2D is only true for the special case of 001 samples, where the NVs sit

at a “magic angle” of 54.7356◦ with respect to the plane. For samples grown along the

111-axis, the interactions do not average away.

If we repeat the same calculation as Eqn. 4.5 but with the spins aligned along the

plane normal (the z-axis), we get a dramatically different result. In this case, m⃗1 =

m⃗2 −m(0, 0, 1), and,

U(r) = f(r)(3 cos2 θ − 1) = −f(r), (4.6)

and when we integrate this,

∫ 2π

0

∫ π

0

f(r)(3 cos θ − 1)δ(θ − π/2) sin θ dθdϕ,

= −f(r)

∫ 2π

0

dϕ = −2πf(r) ̸= 0,

⇒ ⟨Ji,j⟩ ≠ 0.

(4.7)

Thus, for a 2D layer of spins, all of which are pointed along the plane normal, the spin-
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spin interaction is not only on average non-zero but is also the same sign for every single

pair of spins. The dramatic differences between these cases suggest using dimensionality

as a tool to access radically different regimes of dipolar coupling.

This chapter will discuss two different (but closely related) methods of dimensional

engineering: delta-doping and patterning via step bunches. The first part of this chapter

will focus on 2D ensembles and the ways in which lower dimensional systems decohere dif-

ferently than their higher dimensional counterparts. The second part of this chapter will

focus on 1D ensembles. Here, I will propose a new method for achieving one-dimensional

ensembles of dipolar coupled spins, and we will discuss the interesting new physics avail-

able for these 1D systems. Finally, we will use these 1D systems as a proof of concept

for a new type of in-situ technique to measure morphology during growth.

4.1 Dimensional engineering via crystal growth

Dimensional engineering, as I use it in this thesis, refers to the deliberate patterning

of systems of spins within confined geometries. In other words, while the spins occupy a

3D space, their density is a function of space in the following way,

3D : ρ(x, y, z) = ρ0,3D

2D : ρ(x, y, z) = δ(z)ρ0,2D

1D : ρ(x, y, z) = δ(z)δ(y)ρ0,1D,

(4.8)

where δ(x) is the Dirac delta function. Because the Dirac delta function is unitful,

simple inspection here reveals that ρ0,1D, ρ0,2D, and ρ0,3D must all have different units. If

we report our volume density6 in terms of ppm, for 2D systems, the meaningful density

6The ppm unit is a strange one, so I will spend some time here discussing it. Strictly speaking, in
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Con�nement in z Con�nement in y

a) b)

Figure 4.3: Two distinct methods for achieving dimensional confinement. a) Delta
doping during growth can confine a spin ensemble in z. b) Preferential incorporation
at 1-dimensional defects, such as step bunches, can allow for lateral confinement.
Combining these two strategies can result in 1D ensembles of spins.

has units of ppm∗nm, and for 1D systems, ppm∗nm2.

In this section, two different strategies will be discussed to realize 2D and 1D con-

finement in delta-doped, CVD-grown diamond. The method to realize a 2D system of

spins is conceptually very simple: during the doping step, turn on the nitrogen for a

very limited amount of time - this will give us confinement along the growth direction

(z). Subsequent electron irradiation, as described in Chapter 3, can create dense en-

sembles of NVs within this doped layer. This z-confinement is illustrated in Figure 4.3

most contexts, parts-per-million is a dimensionless unit designating fractional constituency. However,
in a doping context (especially in the NV literature), it is often treated as dimensionful number density
(with units of 1/[L]). To convert between ppm (in the diamond literature) and volume density in
SI units, one must know the lattice constant of diamond. In this context, ppm is defined as 1/V1e6,
where V1e6 is the volume occupied by one million atoms. In this footnote, I will clarify conversions
between the two units: 1 nm−3 = 5674.2 ppm. The implication is we now have a rather strange unit
of length, ppm−1/3 = 17.8 nm. In this thesis (and elsewhere in the NV literature), people will commit
the act of mixing both units together and report lower dimensional densities in terms of ppm nm (for
2D) and ppm nm2 (for 1D). For completion: 1ppm nm = 1.76 × 10−4 nm−2 = 0.0562 ppm2/3 and
1ppm nm2 = 3.106× 10−8 nm−1 = 3.16E−3 ppm1/3.
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a). Confinement along the y-direction via a novel technique will be demonstrated later

in this chapter. This technique relies on the preferential incorporation of nitrogen into

step edges, as described in Chapter 2. We will use a heavily step-bunched sample as a

template onto which we can pattern striations of nitrogen. An example of a step-bunch

is shown in Figure 4.3 b). Combining both techniques will give confinement along y and

z, resulting in the 1D density described in Eqn. 4.8.

4.1.1 Delta-doping for z-confinement

We will use delta-doping to create ensembles of 2D interacting dipoles. An example

of a secondary ion mass spectroscopy (SIMS) data set demonstrating 2D confinement

is shown in Figure 4.4. We grew this sample, S011, with isotopically purified methane

(99.999% 12C) as described in Chapter 2 and Refs [88, 139, 141]. For the delta-doping

step, we introduced natural abundance nitrogen gas at 5 sccm and for 10 minutes. We

chose relatively large buffer layers (∼ 125 nm) and capping layers (∼ 275 nm) to remove

confounding effects from both the sample surface and the isotopically impure substrate.

To create vacancies and NV centers, we used a transmission electron microscope (as

described in Chapter 3 and Refs [211, 212] and an argon forming gas anneal at 850◦C for

6 hours.

The SIMS data in Figure 4.4 shows an approximately Gaussian peak at the desired

depth, whose width is found to be ≤ 8 nm. This width estimate is only an upper bound

because SIMS cannot measure peaks that are narrower than the RMS roughness of the

sample surface and is confounded by other effects related to the speed and energy of

ablation - these two factors result in a SIMS resolution for this sample of ∼ 8 nm. To

assess whether this is sufficiently narrow to produce confinement effects, it is useful to

compare this measure to other geometric scales in the problem, for example, the mean
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8 nm

Figure 4.4: Secondary ion mass spectroscopy data for sample S011. The ∼ 275 nm
nitrogen peak is < 8 nm and is likely broadened from artificial broadening introduced
by SIMS.

spin-spin spacing. For diamond, a useful number to remember is that for 1 ppm of

dopants, the average spacing will be 17.8 nm, and the spacing will scale like the inverse

cube-root of the density. The 3D NV density for sample S011 is 3.2 ppm[255], which

results in a mean spacing of 12.1 nm - above the upper limit of the layer thickness and

placing the NV ensemble well-within the 2D regime. The 3D P1 density for sample S011

is 14 ppm[255], resulting in a spin-spin spacing of 7.4 nm - this is on the border of what we

can guarantee with the upper-bound given to us through SIMS, and so one might expect

borderline behavior in the P1 ensemble. Nevertheless, we will find that the system of

spins is likely narrower7 than the SIMS estimate and the confined ensemble does, indeed,

result in low-dimensional behavior.

7The densities and spacing estimates here assume a boxcar function for the density. This is almost
certainly not the case; the density is probably closer to a Gaussian. The concentration of density close
to the center tends to push the ensemble into a more 2D limit.
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4.1.2 Patterning for y-confinement

Next, we will briefly discuss the method for confinement along y. This method, which

I call patterning8, relies on the preferential incorporation of nitrogen at specific sites along

the lateral (xy-plane) diamond surface. A defect on that surface is required to break the

symmetry and introduce some degree of inhomogeneous incorporation along the plane.

In this section and the latter parts of the chapter, we will discuss step bunches as a novel

means to achieve that goal.

Figure 4.5 a) shows a schematic of a step bunch. At early times, a perfectly or-

dered surface has each step uniformly spaced from every other. As the growth continues,

steps will tend to “bunch” up, resulting in macroscopic ensembles of steps9 that keep the

overall miscut angle preserved but result in highly inhomogeneous surfaces. Many mech-

anisms have been proposed to explain why step edges bunch. For example, in growth

modes where surface diffusion plays a large role, Ehrlich-Schwoebel[261, 262, 263] bar-

riers (energy barriers that diffusing adatoms encounter at steps) will naturally produce

step bunching. Entropic effects will also lead to some step bunching (though entropy ar-

guments alone cannot fully explain the usual magnitude of step bunching). Additionally,

elastic relaxation near steps can generate attractive interactions between steps[264] that

will result in bunching. Chemical effects are also hypothesized to play a role in some

types of growth[259, 260, 265]. I will quickly note here that many of these mechanisms

rely on arguments based on adatom diffusion (in particular, the often-referenced Ehrlich-

8I call this section “patterning” even though the confinement evidenced through striated distribu-
tions of NVs presented throughout this chapter was obtained entirely by accident. Indeed, the word
“patterning” seems to suggest some degree of intentionality. I use this word for two reasons: first, I
anticipate that soon control over step bunching and the processes that govern it will advance to the
point where more intentional creation of step bunches and the engineering of their parameters will be
possible. Second, I wish to include other methods beyond step bunches into this method of dimensional
engineering. These other methods could include hillocks or photolithographic patterning of masks and
subsequent implantation.

9I highly recommend Guin et al.’s[259, 260] highly cogent multi-part discussion on step bunches.
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Step flow direction

Line cut

Growth direction

Over time

Nitrogen incorporation at step bunches

a) b)

Figure 4.5: An illustration of step bunching. a) A schematic showing an initially
uniformly spaced distribution of steps, aggregating into bunches over time during
growth. Note that the overall step density (and miscut) remains constant. Because
nitrogen tends to incorporate preferentially at steps[1] (see Chapter 2), step bunches
will have an increased concentration of nitrogen. b) An atomic force microscopy
(AFM) image showing a heavily step bunched sample (L043). A cross section taken
at the orange line is plotted below. Arrows denote locations where nitrogen is likely
to incorporate.
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Schwoebel mechanism) - for diamond CVD growth, based on the arguments in Chapter

2, surface adatom diffusion is not dominant in growth and adatom diffusion lengths are

very small. Regardless of the exact mechanism(s) responsible for step bunching in CVD

diamond, it is sufficient for this chapter to state that steps do bunch and leave the de-

termination of the mechanisms responsible as a project for future work. Figure 4.5 b)

shows an atomic force microscopy (AFM) image of a highly step bunched sample. A

linecut across the bunch is shown with arrows indicating locations with a high potential

for nitrogen incorporation.

We justify the assumption that step bunches have an increased density of incorpo-

rated nitrogen via four complementary images taken on the same region of the sample.

The images were colocalized with respect to each other using hillocks on the sample as

coarse positioners. For sub-micron colocalization of the four distinct measurements, the

step bunches themselves have sufficiently unique patterns that it is possible to find the

same groups of bunches via inspection. Figure 4.6 a) shows a confocal PL image of sample

L04310. The distinct striated features are NV centers that formed due to higher concen-

trations of nitrogen along the step bunches. The correspondence of NV features with

nitrogen density is confirmed using nanoSIMS performed on a Cameca NanoSIMS 50L

at Stanford University in collaboration with the Mukherjee group. This data is shown in

Figure 4.6 b), which shows the lateral distribution of nitrogen integrated over the entire

growth (for comparison to the PL, which is also necessarily integrated over the entire

growth). Figure 4.6 c) shows NV ground state depletion (GSD) microscopy[266, 267] im-

ages of the same ensemble. GSD is a technique that uses a donut-shaped beam to achieve

spatial resolution well beyond the optical diffraction limit for non-linear point emitters.

10Sample L043 is a trilayer sample grown by Lillian Hughes. There are three layers of intentionally
doped nitrogen (which is the meaning of trilayer). The last (most shallow) layer is 10× higher density,
and so the majority (90%) of the signal in Figures 4.6 a-c) is coming from this topmost layer. The AFM
image is, of course, the surface of the diamond and, thus, represents the step bunches at the very end of
the growth. See section 4.3.2 for more details.
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Figure 4.6: Four colocalized measurements of the same step bunched region on L043.
a) A confocal PL measurement. Brighter regions indicate a higher density of NV
centers. The NVs are organized along striations that correspond to step bunches.
b) NanoSIMS data showing the distribution of nitrogen in this region. The strong
similarity between this data and that shown in a) indicates that the striated NVs
are due to preferential nitrogen incorporation rather than preferential formation dy-
namics related to the step bunching. c) Ground state depletion (GSD) microscopy
image showing the fine structure of the NVs within the step bunch. d) Atomic force
microscopy (AFM) image showing the topography of the sample. Common features
demonstrate that the enhanced nitrogen incorporation occurs at the step bunches.

This allows us to gain insight into the spatial distributions of NVs within step bunches

beyond what is accessible using conventional optical techniques. Finally, we compare all

three images to an AFM image of the surface in Fig. 4.6 d). The correlations between

these four images indicate a common cause: step bunching.
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4.1.3 Measurement of dimensionality via coherence decay

Finally, we require some method of assessment for whether a system has met the

requirements on a microscopic, inter-spin level of low-dimensionality. The method we

will employ throughout the rest of the chapter is a careful analysis of the coherence

decay under double electron-electron resonance (DEER).

DEER allows us to address specific species within the bath of spins. We will use the

framework for measuring dimensionality detailed in Davis et al.[255]. The coherence, C,

of an ensemble of NVs under DEER will decay as a function of time, t, like a stretched

exponential,

C(t) = exp{−(t/T2)
n}. (4.9)

The stretch power, n, depends on three important parameters:

• The power of the long-range interaction governing the dynamics, α ⇒ J ∼ 1/rα.

For dipole interactions, we have J ∼ 1/r3.

• The dimensionality of the system, d.

• The correlation of the bath. The bath has a characteristic correlation timescale, τc.

On timescales that are long with respect to the correlation time, the system behaves

diffusively, and the phase accumulates like a random walk. At short timescales, the

system is said to behave ballistically.

The stretch power will be given by,

Ballistic (t < τc) : n =
d

α

Diffusive (t > τc) : n =
d

2α
,

(4.10)
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as described in Ref. [255].

Figure 4.7 shows an example of both regimes for 3D, 2D, and 1D. Small stretch

powers (as in lower dimensional systems) result in fast decays with long tails, meaning

that a semi-coherent ensemble can persist over much longer timescales relative to their

higher dimensional counterparts. Plotted alongside (bottom) are the logarithms of the

same functions on a log-log scale (called triple-log scale). These are plotted this way

because taking the negative logarithm converts the function to a power law, which, when

plotted on log-log axes, makes the change in power (via the change in slope) immediately

apparent. During the next two sections, when we wish to highlight a change in the stretch

power, the data will be plotted in this form.

4.2 Two-dimensional ensembles

In this section, we will discuss an ensemble of two-dimensional spins in sample S011.

These systems, as described in Eqn. 4.5, have no net dipolar couplings after configura-

tional averaging. In the rest of the Chapter, we will use the type B simulation scheme

described in Chapter 3. Here, the NVs act as a probe of the external bath, whose prop-

erties we seek to investigate. One of the key conceptual differences between the type of

schemes described in Chapter 3 and those in this Chapter is the recoupling pulse whose

frequency is tuned to the P1 resonance (the spin defects responsible for the disorder

term in Chapter 3). By selectively driving these defects in addition to driving the NV

centers, we can enhance the importance of the disorder via recoupling, leading to NV

ensembles whose dynamics are governed almost entirely by the P1 centers. A careful

analysis of these dynamics, under the recoupling, reveals a wealth of information about

the P1 bath[255].
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Figure 4.7: Theoretical decay profiles for various dimensionalities. a) Decays on a
linear scale for 1D, 2D, and 3D. The verticle line indicates the crossover between a
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4.2.1 Double electron-electron resonance

Double electron-electron resonance (DEER) has been used to study a wide variety

of defects in diamond, including P1 centers[212, 255, 268], C centers[269], NVH[270],

external spins[271], and other NV centers[272]. A DEER sequence consists of two different

microwave tones, one of which drives the NV ensemble and another that drives the

external spin species. The NV microwave tone will deliver a spin echo sequence consisting

of an initial π/2-pulse to prepare the NVs into a collective state on the equator of the

Bloch sphere, a subsequent π-pulse after a time, τ , and after a final period of time,

τ , another π/2-pulse with a green readout measure the state of the ensemble. Where

DEER differs from a traditional spin echo is that during the intermediary π-pulse, we

apply another microwave tone for a fixed duration, τP1 at a frequency of fP1
11.

Figure 4.8 a) shows a DEER spectrum for S011, showing three distinct peaks. These

three peaks are labeled 1/12, 1/4, and 1/3, where these labels indicate the fraction of

total P1 centers contributing to each peak. There will be additional peaks (not pictured)

to the right corresponding to an additional 1/4 and 1/12 peak, such that the total peaks

sum to 1. The reasons for the splitting are two-fold. First, the nuclear state of the

nitrogen in the P1 center gives rise to 3 possible hyperfine states. Second, the lattice

gives rise to a Jahn-Teller[273] splitting. The substitutional nitrogen atom of the P1 has

four nearly degenerate sites it can sit on, corresponding to each of the four directions

in the ⟨111⟩ group. One of these sites will be aligned along the magnetic field, and the

other three will be exactly degenerate. Thus, we have the following groups:

• (−)1/12: Corresponding to the distortion axis along the B-field and the nuclear

state I = −1

11The labels, P1, are chosen here because for the rest of the Chapter, we will only address P1 centers.
But other than the fact that we will choose the frequency to specifically address P1 centers, there is
nothing else specific to P1 centers about this sequence.
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Figure 4.8: Double electron-electron resonance (DEER). a) Sweeping the frequency
during a DEER measurement reveals a spectrum whose peaks indicate specific species
of spins. b) Varying the length of the recoupling pulse results in Rabi oscillations.
The first dip in these oscillations is the π-time.
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• (−)1/4: Corresponding to a distortion axis along one of the three other ⟨111⟩

directions and the nuclear state I = −1

• (0)1/3: Corresponding to all of the four distortion axes and the nuclear state I = 0

• (+)1/4: Corresponding to a distortion axis along one of the three other ⟨111⟩

directions and the nuclear state I = +1

• (+)1/12: Corresponding to the distortion axis along the B-field and the nuclear

state I = −1

We choose the (−)1/4 peak because it has a relatively high density (resulting in

stronger J couplings) while being distinct from confounding species close to g = 2 such

as NVH12. Driving other peaks, such as the 1/12 peaks, allows us to change the effective

density of the recoupled spins. For optimal recoupling, we drive Rabi oscillations of the

bath spins and look for the first dip, which corresponds to a complete π-pulse. A Rabi

oscillation for the (−)1/4 peak is shown in Figure 4.8 b).

The decay for the two-dimensional spot is shown in Figure 4.9 a) on a linear scale.

Figure 4.9 b) shows the same data on the triple-log scale described in Section 4.1.3.

Power law guides to the eyes are plotted alongside the data for reference. We observe

a crossover in the power law at τc ∼ 3 µs. These stretch powers (n = 2/3 and 1/3) are

consistent with the expectation for a two-dimensional ensemble under dipolar interactions

(α = 3), and contrasts with the usual n = 1 observed for three-dimensional ensembles, as

in Refs [222, 255]. The correlation time, τc, denotes the average time a spin in the bath

retains memory of its initial orientation. Bauch et al.[222] provide a model for relating

correlation times to other physical parameters (such as T ∗
2 and the density) for three-

dimensional ensembles. Hughes et al.[90] provide a framework for relating this decay to

12Unlike, for example, the (0)1/3 peak, which is very close to g = 2.
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Figure 4.9: a) DEER decay for a 2D ensemble. b) On the triple-log scale, two distinct
stretch powers are seen. These are the expected powers for a 2D ensemble. The
vertical line denotes the transition from ballistic to diffusive transport and occurs at
the bath correlation time, τc.
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the density of the bath. We consider both frameworks as a function of the density of

the recoupled group, ρ. The Bauch framework relates the timescale for the Ramsey-like

decay of the ensemble to the density like T ∗
2 = 1/(Aρ), where 1/A = 9.6 µs ppm. The

Hughes framework relates the decoherence to the dimensional density as T ∗
2 = 1/(ρ1/naJ),

where a is a dimensionless parameter that depends on the density such that a2D = 2.626,

and a3D = 3.318, and J is the dipolar coupling strength, J = 2π × 10 kHz/ppm =

2π × 52 MHz nm3. In the Hughes framework, the density, ρ is the dimensional density

defined in Eqn. 4.8, and n is the stretch power as defined in Eqn. 4.1.3. The density

estimated from the Bauch model is ρB = 3.2 ppm, leading to a total nitrogen density for

all groups of ∼ 13 ppm, which should be considered as a lower bound on the density. The

2D density estimated from the Hughes model is ρH =∼ 28ppm nm, for a total nitrogen

density for all groups of ∼ 110 ppm nm. For both estimates, we use a FID Ramsey

timescale of T ∗
2 ≈ 3 µs.

4.3 One-dimensional ensembles

In this section, we will describe a one-dimensional system of spins realized through

incorporation along step bunches. Using the dipolar coupling described in Eqn. 4.5, we

write the dipolar strength as a function of the 1D axis in the xy-plane, ϕ0. The dipolar

energy will be,

∫ 2π

0

∫ π

0

f(r)((cosϕ + sinϕ)2 − 1)δ(ϕ− ϕ0)δ(θ − π/2) sin θ dθdϕ,

= f(r) sin 2ϕ0.

(4.11)

Thus, we find that in a 1D dipolar chain, the average coupling strength can be tuned
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from positive to zero to negative simply by rotating the quantization axis with respect

to the chain axis.

As discussed in Sections 4.1.2 and 4.1.1, we will achieve confinement along two axes

using a combination of delta-doping (for z) and step bunching (for y). However, there are

some length scales associated with the problem that are worth discussing. Because both

the doped layer and the step bunches have a finite extent, we must consider what physical

scales determine whether a system is 1D or not. These scales are shown schematically

in Figure 4.10. First, the width, w, denotes the lateral extent of a single bunch and

will be proportional to the number of aggregated step edges. Additionally, wider steps

will accumulate more nitrogen such that ρ0,1D ∝ w. Another important length scale for

one-dimensional physics is the distance between nearby step bunches, d. The thickness of

the doped layer, t, is also critical, though we will assume this is small. Finally, there is a

length scale, r ∼ (Jτ)1/3[256], which corresponds to the radius over which entanglement

can have ballistically traveled since NV initialization. Intuitively, this can be understood

via a light-cone-like picture where, at very short times, the NV has only information

about the states of nearby spins. As time accumulates, the sphere over which the NV

probes the environment grows.

The various limits are described below:

• w > r : 2D. The system resembles a flat plane, similar to the 2D system described

in Section 4.2.

• t > r and w > r: 3D

• r > d : 2D. The spins in adjacent step bunches begin to interact, resulting in a 2D

ensemble

• w < r < d : 1D. In this case, the central spin (the NV) has begun to detect the
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Figure 4.10: A schematic indicating three important length scales for engineered
one-dimensional dipolar systems. The width of the one-dimensional chain, w, sets
both the average coordination of a spin and the length scales over which entanglement
must diffuse before one-dimensional behavior begins. The distance between chains, d,
must be large to avoid cross-talk between chains (resulting in a 2D-type ensemble).
Finally, the diffusion length, r ∼ (Jτ)1/3, is another important scale. If we satisfy
the criterion, w < r < d, the system is expected to behave as a one-dimensional spin
chain.
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Figure 4.11: A numerical comparison between 2D and quasi-1D diffusion. a) Col-
ormaps showing the density of particles as a function of time for 2D and quasi-1D
systems. b) A plot of the density of particles as a function of time at the center of
the system for both cases. Once the diffusion reaches the edges of the quasi-1D box,
it begins to diverge from the 2D diffusion.

finite size of the bunch but has not started to detect adjacent step bunches. In this

case, the system will be governed by one-dimensional decoherence.

The dependence of each of these criteria on the quantity r, which itself depends on

time, results in the interesting fact that the dimensionality of the system can change as

a function of time. As r increases over time, the system can change between different

dimensionalities, resulting in a geometric crossover, as described in Ref. [256].

A diffusion analogy can help in gaining some intuition about the origin of the dimen-
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sional crossover. Figure 4.11 a) presents numerical simulations of random walkers in a

confined geometry. In this example, at each time step, each walker is allowed to move

1 space in one of the cardinal directions (up, down, left, right) or may not move with a

probability (1/3). Boundary conditions of j⃗ · n̂ = 0 are enforced, where j⃗ is the parti-

cle current, and n̂ is the boundary normal13. Histograms for 500e3 walkers over 10000

timesteps are shown for a system whose length, L, and width, w, are equal, w = L = 501

(called 2D), and another system with finite width, w = 21, such that w ≪ L = 501

(called quasi-1D).

Because this is a diffusive system, we expect transport over a length scale that depends

on time like r ∼ t1/2. Figure 4.11 b) shows the density of particles at the origin as a

function of time for both systems. The vertical dashed line corresponds to a critical

timescale, τ2D→1D ≈ 3
4
r2c , where the quasi-1D system begins to diverge from the 2D

system. The critical length scale is the half-width of the quasi-1D strip. For decoherence

along a quasi-1D strip of dipoles, a similar intuition holds, and we expect to observe a

transition from 2D type decoherence to 1D type decoherence at timescales that are long

compared to transport of entanglement compared to the width of the step bunch. The

inset illustrates of Figure 4.11 illustrates the connection between the idea of diffusion and

coherence loss in an ensemble of spins. Once the system reaches a low-dimensional limit,

the channels available to decohere become radically reduced and, importantly, do not

grow as the entangled volume grows. Once the system reaches this regime, we expect to

observe a “coherence blockade” where the rate of decoherence becomes slower, and the

state is preserved over a long period of time.

13I.e., particles are stopped if they attempt to cross the boundary.
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Figure 4.12: DEER decay for the 1/4 peak of a 1D ensemble. The region where this
data was taken is shown in the inset. The shaded red region indicates the onset of a
long-lived coherent state due to geometric confinement.

4.3.1 One-dimensional decoherence

Figure 4.12 shows the decoherence of a heavily striated ensemble of NVs, indicating

a high degree of step bunching. A GSD image of the region studied is shown in the inset,

where the white circle indicates the rough size of the confocal spot used to generate the

data in the decay profile. The decoherence here is a DEER decay sequence as described

in Section 4.2, and the red-shaded region indicates the onset of a geometric coherence

extension due to one-dimensional confinement. While the 1/e time of this ensemble is

roughly 2.2 µs, a substantial coherence above 10% persists for hundreds of µs.

We next examine the same data on the triple-log scale described in Section 4.1.3.

On this scale, three distinct regimes of decoherence are made clear, each described by a

different value of n, indicated by a different slope.

The first regime, called “2-D early decoherence” corresponds to a ballistic, 2D regime

where the total free evolution time, 2τ < τc. Here, τc is the correlation time of the
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Figure 4.13: DEER decay for the 1/4 peak in a one-dimensional ensemble, plotted
on a triple-log scale. We observe three distinct regimes of decoherence. The first
regime corresponds to an early-time 2D decoherence resulting from the finite width
of the nitrogen distributed within the step bunches. The next regime is the long-lived
one-dimensional state. Here, the stretch power is n = 1/6 and persists over nearly two
decades. Only a one-dimensional system results in a stretch power of 1/6, indicating
that the step bunched nitrogen results in a 1D dipolar ensemble. The final regime
is best fit by a 3D diffusive-type decoherence. This may be due to “dark” spins dis-
tributed throughout the diamond or additional decoherence from the diamond surface.
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bath as described in Section 4.2. This regime has a slope of n = 2/3, consistent with

the prediction for 2D. Figure 4.13 b) shows a schematic illustration of each of the three

regimes, where the green spins represent surrounding P1 centers and the central orange

spin represents the NV center. The semi-transparent sphere denotes the sphere of entan-

glement where the radius is given by r ∼ (Jτ)1/3. At a time of τα,c = 3 µs, the system

transitions to a late, one-dimensional regime. Two subscripts are used for this crossover

time because this crossover corresponds to two distinct regime crossovers that occur close

to each other in time. The first is the correlation time crossover, τc, denoting the tran-

sition from ballistic to diffusive transport, and the second is the dimensional crossover,

denoting the change from 2D to 1D. We verify that these are two independent crossovers

by changing the effective density of spins (which pushes the correlation time to longer

values but does not affect the dimensional crossover). The verification that these are

independent crossovers is described at the end of this section.

The one-dimensional regime of decoherence, characterized by a very small stretch

power, persists over nearly two decades of free evolution. The exact value for the stretch

power of n = 1/6 can only come about from late time, one-dimensional decoherence[255],

and so we take this as very strong evidence that the system is behaving like a 1D spin

chain. Curiously, the value of τα,c corresponds to a length scale of roughly rα,c ∼ 10 nm,

much smaller than the scales indicated by GSD. However, GSD has a minimum spatial

resolution (in this image) of ∼ 70 nm, so there is no contradiction between the measure-

ments. Instead, we take the small length scale revealed by the DEER decoherence to be

evidence of features within the bunches below the resolution of GSD. This suggests that

the incorporation of nitrogen due to the edges lays along fine features that have a width

of 10 nm, within the larger, ∼200 nm confocally detectable bunches.

At very late times, the system eventually loses the properties associated with the

coherence blockade, and the system rapidly decoheres to the thermal equilibrium. We
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Figure 4.14: A comparison between DEER decoherence and spin echo decay for the
1/4 peak in a one-dimensional ensemble. At late times, the two datasets converge,
indicating that the late time decoherence shown in Figure 4.13 is due to sources
unrelated to the recoupling DEER pulse and is limited by incoherent noise unfiltered
by the spin echo.

call this crossover time τβ. At this time, the system is well-described by a stretch power of

n = 1/2, corresponding to a late-time three-dimensional decoherence. Our hypothesis to

explain this observation is that at late times, when the interaction radius becomes large,

the ensemble becomes limited by incoherent spinful defects outside of the deliberately

recoupled bath. This is supported by the fact that in this regime, the coherence is equal

to the spin echo measurement.

A comparison of the DEER data to the spin echo data on the same spot is shown in

Figure 4.14. Within the 3D late decoherence regime, the spin echo data is on top of the

DEER decay, indicating that the recoupling pulse no longer has a substantial effect and

other effects are dominating the decay. This can be due to other “dark” defects in the
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Figure 4.15: DEER decay for the 1/12 peak in the same region as Figure 4.13. Chang-
ing to the 1/12 peak results in a lower effective spin density. Lowering the spin density
results in a longer correlation time but leaves the dimensional crossovers unchanged.

lattice or, potentially, effects from the noisy surface of the diamond.

We verify the hypothesis that there are two overlapping crossovers in Figure 4.13 a)

at the time τc,α corresponding to a dimensional crossover, τα and a ballistic to diffusive

crossover, τc by varying the density of recoupled spins in situ by driving the (−)1/12

peak. The P1 centers associated with this peak are 1/3 as dense as the P1 centers driven

in Figure 4.13 a). Reducing the density results in a longer correlation time, but the extent

of the distribution of defects should be identical to the denser ensemble. Because the

spatial extent of the distribution is identical between the two datasets, the dimensional

crossovers τα are also identical. For the less dense data, the correlation time, τc, is

significantly longer at nearly 38 µs. In the 1/12 dataset, we observe a new regime not

clearly observable in the 1/4 dataset: a 1D ballistic regime of decoherence (n = 1/3).

104



Lower dimensional systems of NVs Chapter 4

4.3.2 Measurement of nitrogen incorporation in step bunches

In this final section, we discuss a new method of measuring morphological features as a

function of time during CVD growth. We anticipate that this method can be extended to

any crystal growth technique where dopants can be employed. The method discussed in

this section uses a combination of tracer elements that preferentially incorporate along

a step. In combination with a 3D elemental composition analysis tool, in this case,

nanoSIMS, we can visualize the time evolution of morphologies after-the-fact. We will

use this technique to image step bunch formation at three different times and track the

evolution over the course of a growth. We use a Cameca NanoSIMS 50L at Stanford

University in collaboration with the Mukherjee group for the nanoSIMS data presented

in this section.

The sample we used for characterizing this technique is L043. L043 is a CVD grown

sample (miscut θ = 0.646◦) with three spatially separated doped layers. The growth of

L043 consisted of the following recipe:

• 0.4 sccm (12C) methane, 1.5 hours

• 5 sccm (15N) nitrogen, 20 min

• 0.4 sccm (12C) methane, 2 hours

• 5 sccm (15N) nitrogen, 10 min

• 0.4 sccm (12C) methane, 2 hours

• 5 sccm (15N) nitrogen, 30 min

• 0.4 sccm (12C) methane, 1.5 hours

Conventional SIMS gives the concentration in the three layers as,
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• Layer 1, Density: 36 ppm nm, depth: 129 nm, width 4.2 nm.

• Layer 2, Density: 46 ppm nm, depth: 90 nm, width 3.9 nm.

• Layer 3, Density: 617 ppm nm, depth: 43 nm, width 8.5 nm.

Interestingly, the incorporated nitrogen does not scale monotonically with doping time

and instead seems to scale with time since the growth began. This could be due to en-

hanced step bunching resulting from nitrogen impurities[274] or a non-linear dependence

of nitrogen incorporation with step density[1]14.

Figure 4.16 a) shows images of a large step bunch. Both topographic atomic force

microscopy (AFM) and confocal microscopy data are shown for the same step bunch.

The arrows indicate the phase component (i.e., the projection of the 001 axis along the

surface plane) of the miscut and, thus, the growth direction. This is further confirmed

in the nanoSIMS. Plotted in Figure 4.16 b) are the concentrations in detected counts for

the three layers in the growth. These three images form three frames in a “movie” of the

morphological evolution of the diamond surface over a growth. We anticipate extending

this technique to many-layered samples and using a dopant that is guaranteed to not

interfere with the chemistry of the growth15. We observe this large step bunch begins

as a small aggregation of nitrogen in an otherwise quite featureless layer. As the growth

proceeds, the step bunch travels across the sample, a distance of roughly ∼ 5 µm. Since

these layers are separated by 5 hours in growth time, we can conclude that this step

bunch traveled at a rate of 1 µm/h. If we compare this rate to the depth-wise growth

rate (17 nm/h), the ratio of the two will be equal to the miscut (in the case where the step

bunch is traveling at the same rate as a single step). We obtain a value of arcsin(0.017) ≈
14Since step bunches have a greater concentrated density of steps than single steps, and as the growth

goes on, step bunches become larger and larger, the non-linear dependence of nitrogen incorporation on
step density may result in higher nitrogen densities for later times in the growth.

15For example, 13C is distinguishable from 12C in nanoSIMS but is highly unlikely to be chemically
distinct and so, will not interfere with the growth.
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Figure 4.16: Imaging the evolution of a step bunch using nanoSIMS and nitrogen trac-
ers. a) Atomic force microscopy and confocal photoluminescence (PL) measurements
of a large step bunch in sample L043. The arrows indicate the direction of step flow
during growth. b) NanoSIMS data for each of the three layers in L043, showing the
evolution of the step bunch shown in a).
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1◦, indicating that the step bunch is actually traveling somewhat slower than a typical

step edge. This technique gives a unique window into the evolution of step bunches and

other morphological features during crystal growth that is otherwise inaccessible. Tracer-

mediated nanoSIMS imaging could be extended to other kinds of morphological features,

as well, such as the hillocks described in Chapter 2. Additionally, nothing about this

technique is specific to CVD growth or diamond growth. These methods could be easily

extended to any growth method where the introduction of isotopically distinct dopants

is possible (such as MBE).

Tracer elements have been used before to track the evolution of step bunches in MBE-

grown GaAs(110) as described in Ref. [275] using a combination of transmission electron

microscopy (TEM) and AlAs marker layers. The nanoSIMS tracer method has a number

of noteworthy advantages over the TEM tracer method. First, nanoSIMS gives both

lateral and depth information (resulting in a fully 3D image of the crystal), whereas

imaging via TEM tracers only gives a cross-sectional view of the growth. Secondly,

nanoSIMS is sensitive to concentrations below ppm levels, whereas electronic imaging

methods (like TEM) usually have a detection limit several orders of magnitude above

that[276, 277]. The combination of nanoSIMS techniques with the decoherence probes

into nanoscale distributions of spins described earlier in this chapter opens up new ways

to probe the distributions of dopants incorporated during growth.

4.4 Conclusions

In this chapter, we have discussed methods to engineer lower-dimensional ensembles

of NV centers and the resulting different decoherence profiles. In this final section, we

will discuss possible future experiments using the low-dimensional ensembles of spins

described in the previous sections.
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One interesting possibility is using one-dimensional systems of spins in combination

with super-resolution techniques such as GSD to visualize spin diffusion stroboscopically.

At low temperatures, NV T1 times can approach timescales as long as seconds or even

minutes[105, 278, 279]. If we consider a spin chain whose spacing corresponds to the

equivalent volume density for a 1 ppm ensemble (∼ 17 nm), we can calculate the ballistic

travel distance for a spin excitation in a typical T1 time. A 1 ppm ensemble has a spin

flip rate of 2π × 10 kHz. In one second, this is a possible 66000 flips, resulting in a

maximum ballistic travel distance of ∼ 1 mm between spins spaced 17 nm apart. The

diffusive travel distance (the physics easier to study) will be closer to 4 µm (assuming

one-dimensional random walk-like transport: r ∼ t1/2). These scales are easily accessible

at low temperature even without super-resolution techniques. At elevated temperatures,

where the T1 is closer to 1 ms, the diffusion distance is ∼ 140 nm - substantially smaller,

but still detectable with GSD techniques. A stroboscopic pump-probe experiment, where

one initializes the spin state of a volume of spins and then generates a spin excitation via

GSD, could be used to image the diffusion of spins in both space and time. Moreover, a

disordered dipolar spin chain is a ripe environment for testing many-body localization.

Preparing spin excitations in this manner may provide a clean platform for studying the

diffusion of a spin excitation in a disordered dipolar landscape.

Additionally, the dipolar coupling can be manipulated by changing the quantization

axis with respect to the chain axis, as described in Eqn. 4.11. Because the quantization

axis for the P1 centers can be changed via the magnetic field axis, a variable magnetic

field could be used to “turn off” or “turn on” interactions within the chain. A first

step towards realizing this would be studying the correlation time of the ensemble as

a function of the field angle with respect to the step bunch axis. If in situ control

over the coupling strength were realized, it would be possible to design a spin-diffusion

valve, where transport (and decoherence) along a line of spins could be halted through,
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for example, current-controlled magnetic fields. A device such as this could act as a

quantum information switch, allowing or disallowing entanglement diffusion along an

“wire” of coupled qubits.

Solid-state spin systems provide a method to test the behavior of many-body quantum

mechanics in the thermodynamic limit. Lower dimensional systems especially allow for

new types of phenomena (such as localization) that can only occur with some amount

of confinement. One-dimensional ensembles are attractive because transport occurs over

longer length scales, and coherent states persist over longer time scales than similar

higher-dimensional ensembles. The extension of scale can render certain experiments

technically feasible that would never be for higher dimensional systems (such as the spin

transport example above). The possibility of combining one-dimensional ensembles, a

low-temperature vacuum chamber, and time-resolved stroboscopic measurements is an

exciting one because it can provide a space-time resolved movie into physics otherwise

only accessible through aggregate bulk observables.
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Conclusions

When we first decided to tackle the problem of optimizing miscut, it was not at all

because we were looking to find a means of generating one-dimensional systems, but

rather, we were only looking to optimize one (important) control parameter in an already

established process. While we did accomplish our goal, we also unexpectedly found that

the nitrogen in the hillocks was greatly enhanced and, not only that, formed very specific

patterns determined by the shape of the hillocks. The unforeseen realization that the

morphology of the diamond could be used to template specific, otherwise challenging-to-

obtain systems of qubits was entirely unsought. Many important scientific results have

been achieved via the familiar template of intense and creative theoretical work, followed

by ingenious experimental design and much labor to finally realize whatever phenomenon

the theorists originally predicted. However, there is a second kind of discovery where,

while following the familiar template, the scientist encounters something strange - some

result, feature, or conclusion that was not in any sense expected. It was this second kind

of science that resulted in the one-dimensional work presented in Chapter 4. I think that

it is exactly this capacity for nature to surprise that keeps me so intimately invested in

the scientific endeavor.
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The topics covered in this thesis have all centered around interactions in disordered

dipolar systems. In particular, the discussion has revolved around how to engineer these

systems at nearly every point. I hope that the work in this thesis forms a foundation

for future investigations into the physics of low-dimensional many-body dipolar systems

in diamond or other solid-state defects. While there are many concrete and testable

experiments one can do with 1D and 2D systems of interacting spins, the real excitement,

in my mind, is the possibility that while investigating physics in these systems (like

MBL, spin diffusion, dipolar manipulation), something strange that at first, only serves

to complicate what would otherwise be a very nice story - a discovery belonging to that

second class of science - some piece of the puzzle that does not quite fit with the rest

of the data or theory. My parting advice is to not brush that piece aside. In this final

chapter, I will summarize the main results from this thesis and discuss their mutual

relationship as well as possible future directions using some of these techniques.

In Chapter 2, we discussed CVD and the importance of managing the density of

step edges (through control of the miscut). While these step edges control the growth

rate, density of defects, and surface morphology, we have also shown how their natural

symmetry breaking can lead to the patterning of specific, unusual geometries. The hillock,

in particular, hosts an especially high density of nitrogen (owing to the high density of

steps around the edge) and may be a compelling platform for exploring large number,

quasi-one-dimensional many-body physics where periodic boundaries are desirable.

In Chapter 3, we discussed three-dimensional ensembles of NV centers and how to

modify their Hamiltonian using a simple, sequence called ϵ-CPMG. Through careful

analysis of the behavior under ϵ-CPMG, we deduce the importance of random on-site

fields relative to dipolar interactions amongst the bath. This sequence also gives rise

to long-lived coherent states that exhibit prethermal behavior, offering a probe into the

thermodynamics of large N interacting systems of disordered spins. Periodic sequences
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like ϵ-CPMG offer creative ways to introduce new Hamiltonians whose effects can give

rise to unusual or unexplored physical regimes.

In Chapter 4, we tie the previous two chapters together. Using the analysis intro-

duced through the study of 3D interacting systems, coupled with the dimensional control

provided through CVD growth of diamond, we introduce novel types of systems for the

exploration of topics in many-body physics. In this chapter, we have discussed ways

of engineering two and one-dimensional ensembles of interacting spins and the possible

physics one can explore using these systems. In particular, lower dimensional systems

offer new routes for modifying the dipolar interaction.

While all of the results presented in this thesis use diamond-based qubits, the possi-

bility for dimensional confinement in other solid-state platforms is quite realistic. None

of the techniques or methods deployed here are necessarily specific to NV centers in dia-

mond. With the possible exception of fundamentally 2D hosts (like hBN), delta-doping

during growth is extendable to any grown solid-state system. Many of the engineering

techniques presented in Chapter 2 and 4 are applicable to MBE1 and the periodic drive

presented in Chapter 3 is applicable to any system of disordered interacting dipoles. As

other solid-state defects catch up to the NV, I suspect that, like with the NV, the need

for precision spatial engineering in larger structures2 will become as important as it has

for NV centers. I rather expect that 2D layers made via doping will become a staple

within the solid-state qubit community.

Two-dimensional layers of highly oriented coherent qubits, such as those in ⟨111⟩ dia-

mond3, offer new modes of sensing and access to fundamentally new physics, such as spin

squeezing. One-dimensional systems offer the possibility of exploring either transport or

1Though, to be sure, there are important differences between the techniques, like the importance of
adatom diffusion.

2For example, for probes or precise positioning within a waveguide
3Currently being pioneered by an especially talented researcher at UCSB.
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many-body localization, as well as a variety of questions in quantum thermodynamics4.

As my colleagues continue to investigate problems in many-body quantum mechanics,

I am sure that they will make tremendous progress toward answering many of the un-

resolved questions in many-body quantum physics, but I must admit, I most eagerly

anticipate that second class of discovery - those that are unexpected.

4These topics are being pursued by some equally talented researchers at UCSB.
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Appendix A

Alternative approaches to

understanding ϵ-CPMG

In this appendix, we will explore an alternative theoretical method for understanding

the behavior of the system described in Chapter 3. While this alternative method has

disadvantages compared to the method described in this thesis’ main text, it offers some

insight into the system for different limits. The method employed here may be more

favorable for other sequences, so I include it here.

A.1 Magnus expansion analysis

Following Ref. [227], we use Average Hamiltonian Theory to derive the effective

Hamiltonian used for the analytic fits shown in the main text. We use as our native

Hamiltonian in the lab frame,

H =
∑
i

Bz
i (t)σz

i +
∑
i<j

Jij
(
σx
i σ

x
j + σy

i σ
y
j − σz

i σ
z
j

)
, (A.1)
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where the first summand is referred to as disorder or external interactions, the second

summand contains the dipolar or internal interactions, Bz
i is the local onsite field at spin

i, Jij is the dipolar coupling between spins i and j, and σx,y,z
i are the Pauli spin operators

for the ith spin.

In the toggling frame that rotates with an angle π + ϵ at each pulse, the native

Hamiltonian after the mth pulse in this frame then becomes,

Hm =
∑
i

Bz
i (−1)m[σz

i cos(mϵ) + σx
i sin(mϵ)]

+
∑
i<j

Jij[σ
y
i σ

y
j + cos(2mϵ)(σx

i σ
x
j − σz

i σ
z
j )+

+ sin(2mϵ)(σx
i σ

z
j + σz

i σ
x
j )].

(A.2)

Now we consider the first two orders of corrections in the Mangus expansion for a

total of N pulses,

H̄(0) =
1

N

N−1∑
m=0

Hm,

H̄(1) = − iτ

2N

N−1∑
m<n

[Hm, Hn],

(A.3)

where i is the imaginary unit.

In the following subsections we examine the 0th order and 1st order terms separately

and examine the individual ϵ dependence of the disorder, dipolar and cross terms. We find

that for large pulse number and finite ϵ, the 0th order correction is only the y−component

of the dipolar part of the native Hamiltonian but for higher order corrections there is a

non-trivial ϵ dependence.
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A.1.1 0th order terms

We will analyze these terms by examining the 0th orders terms separated by disorder

and dipolar contributions.

Disorder: 0th order

The 0th order terms for the disorder contribution take the form,

H̄
(0)
disorder =

∑
i

{σz
iB

z
i

1

N

N−1∑
n=0

(−1)n cos(nϵ)

+σx
i B

z
i

1

N

N−1∑
n=0

(−1)n sin(nϵ)}.

(A.4)

Both terms oscillate quickly with epsilon and Eqn. A.4 approaches 0 as N → ∞ for

finite ϵ.

Dipolar: 0th order

The 0th order terms for the dipolar contribution take the form,

H̄
(0)
dipolar =

∑
j<i

{Ji,jσy
i σ

y
j

+
1

N
[σx

i σ
x
j − σz

i σ
z
j ]

N−1∑
n=0

cos(2nϵ)

+
1

N
[σx

i σ
z
j − σz

i σ
x
j ]

N−1∑
n=0

sin(2nϵ)}

.

(A.5)

In the limit of N → ∞, Eqn. A.5 approaches H̄
(0)
dipolar =

∑
j<i Ji,jσ

y
i σ

y
j for finite ϵ.
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Thus we conclude that to 0th order for large pulse number, the only term in the

effective Hamiltonian is ϵ independent and is given by,

H̄(0) = H̄
(0)
dipolar =

∑
j<i

Ji,jσ
y
i σ

y
j (A.6)

To understand the ϵ dependence in the pulse sequence we turn to the higher order terms

in the Magnus expansion which do not vanish for large pulse numbers.

A.1.2 1st order terms

We now calculate the first order terms in the Magnus expansion and separate them

by the generating commutator.

For ease of readability, we introduce the following notation to describe two-body

commutators. [AB,CD] indicates all terms generated by

H̄
(1)
[AB,CD] = [f(m, ϵ)σA

i σ
B
j , f(n, ϵ)σC

i σ
D
j ] (A.7)

, where f(m, ϵ) is a function that captures the ϵ dependence and A,B,C,D are arbitrary

X, Y, Z coordinates. A slash in the commutator such as [YY/XX,YY/XX] indicates a sum

over all possible permutations. Terms that follow
∑

i B
z
i (−1)m[σz

i cos(mϵ) + σx
i sin(mϵ)]

will be denoted simply as ‘disorder’. Three-body terms will be indexed explicitly with a

subscript.

[Disorder, disorder]: 1st order

We next evaluate the commutator between the disorder terms in the mth and nth

cycles during the sequence. This correction is given by,
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H̄
(1)
[dis,dis] =

∑
i

τ

2
(Bz

i )2 tan(ϵ/2)σy
i (A.8)

This term gives an effective field along the y-direction proportional to the variance of

the onsite disorder field and the tangent of the rotation offset, ϵ.

[YY/XX/ZZ,YY/XX/ZZ]: 1st order

All terms of the form [YY,YY], [XX,XX] and [ZZ,ZZ] commute trivially and thus

do not contribute first order corrections to the Mangus expansion. Terms of the form

[YY,XX], [YY,ZZ] [XX,ZZ] result in expressions similar to,

H̄
(1)
[YY,XX] =

i
∑
i<j

τ

2
(Ji,j)

2

N−1∑
m<n

cos(2mϵ) cos(2nϵ)[σz
i σ

z
j − σz

jσ
z
i ]

= 0.

(A.9)

All terms of this form are zero and thus we conclude that all of the two-body [dipole,

dipole] terms of the form [YY/XX/ZZ,YY/XX/ZZ] are zero and do not contribute first

order corrections to the Magnus expansion.

[XX/ZZ,XZ/ZX] and [XZ/ZX,XX/ZZ]: 1st order

We examine those terms of the form [XX/ZZ,XZ/ZX] or [XZ/ZX,XX/ZZ]. Counter-

intuitively, these two-body terms result in a sum of single-body expressions of the form

σy
i + σy

j . Summing all of them, we arrive at the expression,
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H̄
(1)
[XX/ZZ,XZ/ZX] + H̄

(1)
[XZ/ZX,XX/ZZ] =∑

i<j

τ(Ji,j)
2

N−1∑
m<n

4 sin(2[m− n]ϵ)(σy
i + σy

j ).
(A.10)

In the limit of N → ∞, this expression becomes,

H̄
(1)
[XX/ZZ,XZ/ZX] + H̄

(1)
[XZ/ZX,XX/ZZ] =∑

i<j

τ(Ji,j)
2 cot(ϵ)(σy

i + σy
j ).

(A.11)

This term acts as another effective field that points along the y-direction with a

strength proportional to the variance in the dipolar coupling constant and the cotangent

of the rotation offset, ϵ.

[XZ/ZX/Y Y,XZ/ZX]: 1st order

These terms all commute with each other. The terms like [XZ,XZ] all commute with

each other trivially. Terms like [XZ,ZX] result in expressions of the form

H̄
(1)
[XZ,ZX] =

i
∑
i<j

τ

2
(Ji,j)

2

N−1∑
m<n

sin(2mϵ) sin(2nϵ)[σy
i σ

y
j − σy

jσ
y
i ]

= 0.

(A.12)

Similarly, the [XZ,YY] term results in a similar expression proportional to (σz
i σ

x
j −

σx
j σ

z
i ) = 0. We conclude that all terms in this class commute and thus do not contribute
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to first order corrections in the Magnus expansion. This conclude the examination of all

two-body terms in the dipole-dipole commutator.

[Disorder,XX/YY/ZZ/XZ/ZX]: 1st order

We next discuss the effects of first-order corrections to the Magnus expansion involving

the commutator of a disorder term with a dipolar term. An example of such a term is

given by,

H̄
(1)
[Disorder,YY] =∑

i<j

τ

2
Ji,jBi

N−1∑
m<n

(−1)m cos(2mϵ)σx
i σ

y
j ̸= 0.

(A.13)

Terms in this class do not go to zero even in the case of N → ∞. We note that

though these terms are non-zero, they will have zero mean and thus produce no net

fields. Rather their effect will be decohering.

The first order average Hamiltonian resulting from these terms will be,

H̄
(1)
[Disorder,YY] = τ tan(ϵ/2)

∑
i,j

Bz
i Jijσ

z
i σ

y
j =

tan(ϵ/2)Â.

(A.14)

We have grouped the spin operators, coupling terms and τ -dependence into the generic

operator Â.
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Three-body terms: 1st order

Finally, we discuss terms in the dipole-dipole commutator that have only one over-

lapping site. Terms in this class constitute a three-body interaction. One such example

would be the commutator of [YiYj,XjXk]. In this case, we would have,

H̄
(1)
[YiYj ,XjXk]

=∑
i<j

τ

2
Ji,jJj,k

N−1∑
m<n

cos(2nϵ)σy
i σ

z
jσ

x
k ̸= 0.

(A.15)

This term is not zero even in the limit as N → ∞. Our treatment does not include

three-body terms on the basis that the coefficients, Ji,jJj,k, will have zero mean and so

produce no net fields. While these terms produce no net fields, they still can result in

decoherence. These terms result in,

H̄
(1)
[YiYj ,XjXk]

=

τ cot(ϵ){
∑
i,j ̸=q

JijJiqσ
y
i (σy+

i σy+
q + σy−

i σy−
q )+

∑
i,j ̸=q

JijJiq(σ
x
i σ

y
jσ

x
q − σz

i σ
y
jσ

z
q )} =

cot(ϵ)B̂,

(A.16)

where we have grouped the spin operators, coupling terms and τ -dependence into the

generic operator B̂.

A.1.3 Summary and resulting magnetization

Our final average Hamiltonian for the ith spin, up to first order, will be,
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H̄i =
∑
j ̸=i

1

2
{Ji,jσy

i σ
y
j

+
τ

2
[(Bz

i )2 tan(ϵ/2) + 2J2
i,j cot(ϵ)] σy

i } + H̄δ,i.

(A.17)

We group the first order contribution from three-body interactions and [Disorder, dipolar]

terms into H̄δ,i,

H̄δ,i = [tan(ϵ/2)Â + cot(ϵ)B̂], (A.18)

where Â is the generic operator arising from the [Disorder, dipolar] terms and B̂ is

the operator arising from three-body dipolar interactions.

We note that H̄i − H̄δ,i is the Ising model with an epsilon-dependent effective field

equal to Beff = τ
2
[(Bz

i )2 tan(ϵ/2) + 2J2
i,j cot(ϵ)].

In this case, the equilibrium density matrix will be given by ρ = e−βH/Z, where Z is

the partition function. The average magnetization along y, will be given by,

⟨Y ⟩ = Tr{
∑
i

σy
i ρ}. (A.19)

Expanding this for βH < 1, e−βH ≈ (1 − βH) we arrive at,

⟨Y ⟩ = −β
Tr{

∑
i σ

y
i H}

Z
. (A.20)

We also use,
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⟨H⟩ = Tr{Hρ} =
Tr{H(1 − βH)}

Z
=

−−βTr{H2}
Z

=
∑
i

Beff,i = N⟨Beff⟩
(A.21)

Using Tr{
∑

i σ
y
i H} = N⟨Beff⟩ gives us the equation,

⟨Y ⟩ =
⟨Beff⟩2

Tr{H2}
(A.22)

Using Eqn. A.17, the trace of H2 will be given by Tr{H2} = A∗ tan2(ϵ/2) +

B∗ cot2(ϵ)+C∗ cot(ϵ) tan(ϵ/2)+D∗, where A∗, B∗ and C∗ include contributions from the

effective field as well as those from H̄δ,i. The D∗ term is related to epsilon-independent

dipolar coupling.

Using the effective field in Eqn. A.17 and the form of Tr{H2}, we arrive at the

reduced expression,

⟨Y ⟩ =
[tan(ϵ/2) + γ cot(ϵ)]2

A tan2(ϵ/2) + B cot2(ϵ) + C tan(ϵ/2) cot(ϵ) + D
. (A.23)

In this expression, γ =
⟨2J2

i,j⟩
⟨B2

i ⟩
is a parameter that relates the relative strength of

dipolar couplings within the system to on-site disordered fields, while A, B, C, and D

are related to the strength of these interactions and the amount of decoherence the system

has undergone.

Figure A.2 shows fits to the data in Chapter 3 using Eqn A.23. While the agreement

between the data and this model is good, we ultimately abandoned this approach because

we expect that the dipolar interactions have the most dramatic effect close to ϵ = 0◦ (and

cause the pronounced dip). The expansion we used here requires periodicity; for small

values of ϵ, this requirement cannot be met (since to be periodic, we require the number
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Figure A.1: Fits to the data in Chapter 3 using Eqn. A.23.

of pulses N = 2π/ϵ). So, then, we expect this model to fail close to ϵ = 0 where we

find our most dramatic features. For other sequences where the periodic condition can

be met, we expect that this model should have better validity.

A.2 Lindblad approach

While the thermodynamic approach employed thus far is compelling, there are certain

assumptions in it whose validity may be in question. For example, the assumption of

a spin temperature (and the additional assumption that this temperature is very high)

may not be true for some systems. Another approach I want to briefly mention is the

possibility of using a von Neumann[280] or Lindblad-type[228] approach.

While the von Neumann equation,
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Figure A.2: Fits to the data in Chapter 3 using Eqn. A.27. Data close to ϵ = 0
is removed because the Hamiltonian diverges at that point: we do not expect good
agreement in the limit where ϵ ≈ 0 because 2π/ϵ≫ N .

ρ̇ =
i[ρ, Ĥ]

ℏ
, (A.24)

is tractable for single-body (or two-body) problems, for large N problems, it requires

solving a great many coupled differential equations.

However, we can map the many-body von Neumann approach onto a single-body

Lindblad approach[229] using Lindblad’s jump operators, L̂i, using the Lindblad equa-

tion,

ρ̇ =
i[ρ, Ĥeff ]

ℏ
+
∑
i

γi(L̂iρL̂
†
i −

1

2
{L̂†

i L̂i, ρ}), (A.25)

where the index i runs over the possible decoherence channels for the system (path-

ways for coherence to be lost to the environment) and {X̂, Ŷ } is the anticommutator

between operators X̂ and Ŷ . Starting with a fully |σy⟩ state and inspecting the average

Hamiltonian in Eqn. A.17, we can conclude that for short times, the only operators that
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will decohere the state are the Â and B̂ operators. Thus, the Lindblad operators will

have the corresponding coefficients (tan(ϵ/2) and cot(ϵ) respectively), and we expect for

small times, the single-particle density matrix to evolve like,

ρ = exp{−(1 + A tan2(ϵ/2) + B cot2(ϵ))τ/T1,ρ}σy, (A.26)

leading then to a coherence of the form,

C = exp{−(1 + A tan2(ϵ/2) + B cot2(ϵ))τ/T1,ρ}. (A.27)

Ultimately, this approach suffers from the same problems as the previous approach

(namely, it is not expected to fit well for ϵ ≈ 0). Nevertheless, there are cases where this

approach might help to reduce the complexity of a many-body Hamiltonian and result

in a solvable form.
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[10] J. Argüello-Luengo, A. González-Tudela, T. Shi, P. Zoller, and J. I. Cirac,
Analogue quantum chemistry simulation, Nature 574 (Oct, 2019) 215–218.

[11] J. R. Kirtley and J. P. Wikswo, Scanning squid microscopy, Annual Review of
Materials Science 29 (1999), no. 1 117–148,
[https://doi.org/10.1146/annurev.matsci.29.1.117].

[12] J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro,
L. Jiang, M. V. G. Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth,
and M. D. Lukin, Nanoscale magnetic sensing with an individual electronic spin
in diamond, Nature 455 (Oct, 2008) 644–647.

[13] D. Vasyukov, Y. Anahory, L. Embon, D. Halbertal, J. Cuppens, L. Neeman,
A. Finkler, Y. Segev, Y. Myasoedov, M. L. Rappaport, M. E. Huber, and
E. Zeldov, A scanning superconducting quantum interference device with single
electron spin sensitivity, Nature Nanotechnology 8 (Sep, 2013) 639–644.

[14] M. Pelliccione, A. Jenkins, P. Ovartchaiyapong, C. Reetz, E. Emmanouilidou,
N. Ni, and A. C. Bleszynski Jayich, Scanned probe imaging of nanoscale
magnetism at cryogenic temperatures with a single-spin quantum sensor, Nature
Nanotechnology 11 (Aug, 2016) 700–705.

[15] F. Wolf and P. O. Schmidt, Quantum sensing of oscillating electric fields with
trapped ions, Measurement: Sensors 18 (2021) 100271.

[16] M. T. Simons, A. B. Artusio-Glimpse, A. K. Robinson, N. Prajapati, and C. L.
Holloway, Rydberg atom-based sensors for radio-frequency electric field metrology,
sensing, and communications, Measurement: Sensors 18 (2021) 100273.

[17] C. L. Tschirhart, M. Serlin, H. Polshyn, A. Shragai, Z. Xia, J. Zhu, Y. Zhang,
K. Watanabe, T. Taniguchi, M. E. Huber, and A. F. Young, Imaging orbital
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S. Mandrà, J. R. McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen,
M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby,
A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin,
D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick,
A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman,
H. Neven, and J. M. Martinis, Quantum supremacy using a programmable
superconducting processor, Nature 574 (Oct, 2019) 505–510.

[19] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information.
Cambridge university press, 2010.

[20] D. Bluvstein, A. Omran, H. Levine, A. Keesling, G. Semeghini, S. Ebadi, T. T.
Wang, A. A. Michailidis, N. Maskara, W. W. Ho, S. Choi, M. Serbyn, M. Greiner,
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[51] M. Koppenhöfer, C. Padgett, J. V. Cady, V. Dharod, H. Oh, A. C.
Bleszynski Jayich, and A. A. Clerk, Single-spin readout and quantum sensing
using optomechanically induced transparency, Phys. Rev. Lett. 130 (Mar, 2023)
093603.

[52] P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert,
T. Wolf, A. Brunner, J. H. Shim, D. Suter, H. Sumiya, J. Isoya, and
J. Wrachtrup, High-precision nanoscale temperature sensing using single defects
in diamond, Nano Letters 13 (2013), no. 6 2738–2742,
[https://doi.org/10.1021/nl401216y]. PMID: 23721106.

[53] A. Tchebotareva, S. L. N. Hermans, P. C. Humphreys, D. Voigt, P. J. Harmsma,
L. K. Cheng, A. L. Verlaan, N. Dijkhuizen, W. de Jong, A. Dréau, and
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Plaats, T. Scholte, J. Chang, S. Gröblacher, S. F. Pereira, H. Bhaskaran, and
I. E. Zadeh, High-quality amorphous silicon carbide for hybrid photonic
integration deposited at a low temperature, ACS Photonics 10 (2023), no. 10
3748–3754, [https://doi.org/10.1021/acsphotonics.3c00968].

[87] T. Ishikawa, K.-M. C. Fu, C. Santori, V. M. Acosta, R. G. Beausoleil,
H. Watanabe, S. Shikata, and K. M. Itoh, Optical and spin coherence properties
of nitrogen-vacancy centers placed in a 100 nm thick isotopically purified diamond
layer, Nano Letters 12 (2012), no. 4 2083–2087,
[https://doi.org/10.1021/nl300350r]. PMID: 22404419.

[88] K. Ohno, F. Joseph Heremans, L. C. Bassett, B. A. Myers, D. M. Toyli, A. C.
Bleszynski Jayich, C. J. Palmstrøm, and D. D. Awschalom, Engineering shallow
spins in diamond with nitrogen delta-doping, Applied Physics Letters 101 (08,
2012) 082413, [https://pubs.aip.org/aip/apl/article-
pdf/doi/10.1063/1.4748280/14265520/082413 1 online.pdf].

136

http://xxx.lanl.gov/abs/https://doi.org/10.1021/acs.nanolett.6b05102
http://xxx.lanl.gov/abs/https://doi.org/10.1021/acsphotonics.3c00968
http://xxx.lanl.gov/abs/https://doi.org/10.1021/nl300350r
http://xxx.lanl.gov/abs/https://pubs.aip.org/aip/apl/article-pdf/doi/10.1063/1.4748280/14265520/082413_1_online.pdf
http://xxx.lanl.gov/abs/https://pubs.aip.org/aip/apl/article-pdf/doi/10.1063/1.4748280/14265520/082413_1_online.pdf


[89] J. M. Smith, S. A. Meynell, A. C. B. Jayich, and J. Meijer, Colour centre
generation in diamond for quantum technologies, Nanophotonics 8 (2019), no. 11
1889–1906.

[90] L. B. Hughes, Z. Zhang, C. Jin, S. A. Meynell, B. Ye, W. Wu, Z. Wang, E. J.
Davis, T. E. Mates, N. Y. Yao, K. Mukherjee, and A. C. Bleszynski Jayich,
Two-dimensional spin systems in PECVD-grown diamond with tunable density
and long coherence for enhanced quantum sensing and simulation, APL Materials
11 (02, 2023) 021101, [https://pubs.aip.org/aip/apm/article-
pdf/doi/10.1063/5.0133501/16695965/021101 1 online.pdf].

[91] M. V. Hauf, B. Grotz, B. Naydenov, M. Dankerl, S. Pezzagna, J. Meijer,
F. Jelezko, J. Wrachtrup, M. Stutzmann, F. Reinhard, and J. A. Garrido,
Chemical control of the charge state of nitrogen-vacancy centers in diamond,
Phys. Rev. B 83 (Feb, 2011) 081304.

[92] M. Kaviani, P. Deák, B. Aradi, T. Frauenheim, J.-P. Chou, and A. Gali, Proper
surface termination for luminescent near-surface nv centers in diamond, Nano
Letters 14 (Aug, 2014) 4772–4777.

[93] V. Yurgens, J. A. Zuber, S. Fl̊agan, M. De Luca, B. J. Shields, I. Zardo,
P. Maletinsky, R. J. Warburton, and T. Jakubczyk, Low-charge-noise
nitrogen-vacancy centers in diamond created using laser writing with a
solid-immersion lens, ACS Photonics 8 (Jun, 2021) 1726–1734.

[94] S. Knauer, J. P. Hadden, and J. G. Rarity, In-situ measurements of fabrication
induced strain in diamond photonic-structures using intrinsic colour centres, npj
Quantum Information 6 (Jun, 2020) 50.

[95] L. Orphal-Kobin, K. Unterguggenberger, T. Pregnolato, N. Kemf, M. Matalla,
R.-S. Unger, I. Ostermay, G. Pieplow, and T. Schröder, Optically coherent
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[201] S. Hernández-Gómez, N. Staudenmaier, M. Campisi, and N. Fabbri, Experimental
test of fluctuation relations for driven open quantum systems with an nv center,
New Journal of Physics 23 (jun, 2021) 065004.

146



[202] I. V. Martynenko, V. Ruider, M. Dass, T. Liedl, and P. C. Nickels, Dna origami
meets bottom-up nanopatterning, ACS Nano 15 (Jul, 2021) 10769–10774.

[203] S. Kogikoski, Jr, J. Ameixa, A. Mostafa, and I. Bald, Lab-on-a-DNA origami:
nanoengineered single-molecule platforms, Chem Commun (Camb) 59 (Apr.,
2023) 4726–4741.

[204] T. Mori, Floquet states in open quantum systems, Annual Review of Condensed
Matter Physics 14 (2023), no. 1 35–56,
[https://doi.org/10.1146/annurev-conmatphys-040721-015537].

[205] E. Fraczek, V. G. Savitski, M. Dale, B. G. Breeze, P. Diggle, M. Markham,
A. Bennett, H. Dhillon, M. E. Newton, and A. J. Kemp, Laser spectroscopy of nv-
and nv0 colour centres in synthetic diamond, Opt. Mater. Express 7 (Jul, 2017)
2571–2585.

[206] T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, and
J. Wrachtrup, Subpicotesla diamond magnetometry, Phys. Rev. X 5 (Oct, 2015)
041001.

[207] H. Y. Carr and E. M. Purcell, Effects of diffusion on free precession in nuclear
magnetic resonance experiments, Phys. Rev. 94 (May, 1954) 630–638.

[208] S. Meiboom and D. Gill, Modified spin-echo method for measuring nuclear
relaxation times, Review of Scientific Instruments 29 (1958), no. 8 688–691,
[https://doi.org/10.1063/1.1716296].

[209] E. D. Ostroff and J. S. Waugh, Multiple spin echoes and spin locking in solids,
Phys. Rev. Lett. 16 (Jun, 1966) 1097–1098.

[210] J. S. Waugh, C. H. Wang, L. M. Huber, and R. L. Vold, Multiple-pulse NMR
experiments, The Journal of Chemical Physics 48 (1968), no. 2 662–670,
[https://doi.org/10.1063/1.1668698].

[211] C. A. McLellan, B. A. Myers, S. Kraemer, K. Ohno, D. D. Awschalom, and A. C.
Bleszynski Jayich, Patterned formation of highly coherent nitrogen-vacancy
centers using a focused electron irradiation technique, Nano Letters 16 (Apr,
2016) 2450–2454.

[212] T. R. Eichhorn, C. A. McLellan, and A. C. Bleszynski Jayich, Optimizing the
formation of depth-confined nitrogen vacancy center spin ensembles in diamond
for quantum sensing, Phys. Rev. Mater. 3 (Nov, 2019) 113802.

[213] B. Suh, F. Borsa, and D. Torgeson, Use of an alternating-phase cpmg sequence to
avoid spin-locking effects in t2 measurements in solids, Journal of Magnetic
Resonance, Series A 110 (1994), no. 1 58–61.

147

http://xxx.lanl.gov/abs/https://doi.org/10.1146/annurev-conmatphys-040721-015537
http://xxx.lanl.gov/abs/https://doi.org/10.1063/1.1716296
http://xxx.lanl.gov/abs/https://doi.org/10.1063/1.1668698


[214] M. J. Biercuk, A. C. Doherty, and H. Uys, Dynamical decoupling sequence
construction as a filter-design problem, Journal of Physics B: Atomic, Molecular
and Optical Physics 44 (jul, 2011) 154002.

[215] C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum sensing, Rev. Mod. Phys.
89 (Jul, 2017) 035002.
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