
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Flexible Coding for Distributed Systems

Permalink
https://escholarship.org/uc/item/64g5514k

Author
Li, Weiqi

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/64g5514k
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Flexible Coding for Distributed Systems

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Electrical and Computer Engineering

by

Weiqi Li

Dissertation Committee:
Chancellor’s Professor Hamid Jafarkhani, Chair

Assistant Professor Zhiying Wang, Chair
Chancellor’s Professor Syed Ali Jafar

2021

© 2021 Weiqi Li

DEDICATION

To my parents and friends, for their unwavering support.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vi

LIST OF ALGORITHMS vii

ACKNOWLEDGMENTS viii

VITA ix

ABSTRACT OF THE DISSERTATION xi

1 Introduction 1

2 On the Sub-Packetization Size and the Repair Bandwidth of Reed-Solomon Codes 4
2.1 Introduction . 4
2.2 Preliminaries . 10
2.3 Reed-Solomon Repair Schemes for Single Erasure 14

2.3.1 Schemes in one coset . 14
2.3.2 Schemes in two cosets . 19
2.3.3 Schemes in multiple cosets . 22
2.3.4 Numerical evaluations and discussions . 32

2.4 Reed-Solomon Repair Schemes for Multiple Erasures 34
2.4.1 Definitions of the multiple-erasure repair 35
2.4.2 Multiple-erasure repair in one coset . 37
2.4.3 Multiple-erasure repair in multiple cosets 43
2.4.4 Numerical evaluations and discussions . 50

2.5 Repair Algorithm for RS(n, k) Codes . 52
2.6 Comparison . 58
2.7 Conclusion . 60
2.8 Detailed Proofs . 61

2.8.1 Proof of schemes for the case of arbitrary a and `′. 61
2.8.2 Proof of Theorem 6 . 62
2.8.3 Proof of Lemma 4 . 67
2.8.4 Proof of Lemma 5 . 67

iii

3 Storage Codes with Flexible Number of Nodes 70
3.1 Introduction . 70
3.2 The Framework for Flexible Codes . 74
3.3 Constructions . 78

3.3.1 Flexible LRC . 79
3.3.2 Flexible PMDS codes . 83
3.3.3 Flexible MSR codes . 87

3.4 Latency . 102
3.5 Conclusion . 107

4 Flexible Constructions for Distributed Matrix Multiplication 108
4.1 Introduction . 108
4.2 Problem Statement . 111
4.3 Construction . 113
4.4 Optimization . 119
4.5 Conclusion . 122

5 Conclusion and Future Work 123

Bibliography 124

iv

LIST OF FIGURES

Page

2.1 Comparison of 3 schemes, q = 2, n = 12, k = 10, r = 2. 33
2.2 Comparison of 3 schemes, q = 2, n = 12, k = 8, r = 4. 33
2.3 Location of the erasures. 44
2.4 Comparison of the schemes, q = 2, n = 16, k = 8, e = 2. 51

3.1 Example of a (4, 2, 3) flexible MDS code over GF (5). 72
3.2 Overall latency of fixed codes and flexible codes. 106
3.3 Overall latency of fixed codes and flexible codes for matrix-vector multiplication

in Amazon cluster. n = 8, R1 = 5, R2 = 4, `1 = 12, `2 = 15.. 107

4.1 CDF of latency for flexible construction and EP code in Example 1 of Section 4.3. 111

v

LIST OF TABLES

Page

2.1 Comparison of different schemes for single erasure. When a = `, our scheme in
one coset is the scheme in [40], [18]. When a = 1, our schemes in multiple cosets
is the schemes in [103], [94]. 9

2.2 Comparison of different schemes for multiple erasures. When a = ` and s = ` our
scheme in one coset is the scheme 1 in [67]. When a = 1, our schemes in multiple
cosets is the scheme in [106]. 9

2.3 Repair bandwidth of different schemes for e erasures. 50
2.4 Normalized repair bandwidth(b

(n−e)`) for different schemes when n = 64, k =
32, e = 2, q = 2. ◦ can be also achieved by Scheme 1 in [67] and ∗ is also
achieved by [106]. 51

2.5 Dual basis table for RS(14, 10) over GF (28), a = 4, s = 2. β is a root of the
primitive polynomial 1 + x2 + x3 + x4 + x8. 59

2.6 Dual codeword table. It shows the symbols cmi = υmηtpj,∗(αm), i = 4(t− 1) + j,
for RS(14, 10) when Node ∗ = 1 fails. 59

2.7 Subspace basis table. It shows εm,t,z for RS(14, 10) when Node ∗ = 1 fails. 59
2.8 Representation table. It represents trF/B(cmiNm) by Dm,v = trF/B(εm,t,zNm), v =

2(t− 1) + z, for RS(14, 10) when Node 1 fails. 60

3.1 Construction of multiple-layer codes . 77
3.2 Construction of (n = 12, k = 4, ` = 3, r = 2) flexible LRC code 80
3.3 An example of (5, 3, 4, 2) flexible PMDS code. 84

4.1 Calculation tasks in each server for Example 1. 115
4.2 Calculation tasks in each server for the general construction. 117

vi

LIST OF ALGORITHMS

Page
1 Repair algorithm for RS(n, k) over GF (2`). 55

vii

ACKNOWLEDGMENTS

I would like to thank my advisors, Professor Jafarkhani & Professor Wang, for their advice and
guidance during my PhD program. They provide me enough freedom to explore my interest and
valuable resources for my research. Without their help and support, the thesis would never have
been possible. Their high academic and research standards set great examples in my future life.

I would like to thank my colleagues in Professor Jafarkhani’s research group: Xiaoyi Liu, Jun Guo,
Mehdi Ganji, Xun Zou, Lisi Jiang, Saeed Karimi Bidhendi, Carles Diaz, and Professor Wang’s
group: Marwen Zorgui, Zhen Chen, Peng Fei, Alireza Javani, Xiaoran Li, Keqing Fu. We had
many valuable discussions about our research. It was a precious experience working with them.

I would like to thank my parents for their selfless love. Their supports and encouragements help
me a lot during my whole life.

viii

VITA

Weiqi Li

EDUCATION

Doctor of Philosophy in Electrical Engineering and Computer Science 2021
University of California, Irvine Irvine, CA

Master of Information Engineering 2016
Xi’an Jiaotong University Xi’an, Shannxi

Bachelor of Information Engineering 2013
Xi’an Jiaotong University Xi’an, Shannxi

RESEARCH EXPERIENCE

Graduate Research Assistant 2016–2021
University of California, Irvine Irvine, California

TEACHING EXPERIENCE

Teaching Assistant Jan. 2021–Mar. 2021
University of California, Irvine Irvine, California

ix

REFEREED JOURNAL PUBLICATIONS

On the Sub-Packetization Size and the Repair Bandwidth of
Reed-Solomon Codes

2019

IEEE Transactions on Information Theory

Repairing Reed-Solomon Codes Over GF (2`) 2019
IEEE Communications Letters

Storage Codes with Flexible Number of Nodes 2021
Submitted to IEEE Transactions on Information Theory

REFEREED CONFERENCE PUBLICATIONS

A tradeoff between the sub-packetization size and the repair
bandwidth for Reed-Solomon code

2017

55th Annual Allerton Conference on Communication, Control, and Computing (Allerton)

On the I/O costs in repairing short-length Reed-Solomon codes 2019
IEEE International Symposium on Information Theory (ISIT)

Flexible Partial MDS Codes 2021
12TH Annual Non-Volatile Memories Workshop (NVMW)

Flexible Constructions for Distributed Matrix Multiplication 2021
IEEE International Symposium on Information Theory (ISIT)

x

ABSTRACT OF THE DISSERTATION

Flexible Coding for Distributed Systems

By

Weiqi Li

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2021

Chancellor’s Professor Hamid Jafarkhani, Chair
Assistant Professor Zhiying Wang, Chair

In this dissertation, the constructions and schemes for flexible coding in distributed systems are

investigated. Depending on the system parameters, the proposed methods allow adaptive choices

of code constructions or data reconstruction schemes that provide desirable cost functions, such

as network traffic, complexity, and latency. First, the repair of a node failure for Reed-Solomon

(RS) codes, one of the most popular codes used in practical storage systems, is considered. Code

constructions and repair schemes that provide a tradeoff between the repair communication cost

and the coding complexity are presented. Second, facing the fact that the failures are unpredictable

in a distributed system, a framework for flexible codes to achieve the optimal latency of accessing

information is proposed. Instead of accessing a fixed number of nodes with a conventional code, a

flexible code allows one to recover the entire information from a flexible number of storage nodes,

and use all the available nodes efficiently. Constructions for different storage scenarios are pro-

posed. Third, flexible coding in distributed matrix multiplication for failure tolerance is presented

to reduce the computing latency. The goal is to allow a master node to efficiently obtain the com-

putation results from a flexible number of available servers. The number of failures is unknown

a priori and we provide code constructions that can efficiently make use of the computation re-

sults from all available servers. Given the storage capacity of the servers, the computation load

optimization problem is analyzed.

xi

Chapter 1

Introduction

Due to the high demand for accessing and storing large amount of data, distributed systems con-

sisting of hundreds of thousands of devices are widely used. In distributed systems, failures are

quite common [84] and hard to predict. To protect data from failures, error-correcting codes are

ubiquitous for data storage systems such as Google File System [28] and Facebook’s Warm BLOB

[68], since it requires only a small storage overhead compared to simple replication of data. By

using error-correcting codes, data is divided into fragments and encoded with redundant fragments

to be stored in a set of nodes. If some nodes fail, either permanently or transiently, the data can be

recovered from the fragments stored in the other available nodes. However, data reconstruction and

failure recovery is costly in terms of latency, data access, node activation, network traffic, power

consumption, etc. In this dissertation, we investigate the communication cost between nodes when

failures are repaired, the constructions of error-correcting codes to protect data from a flexible

number of failures, and the application of error-correcting codes to distributed computing.

We first consider the repair problem of the Reed-Solomon (RS) codes [80]. RS code is one of

the most commonly used codes because it achieves lowest redundancy for given failure tolerance

and has efficient encoding and decoding methods, see, e.g., [83, 39]. The RS code can be viewed

1

as a polynomial over a finite field GF (q`) evaluated at a set of points, where ` is called the sub-

packetization size. The amount of transmitted information from surviving nodes to repair a failed

node is defined as the repair bandwidth. Smaller ` facilitates the implementation of RS codes

with lower complexity, however, when ` is small, say ` = 1, the data in surviving nodes is hard to

divide into smaller pieces thus result in a bigger repair bandwidth compared to the lost information.

To reduces the network traffic in distributed storage, the optimal bandwidth for RS code [94] is

achieved while ` is exponentially large with the code length. The tradeoff between these the sub-

packetization size and the repair bandwidth remains an open problem. Several works [17, 67,

114, 113, 106] in the literature provide constructions with different sub-packetization sizes and

the repair bandwidth. In Chapter 2, we present code constructions and repair schemes to provide

a flexible tradeoff between the sub-packetization size and the repair bandwidth. In addition, we

generalize our schemes to manage multiple failures.

We also consider the reconstruction of the entire information in the presence of a flexible number

of failures. In the literature, most of the codes have a fixed redundancy level, while in practical

systems, the number of failures varies over time. When the number of failures is smaller than

the designed redundancy level, the redundant storage nodes are not used efficiently, resulting in

an unnecessarily large latency. In Chapter 3, we present flexible storage codes, a class of error-

correcting codes that can recover information from a flexible number of storage nodes. The main

idea is that fast servers can access more information symbols to compensate for the effect of the

slow servers, and thus reduce the latency. Code constructions for different storage scenarios are

presented, including LRC (locally recoverable) codes, PMDS (partial MDS) codes, and MSR (min-

imum storage regenerating) codes. We analyze the latency of accessing information and perform

simulations on Amazon clusters to show the efficiency of the presented codes.

Large-scale matrix multiplication is applied in big data computing required by many applications

like machine learning problems. To parallelize the computation, the computation tasks are divided

and encoded into multiple severs and the required results can be obtained from the computation

2

of the servers. Codes have been shown to be effective for combating slow servers in such systems

[57]. In Chapter 4, the distributed matrix multiplication problem with unknown number of strag-

glers is considered, where the goal is to allow a master to efficiently and flexibly obtain the product

of two massive matrices by distributing the computation across N servers. We assume there are at

most N − R stragglers but the exact number is not known a priori. Motivated by reducing the la-

tency, a flexible solution is proposed to fully utilize the computation capability of available servers.

The computing job for each server is separated into several tasks, constructed based on Entangled

Polynomial (EP) codes by Yu el al [110]. The final results can be obtained by a flexible number

of servers, while the number of tasks required in each server adjusts to the number of available

servers. The required finite field size of the proposed solution is less than 2N . Moreover, the op-

timal partitioning of the input matrices is discussed. Our constructions can also be generalized to

secure computing, where the servers are not able to know any information about the original tasks,

and batch matrix multiplication, where a batch of matrices are multiplied together.

3

Chapter 2

On the Sub-Packetization Size and the

Repair Bandwidth of Reed-Solomon Codes

2.1 Introduction

Erasure codes are ubiquitous in distributed storage systems because they can efficiently store data

while protecting against failures. Reed-Solomon (RS) code is one of the most commonly used

codes because it achieves the Singleton bound [65] and has efficient encoding and decoding meth-

ods, see, e.g., [83, 39]. Codes matching the Singleton bound are called maximum distance sep-

arable (MDS) codes, and they have the highest possible failure-correction capability for a given

redundancy level. In distributed storage, every code word symbol corresponds to a storage node,

and communication costs between storage nodes need to be considered when node failures are

repaired. In this chapter, we study the repair bandwidth of RS codes, defined as the amount of

transmission required to repair a single node erasure, or failure, from all the remaining nodes

(called helper nodes).

For a given erasure code, when each node corresponds to a single finite field symbol over F =

4

GF (q`), we say the code is scalar; when each node is a vector of finite field symbols in B = GF (q)

of length `, it is called a vector code or an array code. In both cases, we say the sub-packetization

size of the code is `. Here q is a power of a prime number. Shanmugam et al. [86] considered the

repair of scalar codes for the first time. Recently, Guruswami and Wootters [40] proposed a repair

scheme for RS codes. The key idea of both chapters is that: rather than directly using the helper

nodes as symbols over F to repair the failed node, one treats them as vectors over the subfield B.

Thus, a helper may transmit less than ` symbols over B, resulting in a reduced bandwidth. For an

RS code with length n and dimension k over the field F, denoted by RS(n, k), [40] achieves the

repair bandwidth of n−1 symbols over B. Moreover, when n = q` (called the full-length RS code)

and n − k = q`−1, the scheme provides the optimal repair bandwidth. Dau and Milenkovic [18]

improved the scheme such that the repair bandwidth is optimal for the full-length RS code and any

n− k = qs, 1 ≤ s ≤ logq(n− k).

For the full-length RS code, the schemes in [40] and [18] are optimal for single erasure. However,

the repair bandwidth of these schemes still has a big gap from the minimum storage regenerating

(MSR) bound derived in [20]. In particular, for an arbitrary MDS code, the repair bandwidth b,

measured in the number of symbols over GF (q), is lower bounded by

b ≥ `(n− 1)

n− k
. (2.1)

An MDS code satisfying the above bound is called an MSR code. In fact, most known MSR

codes are vector codes, see [77, 71, 93, 99, 78, 34, 105]. For the repair of RS codes, Ye and Barg

proposed a scheme that asymptotically approaches the MSR bound as n grows [103] when the sub-

packetization size is ` = (n− k)n. Tamo et al. [94] provided an RS code repair scheme achieving

the MSR bound when the sub-packetization size is ` ≈ nn.

The repair problem for RS codes can also be generalized to multiple erasures. In this case, the

schemes in [17] and [67] work for the full-length code, [114] and [113] work for centralized repair,

5

and [106] proposed a scheme achieving the multiple-erasure MSR bound.

Motivation: A flexible tradeoff between the sub-packetization size and the repair bandwidth is an

open problem: Only the full-length RS code with high repair bandwidth and the MSR-achieving

RS code with large sub-packetization are established. Our chapter aims to provide more points

between the two extremes – the full-length code and the MSR code. One straightforward method

is to apply the schemes of [40] and [18] to the case of ` > logq n with fixed (n, k). However,

the resulting normalized repair bandwidth b
`(n−1) grows with `, contradictory to our intuition that

larger ` implies smaller normalized bandwidth.

The need for small repair bandwidth is motivated by reducing the network traffic in distributed

storage [20], and the need for the small sub-packetization is due to the complexity in field arith-

metic operations, discussed below. It is demonstrated that the time complexity of multiplications

in larger fields are much higher than that of smaller fields [31]. Moreover, multiplication in Galois

fields are usually done by pre-computed look-up tables and the growing field size has a significant

impact on the space complexity of multiplication operations. Larger fields require huge memories

for the look-up table. For example, in GF (216), 8 GB are required for the complete table, which is

impractical in most current systems [36]. Some logarithm tables and sub-tables are used to alleviate

the memory problems for large fields, while increasing the time complexity at the same time [36],

[74], [64]. For example, in the Intel SIMD methods, multiplications over GF (216) need twice the

amount of operations as over GF (28), and multiplications over GF (232) need 4 times the amount

of operations compared to GF (28), which causes the multiplication speed to drop significantly

when the field size grows [74].

To illustrate the impact of the sub-packetization size on the complexity, let us take encoding for

example. To encode a single parity check node, we need to do k multiplications and k additions

over GF (q`). For a given systematic RS(n, k) code over GF (q`), we can encode k` log2 q bits of

information by multiplications of (n − k)k` log2 q bits and additions of (n − k)k` log2 q bits. So,

when M bits are encoded into RS(n, k) codes, we need M/(k` log2 q) copies of the code and we

6

need multiplications of M(n−k) bits and additions of M(n−k) bits in GF (q`) in total. Although

the total amount of bits we need to multiply is independent of `, the complexity over a larger field

is higher in both time and space. For a simulation of the RS code speed using different field sizes

on different platforms, we refer the readers to [75]. The results suggest that RS codes have faster

implementation in both encoding and decoding for smaller fields.

Besides the complexity, the small sub-packetization level also has many advantages such as easy

system implementation, great flexibility and bandwidth-efficient access to missing small files [38],

[51], which makes it important in distributed storage applications.

As can be seen from the two extremes, a small sub-packetization level also means higher costs in

repair bandwidth, and not many other codes are known besides the extremes. For vector codes,

Guruswami, Rawat [38] and Li, Tang [59] provided small sub-packetization codes with small repair

bandwidth, but only for single erasure. Kralevska et al. [55] also presented a tradeoff between the

sub-packetization level and the repair bandwidth for the proposed HashTag codes implemented in

Hadoop. For scalar codes, Chowdhury and Vardy [16] extended Ye and Barg’s MSR scheme [103]

to a smaller sub-packetization size, but it only works for certain redundancy r and single erasure.

Contributions: In this work, we first design three single-erasure RS repair schemes, using the

cosets of the multiplicative group of the finite field F. Note that the RS code can be viewed as

n evaluations of a polynomial over F. The evaluation points of the three schemes are part of one

coset, of two cosets, and of multiple cosets, respectively, so that the evaluation point size can vary

from a very small number to the whole field size. In the schemes designed in this chapter, we have

a parameter a that can be tuned, and provides a tradeoff between the sub-packetization size and the

repair bandwidth.

• For an RS(n, k) code, our first scheme achieves the repair bandwidth `
a
(n − 1)(a − s) for

some a, s such that n < qa, r , n− k > qs and a divides `. Specifically, for the RS(14, 10)

code used in Facebook [84], we achieve repair bandwidth of 52 bits with ` = 8, which is

7

35% better than the naive repair scheme.

• Our second scheme reaches the repair bandwidth of (n − 1) `+a
2

for some a such that n ≤

2(qa − 1), a divides ` and `
r
< a.

• The first realization of our third scheme attains the repair bandwidth of `
r
(n + 1 + (r −

1)(qa − 2)) when n ≤ (qa − 1) logr
`
a
. Another realization of the third scheme attains the

repair bandwidth of `
r
(n − 1 + (r − 1)(qa − 2)) where ` ≈ a(n

qa−1)(
n

qa−1
). The second

realization can also be generalized to any d helpers, for k ≤ d ≤ n− 1.

We provide characterizations of linear multiple-erasure repair schemes, and propose two schemes

for multiple erasures, where the evaluation points are in one coset and in multiple cosets, respec-

tively. Again, the parameter a is tunable.

• We prove that any linear repair scheme for multiple erasures in a scalar MDS code is equiv-

alent to finding a set of dual codewords satisfying certain rank constraints.

• For an RS(n, k) code with e < 1
a−s
√

logq n erasures, our first scheme achieves the repair

bandwidth e`
a

(n− e)(a− s) for some a, s such that n < qa, r = n− k > qs and a divides `.

• For an RS(n, k) code, our second scheme works for e ≤ n − k erasures and n − e helpers.

The repair bandwidth depends on the location of the erasures and in most cases, we achieve

e`
d−k+e(n− e+ (n− k + e)(qa − 2)) where ` ≈ a(n

qa−1)(
n

qa−1
) and a divides `.

• We demonstrate that repairing multiple erasures simultaneously is advantageous compared

to repairing single erasures separately.

The comparison of our schemes, as well as the comparison to previous works, are shown in Tables

2.1 and 2.2, and are discussed in more details in Sections 2.3.4 and 2.4.4.

The chapter is organized as follows. In Section II, we briefly review the linear repair of RS codes

and provide the preliminaries used in this chapter. In Section III, we present three RS repair

schemes for single erasure. Then, we discuss the repair schemes for multiple erasures in Section

IV. In Section V, we provide the conclusion.

8

Table 2.1: Comparison of different schemes for single erasure. When a = `, our scheme in one
coset is the scheme in [40], [18]. When a = 1, our schemes in multiple cosets is the schemes in
[103], [94].

repair bandwidth code length restrictions
Schemes in [40], [18] (n− 1)(`− s) n ≤ q` qs ≤ r

Scheme in [103] < `
r
(n+ 1) n = logr `

Scheme in [94] `
r
(n− 1) nn ≈ `

Our scheme in
one coset ≤ `

a
(n− 1)(a− s) n ≤ (qa − 1) qs ≤ r, a|`

Our scheme in
two cosets < (n− 1) `+a

2
n ≤ 2(qa − 1) `

r
≤ a, a|`

Our scheme in
multiple cosets 1 < `

r
(n+ 1 + (r − 1)(qa − 2)) n ≤ (qa − 1)m

`/a = rm

for some integer m
Our scheme in

multiple cosets 2
`
r
(n− 1 + (r − 1)(qa − 2)) n ≤ (qa − 1)m

`/a ≈ mm

for some integer m

Table 2.2: Comparison of different schemes for multiple erasures. When a = ` and s = ` our
scheme in one coset is the scheme 1 in [67]. When a = 1, our schemes in multiple cosets is the
scheme in [106].

repair bandwidth code length restrictions
Scheme 1 in [67] ≤ (n− e)e− e(e−1)(q−1)

2
n ≤ q` q`−1 ≤ r, e <

√
logq n

Scheme 2 in [67] ≤ min
e′≥e

((n− e′)(`− blogq(
n−k+e′−1

2e′−1)c)) n ≤ q`

Scheme in [106] ed`
d−k+e nn ≈ `

Our scheme for multiple erasures
in one coset ≤ e`

a
(n− e)(a− s) n ≤ (qa − 1) qs ≤ r, a|`, e < 1

a−s
√

logq n

Our scheme for multiple erasures
in multiple cosets

e`
n−k (n− e+ (n− k + e)(qa − 2)) n ≤ (qa − 1)m

`/a ≈ mm

for some integer m

9

Notation: Throughout this chapter, for positive integer i, we use [i] to denote the set {1, 2, . . . , i}.

For integers a, b, we use a | b to denote that a divides b. For real numbers an, bn, which are

functions of n, we use a ≈ b to denote limn→∞
an
bn

= 1. For sets A ⊆ B, we use B/A to denote

the difference of A from B. For a finite field F, we denote by F∗ = F/{0} the corresponding

multiplicative group. We write E ≤ F for E being a subfield of F. For element β ∈ F and E as a

subset of F, we denote βE = {βs, ∀s ∈ E}. AT denotes the transpose of the matrix A.

2.2 Preliminaries

In this section, we review the linear repair scheme of RS code in [40], and provide a basic lemma

used in our proposed schemes.

The Reed-Solomon code RS(A, k) over F = GF (q`) of dimension k with n evaluation points

A = {α1, α2, . . . , αn} ⊆ F is defined as

RS(A, k) = {(f(α1), f(α2), . . . , f(αn)) : f ∈ F[x], deg(f) ≤ k − 1},

where deg() denotes the degree of a polynomial, f(x) = u0 + u1x + u2x
2 + · · ·+ uk−1x

k−1, and

ui ∈ F, i = 0, 1, . . . , k − 1 are the messages. Every evaluation symbol f(α), α ∈ A, is called a

code word symbol or a storage node. The sub-packetization size is defined as `, and r , n − k

denotes the number of parity symbols.

Assume e nodes fail, e ≤ n − k, and we want to recover them. The number of helper nodes

are denoted by d. The amount of information transmitted from the helper nodes is defined as the

repair bandwidth b, measured in the number of symbols over GF (q). All the remaining n− e = d

nodes are assumed to be the helper nodes unless stated otherwise. We define the normalized repair

bandwidth as b
`d

, which is the average fraction of information transmitted from each helper. By

10

[20, 12], the minimum storage regenerating (MSR) bound for the bandwidth is

b ≥ e`d

d− k + e
. (2.2)

As mentioned before, codes achieving the MSR bound require large sub-packetization sizes. In

this section, we focus on the single erasure case.

Assume B ≤ F, namely, B is a subfield of F. A linear repair scheme requires some symbols of the

subfield B to be transmitted from each helper node [40]. If the symbols from the same helper node

are linearly dependent, the repair bandwidth decreases. In particular, the scheme uses dual code

to compute the failed node and uses trace function to obtain the transmitted subfield symbols, as

detailed below.

Assume f(α∗) fails for some α∗ ∈ A. For any polynomial p(x) ∈ F[x] of which the degree is

smaller than r, (υ1p(α1), υ2p(α2), . . . , υnp(αn)) is a dual codeword of RS(A, k), where υi, i ∈ [n]

are non-zero constants determined by the set A (see for example [65, Thm. 4 in Ch.10]). We can

thus repair the failed node f(α∗) from

υα∗p(α
∗)f(α∗) = −

n∑
i=1,αi 6=α∗

υip(αi)f(αi) (2.3)

The summation on the right side means that we add all the i elements from i = 1 to i = n except

when αi 6= α∗.

The trace function from F onto B is defined as

trF/B(β) = β + βq + · · ·+ βq
`−1

, (2.4)

where β ∈ F, B = GF (q) is called the base field, and q is a power of a prime number. It is a linear

11

mapping from F to B and satisfies

trF/B(αβ) = αtrF/B(β) (2.5)

for all α ∈ B.

We define the rank rankB({γ1, γ2, ..., γi}) to be the cardinality of a maximal subset of {γ1, γ2, ...,

γi} that is linearly independent over B. For example, for B = GF (2) and α /∈ B, rankB({1, α, 1 +

α}) = 2 because the subset {1, α} is the maximal subset that is linearly independent over B and

the cardinality of the subset is 2.

Assume we use polynomials pj(x), j ∈ [`] to generate ` different dual codewords, called repair

polynomials. Combining the trace function and the dual code, we have

trF/B(υα∗pj(α
∗)f(α∗)) = −

n∑
i=1,αi 6=α∗

trF/B(υipj(αi)f(αi)). (2.6)

In a repair scheme, the helper f(αi) transmits

{trF/B(υipj(αi)f(αi)) : j ∈ [`]}. (2.7)

Suppose {υα∗p1(α∗), υα∗p2(α∗), . . . , υα∗p`(α∗)} is a basis for F over B, and assume {µ1, µ2, . . . ,

µ`} is its dual basis. Then, f(α∗) can be repaired by

f(α∗) =
∑̀
j=1

µjtrF/B(υα∗pj(α
∗)f(α∗)). (2.8)

Since υα∗ is a non-zero constant, we equivalently suppose that {p1(α∗), . . . , p`(α∗)} is a basis.

In fact, by [40] any linear repair scheme of RS code for the failed node f(α∗) is equivalent to

choosing pj(x), j ∈ [`], with degree smaller than r, such that {p1(α∗), . . . , p`(α∗)} forms a basis

12

for F over B. We call this the full rank condition:

rankB({p1(α∗), p2(α∗), . . . , p`(α∗)}) = `. (2.9)

The repair bandwidth can be calculated from (2.7) and by noting that vif(αi) is a constant:

b =
∑

α∈A,α 6=α∗
rankB({p1(α), p2(α), . . . , p`(α)}). (2.10)

We call this the repair bandwidth condition.

The goal of a good RS code construction and its repair scheme is to choose appropriate evaluation

points A and polynomials pj(x), j ∈ [`], that can reduce the repair bandwidth in (2.10) while

satisfying (2.9).

The following lemma is due to the structure of the multiplicative group of F, which will be used

for finding the evaluation points in the code constructions in this chapter. Similar statements can

be found in [83, Ch. 2.6].

Lemma 1. Assume E ≤ F = GF (q`), then F∗ can be partitioned to t , q`−1
|E|−1 cosets: {E∗, βE∗,

β2E∗, . . . , βt−1E∗}, where β is a primitive element of F.

Proof: The q` − 1 elements in F∗ are {1, β, β2, . . . , βq
`−2} and E∗ ⊆ F∗. Assume that t is the

smallest nonzero number that satisfies βt ∈ E∗, then we know that βk ∈ E∗ if and only if t|k. Also,

βk1 6= βk2 when k1 6= k2 and k1, k2 < q`−2. Since there are only |E|−1 nonzero distinct elements

in E∗ and βq
`−1 = 1, we have t = q`−1

|E|−1 and the t cosets are E∗ = {1, βt, β2t, . . . , β(|E|−2)t},

βE∗ = {β, βt+1, β2t+1, . . . , β(|E|−2)t+1}, . . . , βt−1E∗ = {βt−1, β2t−1, β3t−1, . . . , β(|E|−1)t−1}.

13

2.3 Reed-Solomon Repair Schemes for Single Erasure

In this section, we present our schemes in which the evaluation points are part of one coset, two

cosets and multiple cosets for a single erasure. From these constructions, we achieve several differ-

ent points on the tradeoff between the sub-packetization size and the normalized repair bandwidth.

The main ideas of the constructions are:

(i) In all our schemes, we take an original RS code, and construct a new code over a larger finite

field. Thus, the sub-packetization size ` is increased.

(ii) For the schemes using one and two cosets, the code parameters n, k are kept the same as the

original code. Hence, for given n, r = n − k, the sub-packetization size ` increases, but we show

that the normalized repair bandwidth remains the same.

(iii) For the scheme using multiple cosets, the code length n is increased and the redundancy r is

fixed. Moreover, the code length n grows faster than the sub-packetization size `. Therefore, for

fixed n, r, the sub-packetization ` decreases, and we show that the normalized repair bandwidth is

only slightly larger than the original code.

2.3.1 Schemes in one coset

Assume E = GF (qa) is a subfield of F = GF (q`) and B = GF (q) is the base field, where q is a

prime number. The evaluation points of the code over F that we construct are part of one coset in

Lemma 1.

We first present the following lemma about the basis.

Lemma 2. Assume {ξ1, ξ2, . . . , ξ`} is a basis for F = GF (q`) over B = GF (q), then {ξq
s

1 , ξ
qs

2 , . . . ,

ξq
s

` }, s ∈ [`] is also a basis.

14

Proof: Assume {ξq
s

1 , ξ
qs

2 , . . . , ξ
qs

` }, s ∈ [`] is not a basis for F over B, then there exist nonzero

(α1, α2, . . . , α`), αi ∈ B, i ∈ [`], that satisfy

α1ξ
qs

1 + α2ξ
qs

2 + · · ·+ α`ξ
qs

`

=0

=(α1ξ1 + α2ξ2 + · · ·+ α`ξ`)
qs , (2.11)

which is in contradiction to the assumption that {ξ1, ξ2, . . . , ξ`} is a basis for F over B.

The following theorem shows the repair scheme using one coset for the evaluation points.

Theorem 1. There exists an RS(n, k) code over F = GF (q`) with repair bandwidth b ≤ `
a
(n −

1)(a−s) symbols over B = GF (q), where q is a prime number and a, s satisfy n < qa, qs ≤ n−k,

a|`.

Proof: Assume a field F = GF (q`) is extended from E = GF (qa), a | `, and β is a primitive

element of F. We focus on the code RS(A, k) of dimension k over F with evaluation points

A = {α1, α2, . . . , αn} ⊆ βmE∗ for some 0 ≤ m < q`−1
qa−1 , which is one of the cosets in Lemma 1.

The base field is B = GF (q) and (2.6) is used to repair the failed node f(α∗).

Construction I: Inspired by [40], for s = a− 1, we choose

pj(x) =
trE/B(ξj(

x
βm − α∗

βm))
x
βm − α∗

βm

, j ∈ [a], (2.12)

where {ξ1, ξ2, . . . , ξa} is a basis for E over B. The degree of pj(x) is smaller than r since qs ≤ r.

When x = α∗, by (2.4) we have

pj(α
∗) = ξj. (2.13)

15

So, the polynomials satisfy

rankB({p1(α∗), p2(α∗), . . . , pa(α∗)}) = a. (2.14)

When x 6= α∗, since trE/B(ξj(
x
βm − α∗

βm)) ∈ B, and x
βm − α∗

βm is a constant independent of j, we

have

rankB({p1(x), p2(x), . . . , pa(x)}) = 1. (2.15)

Let {η1, η2, η3, . . . , η`/a} be a basis for F over E, the ` repair polynomials are chosen as

{η1pj(x), η2pj(x), . . . , η`/apj(x) : j ∈ [a]}. (2.16)

Since pj(x) ∈ E, we can conclude that

rankB({η1pj(α∗), η2pj(α∗), . . . , η`/apj(α∗) : j ∈ [a]})

=
`

a
rankB({p1(α∗), p2(α∗), . . . , pa(α∗)}) = ` (2.17)

satisfies the full rank condition, and for x 6= α∗

rankB({η1pj(x), η2pj(x), . . . , η`/apj(x) : j ∈ [a]})

=
`

a
rankB({p1(x), p2(x), . . . , pa(x)}) =

`

a
. (2.18)

From (2.10) we can calculate the repair bandwidth

b =
`

a
(n− 1). (2.19)

16

Construction II: For s ≤ a− 1, inspired by [18], we choose

pj(x) = ξj

qs−1∏
i=1

(
x

βm
−
(
α∗

βm
− w−1i ξj

))
, j ∈ [a], (2.20)

where {ξ1, ξ2, . . . , ξa} is a basis for E over B, and W = {w0 = 0, w1, w2, . . . , wqs−1} is an s-

dimensional subspace in E, s < a, qs ≤ r. It is easy to check that the degree of pj(x) is smaller

than r since qs ≤ r. When x = α∗, we have

pj(α
∗) = ξq

s

j

qs−1∏
i=1

w−1i . (2.21)

Since
qs−1∏
i=1

w−1i is a constant, from Lemma 2 we have

rankB({p1(α∗), p2(α∗), . . . , pa(α∗)}) = a. (2.22)

For x 6= α∗, set x′ = α∗

βm − x
βm ∈ E, we have

pj(x) = ξj

qs−1∏
i=1

(
x

βm
−
(
α∗

βm
− w−1i ξj

))

= ξj

qs−1∏
i=1

(w−1i ξj − x′)

= ξj

qs−1∏
i=1

(w−1i x′)

qs−1∏
i=1

(ξj/x
′ − wi)

= (x′)q
s

qs−1∏
i=1

(w−1i)

qs−1∏
i=0

(ξj/x
′ − wi). (2.23)

By [35, p. 4], g(y) =
qs−1∏
i=0

(y − wi) is a linear mapping from E to itself with dimension a− s over

17

B. Since (x′)q
s
qs−1∏
i=1

(w−1i) is a constant independent of j, we have

rankB({p1(x), p2(x), . . . , pa(x)}) ≤ a− s. (2.24)

Let {η1, η2, η3, . . . , η`/a} be a basis for F over E, then the ` polynomials are chosen as {η1pj(x),

η2pj(x), . . . , η`/apj(x), j ∈ [a]}. From (2.21) and (2.23) we know that pj(x) ∈ E, so we can

conclude that

rankB({η1pj(α∗), η2pj(α∗), . . . , η`/apj(α∗) : j ∈ [a]})

=
`

a
rankB({p1(α∗), p2(α∗), . . . , pa(α∗)}) = ` (2.25)

satisfies (2.9), and for x 6= α∗

rankB({η1pj(x), η2pj(x), . . . , η`/apj(x) : j ∈ [a]})

=
`

a
rankB({p1(x), p2(x), . . . , pa(x)}) ≤ `

a
(a− s). (2.26)

Now from (2.10) we can calculate the repair bandwidth

b ≤ `

a
(n− 1)(a− s). (2.27)

Combining (2.19) and (2.27) will complete the proof of Theorem 1.

Rather than directly using the schemes in [40] and [18], the polynomials (2.12) and (2.20) that

we use are similar to [40] and [18], respectively, but are mappings from E to B. Moreover, we

multiply each polynomial with the basis for F over E to satisfy the full rank condition. In this case,

our scheme significantly reduces the repair bandwidth when the code length remains the same. Our

evaluation points are in a coset rather than the entire field F as in [40] and [18]. It should be noted

18

that a here can be an arbitrary number that divides ` and when a = `, our schemes are exactly the

same as those in [40] and [18]. Note that the normalized repair bandwidth b
`(n−1) decreases as a

decreases. Therefore, our scheme outperforms those in [40] and [18] when applied to the case of

` > logq n.

Example 1. Assume q = 2, ` = 9, a = 3 and E = {0, 1, α, α2, . . . , α6}. Let A = E∗, n =

7, k = 5 so r = n − k = 2. Choose s = log2 r = 1 and W = {0, 1} in Construction II.

Then, we have pj(x) = ξj(x − α∗ + ξj). Let {ξ1, ξ2, ξ3} be {1, α, α2}. It is easy to check that

rankB({p1(α∗), p2(α∗), p3(α∗)}) = 3 and rankB({p1(x), p2(x), p3(x)}) = 2 for x 6= α∗. There-

fore the repair bandwidth is b = 36 bits as suggested in Theorem 1. For the same (n, k, `), the

repair bandwidth in [18] is 48 bits. For another example, consider RS(14, 10) code used in Face-

book [84], we have repair bandwidth of 52 bits for ` = 8, while [18] requires 60 bits and the naive

scheme requires 80 bits.

Remark 1. The schemes in [40] and [18] can also be used in an RS code over E with repair

bandwidth (n − 1)(a − s), and with `/a copies of the code. Thus, they can also reach the repair

bandwidth of `
a
(n−1)(a−s). It should be noted that by doing so, the code is a vector code, however

our scheme constructs a scalar code. To the best of our knowledge, this is the first example of such

a scalar code in the literature.

2.3.2 Schemes in two cosets

Now we discuss our scheme when the evaluation points are chosen from two cosets. In this scheme,

we choose the polynomials that have full rank when evaluated at the coset containing the failed

node, and rank 1 when evaluated at the other coset.

Theorem 2. There exists anRS(n, k) code over F = GF (q`) with repair bandwidth b < (n−1) `+a
2

symbols over B = GF (q), where q is a prime number and a satisfies n ≤ 2(qa−1), a|`, `
a
≤ n−k.

19

Proof: Assume a field F = GF (q`) is extended from E = GF (qa) and β is the primitive element

of F. We focus on the code RS(A, k) over F of dimension k with evaluation points A consisting

of n/2 points from βm1E∗ and n/2 points from βm2E∗, 0 ≤ m1 < m2 ≤ q`−1
qa−1 and m2 −m1 = qs,

s ∈ {0, 1, . . . , `
a
}.

In this case we view E as the base field and repair the failed node f(α∗) by

trF/E(υα∗pj(α
∗)f(α∗)) = −

n∑
i=1,αi 6=α∗

trF/E(υipj(αi)f(αi)).

Inspired by [40, Theorem 10], for j ∈ [`
a
], we choose

pj(x) =

(x
βm2

)j−1, if α∗ ∈ βm1E∗,

(x
βm1

)j−1, if α∗ ∈ βm2E∗.
(2.28)

The degree of pj(x) is smaller than r when `
a
≤ r. Then, we check the rank in each case.

When α∗ ∈ βm2E∗, if x = βm1γ ∈ βm1E∗, for some γ ∈ E∗,

pj(x) =

(
x

βm1

)j−1
= γj−1, (2.29)

so

rankE({p1(x), p2(x), . . . , p `
a
(x)}) = 1. (2.30)

If x = βm2γ ∈ βm2E∗, for some γ ∈ E∗,

pj(x) =

(
x

βm1

)j−1
= (βm2−m1)j−1γj−1. (2.31)

Since m2 −m1 = qs and {1, β, β2, . . . , β
`
a
−1} is the polynomial basis for F over E, from Lemma

20

2 we know that

rankE({p1(x), p2(x), . . . , p `
a
(x)}) =

`

a
. (2.32)

When α∗ ∈ βm1E∗, if x = βm1γ ∈ βm1E∗, for some γ ∈ E∗,

pj(x) =

(
x

βm2

)j−1
= (βm1−m2)j−1γj−1

= (βm2−m1)1−
`
a (βm2−m1)

`
a
−jγj−1. (2.33)

Since (βm2−m1)1−
`
a is a constant, from Lemma 2 we know that

rankE({p1(x), p2(x), . . . , p `
a
(x)}) =

`

a
. (2.34)

If x = βm2γ ∈ βm2E∗, for some γ ∈ E∗,

pj(x) =

(
x

βm2

)j−1
= γj−1, (2.35)

so

rankE({p1(x), p2(x), . . . , p `
a
(x)}) = 1. (2.36)

Therefore, {pj(α∗), j ∈ [`
a
]} has full rank over E, for any evaluation point α∗ ∈ A. For x from the

coset containing α∗, the polynomials have rank `/a, and for x from the other coset, the polynomials

21

have rank 1. Then, the repair bandwidth in symbols over B can be calculated from (2.10) as

b =
`

a
(
n

2
− 1) logq |E|+

n

2
logq |E|

= (n− 1)
`+ a

2
− `− a

2

< (n− 1)
`+ a

2
. (2.37)

Thus, the proof is completed.

Example 2. Take the RS(14, 11) code over F = GF (212) for example. Let β be the primitive

element in F, a = 4, s = `/a = 3 and A = E∗ ∪ βE∗. Assume α∗ ∈ βE∗, then {pj(x), j ∈ [3]} is

the set {1, x, x2}. It is easy to check that when x ∈ βE∗ the polynomials have full rank and when

x ∈ E∗ the polynomials have rank 1. The total repair bandwidth is 100 bits. For the same (n, k, `),

the repair bandwidth of our scheme in one coset is 117 bits. For the scheme in [40], which only

works for `/a = 2, we can only choose a = 6 and get the repair bandwidth of 114 bits for the same

(n, k, `).

2.3.3 Schemes in multiple cosets

In the schemes in this subsection, we extend an original code to a new code over a larger field and

the evaluation points are chosen from multiple cosets in Lemma 1 to increase the code length. The

construction ensures that for fixed n, the sub-packetization size is smaller than the original code.

If the original code satisfies several conditions to be discussed soon, the repair bandwidth in the

new code is only slightly larger than that of the original code. Particularly, if the original code is

an MSR code, then we can get the new code in a much smaller sub-packetization level with a small

extra repair bandwidth. Also, if the original code works for any number of helpers and multiple

erasures, the new code works for any number of helpers and multiple erasures, too. We discuss

multiple erasures in Section 2.4.

22

We first prove a lemma regarding the ranks over different base fields, and then describe the new

code.

Lemma 3. Let B = GF (q),F′ = GF (q`
′
),E = GF (qa), F = GF (q`), ` = a`′. a and `′ are

relatively prime and q can be any power of a prime number. For any set of {γ1, γ2, ..., γ`′} ⊆ F′ ≤

F, we have

rankE({γ1, γ2, ..., γ`′}) = rankB({γ1, γ2, ..., γ`′}). (2.38)

Proof: Assume rankB({γ1, γ2, ..., γ`′}) = c and without loss of generality, {γ1, γ2, ..., γc} are lin-

early independent over B. Then, we can construct {γ′c+1, γ
′
c+2, ..., γ

′
`′} ⊆ F′ to make {γ1, γ2, ..., γc,

γ′c+1, γ
′
c+2, ..., γ

′
`′} form a basis for F′ over B.

Assume we get F by adjoining β to B. Then, from [63, Theorem 1.86] we know that {1, β, β2, ...,

β`
′−1} is a basis for both F over E, and F′ over B. So, any symbol y ∈ F can be presented as a

linear combination of {1, β, β2, ..., β`
′−1} with some coefficients in E. Also, we know that there is

an invertible linear transformation with coefficients in B between {γ1, γ2, ..., γc, γ′c+1, γ
′
c+2, ..., γ

′
`′}

and {1, β, β2, ..., β`
′−1}, because they are a basis for F′ over B. Combined with the fact that

{1, β, β2, ..., β`
′−1} is also a basis for F over E, we can conclude that any symbol y ∈ F can be

represented as

y = x1γ1 + x2γ2 + ...+ xcγc + xc+1γ
′
c+1 + ...+ x`γ

′
`′ (2.39)

with some coefficients xi ∈ E, which means that {γ1, γ2, ..., γc, γ′c+1, γ
′
c+2, ..., γ

′
`′} is also a basis

23

for F over E. Then, we have that {γ1, γ2, ..., γc} are linearly independent over E,

rankE({γ1, γ2, ..., γ`′})

≥c

=rankB({γ1, γ2, ..., γ`′}). (2.40)

Since B ≤ E, we also have

rankE({γ1, γ2, ..., γ`′}) ≤ rankB({γ1, γ2, ..., γ`′}). (2.41)

The proof is completed.

Theorem 3. Assume there exists a RS(n′, k′) code E ′ over F′ = GF (q`
′
) with evaluation points

set A′. The evaluation points are linearly independent over B = GF (q). The repair bandwidth

is b′ and the repair polynomials are p′j(x). Then, we can construct a new RS(n, k) code E over

F = GF (q`), ` = a`′ with n = (qa−1)n′, k = n−n′+k′ and repair bandwidth of b = ab′(qa−1)+

(qa − 2)` symbols over B = GF (q) if we can find new repair polynomials pj(x) ∈ F[x], j ∈ [`′],

with degrees less than n− k that satisfy

rankE({p1(x), p2(x), . . . , p`′(x)}) = rankB({p′1(α), p′2(α), . . . , p′`′(α)}) (2.42)

for all α ∈ A′, x ∈ αE∗, where E = GF (qa).

Proof: We first prove the case when a and `′ are necessarily relatively prime using Lemma 3, the

case when a and `′ are not relatively prime are proved in Section 2.8.1. Assume the evaluation

points of E ′ are A′ = {α1, α2, . . . , αn′}, then from Lemma 3 we know that they are also linearly

independent over E, so there does not exist γi, γj ∈ E∗ that satisfy αiγi = αjγj , which implies that

24

{α1E∗, α2E∗, . . . , αn′E∗} are distinct cosets. Then, we can extend the evaluation points to be

A = {α1E∗, α2E∗, . . . , αn′E∗}. (2.43)

and n = (qa − 1)n′. We keep the same redundancy r = n′ − k′ for the new code so k = n− r.

For the new code E , we use pj(x) ∈ F[x], j ∈ [`′] to repair the failed node f(α∗)

trF/E(υα∗pj(α
∗)f(α∗)) = −

∑
α∈A,α 6=α∗

trF/E(υαpj(α)f(α)). (2.44)

Assume the failed node is f(α∗) and α∗ ∈ αiE∗. Then, for the node x ∈ αiE∗, because the original

code satisfies the full rank condition, we have

rankE({p1(x), p2(x), . . . , p`′(x)})

=rankB({p′1(αi), p′2(αi), . . . , p′`′(αi)}) = `′, (2.45)

then we can recover the failed node with pj(x), and each helper in the coset containing the failed

node transmits `′ symbols over E.

For a helper in the other cosets, x ∈ αεE∗, ε 6= i, by (2.42),

rankE({p1(x), p2(x), . . . , p`′(x)})

=rankB({p′1(αε), p′2(αε), . . . , p′`′(αε)}), (2.46)

then every helper in these cosets transmits b′

n′−1 symbols in E on average.

The repair bandwidth of the new code can be calculated from the repair bandwidth condition (2.10)

25

as

b =
b′

n′ − 1
· (n′ − 1)|E∗| · a+ (|E∗| − 1)`′ · a

= ab′(qa − 1) + (qa − 2)` (2.47)

which completes the proof.

Note that the calculation in (2.47) and (2.37) are similar in the sense that a helper in the coset

containing the failure naively transmits the entire stored information, and the other helpers use the

bandwidth that is the same as the original code.

As a special case of Theorem 3, when b′ = `′

r
(n′ − 1) matching the MSR bound (2.1), we get

b =
`

r
(n− 1) +

`

r
(r − 1)(qa − 2), (2.48)

where the second term is the extra bandwidth compared to the MSR bound.

Next, we apply Theorem 3 to the near-MSR code [103] and the MSR code [94]. The first realization

of the scheme in multiple cosets is inspired by [103].

Theorem 4. There exists an RS(n, k) code over F = GF (q`) of which n = (qa − 1) logr
`
a

and

a|`, such that the repair bandwidth satisfies b < `
n−k [n + 1 + (n − k − 1)(qa − 2)], measured in

symbols over B = GF (q) for some prime number q.

Proof: We first prove the case when a and `′ are relatively prime using Lemma 3, the case when

a and `′ are not necessarily relatively prime are proved in Section 2.8.1. We use the code in [103]

as the original code. The original code is defined in F′ = GF (q`
′
) and `′ = rn

′ . The evaluation

points are A′ = {β, βr, βr2 , . . . , βrn
′−1} where β is a primitive element of F′.

In the original code, for c = 0, 1, 2, . . . , `′−1, we write its r-ary expansion as c = (cn′cn′−1 . . . c1),

where 0 ≤ ci ≤ r − 1 is the i-th digit from the right. Assuming the failed node is f(βr
i−1

), the

26

repair polynomials are chosen to be

p′j(x) = βcxs, ci = 0, s = 0, 1, 2, . . . , r − 1, x ∈ F′. (2.49)

Here c varies from 0 to `′ − 1 given that ci = 0, and s varies from 0 to r − 1. So, we have `′

polynomials in total. The subscript j is indexed by c and s, and by a small abuse of the notation,

we write j ∈ [`′].

In the new code, let us define E = GF (qa) of which a and `′ are relatively prime. Adjoining β to

E, we get F = GF (q`), ` = a`′. The new evaluation points are A = {βE∗, βrE∗, . . . , βrn
′−1E∗}.

SinceA′ is part of the polynomial basis for F′ over B, we know that {β, βr, . . . , βrn
′−1} are linearly

independent over B. Hence, we can apply Lemma 3 and the cosets are distinct, resulting in n =

|A| = (qa − 1) logr
`
a
.

In our new code, let us assume the failed node is f(α∗) and α∗ ∈ βr
i−1
C, and we choose the

polynomial pj(x) with the same form as p′j(x),

pj(x) = βcxs, ci = 0, s = 0, 1, 2, . . . , r − 1, x ∈ F. (2.50)

For nodes corresponding to x = βr
t
γ ∈ βrtE∗, for some γ ∈ E∗, we know that

pj(x) = βcxs = βc(γβr
t

)s = γsp′j(β
rt). (2.51)

Since p′j(β
rt) ∈ F′, from Lemma 3, we have

rankE({γsp′1(βr
t

), γsp′2(β
rt), . . . , γsp′`′(β

rt)})

=rankE({p′1(βr
t

), p′2(β
rt), . . . , p′`′(β

rt)})

=rankB({p′1(βr
t

), p′2(β
rt), . . . , p′`′(β

rt)}), (2.52)

27

which satisfies (2.42). Since the repair bandwidth of the original code is b′ < (n′ + 1) `
′

r
, from

(2.47) we can calculate the repair bandwidth as

b = ab′(qa − 1) + (qa − 2)`

<
`

r
[n+ 1 + (r − 1)(qa − 2)], (2.53)

where the second term is the extra bandwidth compared to the original code.

Example 3. We take an RS(4, 2) code in GF (216) as the original code and extend it with a =

3, |E∗| = 7 to an RS(28, 26) code in GF (248) with normalized repair bandwidth of b
(n−1)` < 0.65.

The RS(28, 26) code in [103] achieves the normalized repair bandwidth of b
(n−1)` < 0.54, while it

requires ` = 2.7× 108. Our scheme has a much smaller ` compared to the scheme in [103] while

the repair bandwidth is a bit larger.

In the above theorem, we extend [103] to a linearly larger sub-packetization and an exponentially

larger code length, which means that for the same code length, we can have a much smaller sub-

packetization level.

Next, we show our second realization of the scheme in multiple cosets, which is inspired by [94].

Different from the previous constructions, this one allows any number of helpers, k ≤ d ≤ n− 1.

The sub-packetization size in the original code of [94] satisfies `′ ≈ (n′)n
′ when n′ grows to

infinity, thus in our new code it satisfies ` ≈ a(n′)n
′ for some integer a.

Theorem 5. Let q be a prime number. There exists an RS(n, k) code over F = GF (q`) of which

` = asq1q2...q n
qa−1

, where qi is the i-th prime number that satisfies s|(qi − 1), s = d − k + 1 and

a is some integer. d is the number of helpers, k ≤ d ≤ (n − 1). The average repair bandwidth is

b = d`
(n−1)(d−k+1)

[n− 1 + (d− k)(qa − 2)] measured in symbols over B = GF (q).

Proof: We first prove the case when a and `′ are relatively prime using Lemma 3, the case when

a and `′ are not necessarily relatively prime are proved in Section 2.8.1. We use the code in [94]

28

as the original code, where the number of helpers is d′. We set n − k = n′ − k′ and calculate the

repair bandwidth for d helpers from the original code when d′ = d − k + k′. Let us define Fq(α)

to be the field obtained by adjoining α to the base field B. Similarly, we define Fq(α1, α2, . . . , αn)

for adjoining multiple elements. Let αi be an element of order qi over B. The code is defined in

the field F′ = GF (q`
′
) = GF (qsq1q2...,qn′), which is the degree-s extension of Fq(α1, α2, . . . , αn′).

The evaluation points are A′ = {α1, α2, . . . , αn′}.

Assuming the failed node is f(αi) and the helpers are chosen from the set R′, |R′| = d′, the

base field for repair is F′i, defined as F′i , Fq(αj, j ∈ [n′], j 6= i). The repair polynomials are

{ηtp′j(αi), t ∈ [qi], j ∈ [s]}, where

p′j(x) = xj−1g′(x), j ∈ [s], x ∈ F′, (2.54)

g′(x) =
∏

α∈A/(R′∪{αi})

(x− α), x ∈ F′. (2.55)

and ηt ∈ F′, t ∈ [qi], are constructed in [94] such that {ηtp′j(αi), t ∈ [qi], j ∈ [s]} forms the basis

for F′ over F′i. The repair is done using

trF′/F′i(υαi
ηtp
′
j(αi)f

′(αi)) = −
n′∑

ε=1,ε 6=i

trF′/F′i(υεηtp
′
j(αε)f

′(αε)). (2.56)

For x /∈ R′ ∪ {αi}, p′j(x) = 0, so no information is transmitted. The original code reaches the

MSR repair bandwidth

b′ =
∑
ε∈R′

rankF′i({ηtp′j(αε) : t ∈ [qi], j ∈ [s]})

=
d′`′

d′ − k′ + 1
. (2.57)

In our new code, we define E = GF (qa) = Fq(αn+1) where a and `′ are relatively prime, and

29

αn+1 is an element of order a over B. Adjoining the primitive element of F′ to E, we get F =

GF (q`), ` = a`′. The new code is defined in F. We extend the evaluation points to be A =

{α1E∗, α2E∗, . . . , αn′E∗}. Since {α1, α2, ..., αn′} are linearly independent over B, we can apply

Lemma 3 and the cosets are distinct. So, n = |A| = (qa − 1)n′.

Assuming the failed node is f(α∗) and α∗ ∈ αiE∗ and the helpers are chosen from the set R,

|R| = d, the base field for repair is Fi, which is defined by Fi , Fq(αj, j ∈ [n + 1], j 6= i), for

i ∈ [n]. We define the repair polynomials {ηtpj(x), t ∈ [qi], j ∈ [s]}, where

pj(x) = xj−1g(x), j ∈ [s], x ∈ F, (2.58)

g(x) =
∏

α∈A/(R∪{α∗})

(x− α), x ∈ F, (2.59)

and ηt is the same as that in the original code. Then, we repair the failed node by

trF/Fi
(υα∗ηtpj(α

∗)f(α∗)) = −
∑

α∈A,α 6=α∗
trF/Fi

(υαηtpj(α)f(α)). (2.60)

For x ∈ αE∗, α ∈ A′, we have

pj(x) = γj−1αj−1g(x), j ∈ [s], (2.61)

for some γ ∈ E∗. If x /∈ R ∪ {α∗}, since g(x) = 0, no information is transmitted from node x.

Next, we consider all other nodes.

For x = αγ, α ∈ A′, since g(x) is a constant independent of j, γ ∈ E ⊆ Fi and ηt, αi ∈ F′, from

30

Lemma 3 we have

rankFi
({ηtp1(x), ηtp2(x), . . . , ηtps(x) : t ∈ [qi]})

=rankFi
({ηt, ηtγα, . . . , ηtγs−1αs−1 : t ∈ [qi]})

=rankFi
({ηt, ηtα, . . . , ηtαs−1 : t ∈ [qi]})

=rankF′i({ηt, ηtα, . . . , ηtαs−1 : t ∈ [qi]})

=rankF′i({ηtp′1(α), ηtp
′
2(α), . . . , ηtp

′
s(α) : t ∈ [qi]}), (2.62)

which satisfies (2.42).

When k ≤ d < n − 1, assuming the helpers are randomly chosen from all the remaining nodes,

the average repair bandwidth for different choices of the helpers can be calculated as

b = d

[
b′a

d′
· n− 1− (qa − 2)

n− 1
+ `′a · q

a − 2

n− 1

]
(2.63)

=
d`

d− k + 1
+

d

n− 1

`

d− k + 1
(d− k)(qa − 2). (2.64)

Here in (2.63) the second term corresponds to the helpers in the failed node coset, the first term

corresponds to the helpers in the other cosets, and in (2.64) we used d′ − k′ = d− k.

In the case of d = n− 1, the repair bandwidth of the code in Theorem 5 can be directly calculated

from (2.47) as

b = ab′(qa − 1) + (qa − 2)`

=
`

r
(n− 1) +

`

r
(r − 1)(qa − 2)]. (2.65)

In (2.64) and (2.65), the second term is the extra repair bandwidth compared to the original code.

In Theorems 4 and 5, we constructed our schemes by extending previous schemes. However,

it should be noted that since we only used the properties of the polynomials p′j(x), we have no

31

restrictions on the dimensions k′ of the original codes. So, in some special cases, even if k′ is

negative and the original codes do not exist, our theorems still hold. Thus, we can provide more

feasible points of (n, k) using our schemes. This is illustrated in the example below.

Example 4. Let us take the RS(12, 8) code as an example. We set q = 2, s = 4, q1 = 5, q2 =

9, q3 = 13 and a = 7. Then, `′ = 2340 and ` = 16380. Assuming the failed node is f(α∗) and

α∗ ∈ α1C, then we repair it in F1 and set the polynomials in (2.58). We can easily check that when

x ∈ α1C, rankF1({ηtp1(x), ηtp2(x), . . . , ηtps(x) : t ∈ [5]}) = 20 and when x in other cosets,

rankF1({ηtp1(x), ηtp2(x), . . . , ηtps(x) : t ∈ [5]}) = 5. Therefore, we transmit 100 symbols in

F1, which can be normalized to b
(n−1)` = 0.4545. Compared with the scheme in [94], which need

` = 2.4× 1019 and b
(n−1)` = 0.25, we provide a tradeoff between ` and b.

It should be noted that in this example, theRS(12, 8) code needs to be extended from anRS(3,−1)

code, which does not exist. However, since we only used the properties of the polynomials p′j(x)

and pj(x), the new RS(12, 8) code still works.

2.3.4 Numerical evaluations and discussions

In this subsection, we compare the existing and the proposed schemes. Table 2.1 shows the repair

bandwidth and the code length of each scheme. For the comparison, we first show in Figures

2.1 and 2.2 the performance of each scheme when the sub-packetization changes, given (n, k) =

(12, 10) and (12, 8), respectively. We only consider n − 1 helpers. Two single points (log2(`) =

53.5, b
(n−1)` = 0.50) in RS(12, 10) codes and (log2(`) = 64.4, b

(n−1)` = 0.25) in RS(12, 8) codes

are not shown in the figures, they can be achieved by both our second realization in multiple cosets

and [94]. We make the following observations.

1. For a fixed (n, k), we compare the normalized repair bandwidth b/[(n − 1)`] in different

sub-packetization sizes. In our schemes in multiple cosets, we have a parameter a to adjust

the sub-packetization size. From Theorems 4 and 5 we know that for the two schemes,

32

2 4 6 8 10 12 14 16

Sub-packetization size (log2(l))

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a

liz
e

d
 r

e
p

a
ir
 b

a
n

d
w

id
th

 (
b

/[
(n

-1
)l
])

n=12,k=10

Scheme in one coset

Scheme in two cosets

Scheme in multiple cosets 1

Scheme in multiple cosets 2

Full-length code Scheme by Ye and Barg

Figure 2.1: Comparison of 3 schemes, q = 2, n = 12, k = 10, r = 2.

0 5 10 15 20 25

Sub-packetization size (log2(l))

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o
rm

a
liz

e
d
 r

e
p
a
ir
 b

a
n
d
w

id
th

 (
b
/[
(n

-1
)l
])

n=12,k=8

Scheme in one coset

Scheme in two cosets

Scheme in multiple cosets 1

Scheme in multiple cosets 2

Full-length code
Scheme by Ye and Barg

Scheme by Chowdhury and Vardy

Figure 2.2: Comparison of 3 schemes, q = 2, n = 12, k = 8, r = 4.

33

` = a · r
n

qa−1 and ` ≈ a · (n
qa−1)(

n
qa−1

), respectively, which means that increasing a will

decrease the sub-packetization `. In our schemes in one coset and two cosets, the parameter

a is determined by code length n, and will not be changed by increasing `, neither will the

normalized repair bandwidth. When q = 2, a = 1, the two schemes in multiple cosets

coincides with [103] and [94], respectively.

2. The scheme in [16] also achieves one tradeoff point in Figure 2.2, which can be viewed as

a special case of our scheme in multiple coset 1.

3. For fixed n, k, our schemes are better than the full-length code in [40] and [18] for all `,

except when ` = 4, for which our scheme in one coset is identical to the full-length code.

4. While the repair bandwidth of the full-length code grows with `, our schemes in one coset

and two cosets have a constant normalized bandwidth, and our schemes in multiple cosets

have a decreasing normalized bandwidth with `.

5. For small `: the schemes in one coset and two cosets are better than those in multiple

cosets; when n = 12, k = 10, 4 ≤ ` ≤ 48, the scheme in two cosets provides the lowest

bandwidth; when n = 12, k = 8, 4 ≤ ` ≤ 768, one can show that the scheme in one coset

has the smallest bandwidth.

6. For large `: the first realization in multiple cosets has better performance than the second

realization in multiple cosets, but our second realization works for any number of helpers.

2.4 Reed-Solomon Repair Schemes for Multiple Erasures

In this section, we first present two definitions of the repair schemes for multiple erasures in a MDS

code: linear repair scheme definition and dual code repair definition. We prove the equivalence

of the two definitions. Then, we present two schemes for repairing multiple erasures in Reed-

Solomon codes, where the evaluation points are in one coset and multiple cosets, respectively.

34

2.4.1 Definitions of the multiple-erasure repair

Let us assume a scalar MDS code E over F = GF (q`) has dimension k and code length n. Let

a codeword be (C1, C2, ...Cn). Without loss of generality, we assume {C1, C2, ..., Ce} are failed,

e ≤ n− k, and we repair them in the base field B = GF (q), where q can be any power of a prime

number. We also assume that we use all the remaining d = n− e nodes as helpers. The following

definitions are inspired by [5] for single erasure.

Definition 1. A linear exact repair scheme for multiple erasures consists of the following.

1. A set of queries Qt ⊆ F for each helper Ct, e + 1 ≤ t ≤ n. The helper Ct replies with

{γCt, γ ∈ Qt}.

2. For each failed node Ci, i ∈ [e], a linear repair scheme that computes

Ci =
∑̀
m=1

λimµim, (2.66)

where {µi1, µi2, ..., µi`} is a basis for F over B and coefficients λim ∈ B are B-linear com-

binations of the replies

λim =
n∑

t=e+1

∑
γ∈Qt

βimγt · trF/B(γCt), (2.67)

with the coefficients βimγt ∈ B. The repair bandwidth is

b =
∑̀
t=e+1

rankB(Qt). (2.68)

In the following definition, we consider e` dual codewords of E , and index them by i ∈ [e], j ∈ [`],

denoted as (C ′ij1, C
′
ij2, . . . , C

′
ijn). Since they are dual codwords, we know that

∑n
t=1CtC

′
ijt = 0.

Definition 2. A dual code scheme uses a set of dual codewords {(C ′ij1, C ′ij2, . . . , C ′ijn) : i ∈ [e], j ∈

[`]} that satisfies:

35

1. The full rank condition: Vectors

Vij = (C ′ij1, C
′
ij2, ..., C

′
ije), i ∈ [e], j ∈ [`], (2.69)

are linearly independent over B.

2. The repair bandwidth condition:

b =
n∑

t=e+1

rankB({C ′ijt : i ∈ [e], j ∈ [`]}). (2.70)

We repair nodes [e] from the linearly independent equations

e∑
v=1

trF/B(C ′ijvCv) = −
n∑

t=e+1

trF/B(C ′ijtCt), i ∈ [e], j ∈ [`]. (2.71)

Here we use the same condition names as the single erasure case, but in this section, they are

defined for multiple erasures.

Theorem 6. Definitions 1 and 2 are equivalent.

The equivalence of Definitions 1 and 2 follows similarly as arguments in [40], except that we need

to first solve e failed nodes simultaneously and then find out the form of each individual failure

(2.66). The detailed proof of Theorem 6 is shown in Section 2.8.2, part of which uses Lemma 4 in

Section IV-B.

Remark 2. In this chapter, we focus on repairing RS code and apply Theorem 6 to RS code. From

[65, Thm. 4 in Ch. 10] we know that with the polynomial pij(x) ∈ F[x] for which the degrees

are smaller than n − k, (υ1pij(α1), υ2pij(α2), . . . , υnpij(αn)) is the dual codeword of RS(n, k),

where υi, i ∈ [n] are non-zero constants determined by the evaluation points set A. So, in RS

code, Definition 2 reduces to finding polynomials pij(x) with degrees smaller than n− k. In what

follows we use pij(αt) to replace the dual codeword symbol C ′ijt in Definition 2 for RS code. One

36

can easily show that the constants υi, i ∈ [n] do not affect the ranks in the full rank condition and

the repair bandwidth condition.

2.4.2 Multiple-erasure repair in one coset

There are several studies about the multiple erasures for full-length RS codes [17] and [67]. In-

spired by these works, we propose our scheme for multiple erasures in one coset.

From Theorem 6, we know that finding the repair scheme for multiple erasures in RS code is

equivalent to finding dual codewords (or polynomials) that satisfy the full rank condition and repair

bandwidth condition. Given a basis {ξ1, ξ2, ..., ξ`} for F over B, we define some matrices as below.

They are used to help us check the two rank conditions according to Lemmas 4 and 5, whose proofs

are shown in Appendices C and D, respectively. Let the evaluation points of an RS code over F

be A = {α1, . . . , αn}. Let pij(x), i ∈ [e], j ∈ [`], be polynomials over F, and B a subfield of F.

Define

Sit =

trF/B(ξ1pi1(αt)) · · · trF/B(ξ`pi1(αt))

trF/B(ξ1pi2(αt)) · · · trF/B(ξ`pi2(αt))

...

trF/B(ξ1pi`(αt)) · · · trF/B(ξ`pi`(αt))

, (2.72)

S ,

S11 S12 · · · S1e

S21 S22 · · · S2e

...
...

Se1 Se2 · · · See

. (2.73)

Lemma 4. The following two statements are equivalent:

37

1. Vectors Vij = (pij(α1), pij(α2), . . . , pij(αe)), i ∈ [e], j ∈ [`] are linearly independent over

B.

2. Matrix S in (2.73) has full rank.

Lemma 5. For t ∈ [n], consider Sit in (2.72),

rank(

S1t

S2t

...

Set

) = rankB({pij(αt) : i ∈ [e], j ∈ [`]}). (2.74)

Theorem 7. Let q be a prime number. There exists an RS(n, k) code over F = GF (q`) of which

n < qa, qs ≤ r and a|`, such that the repair bandwidth for e erasures is b ≤ e`
a

(n − e)(a − s)

measured in symbols over B, for e satisfying a ≥ e(e−1)
2

(a− s)2.

Proof: We define the code over the field F = GF (q`) extended by E = GF (qa), where β is the

primitive element of F. The evaluation points are chosen to be A = {α1, α2, . . . , αn} ⊆ E∗, which

is one of the cosets in Lemma 1. Without loss of generality, we assume the e failed nodes are

{α1, α2, . . . , αe}. The base field is B = GF (q).

Construction III: We first consider the special case when s = a− 1. In this case, inspired by [67,

Proposition 1], we choose the polynomials

pij(x) =
δitrE/B(

µj
δi

(x− αi))
x− αi

, i ∈ [e], j ∈ [a], (2.75)

where {µ1, µ2, . . . , µa} is the basis for E over B, and δi ∈ E, i ∈ [e], are coefficients to be deter-

mined. From [67, Theorem 3], we know that for a > e(e−1)
2

, there exists δi, i ∈ [e] such that pij(x)

satisfy the full rank condition: the vectors Vij = (pij(α1), pij(α2), . . . , pij(αe)), i ∈ [e], j ∈ [a] are

38

linearly independent over B and the repair bandwidth condition:

n∑
t=e+1

rankB({pij(αt) : i ∈ [e], j ∈ [a]})

=(n− e)e− e(e− 1)(q − 1)

2
. (2.76)

Then, let {η1, η2, . . . , η`/a} be a set of basis for F over E; we have the e` polynomials as {ηwpij(x) :

w ∈ [`/a], i ∈ [e], j ∈ [a]}. Since {η1, η2, . . . , η`/a} are linearly independent over E and for any

bijw ∈ B, bijwpij(x) ∈ E, we have

∑
i,j,w

bijwηwVij = 0 ⇐⇒
∑
i,j

bijwVij = 0,∀w ∈ [
`

a
]. (2.77)

Also, we know that there does not exist nonzero bijw ∈ B that satisfies
∑

i,j bijwVij = 0, so we

have that vectors {ηwVij , w ∈ [`/a], i ∈ [e], j ∈ [a]} are also linearly independent over B. So,

from Definition 2, we know that we can recover the failed nodes and the repair bandwidth is

b =rankB({η1pij(x), . . . , η`/apij(x) : i ∈ [e], j ∈ [a]})

=
`

a
rankB({pij(x), i ∈ [e], j ∈ [a]})

=
`

a

[
(n− e)e− e(e− 1)(q − 1)

2

]
. (2.78)

Construction IV: For s ≤ a− 1, consider the polynomials

pij(x) = δq
s−1
i µj

qs−1∏
ε=1

(
x−

(
αi − w−1ε

µj
δi

))
, j ∈ [a], (2.79)

where {µ1, µ2, . . . , µa} is the basis for E over B, W = {w0 = 0, w1, w2, . . . , wqs−1} is an s-

dimensional subspace in E, s < a, qs ≤ r, and δi ∈ E, i ∈ [e], are coefficients to be determined.

39

When x = αi, we have

pij(αi) = µq
s

j

qs−1∏
ε=1

w−1ε . (2.80)

Since
qs−1∏
ε=1

w−1ε is a constant, from Lemma 2 we have

rankB({pi1(αi), pi2(αi), . . . , pia(αi)}) = a. (2.81)

For x 6= αi, set x′ = αi − x, we have

pij(x) = δq
s−1
i µj

qs−1∏
ε=1

(
w−1ε

µj
δi
− x′

)

= δq
s−1
i µj

qs−1∏
ε=1

(w−1ε x′)

qs−1∏
ε=1

(
µj
δix′
− wε

)

= (δix
′)q

s

qs−1∏
ε=1

(w−1ε)

qs−1∏
ε=0

(
µj
δix′
− wε

)
. (2.82)

By [35, p. 4], g(y) =
qs−1∏
ε=0

(y − wε) is a linear mapping from E to itself with dimension a− s over

B. Since (δix
′)q

s
qs−1∏
ε=1

(w−1ε) is a constant independent of j, we have

rankB({pi1(x), pi2(x), . . . , pia(x)}) ≤ a− s, (2.83)

which means that pij(x) can be written as

pij(x) = δq
s

i

a−s∑
v=1

ρjvλv, (2.84)

where {λ1, λ2, ..., λa−s} are linearly independent over B, ρjv ∈ B, and they are determined by

δi, µj and x− αi.

40

From Lemma 4, we know that if the matrix S in (2.73) has full rank, then we can recover the e

erasures. It is difficult to directly discuss the rank of the matrix, but assume that the polynomials

above satisfy the following two conditions:

1. Sii, i ∈ [e] are identity matrices.

2. For any fixed i ∈ [e],

Sit · Sty = 000`×`, i > t, y > t. (2.85)

Then, it is easy to see that through Gaussian elimination, we can transform the matrix ST to an

upper triangular block matrix, which has identity matrices in the diagonal. Hence, S has full rank.

Here, we choose {ξ1, ξ2, ..., ξ`} to be the dual basis of {µq
s

1

qs−1∏
ε=1

w−1ε , µq
s

2

qs−1∏
ε=1

w−1ε , ..., µq
s

`

qs−1∏
ε=1

w−1ε },

so

trF/B(ξmpij(αi)) =

0,m 6= j,

1,m = j.

(2.86)

Therefore, Sii, i ∈ [e] are identity matrices. We set δ1 = 1, and recursively choose δi after choosing

{δ1, δ2, ..., δi−1} to satisfy (2.85). Define δ′i = δq
s

i , and cmp to be the (m, p)-th element in Sty for

m, p ∈ [a]. (2.85) can be written as

a∑
m=1

cmptrF/B(ξmpij(αt))

=
a∑

m=1

cmp

a−s∑
v=1

bjvtrF/B(ξmδ
′
iλv)

=0,∀j ∈ [a], (2.87)

41

where λv, v ∈ [a− s], are determined by δi, µj and αt − αi. Equation (2.87) is satisfied if

a∑
m=1

cmptrF/B(ξmδ
′
iλv) = 0, v ∈ [a− s], p ∈ [a]. (2.88)

As a special case of Lemma 5, we have

rank(Sty) = rankB({ptj(αy), j ∈ [`]}). (2.89)

Then, from (2.83) we know that the rank of Sty is at most a − s, which means in (2.88) we only

need to consider p corresponding to the independent a− s columns of Sty. So, (2.88) is equivalent

to (a− s)2 linear requirements. For δ′i ∈ E, we can view it as a unknowns over B, and we have

(2e− i)(i− 1)

2
(a− s)2 ≤ e(e− 1)

2
(a− s)2 (2.90)

linear requirements over B according to (2.85). Also knowing δ′i, we can solve δi = δi
q` = δ′i

q`−s

.

Therefore, we can find appropriate {δ1, δ2, . . . , δe} to make matrix S full rank when

a ≥ e(e− 1)

2
(a− s)2. (2.91)

Then, let {η1, η2, . . . , η`/a} be a basis for F over E, we have the e` polynomials as {ηwpij(x), w ∈

[`/a], i ∈ [e], j ∈ [a]}. Similar to Construction III, we know that vectors {ηwVij , w ∈ [`/a], i ∈

[e], j ∈ [a]} are linearly independent over B. Therefore, we can recover the failed nodes and the

repair bandwidth is

b =rankB({η1pij(x), . . . , η`/apij(x) : i ∈ [e], j ∈ [a]})

=
`

a
rankB({pij(x) : i ∈ [e], j ∈ [a]})

≤e`
a

(n− e)(a− s). (2.92)

42

Thus, the proof is completed.

In our scheme, we have constructions for arbitrary a, s, such that a | `, s ≤ a − 1, while the

existing schemes in [17] and [67] mainly considered the special case ` = a. It should be noted

that the scheme in [67] can also be used in the case of s = a − 1 over E with repair bandwidth

(n−e)e− e(e−1)(q−1)
2

. And, with `/a copies of the code, it can also reach the same repair bandwidth

of our scheme. However, by doing so, the code is a vector code, but our scheme constructs a scalar

code.

2.4.3 Multiple-erasure repair in multiple cosets

Recall that the scheme in Theorem 5 for a single erasure is a small sub-packetization code with

small repair bandwidth for any number of helpers. When there are e erasures and d helpers, e ≤

n − k, k ≤ d ≤ n − e, we can recover the erasures one by one using the d helpers. However,

inspired by [106], the repaired nodes can be viewed as additional helpers and thus we can reduce

the total repair bandwidth. Finally, for every helper, the transmitted information for different failed

nodes has some overlap, resulting in a further bandwidth reduction.

The approach we take is similar to that of Section 2.3.3. We take an original code and extend it to

a new code with evaluation points as in (2.43). If a helper is in the same coset as any failed node,

it transmits naively its entire data; otherwise, it transmits the same amount as the scheme in the

original code. After the extension, the new construction decreases the sub-packetization size for

fixed n, and the bandwidth is only slightly larger than the original code.

The location of the e erasures are described by hi, i ∈ [e], where 0 ≤ hi ≤ e, h1 ≥ h2 ≥ ... ≥ he,∑e
i=1 hi = e. We assume the erasures are located in h1 cosets, and after removing one erasure

in each coset, the remaining erasures are located in h2 cosets. Then, for the remaining erasures,

removing one in each coset, we get the rest of erasures in h3 cosets, and so on. Figure 2.3 also

43

Figure 2.3: Location of the erasures.

shows the erasure locations described above.

In our scheme, we first repair h1 failures, one from each of the h1 cosets. Then, for 2 ≤ i ≤ e,

we repeat the following: After repairing h1, h2, ..., hi−1 failures, we view these repaired nodes as

helpers and repair next hi failures, one from each of the hi cosets.

The repair bandwidth of the scheme is showed in the following theorem.

Theorem 8. Let q be a prime number. There exists an RS(n, k) code over F = GF (q`) for which

` = asq1q2...q n
qa−1

, where qi is the i-th prime number that satisfies s|(qi− 1), s = (n− k)! and a is

an integer. For e erasures and d helpers, e ≤ n− k, k ≤ d ≤ n− e, the average repair bandwidth

measured in symbols over B is

b ≤ d`

(n− e)

[
(h1(q

a − 1)− e)

+(n− h1(qa − 1))
e∑
i=1

hi

d− k +
∑i

v=1 hv

]
, (2.93)

where hi, i ∈ [e] are the parameters that define the location of erasures in Fig. 2.3. For i ∈ [e], we

set 0 ≤ hi ≤ e, h1 ≥ h2 ≥ ... ≥ he and
∑e

i=1 hi = e.

44

Proof: We first prove the case when a and `′ are relatively prime using Lemma 3, the case when

a and `′ are not necessarily relatively prime are proved in Section 2.8.1. We use the code in

[106] as the original code. Let Fq(α) be the field obtained by adjoining α to the base field B =

GF (q). Similarly let Fq(α1, α2, . . . , αn) be the field for adjoining multiple elements. Let αi be

an element of order qi over B and h be the number of erasures in the original code. The original

code is defined in the field F′ = GF (q`
′
) = GF (qsq1q2...qn′), which is the degree-s of extension of

Fq(α1, α2, . . . αn′). The evaluation points are A′ = {α1, α2, . . . αn′}. The subfield F′[h] is defined

as F′[h] = Fq(αj, j = h+ 1, h+ 2, . . . , n′), and F′i is defined as Fq(αj, j 6= i, j ∈ [n′]).

In the original code, we assume without loss of generality that there are h failed nodes f ′(α1),

f ′(α2), . . . , f
′(αh). Consider the polynomials for failed node f ′(αi), 1 ≤ i ≤ h, as

p′ij(x) = xj−1g′i(x), j ∈ [si], x ∈ F′, (2.94)

where

g′i(x) =
∏

α∈A′/(R′∪{αi,αi+1,...αh})

(x− α), x ∈ F′, (2.95)

for R′ ⊆ A′, |R′| = d′ being the set of helpers. The set of repair polynomials are {ηitp′ij(x), i ∈

[h], j ∈ [si], t ∈ [sqi
si

]}, where ηit ∈ F′ are constructed in [106] to ensure that {ηitp′i1(αi),

ηitp
′
i2(αi), . . . , ηitp

′
isi

(αi)} forms the basis for F′ over F′i.

Then, the failed nodes are repaired one by one from

trF′/F′i(υαi
ηitp

′
ij(αi)f

′(αi))

=−
n∑

ε=1,ε 6=i

trF′/F′i(υεηitp
′
ij(αε)f

′(αε)). (2.96)

For x /∈ R′ ∪ {αi, αi+1, . . . αh}, p′ij(x) = 0 and no information is transmitted. Once f ′(αi) is

recovered, it is viewed as a new helper for the failures i+ 1, i+ 2, . . . , h.

45

Since F′[h] ≤ F′i, the information transmitted from the helper αε can be represented as

trF′/F′i(υεηitp
′
ij(αε)f

′(αε))

=trF′/F′i

ξ′im q′i∑
m=1

trF′i/F′[h](υεηitξimp
′
ij(αε)f

′(αε))

=

q′i∑
m=1

ξ′imtrF′/F′[h](υεηitξimp
′
ij(αε)f

′(αε)), (2.97)

where q′i = q1q2...qh
qi

, {ξi1, ξi2, . . . , ξiq′i} and {ξ′i1, ξ′i2, . . . , ξ′iq′i} are the dual basis for F′i over F′[h].

We used the fact that trF′/F′i(trF′i/F′[h](·)) = trF′/F′[h](·), for F′[h] ≤ F′i ≤ F′.

The original code satisfies the full rank condition for every i ∈ [h], and each helper αε transmits

[106]

rankF′[h]

(
{ηitξimp′ij(αε) :

i ∈ [h], j ∈ [si], t ∈ [
sqi
si

],m ∈ [q′i]}
)

=rankF′[h]

(
{ηitξim : i ∈ [h], t ∈ [

sqi
si

],m ∈ [q′i]}
)

=
h`′

(d′ − k′ + h)
∏n′

v=h+1 pv
(2.98)

symbols over F′[h], which achieves the MSR bound.

In our new code, we extend the field to F = GF (q`), ` = a`′, by adjoining an order-a element αn+1

to F. We set d− k = d′ − k′. The new evaluation points consist of A = {α1E∗, α2E∗, . . . , α′nE∗},

E = GF (qa) = Fq(αn+1). The subfield F[h] is defined by adjoining αn+1 to F′[h], and Fi is defined

as Fq(αj, j 6= i, j ∈ [n+ 1]).

Assume first that each coset contains at most one failure, and there are h failures in total. We

assume without loss of generality that the evaluation points of the h failed nodes are in {α1E∗,

α2E∗, . . . , αhE∗}, and they are α1γ1, α2γ2, . . . , αhγh for some γw ∈ E, w ∈ [h]. Let the set of

46

helpers be R ⊆ A, |R| = d. We define the polynomials

pij(x) = xj−1gi(x), j ∈ [si], x ∈ F, (2.99)

where

gi(x) =
∏

α∈A/{R∪{αiγi,αi+1γi+1,...αhγh}}

(x− α), x ∈ F. (2.100)

The set of repair polynomials are {ηitpij(x), i ∈ [h], j ∈ [si], t ∈ [sqi
si

]}, where ηit ∈ F′ are the

same as the original construction. We use field Fi as the base field for the repair.

trF/Fi
(υαiγiηitpij(αiγi)f(αiγi))

=−
∑

α∈A,α 6=αiγi

trF/Fi
(υαηitpij(α)f(α)). (2.101)

If x ∈ R ∪ {αiγi, αi+1γi+1, . . . αhγh}, pij(x) = 0 and no information is transmitted. Next, we

consider all other nodes.

If x = αiγ for some γ ∈ E∗, we have

pij(x) = γj−1αj−1i gi(x). (2.102)

Since ηit, αi ∈ F′ and gi(x) is a constant independent of j, we have

rankFi
({ηitpi1(x), . . . , ηitpisi(x) : t ∈ [

sqi
si

]})

=rankFi
({ηit, . . . , ηitαs−1i : t ∈ [

sqi
si

]})

=rankF′i({ηitp
′
i1(αi), . . . , ηitp

′
isi

(αi) : t ∈ [
sqi
si

]}) (2.103)

which indicates the full rank. Note that the last equation follows from Lemma 3. As a result we

47

can recover the failed nodes and each helper in the cosets containing the failed nodes transmit `

symbols in B.

For x = αεγ, ε > h, since F[h] is a subfield of Fi and from Lemma 3 we know that {ξi1, ξi2, . . . ,

ξiq′i} and {ξ′i1, ξ′i2, . . . , ξ′iq′i} are also the dual basis for Fi over F[h], then, similar to (2.97), we have

trF/Fi
(υαηitpij(x)f(x))

=

q′i∑
m=1

ξ′imtrF/F[h]
(υεηitξimpij(x)f(x)). (2.104)

Using the fact that gi(x) is a constant independent of j, x ∈ F[h] and ηitξim ∈ F′, from Lemma 3

we know that

rankF[h]

(
{ηitξimpij(x) :

i ∈ [h], j ∈ [si], t ∈ [
sqi
si

],m ∈ [q′i]}
)

=rankF[h]

(
{ηitξim : i ∈ [h], t ∈ [

sqi
si

],m ∈ [q′i]}
)

=rankF′[h]

(
{ηitξim : i ∈ [h], t ∈ [

sqi
si

],m ∈ [q′i]}
)

=rankF′[h]

(
{ηitξimp′ij(αε) :

i ∈ [h], j ∈ [si], t ∈ [
sqi
si

],m ∈ [q′i]}
)

=
h`′

(d− k + h)
∏n′

v=h+1 qv
, (2.105)

where the last equality follows from (2.98) and d′− k′ = d− k. So, each helper in the other cosets

transmits h`
d−k+h symbols over B.

Using the above results, we calculate the repair bandwidth in two steps.

Step 1. We first repair h1 failures, one from each of the h1 cosets. From (2.103), we know that

in the h1 cosets containing the failed nodes, we transmit ` symbols over B. By (2.105), for each

48

helper in other cosets, we transmit h1`
d−k+h1 symbols over B.

Step 2. For 2 ≤ i ≤ e, repeat the following. After repairing h1, h2, ..., hi−1 failures, these nodes

can be viewed as helpers for repairing next hi failures, one from each of the hi cosets. So, we have

d +
i−1∑
v=1

hv helpers for the hi failures. For the helpers in the h1 cosets containing the failed nodes,

we already transmit ` symbols over B in Step 1 and no more information needs to be transmitted.

For each helper in other cosets, we transmit hi`

d−k+
∑i

v=1 hv
symbols over B.

Thus, we can repair all the failed nodes. The repair bandwidth can be calculated as (2.93).

Suppose that e failures are to be recovered. Compared to the naive strategy which always uses

d helpers to repair the failures one by one, our scheme gets a smaller repair bandwidth since the

recovered failures are viewed as new helpers and we take advantage of the overlapped symbols for

repairing different failures similar to [106].

In the case when n � e(qa − 1), or when we arrange nodes with correlated failures in different

cosets, we can assume that all the erasures are in different cosets, h1 = e, h2 = h3 = ... = he = 0.

For example, if correlated failures tend to appear in the same rack in a data center, we can assign

each node in the rack to a different coset. Under such conditions, we simplify the repair bandwidth

as

b ≤ d

n− e
e`

d− k + e
(n− e+ (d− k)(qa − 2)). (2.106)

Indeed, one can examine the expression of (2.93). With the constraint that
∑e

i=1 hi = e, the

first term h1(q
a − 1) − e) is an increasing function of h1 and the second term (n − h1(q

a −

1))
∑e

i=1
hi

d−k+
∑i

v=1 hv
is a decreasing function of h1. Under the assumption that n is large, the

second term dominates, and increasing h1 reduces the total repair bandwidth b. Namely, h1 = e

corresponds to the lowest bandwidth for large code length.

49

Table 2.3: Repair bandwidth of different schemes for e erasures.

repair bandwidth number of helpers
Single-erasure repair

in one coset (separate repair)
e`
a

(n− 1)(a− s) n− 1

Multiple-erasure repair
in one coset (simultaneous repair)

e`
a

(n− e)(a− s) n− e

Single-erasure repair
in multiple cosets (separate repair)

e`
n−k [n− 1 + (n− k − 1)(qa − 2)] n− 1

Multiple-erasure repair
in multiple cosets (simultaneous repair)

e`
n−k [n− e+ (n− k − e)(qa − 2)] n− e

In particular, when d = n− e, h1 = e, we have

b =
e`

n− k
(n− e) +

e`

n− k
(n− k − e)(qa − 2), (2.107)

where the second term is the extra repair bandwidth compared with the MSR bound.

2.4.4 Numerical evaluations and discussions

In this subsection, we compare our schemes for multiple erasures with previous results, including

separate repair and schemes in [67] and [106].

We first demonstrate that repairing multiple erasures simultaneously can save repair bandwidth

compared to repairing erasures separately. Let us assume e failures happen one by one, and the

rest of n − 1 nodes are available as helpers initially when the first failure occurs. We can either

repair each failure separately using n − 1 helpers, or wait for e failures and repair all of them

simultaneously with n− e helpers. Table 2.3 shows the comparison. For our scheme in one coset,

separate repair needs a repair bandwidth of e`
a

(n − 1)(a − s) symbols in B, simultaneous a repair

requires bandwidth of e`
a

(n − e)(a − s). For our scheme in multiple cosets, we can repair the

failures separately by n− 1 helpers with the bandwidth of e`
n−k [n− 1 + (n− k − 1)(qa − 2)], and

with simultaneous repair we can achieve the bandwidth of e`
n−k [n− e+ (n− k− e)(qa − 2)]. One

can see that in both constructions, simultaneous repair outperforms separate repair.

Nest we compare our scheme for multiple erasures with the existing schemes. Figure 2.4 shows the

50

0 10 20 30 40 50 60 70 80 90

Sub-packetization size (log2(l))

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
o

rm
a

liz
e

d
 r

e
p

a
ir
 b

a
n

d
w

id
th

 (
b

/[
(n

-1
)l
])

n=16,k=8,e=2

o

Our scheme in one coset

Our scheme in multiple cosets

Scheme 2 by Mardia, Bartan and Wootters

Scheme by Ye and Barg

Scheme 1 by Mardia, Bartan and Wootters

Figure 2.4: Comparison of the schemes, q = 2, n = 16, k = 8, e = 2.

Table 2.4: Normalized repair bandwidth(b
(n−e)`) for different schemes when n = 64, k = 32, e =

2, q = 2. ◦ can be also achieved by Scheme 1 in [67] and ∗ is also achieved by [106].

` = 6 ` = 7 ` = 8 ` = 9 ... ` = 3.6× 106 ` = 3.3× 1011 ` = 3.9× 10115

Normalized bandwidth
for Scheme 1 in [67] 0.42 0.50 0.52 0.52 ... 0.52 0.52 0.52

Normalized bandwidth
for our scheme in one coset 0.49◦ 0.49 0.49 0.49 ... 0.49 0.49 0.49

Normalized bandwidth
for our scheme in multiple cosets 0.52 0.48 0.0625∗

normalized repair bandwidth for different schemes when n = 16, k = 8, e = 2, q = 2. Table 2.4

shows the comparison when n = 64, k = 32, e = 2, q = 2. We make the following observations:

1. For fixed (n, k) and our scheme with multiple cosets, we use the paremeter a to adjust the

sub-packetization size. From Theorem 8, we know that ` ≈ a · (n
qa−1)(

n
qa−1

), which means

that increasing a will decrease the sub-packetization `. In our schemes with one coset and

two cosets, the parameter a is determined by the code length n, so increasing ` will not

change a or the normalized repair bandwidth. When q = 2, our code with a = 1 coincides

with that of [106].

2. For small ` and full-length code (` = log2 n), the scheme in [67] has the smallest normalized

repair bandwidth. (Our scheme in one coset also achieves the same point as Scheme 1 in

[67] when ` = log2 n.)

3. When ` grows larger (4 < ` < 2.1 × 107 in Figure 2.4, 6 < ` < 3.3 × 1011 in Table 2.4),

51

our scheme in one coset has the smallest repair bandwidth.

4. For extremely large ` (` ≥ 2.1×107 in Figure 2.4, ` ≥ 3.3×1011 in Table 2.4), our scheme

in multiple cosets has the smallest repair bandwidth.

5. The scheme in [106] also achieves one point in both Figure 2.4 and Table 2.4, which can be

viewed as a special case of our scheme in multiple cosets.

2.5 Repair Algorithm for RS(n, k) Codes

In this section, we provide a detailed algorithm and the necessary lookup tables to implement the

general ideas in [61] to repair RS(n, k) over GF (2`). The computation complexity is analyzed

in terms of the number of required finite field operations and required memories. Moreover, for

` = 8, 16, 32, 64, which are frequently used sub-packetization sizes in practice, we provide an

efficient computation of the trace function.

First, we describe the repair algorithm using the example of the RS(14, 10) code. The formulas

for the general case will be provided at the end.

The RS(14, 10) code has n = 14 codeword symbols and k = 10 information symbols. In a

storage system, different symbols are stored in different nodes. The symbols are over the finite field

F = GF (28) = {0, 1, β, β2, ..., β254}, where β is the primitive element of F. As a standard choice,

β is the root of 1+x2 +x3 +x4 +x8 = 0. For the information symbols uj ∈ F, j = 0, 1, · · · , 9, let

f be the polynomial f(x) =
9∑
j=0

ujx
j . RS codeword symbols are evaluations of the polynomial f

and erasures can be corrected using interpolation. In this section, we apply the general construction

in [61, Thm. 1] to this specific code. By restricting the evaluation points to a subfield, one obtains

a low repair bandwidth. Consider the subfield E = GF (24) = {0, 1, β17, β17·2, ..., β17·14} of F.

Let us choose the set of evaluation points from E, and denote it by A = {α1, α2, ..., α14} =

{1, β17, β17·2, β17·3, ..., β17·13}. Then, the 14 codeword symbols, in the 14 nodes, are {Nm =

52

f(αm) =
9∑
j=0

ujαm
j : αm ∈ A}.

We use the trace function to map symbols of F to sub-symbols of the base field B = GF (2):

trF/B(x) = x+ x2 + x2
2

+ x2
3

+ ...+ x2
7

, (2.108)

where for every x ∈ F, trF/B(x) ∈ B, i.e., the result of Eq. (2.108) is 0 or 1. Any symbol x ∈ F

can be reconstructed from the 8 bits evaluated using the trace function as:

x =
8∑
i=1

γ′itrF/B(γix) =
8∑
i=1

γ′ib
′
i, (2.109)

where {γ1, γ2, ..., γ8} is a basis for F over B and {γ′1, γ′2, ..., γ′8} is its dual basis.

Let us assume the node N∗ = f(α∗) fails, 1 ≤ ∗ ≤ 14. Then, the transmitted symbols from

the other nodes (called helpers) are related to the failed node symbol through the dual codewords

{cmi : m ∈ [14]} of RS(14, 10), for i ∈ [8]:

c∗iN∗ =
∑
m6=∗

cmiNm. (2.110)

8 dual codewords are required for each failure. To transmit symbols of the base field B, we take

the trace function on both sides of (2.110). It is required that the 8 symbols {c∗i : i ∈ [8]} form

a basis for F over B, then we can treat them as {γi : i ∈ [8]} and use (2.109) to repair the failed

node.

The dual codeword symbols are chosen in [61, Thm. 1] as

{cmi : i ∈ [8]} = {υmηtpj,∗(αm) : t ∈ [2], j ∈ [4]}, (2.111)

where m ∈ [14] and the subscript i is indexed by t and j as i = 4 × (t − 1) + j. Here

{υm,m ∈ [14]} = {β51, β136, 1, β51, β221, β34, β238, β136, β238, β221, β102, β102, β34, 1} are the col-

53

umn multipliers, {η1, η2} = {1, β}, and the polynomial pj,∗(x) is

pj,∗(x) = ξj
∏
w∈W

(x− α∗ + w−1ξj), (2.112)

where ξj = β17(j−1),W = {1, β17, β68}.

Let rankB({a1, a2, ..., ai}) be the cardinality of a maximal subset of {a1, a2, ..., ai} that is linearly

independent over B. As analyzed in [61, Thm. 1], we have

rankB({cmi : i ∈ [8]}) =

8, if m = ∗,

4, if m 6= ∗,
(2.113)

and {cmi : i ∈ [8]},m 6= ∗ lie in two subspaces of dimension 2 spanned by {υmηtpj,∗(αm) : j ∈

[4]}, t ∈ [2]. Now, we have {c∗i : i ∈ [8]} form a basis for F over B, and we can recover the

failed node with only 4 bits from each helper. Specifically, for helper m, we represent the basis

for the subspace spanned by {cmi : i ∈ [8]} as {εm,t,z : t ∈ [2], z ∈ [2]}, where{εm,t,z : z ∈ [2]}

are the first two independent elements (hense the basis) of {υmηtpj,∗(αm) : j ∈ [4]}, for t ∈ [2].

Denote Dm,v = trF/B(εm,t,zNm), v = 2(t − 1) + z. Since the trace function is a linear function,

{Dm,v : v ∈ [4]} can reconstruct trF/B(cmiNm), i ∈ [8]. Hence the trace function of (2.110) can be

evaluated.

For the general case, the RS(n, k) code over F = GF (2`) is defined by evaluations points in the

subfield E = GF (2a), for some a|`. Eq. (2.111) is replaced by

{cmi : i ∈ [`]} = {υmηtpj,∗(αm) : t ∈ [
`

a
], j ∈ [a]}, (2.116)

wherem ∈ [n] and the subscript i is indexed by t and j as i = a×(t−1)+j. Here {υm,m ∈ [n]} are

the column multipliers given by υm =
∏

j∈[n],j 6=m
(αm − αj) [65, Thm. 4, Ch.10], and {ηt : t ∈ [`

a
]}

54

Algorithm 1 Repair algorithm for RS(n, k) over GF (2`).
Input: The failed node index ∗ and the remaining nodes Nm,m ∈ [n],m 6= ∗.
Output: The failed node N∗.
Preprocessing Steps:
Step 1: Construct dual basis table and dual codeword table (e.g. Tables 2.5 and 2.6): Find the
dual basis of {c∗i : i ∈ [`]}, denoted by {γ′1, γ′2, ..., γ′`}. For each helper node m, find the ` dual
codewords cmi, i ∈ [`] in (2.111).
Step 2: Construct subspace basis table and representation table (e.g. Tables 2.7 and 2.8): Find
the basis {εm,t,z, t ∈ [`

a
], z ∈ [a − s]} of the subspace spanned by {cmi : i ∈ [`]}, and the

representation of trF/B(cmiNm) for each helper m.
Repair Steps:
Step 3: Calculate and download the binary values Dm,v = trF/B(εm,t,zNm) from each helper,
v ∈ [`

a
(a− s)].

Step 4: Represent trF/B(cmiNm) from Dm,v and apply (2.110):

b′i = trF/B(c∗iN∗) =
n∑

m=1,m 6=∗

trF/B(cmiNm), i ∈ [`]. (2.114)

Step 5: Reconstruct the failed node by

N∗ =
∑̀
i=1

γ′ib
′
i. (2.115)

55

is the basis for F over E. The polynomial pj,∗(x) is

pj,∗(x) = ξj
∏
w∈W

(x− α∗ + w−1ξj), (2.117)

where ξj = (β
2`−1
2a−1)j−1, j ∈ [a], and W is an s-dimensional subspace spanned by {1, β

2`−1
2a−1 , ...,

(β
2`−1
2a−1)s−1} except {0}, 2s ≤ n − k. Parameters εm,t,z, Dm,v, v = (a − s) × (t − 1) + z, z ∈

[a − s], t ∈ [`
a
], are defined similar to the case of RS(14, 10). Moreover, it can be shown that

`
a
(a− s) bits are downloaded from each helper. For details see [61].

The detailed steps are provided in Algorithm 1. Due to space limitation, Tables 2.6, 2.7, and 2.8

are only shown when Node 1 fails.

Complexity. In what follows, we analyze the space and computation complexity of our algorithm.

During preprocessing in Steps 1 and 2, Tables 2.5, 2.6, 2.7, and 2.8 need to be calculated only

once. In addition, the symbols in Table 2.6 are intermediate values and do not need to be stored.

Thus, each node stores one corresponding column of Table 2.5, and one corresponding column

of 13 different variations of Tables 2.7 and 2.8, where a variation is for one potential failure.

Note that trF/B(cmiNm), i ∈ [8] lie in two spaces of dimension 2 spanned by {Dm,1, Dm,2} and

{Dm,3, Dm,4}, hence each symbol in Table 2.8 is 2 bits. The storage overhead per node is 8 symbols

of GF (28) in Table 2.5, 4×13 = 52 symbols of GF (28) in Table 2.7 and 8×13 = 104 symbols of

2 bits in Table 2.8. In total, we need 688 bits per node. For the general case, similar calculations

show that the storage overhead per node is ` + `
a
(n− 1)(a− s) symbols of GF (2`) and (n− 1)`

symbols of a − s bits. Moreover, this storage overhead is amortized over the total storage size of

the node.

Next, we analyze the computation complexity in the repair steps (Steps 3, 4, and 5). We show

that some steps do not require general operations over F. For the commonly used cases of ` =

8, 16, 32, 64, we present a lemma to calculate the trace function.

56

Lemma 6. Let F = GF (28), GF (216), GF (232), GF (264) and B = GF (2). The trace function

trF/B(x) is equal to one single bit of x, for x ∈ F.

Proof: We prove for the case of F = GF (28), the proof for other fields have similar steps and we

only show the results. From [63, Thm 2.25], we know that trF/B(x) = 0 if and only if x = δ2 + δ

for some δ ∈ F. Let us write x as

x = x0 + x1β + x2β
2 + ...+ x7β

7, (2.118)

where xi ∈ B, i = 0, 1, ..., 7 are the 8-bit presentation of x, and β is a root of the primitive

polynomial 1 + x2 + x3 + x4 + x8 = 0. Similarly, we write δ as δ = δ0 + δ1β + δ2β
2 + ...+ δ7β

7,

where δi ∈ B, i = 0, 1, ..., 7.

Then, we have trF/B(x) = 0 if and only if

x = δ2 + δ = δ4 + δ6 + δ7 + (δ1 + δ7)β

+ (δ1 + δ2 + δ4 + δ5 + δ6)β
2

+ (δ3 + δ4 + δ6)β
3 + (δ2 + δ5 + δ7)β

4

+ (δ3 + δ5)β
6 + (δ6 + δ7)β

7. (2.119)

In the above equation, we use the fact that 1 + β2 + β3 + β4 + β8 = 0 and δi = δi
2 because δi is

binary.

Because {1, β, β2, ..., β7} are linearly independent over B, from (2.118) and (2.119), we get

trF/B(x) = 0 if and only if x5 = 0. Thus, trF/B(x) is the same as the 6-th bit of x.

The results for other field sizes are tabulated below:

57

` primitive polynomial bit index

8 x8 + x4 + x3 + x2 + 1 6

16 x16 + x14 + x10 + x8 + x3 + x+ 1 14

32 x32 + x22 + x2 + x+ 1 32

64 x64 + x4 + x3 + x2 + 1 62

In Step 3, we need to perform 4 multiplications in GF (28) to calculate εm,t,zNm, t ∈ [2], z ∈ [2]

and 4 trace functions to calculate Dm,v from each helper. From Lemma 6, the cost of the trace

function is just checking the 6-th bit and can be ignored. In Step 4, as shown in Table 2.8, the

representation needs only 2 additions: Dm,1 + Dm,2 and Dm,3 + Dm,4, and Eq. (2.114) needs

8 × 13 additions in GF (2). This step is done in the failed node. In Step 5, since b′i, i ∈ [8]

are binary symbols, at most 7 additions in GF (28) are needed. Therefore, in total we need 4

multiplications in GF (28) at each helper, plus 130 additions in GF (2) and 7 additions in GF (28)

at the failed node. For general parameters, we need `
a
(a − s) multiplications in GF (2`) at each

helper, plus (n− 1)`min
{

1
a

(2a−s − (a− s)− 1) + 1, a− s+ 1
}

additions in GF (2), and `− 1

additions in GF (2`) at the failed node.

2.6 Comparison

For RS(14, 10) in GF (28), our algorithm requires a repair bandwidth of 52 bits for one failure,

which is 35% better than the naive repair [68] that requires 80 bits. The full-length code in [40],

[18] requires 78 bits using the general scheme. For the special case of RS(14, 10) in GF (28),

[40] found a method that needs at most 64 bits. The MSR scheme in [103] and the asymptotic

MSR scheme in [94] do not provide a solution for small fields like GF (28). For the special case

of RS(14, 10), [25] provides three different repair schemes that require 60, 56, and 54 bits.

58

Table 2.5: Dual basis table for RS(14, 10) over GF (28), a = 4, s = 2. β is a root of the primitive
polynomial 1 + x2 + x3 + x4 + x8.

Failed node 1 2 3 4 5 6 7 8 9 10 11 12 13 14
γ′1 β203 β118 β254 β203 β33 β220 β16 β118 β16 β33 β152 β152 β220 β254

γ′2 β152 β67 β203 β152 β237 β169 β220 β67 β220 β237 β101 β101 β169 β203

γ′3 β84 β254 β135 β84 β169 β101 β152 β254 β152 β169 β33 β33 β101 β135

γ′4 β16 β186 β67 β16 β101 β33 β84 β186 β84 β101 β220 β220 β33 β67

γ′5 β187 β102 β238 β187 β17 β204 1 β102 1 β17 β136 β136 β204 β238

γ′6 β136 β51 β187 β136 β221 β153 β204 β51 β204 β221 β85 β85 β153 β187

γ′7 β68 β238 β119 β68 β153 β85 β136 β238 β136 β153 β17 β17 β85 β119

γ′8 1 β170 β51 1 β85 β17 β68 β170 β68 β85 β204 β204 β17 β51

Table 2.6: Dual codeword table. It shows the symbols cmi = υmηtpj,∗(αm), i = 4(t − 1) + j, for
RS(14, 10) when Node ∗ = 1 fails.

helper m 2 3 4 5 6 7 8 9 10 11 12 13 14
i = 1(t = 1, j = 1) β17 1 0 1 β34 β187 β102 β238 β17 β17 β119 0 β119

i = 2(t = 1, j = 2) β17 β119 β68 0 β68 β68 β204 β85 β153 β51 0 β102 β238

i = 3(t = 1, j = 3) β17 1 β204 0 β170 0 β68 0 β17 β51 β238 β136 β17

i = 4(t = 1, j = 4) β119 β119 0 β119 β34 β187 β204 0 β51 β51 β17 β238 β17

i = 5(t = 2, j = 1) β18 β 0 β β35 β188 β103 β239 β18 β18 β120 0 β120

i = 6(t = 2, j = 2) β18 β120 β69 0 β69 β69 β205 β86 β154 β52 0 β103 β239

i = 7(t = 2, j = 3) β18 β β205 0 β171 0 β69 0 β18 β52 β239 β137 β18

i = 8(t = 2, j = 4) β120 β120 0 β120 β35 β188 β205 0 β52 β52 β18 β239 β18

Our approach can be applied to any RS code as long as there is an integer a such that a|l and

2a > n+1. For the RS(11, 8) in Yahoo Object Store [69], we can set n = 11, k = 8, a = 4, s = 1.

When applied to GF (28), the repair bandwidth of our algorithm is 60 bits, which is 6% better than

the naive scheme. For the RS(12, 8) in Baidu’s Atlas cloud storage [56], we can set n = 12, k =

8, a = 4, s = 2. When applied to GF (28), we can achieve a repair bandwidth of 44 bits, which

is 31% smaller than the naive scheme. In both cases, the full-length code’s repair bandwidth [40],

[18] is higher than that of the naive scheme.

Table 2.7: Subspace basis table. It shows εm,t,z for RS(14, 10) when Node ∗ = 1 fails.

helper m 2 3 4 5 6 7 8 9 10 11 12 13 14
εm,1,1 β17 1 β68 1 β34 β187 β102 β238 β17 β17 β119 β102 β119

εm,1,2 β119 β119 β204 β119 β68 β68 β204 β85 β153 β51 β238 β136 β238

εm,2,1 β18 β β69 β β35 β188 β103 β239 β18 β18 β120 β103 β120

εm,2,2 β120 β120 β205 β120 β69 β69 β205 β86 β154 β52 β239 β137 β239

59

Table 2.8: Representation table. It represents trF/B(cmiNm) by Dm,v = trF/B(εm,t,zNm), v =
2(t− 1) + z, for RS(14, 10) when Node 1 fails.

helper 2 3 4 5 6 7 8 9 10 11 12 13 14
i = 1 D2,1 D3,1 0 D5,1 D6,1 D7,1 D8,1 D9,1 D10,1 D11,1 D12,1 0 D14,1

i = 2 D2,1 D3,2 D4,1 0 D6,2 D7,2 D8,2 D9,2 D10,2 D11,2 0 D13,1 D14,2

i = 3 D2,1 D3,1 D4,2 0
D6,1

+D6,2
0

D8,1

+D8,2
0 D10,1 D11,2 D12,2 D13,2

D14,1

+D14,2

i = 4 D2,2 D3,2 0 D5,2 D6,1 D7,1 D8,2 0
D10,1

+D10,2
D11,2

D12,1

+D12,2

D13,1

+D13,2

D14,1

+D14,2

i = 5 D2,3 D3,3 0 D5,3 D6,3 D7,3 D8,3 D9,3 D10,3 D11,3 D12,3 0 D14,1

i = 6 D2,3 D3,4 D4,3 0 D6,4 D7,4 D8,4 D9,4 D10,4 D11,4 0 D13,3 D14,2

i = 7 D2,3 D3,3 D4,4 0
D6,3

+D6,4
0

D8,3

+D8,4
0 D10,3 D11,4 D12,4 D13,4

D14,1

+D14,2

i = 8 D2,4 D3,4 0 D5,4 D6,3 D7,3 D8,4 0
D10,3

+D10,4
D11,4

D12,3

+D12,4

D13,3

+D13,4

D14,1

+D14,2

2.7 Conclusion

In this chapter, we designed three Reed-Solomon code repair schemes to provide a tradeoff be-

tween the sub-packetization size and the repair bandwidth. Our schemes choose the evaluation

points of the Reed-Solomon code from one, two, or multiple cosets of the multiplicative group of

the underlying finite field. For a single erasure, when the sub-packetization size is large, the scheme

in multiple cosets has better performance, it approaches the MSR bound. When sub-packetization

size is small, the scheme in one coset has advantages in repair bandwidth. The scheme in two

cosets has smaller repair bandwidth with certain parameters in between the other two cases. For

multiple erasures, our scheme in one coset has constructions for arbitrary redundancy n−k and our

scheme in multiple cosets reduced the sub-packetization size of an MSR code. The two schemes

together provided a set of tradeoff points and we observe similar tradeoff characteristics as in the

single erasure case. In spite of several tradeoff points we provided in this chapter, the dependence

of the sub-packetization size versus the repair bandwidth is still an open question.

60

2.8 Detailed Proofs

2.8.1 Proof of schemes for the case of arbitrary a and `′.

In this section, we first introduce a lemma similar to Lemma 3 that does not require a and `′ to

be relatively prime. By applying this lemma, our constructions in multiple cosets for single and

multiple erasures can be generalized when a and `′ are arbitrary integers.

We note that a finite field F = GF (q`) is also a vector space over GF (q). Let E be a sub-

space of F. Define the subspace spanned by a set of elements {γ1, γ2, . . . , γi} ⊆ F over E as

spanE{γ1, γ2, . . . , γi} , {
∑i

j=1 bjγj : bj ∈ E}. The rank rankE({γ1, γ2, ..., γi}) is defined to be

the cardinality of a maximal subset of {γ1, γ2, ..., γi} that is linearly independent over E.

Lemma 7. Let B = GF (q),F′ = GF (q`
′
), F = GF (q`), ` = a`′, and q be any power of a prime

number. Define the subspace E = spanB{β1, β2, . . . , βa}, where {β1, β2, . . . , βa} is a basis for F

over F′. For any set of {γ1, γ2, ..., γ`′} ⊆ F′ ≤ F, we have

rankE({γ1, γ2, ..., γ`′})

=rankB({γ1, γ2, ..., γ`′}). (2.120)

Proof: Assume rankB({γ1, γ2, ..., γ`′}) = c and without loss of generality, {γ1, γ2, ..., γc} are lin-

early independent over B. Then, we can construct {γ′c+1, γ
′
c+2, ..., γ

′
`′} ⊆ F′ to make {γ1, γ2, ..., γc,

γ′c+1, γ
′
c+2, ..., γ

′
`′} form a basis for F′ over B.

Since {β1, β2, . . . , βa} is the basis for F over F′, we know that {βiγ1, βiγ2, ..., βiγc, βiγ′c+1, βiγ
′
c+2,

..., βiγ
′
`′ : i ∈ [a]} is the basis for F over B. Then, we have F = spanE{γ1, γ2, ..., γc, γ′c+1, γ

′
c+2,

..., γ′`′}, namely, {γ1, γ2, ..., γc, γ′c+1, γ
′
c+2, ..., γ

′
`′} is a basis for F over E, hence {γ1, γ2, ..., γc} are

61

linearly independent over E,

rankE({γ1, γ2, ..., γ`′})

≥c

=rankB({γ1, γ2, ..., γ`′}). (2.121)

Since B ⊆ E, we also have

rankE({γ1, γ2, ..., γ`′})

≤rankB({γ1, γ2, ..., γ`′}). (2.122)

The proof is completed.

For the schemes in multiple cosets when a and `′ are not relatively prime, we just use the subspace

E = spanB{β1, β2, ..., βa} to replace the subfield GF (qa). We denote by E∗ = E\{0} for the

subspace E. The evaluation points of the new code are {γE∗ : γ ∈ A′} where A′ ⊆ F′ is the set of

evaluation points for the original code. In the proofs, we use Lemma 7 instead of Lemma 3. For

example, from Lemma 7 we know that the new evaluation points are all distinct if the elements in

A′ are linearly independent over B.

2.8.2 Proof of Theorem 6

In this section, we prove the equivalence of Definitions 1 and 2. We first show that the dual code

scheme in Definition 2 reduces to a linear repair scheme as in Definition 1 in Lemma 8. Then, we

show that Definition 1 reduces to Definition 2 in Lemma 9 and Lemma 10.

Lemma 8. The dual code scheme can be reduced to the linear repair scheme in Definition 1.

62

Proof: In the dual code scheme, we repair nodes [e] from the linearly independent equations

e∑
v=1

trF/B(C ′ijvCv) = −
n∑

t=e+1

trF/B(C ′ijtCt), i ∈ [e], j ∈ [`]. (2.123)

Here, C ′ijt can be written as

C ′ijt =
∑̀
m=1

ξ′mtrF/B(ξmC
′
ijt), (2.124)

where {ξ1, ξ2, . . . , ξ`} and {ξ′1, ξ′2, . . . , ξ′`} are the dual basis for F over B. Then, we can rewrite

(2.123) in matrix form as

e∑
v=1

Siv

trF/B(ξ′1Cv)

trF/B(ξ′2Cv)

...

trF/B(ξ′`Cv)

= −
n∑

t=e+1

Sit

trF/B(ξ′1Cv)

trF/B(ξ′2Cv)

...

trF/B(ξ′`Cv)

, i ∈ [e], (2.125)

where Sit ∈ B`×` is called the repair matrix defined as

Sit =

trF/B(ξ1C
′
i1t) · · · trF/B(ξ`C

′
i1t)

trF/B(ξ1C
′
i2t) · · · trF/B(ξ`C

′
i2t)

...

trF/B(ξ1C
′
i`t) · · · trF/B(ξ`C

′
i`t)

, (2.126)

63

Let

Xw ,

trF/B(ξ′1Cw)

trF/B(ξ′2Cw)

...

trF/B(ξ′`Cw)

, w ∈ [n]. (2.127)

We want to solve Xi, i ∈ [e], which can be used to recover the e failed nodes C1, C2, . . . , Ce.

Define matrix S as

S =

S11 S12 · · · S1e

S21 S22 · · · S2e

...
...

Se1 Se2 · · · See

. (2.128)

Then, (2.125) can be represented as

S

X1

X2

...

Xe

= −

n∑
t=e+1

S1t

S2t

...

Set

Xt. (2.129)

Thus, from Lemma 4 we know that if the full rank condition satisfies1, S has full rank so we can

solve Xi, i ∈ [e]. Then, Ci, i ∈ [e] can be repaired from

Ci =
∑̀
m=1

ξmtrF/B(ξ′mCi), (2.130)

1We use Lemma 4 while in Lemma 4 we use the polynomials pij(x) as part of the elements in the defined matrix
Sit. However, in Lemma 4 we just view the polynomials pij(x) as a symbol, change them to the dual codeword
symbol C ′ijt will not have effects on the results of the lemma.

64

Now, set µim = ξm, we get λim = trF/B(ξ′mCi), which can be solved from (2.129). Note that the

right side of (2.129) is equal to the right side of (2.123), we get the queries Qt = {C ′ijt, i ∈ [e], j ∈

[`]} and the coefficients βimγt come from matrix S.

Then, we can get the repair bandwidth condition:

b =
n∑

t=e+1

rankB({C ′ijt : i ∈ [e], j ∈ [`]}) =
∑̀
t=e+1

rankB(Qt). (2.131)

Lemma 9. A linear repair scheme in Definition 1 can be represented in the form below:

µ′ijCi =
n∑

t=e+1

θijtCt, i ∈ [e], j ∈ [`], (2.132)

where {µ′i1, µ′i2, ..., µ′i`} is the dual basis of {µi1, µi2, ..., µi`}, and θijt ∈ spanB(Qt), e + 1 ≤ t ≤

n, i ∈ [e], j ∈ [`] are some coefficients in F. The repair bandwidth is

b =
n∑

t=e+1

rankB({θijt : i ∈ [e], j ∈ [`]}). (2.133)

Proof: By (2.66) and (2.67) we have

n∑
t=e+1

∑
γ∈Qt

trF/B(βijγt · γCt) = λij = trF/B(µ′ijCi). (2.134)

Set θijt =
∑

γ∈Qt
βijγt · γ. Then, we have θijt ∈ spanB(Qt). Hence,

n∑
t=e+1

trF/B(θijtCt)

=
n∑

t=e+1

trF/B(
∑
γ∈Qt

βijγt · γCt)

=trF/B(µ′ijCi). (2.135)

65

Equations (2.134) and (2.135) hold for all f ∈ F[x]. Since the RS code is a linear code, they also

hold for δm · f ∈ F[x] for all δm ∈ F. In particular, let δm,m ∈ [`], be a basis for F over B, Then,

trF/B(δm · µ′ijCi) = trF/B(δm ·
n∑

t=e+1

θijtCt),∀m ∈ [`], (2.136)

which in turn implies that θijt also satisfies (2.132).

Note that the repair bandwidth (2.133) also satisfies

b =
n∑

t=e+1

rankB(θijt : i ∈ [e], j ∈ [`])

≤
n∑

t=e+1

rankB(Qt), (2.137)

since θijt ∈ spanB(Qt). However, for any linear scheme L in Definition 1, if (2.137) holds

with strict inequality, we can improve the linear scheme L by setting Qt such that spanB(Qt) =

spanB({θijt, i ∈ [e], j ∈ [`]}), for all e+ 1 ≤ t ≤ n. Hence, the linear scheme L and the scheme in

Lemma 9 have identical bandwidth.

Lemma 10. The scheme in Lemma 9 can be represented by the dual code scheme in Definition 2.

Proof: By (2.132), (0, . . . , µ′ij, . . . , 0, θije+1, . . . , θijn) is a dual codeword, where µ′ij is the i-th

entry. Then, for j ∈ [`], we set C ′ijt such that C ′iji = −µ′ij , C ′ijv = 0, v ∈ [e], v 6= i and

C ′ijt = θijt, e + 1 ≤ t ≤ n. The full rank condition follows because {µ′i1, µ′i2, ..., µ′i`} is the basis

for F over B, and the repair bandwidth condition follows from (2.137). Thus, we obtain the dual

code scheme in Definition 2.

66

2.8.3 Proof of Lemma 4

Proof: Vectors Vij, i ∈ [e], j ∈ [`] are linearly independent over B is equivalent to that there is no

nonzero bij ∈ B, i ∈ [e], j ∈ [`] that satisfy

∑
i,j

bijpij(αv) = 0,∀v ∈ [e]. (2.138)

Here, pij(x) can be written as

pij(x) =
∑̀
m=1

ξ′mtrF/B(ξmpij(x)), (2.139)

where {ξ1, ξ2, . . . , ξ`} and {ξ′1, ξ′2, . . . , ξ′`} are the dual basis for F over B. So, it is equivalent to

that there is no nonzero bij ∈ B, i ∈ [e], j ∈ [`] that satisfy

∑
i,j

bij
∑̀
m=1

ξ′mtrF/B(ξmpij(αv)) = 0,∀v ∈ [e]. (2.140)

Since {ξ′1, ξ′2, . . . , ξ′`} are linearly independent over B. Therefore, there is no nonzero bij ∈ B, i ∈

[e], j ∈ [`] that satisfy

∑
i,j

bijtrF/B(ξmpij(αv)) = 0,∀v ∈ [e],m ∈ [`], (2.141)

which is equivalent to S has full rank.

2.8.4 Proof of Lemma 5

Proof: Assume rankB({pij(αt), i ∈ [e], j ∈ [`]}) = c and {pij(αt), (i, j) ∈ I} are linearly

independent over B, |I| = c. Define Sit(j) as the vector for the j-th row in Sit: Sit(j) =

(trF/B(ξ1pij(αt)), trF/B(ξ2pij(αt)), ..., trF/B(ξ`pij(αt))). We first prove {Sit(j), (i, j) ∈ I} are

67

linearly independent and then prove Si′t(j′), i′ ∈ [e], j′ ∈ [`], (i′, j′) /∈ I can be represented as

B-linear combinations of {Sit(j), (i, j) ∈ I} .

If {Sit(j), (i, j) ∈ I} are linearly dependent over B, then there exists some nonzero bij ∈ B, (i, j) ∈

I that satisfies

∑
(i,j)∈I

bijSit(j) = 0, (2.142)

and we have

∑
(i,j)∈I

bijtrF/B(ξmpij(αt)) = 0,∀m ∈ [`]. (2.143)

Multiplying the above equation by ξ′m and summing over all m ∈ [`] result in

∑
(i,j)∈I

∑̀
m=1

bijξ
′
mtrF/B(ξmpij(αt)) = 0. (2.144)

Then, from (2.139) we know that bij satisfies

∑
(i,j)∈I

bijpij(αt) = 0, (2.145)

which is contradictory to the statement that {pij(αt), (i, j) ∈ I} are linearly independent over B.

Therefore, {Sit(j), (i, j) ∈ I} are linearly independent over B.

Let us assume pi′j′(αt), i′ ∈ [e], j′ ∈ [`], (i′, j′) /∈ I can be represented as

pi′j′(αt) =
∑

(i,j)∈I

b′ijpij(αt), for some b′ij ∈ B. (2.146)

68

Then, for m ∈ [`],

trF/B(ξmpi′j′(αt)) = trF/B

ξm ∑
(i,j)∈I

b′ijpij(αt)

=
∑

(i,j)∈I

b′ijtrF/B(ξmpij(αt)), (2.147)

which means that for i′ ∈ [e], j′ ∈ [`], (i′, j′) /∈ I ,

Si′t(j
′) =

∑
(i,j)∈I

b′ijSit(j) (2.148)

is the B-linear combination of {Sit(j), (i, j) ∈ I}.

69

Chapter 3

Storage Codes with Flexible Number of

Nodes

3.1 Introduction

In distributed systems, error-correcting codes are ubiquitous to achieve high efficiency and relia-

bility. However, most of the codes have a fixed redundancy level, while in practical systems, the

number of failures varies over time. When the number of failures is smaller than the designed

redundancy level, the redundant storage nodes are not used efficiently. In this chapter, we present

flexible storage codes that make it possible to recover the entire information through accessing a

flexible number of nodes.

An (n, k, `) (array) code over a finite field F is denoted by (C1, C2, ..., Cn), Ci = (C1,i, C2,i, . . . ,

C`,i)
T ∈ F`, where n is the codeword length, k is the dimension, and ` is the size of each node

(or codeword symbol) and is called the sub-packetization size. For an (n, k, `) code, assume we

can recover the entire information by downloading all the symbols from any R nodes. We define

the download time of the slowest node among the R nodes as the data access latency. In practical

70

systems, the number of available nodes might be different over time and the latency of each node

can be modelled as a random variable [62]. Waiting for downloading all ` symbols from exactly R

nodes may result in a large delay. Hence, it is desirable to be able to adjust R and ` according to

the number of failures. Motivated by reducing the data access latency, we propose flexible storage

codes below.

A flexible storage codes is an (n, k, `) code that is parameterized by a given integer a and a set of

tuples {(Rj, kj, `j) : 1 ≤ j ≤ a} that satisfies

kj`j = k`, 1 ≤ j ≤ a, k1 > k2 > ... > ka = k, `a = `, (3.1)

and if we take `j particular coordinates of each codeword symbol, denoted by (Cm1,i, Cm2,i, . . . ,

Cm`j
,i)
T ∈ F`j , i ∈ [n], where [n] is the set of integers smaller or equal to n, we can recover the

entire information from any Rj nodes.

For example, flexible maximum distance separable (MDS) codes are codes satisfying the singleton

bound for each kj , namely, Rj = kj , 1 ≤ j ≤ a. Fig. 3.1 shows an example. C1,1, C1,2, C1,3,

C2,1, C2,2, C2,3 are the 6 information symbols. W1 = C1,1 +C1,2 +C1,3,W
′
1 = C1,1 +2C1,2 +3C1,3

are the parities for C1,1, C1,2, C1,3, and W2 = C2,1 + C2,2 + C2,3,W
′
2 = C2,1 + 2C2,2 + 3C2,3

are the parities for C2,1, C2,2, C2,3. The accessed symbols in each scenario are marked as red.

W ′
3 = W ′

1 +W ′
2,W

′
4 = W ′

1 +2W ′
2 are the parities of W ′

1 and W ′
2. In Scenario 1, all the information

symbols are accessed, we obtain the entire information directly. In Scenario 2, W ′
1 and W ′

2 are also

the parities in Rows 1 and 2, respectively. Thus, we obtain 3 symbols in the first two rows, and the

entire information can be decoded.

It is easy to see that the flexible code in the above example has a better expected latency than a fixed

code with either k = 2 or 3. In particular, each node can read and then send its three symbols one

by one to the decoder (in practice, each symbol can be viewed as, for example, several Megabytes

when multiple copies of the same code are applied). The flexible decoder can wait until 2 symbols

71

Figure 3.1: Example of a (4, 2, 3) flexible MDS code over GF (5).

from any 3 nodes, or 3 symbols from any 2 nodes are delivered, whose latency is the minimum of

the two fixed codes.

Several constructions of flexible MDS codes exist in the literature, though intended for different

application scenarios, including error-correcting codes [95], universally decodable matrices [30,

76], secrete sharing [44], and private information retrieval [5]. However, for other important types

of storage codes, such as codes that efficiently recover from a single node failure, or codes that

correct mixed types of node and symbol failures, flexible constructions remain an open problem.

In this chapter, we provide a framework that can produce flexible storage codes for different code

families. The main contributions of the chapter are summarized below.

• A framework for flexible codes is proposed that can generate flexible storage codes given a

construction of fixed (non-flexible) storage code.

• Flexible LRC (locally recoverable) codes allow information reconstruction from a variable

number of available nodes while maintaining the locality property, providing efficient single node

recovery. For an (n, k, `, r) flexible LRC code parametrized by {(Rj, kj, `j) : 1 ≤ j ≤ a} that

satisfies (3.1) and Rj = kj +
kj
r
− 1, each single node failure can be recovered from a subset of

r nodes, while the total information is reconstructed by accessing `j symbols in Rj nodes. We

provide code constructions based on the optimal LRC code construction [92].

• Flexible PMDS (partial MDS) codes are designed to tolerate a flexible number of node failures

72

and a given number of extra symbol failures, desirable for solid-state drives due to the presence

of mixed types of failures. We provide an (n, k, `, s) with a set of {(Rj, kj, `j) : 1 ≤ j ≤ a}

satisfying (3.1) and Rj = kj such that when `j symbols are accessed in each node, we can tolerate

n−Rj failures and s extra symbol failures. We construct flexible codes from the PMDS code [13].

• Flexible MSR (minimum storage regenerating) codes are type of flexible MDS codes such

that a single node failure is recovered by downloading the minimum amount of information from

the available nodes. Both vector and scalar codes are obtained by applying our flexible code

framework to the MSR codes in [104] and [94].

• Latency analysis is carried out for flexible storage codes. It is demonstrated that our flexible

storage codes always have a lower latency compared to the corresponding fixed codes. Also,

applying our flexible codes to the matrix-vector multiplication scenario, we show simulation results

from Amazon clusters that we can improve 6% for n = 8, R1 = 5, R2 = 4, `1 = 12, `2 = 15 and

matrix size of 1500× 1500.

Related work. The flexibility idea was first proposed in [45] to minimize a cost function such as

a linear combination of bandwidth, delay or the number of hops. Flexible MDS codes were first

proposed in [95]. In [95], one can recover the entire information by downloading `j symbols from

any kj nodes. However, each of the kj nodes needs to first read all the ` symbols and then calculate

and transmit the `j symbols required for decoding. The aim of [95] is to reduce the bandwidth

instead of the number of accessed symbols. Universally decodable matrices (UDM) [30, 76] can

also be used for the flexible MDS problem. UDM is a generalization of flexible MDS code where

the decoder can obtain different number of symbols from the nodes. In particular, from the first vi

symbols from node Ci, for any vi, 1 ≤ i ≤ n such that
n∑
i=1

vi ≥ k`, the entire information can be

recovered. Flexibility problems are also considered for secret sharing [44, 96, 112, 79] and private

information retrieval [5, 89, 4, 19, 90, 91], such that the number of available nodes is flexible.

The constructions in [44] and [5] are equivalent to each other and they achieved optimal decoding

bandwidth while keeping secrecy or privacy from other parties. When we remove the secrecy or

73

privacy requirement, these constructions become flexible MDS codes. All of [95, 30, 76, 44, 5]

achieve the optimal field size of |F| = n.

There are several works on latency and flexibility in the literature in distributed coded computing

[57, 73, 102, 100]. Specifically, fixed MDS codes are well studied [57], [73], where the computing

task is distributed to n server nodes and the task can be completed with the results from the fastest

k nodes. In [57], [73], the authors studied the optimal dimension k under exponential latency of

each node. Moreover, flexible MDS codes are applied to the distributed computing problem in

[102, 70, 101]. However, it is assumed that we know the set of available nodes before we start

computing, which is not the case in our setup.

The chapter is organized as follows: In Section 3.2, we present the definition and the construction

of our flexible storage codes. We present the flexible LRC, PMDS, and MSR codes in Sections

3.3.1, 3.3.2, and 3.3.3, respectively. In Section 3.4, we analyze the latency of data access using our

flexible codes and compare it with those of fixed codes. The conclusion is made in Section 3.5.

Notation. For any integer a ≥ 1, [a] denotes the set {1, 2, . . . , a}. For a matrix A over F, let

rank(A) denote its rank. For a set of matrices A1, A2, . . . , An of size x × y, denote diag(A1, A2,

. . . , An) the corresponding diagonal matrix of size nx × ny. For a finite field F, denote by F∗ =

F\{0}.

3.2 The Framework for Flexible Codes

In this section, we define flexible storage codes and provide the framework for flexible codes to

convert a fixed (non-flexible) code construction into a flexible one. For ease of exposition, ideas are

illustrated through flexible MDS code examples in this section. Other types of code constructions

are shown in Section 3.3.

74

First, we define flexible storage codes. In our illustrations, the codeword is represented by an

` × n array over F, denoted as C ∈
(
F`
)n, where n is called the code length, and ` is called the

sub-packetization. Each column corresponds to a storage node. We choose some fixed integers

j ∈ [a], `j ∈ [`], and recovery thresholds Rj ∈ [n]. Let the decoding columnsRj ⊆ [n] be a subset

of Rj columns, and the decoding rows I1, I2, . . . , IRj
⊆ [`] be subsets of rows each with size `j .

Denote by C |Rj :I1,I2,...,IRj
the `j × Rj subarray of C that takes the rows I1 in the first column

of Rj , the rows I2 in the second column of Rj, . . . , and the rows Ik in the last column of Rj .

The information will be reconstructed from this subarray. For flexible MDS codes, flexible MSR

codes, and flexible PMDS codes, we have

Rj = kj.

Notation. For the above types of codes, we simply omit the parameter Rj .

For flexible LRC codes, we require

Rj = kj +
kj

n− kj
+ 1,

since the minimum distance is lower bounded by n− kj − kj
n−kj + 2 [33].

Definition 3. The (n, k, `) flexible storage code is parameterized by (Rj, kj, `j), j ∈ [a], for some

positive integer a, such that kj`j = k`, 1 ≤ j ≤ a, k1 > k2 > ... > ka = k, `a = `. It encodes k`

information symbols over a finite filed F into n nodes, each with ` symbols. The code satisfies the

following reconstruction condition for all j ∈ [a]: from any Rj nodes, each node accesses a set of

`j symbols, and we can reconstruct all the information symbols, for any j ∈ [a]. That is, the code

is defined by

• an encoding function E :
(
F`
)k → (

F`
)n,

• decoding functions DRj
:
(
F`j
)Rj →

(
F`
)k, for allRj ⊆ [n], |Rj| = Rj , and

• decoding rows I1, I2, . . . , IRj
⊆ [`], |I1| = |I2| = · · · = |IRj

| = `j , which are dependent

75

on the choice of the decoding columnsRj .

The functions are chosen such that any information U ∈
(
F`
)k can be reconstructed from the nodes

inRj:

DRj

(
E(U) |Rj :I1,I2,...,IRj

)
= U.

A flexible MDS code is defined as a flexible storage code as in Definition 3, such that Rj = kj . We

first examine the example in Fig. 3.1

Lemma 11. Fig. 3.1 is an (n, k, `) = (4, 2, 3) flexible MDS code parameterized by (kj, `j) ∈

{(3, 2), (2, 3)}.

Proof: The encoding function is clear. We have encoded k` = 6 information symbols over F to a

code with n = 4, ` = 3, k = 2.

Then, we present the decoding. From any k1 = 3 nodes, each node accesses the first `1 = 2

symbols: The first 2 rows form a single parity-check (4, 3, 2) MDS code, and thus we can easily

get the information symbols from any 3 out of 4 symbols in each row. From any k2 = 2 nodes,

each node accesses all the `2 = 3 symbols: We can first decode W ′
1 and W ′

2 in the last row since

the last row is a (4, 2, 1) MDS code. Then, (C1,1, C1,2, C1,3,W1,W
′
1) and (C2,1, C2,2, C2,3,W2,W

′
2)

form two (5, 3, 1) MDS codes. We can decode all the information symbols from W ′
1,W

′
2 and any

2 columns of the first 2 rows.

Code overview. The main idea of the general code construction is similar to that of Fig. 3.1. The

construction is based on a set of (n + kj − ka, kj, `j − `j−1) codes, each code called a layer, such

that kj`j = k`, j ∈ [a], k1 > k2 > ...ka = k, `a = `, `0 = 0. The first layer is encoded from the

original information symbols and other layers are encoded from the “extra parities”. The intuition

for the flexible reconstruction is that after accessing symbols from some layers, we can decode

the corresponding information symbols, which is in turn extra parity symbols in an upper layer.

Therefore, the decoder can afford accessing less codeword symbols in the upper layer, resulting in

76

a smaller recovery threshold.

Table 3.1: Construction of multiple-layer codes

Storage nodes Extra parities
C1,1 C1,2 · · · C1,n C ′1,1 · · · · · · · · · C ′1,k1−ka
C2,1 C2,2 · · · C2,n C ′2,1 · · · · · · C ′2,k2−ka

...
...

...
...

...
Ca−1,1 Ca−1,2 · · · Ca−1,n C ′a−1,1 · · · C ′a−1,ka−1−ka
Ca,1 Ca,2 · · · Ca,n

Construction 1. In Table 3.1, we construct (n, k, `) flexible storage codes parameterized by {(kj,

`j) : 1 ≤ j ≤ a}, such that kj`j = k`, k1 > k2 > ...ka = k, `a = `.

Each column is a node. Note that only the first n columns under storage nodes are stored, and the

extra parities are auxiliary. Set `0 = 0. We have a layers, and Layer j, j ∈ [a], is an (n + kj −

ka, kj, `j − `j−1) code

[Cj,1, Cj,2, . . . , Cj,n, C
′
j,1, C

′
j,2, . . . , C

′
j,kj−ka],

where Cj,i = [Cj,1,i, Cj,2,i, ..., Cj,`j−`j−1,i]
T ∈ F`j−`j−1 , i ∈ [n], are actually stored, and C ′j,i =

[C ′j,1,i, C
′
j,2,i, ..., C

′
j,`j−`j−1,i

]T ∈ F`j−`j−1 , i ∈ [kj − ka], are the auxiliary extra parities. The (n +

k1 − ka, k1, `1) code in the first layer is encoded from the k1`1 = k` information symbols over F,

and the (n + kj − ka, kj, `j − `j−1) code in Layer j, j ≥ 2, is encoded from extra parities C ′j′,i,

for j′ ∈ [j], kj − ka + 1 ≤ i ≤ kj−1 − ka. As a sanity check,
∑j

j′=1(kj−1 − kj)(`j′ − `j′−1) =

(kj−1 − kj)(`j−1 − `0) = kj(`j − `j−1) extra parities over F are encoded into Layer j, which

matches the code dimension of that layer. Here we used `0 = 0, and kj−1`j−1 = kj`j .

Construction 1 can be applied to different kinds of codes. We start with MDS codes to show how to

use Construction 1 with a family of storage codes. For an (n, k, `) flexible MDS code parametrized

by {(Rj, kj, `j) : 1 ≤ j ≤ a} satisfying Definition 3, we have Rj = kj . That is, we can recover

the entire information from any kj nodes, each node accessing its first `j symbols.

77

Theorem 9. With a set of (n + kj − ka, kj, `j − `j−1), j ∈ [a], `0 = 0 MDS codes over F,

Construction 1 is an (n, k, `) flexible MDS code parametrized by {(Rj, kj, `j) : 1 ≤ j ≤ a}

satisfying Definition 3 and Rj = kj .

Proof: Encoding: As described in Construction 1, we encode the k` information symbols into an

(n+k1−ka, k1, `1) MDS code, and (n+kj−ka, kj, `j−`j−1), 2 ≤ j ≤ aMDS codes are encoded

from the extra parities.

Decoding: Fix j ∈ [a]. Assume from any kj nodes, each node accesses its first `j symbols over F.

We want to show that all the information symbols can be recovered.

We prove by induction that we are able to decode Layer 1, which contains all the information

symbols.

Base case: For Layer j′ = j, it is obvious since Layer j is an MDS code with dimension kj .

Induction step: Suppose that Layers j′+ 1, j′+ 2, ..., j are decoded. Then, for Layer j′, as shown

in Construction 1 from the decoded layers we get the kj′ − kj extra parities C ′j′,i, kj − ka + 1 ≤

i ≤ kj′ − ka. Together with the kj nodes we have accessed in Layer j′, we get enough dimensions

to decode Layer j′.

We note that one can choose any family of MDS codes for the above theorem, e.g., Reed-Solomon

codes [80], and vector codes [10]. In the case of vector codes, the codeword symbols of the MDS

codes are from a vector space rather than a finite field.

3.3 Constructions

In this section, we show how to apply Construction 1 to LRC (locally recoverable) codes, PMDS

(partial maximum distance separable) codes, and MSR (minimum storage regenerating) codes.

78

These codes provide a flexible reconstruction mechanism for the entire information, and either can

reduce the single-failure repair cost, i.e., the number of helper nodes and the amount of transmitted

information, or can tolerate mixed types of failures. Applications include failure protection in

distributed storage systems and in solid-state drives.

3.3.1 Flexible LRC

An (n, k, `, r) LRC code is defined as a code with length n, dimension k, and sub-packetization size

`. For any single node failure or erasure, there exists a group of at most r available nodes (called

helpers) such that the failure can be recovered from them [33, 29, 32, 111, 9]. The minimum

Hamming distance of an (n, k, `, r) LRC code is lower bounded in [33] as

dmin ≥ n− k − dk
r
e+ 2, (3.2)

and LRC codes achieving the bound are called optimal LRC codes. For simplicity, we use (n, k, r)

LRC codes to present (n, k, `, r) LRC codes with ` = 1. Tamo and Barg [92] constructed a family

of optimal (n, k, r) LRC codes that encode the k information symbols into C = [C1,1, C1,2, . . . ,

C1,r+1, ..., C n
r+1

,1, C n
r+1

,2, ..., C n
r+1

,r+1], where each group {Cm,i : i ∈ [r + 1]},m ∈ [n
r+1

], is an

MDS code with dimension r and the whole code C has a minimum distance of n− k− k
r

+ 2, i.e.,

we can decode all the information symbols from any k+ k
r
− 1 nodes. If an optimal LRC code has

the above structure with groups, we say it is an optimal LRC code by groups.

We define the (n, k, `, r) flexible LRC code parameterized by {(Rj, kj, `j) : 1 ≤ j ≤ a} as a

flexible storage code as in Definition 3, such that all the symbols of any node can be recovered by

reading at most r other nodes, and

Rj = kj +
kj

n− kj
+ 1.

79

The above Rj matches the minimum distance lower bound (3.2). As a result, our definition of

flexible LRC code implies optimal minimum Hamming distance when we consider all symbols at

each node.

Code overview. The flexible LRC code is based on Construction 1, where, first, extra groups

are generated in each row. Then, r extra parities are chosen from each extra group and encoded

into lower layers. During information reconstruction, extra parities and hence extra groups are

recovered from lower layers, leading to a smaller number of required access.

Example 5. Table 3.2 shows an example of (n = 12, k = 4, ` = 3, r = 2) flexible LRC code. In

this code, Rows 1 and 2 are (n = 12, k = 6, r = 2) LRC codes encoded from the information,

and 1 extra group is generated in each row. We take 4 extra parities from the extra groups, which

are encoded into (n = 12, k = 4, r = 2) LRC code in Row 3. In this example, we have 12 nodes

and they are evenly divided into 4 groups. Any single failed node can be recovered from the other

2 nodes in the same group. To recover the entire information, we require either any 8 nodes, each

accessing the first 2 symbols, or any 5 nodes, each accessing all 3 symbols. The details of this code

are shown in Theorem 10 and Example 6.

Table 3.2: Construction of (n = 12, k = 4, ` = 3, r = 2) flexible LRC code

group 1 · · · group 4

Layer 1
C1,1,1 C1,1,2 C1,1,3 · · · C1,1,10 C1,1,11 C1,1,12

C1,2,1 C1,2,2 C1,2,3 · · · C1,2,10 C1,2,11 C1,2,12

Layer 2 C2,1,1 C2,1,2 C2,1,3 · · · C2,1,10 C2,1,11 C2,1,12

In the following, we apply the optimal LRC codes by groups to Construction 1 and show how to

construct an (n, k, `, r) flexible LRC code parametrized by {(Rj, kj, `j) : 1 ≤ j ≤ a} satisfying

Definition 3. We assume n is divisible by r + 1 and all kj’s are divisible by r here. The code is

defined in F of size at least n + (k1 − ka) r+1
r

. The resulting code turns out to be an (n, kj, `j, r)

LRC code when `j symbols are accessed at each node. That is, for any single node failure, there

exists a group of at most r helpers such that the failure can be recovered from them.

80

Theorem 10. Let n be divisible by r + 1 and all kj, j ∈ [a] be divisible by r. With a set of

(n + (kj − ka)
r+1
r
, kj, r), j ∈ [a], `0 = 0 optimal LRC codes by groups over F, Construction

1 results in the flexible LRC codes with locality r and {(Rj, kj, `j) : 1 ≤ j ≤ a} satisfying

Definition 3.

Proof: Encoding: In Layer j, we apply an (n + (kj − ka) r+1
r
, kj, r), j ∈ [a], `0 = 0 optimal LRC

code to each row. As described in Construction 1, we encode the k` information symbols in the `1

rows of Layer 1, and the remaining rows are encoded from the extra parities.

Next, we show how to choose the n stored symbols and the kj − ka extra parities in each row. In

the (n + (kj − ka) r+1
r
, kj, r) LRC code, we have n

r+1
+

kj−ka
r

groups. We first pick n
r+1

groups,

containing n symbols, as the stored symbols. Thus, the n stored symbols in each row form an

(n, kj, r), j ∈ [a], `0 = 0 optimal LRC code. Then, in the remaining kj−ka
r

groups, we pick r nodes

in each group, which contains kj − ka nodes, as the extra parities.

Decoding: Since all the information symbols are encoded in Layer 1, we can decode the informa-

tion symbols if we get enough dimensions to decode Layer 1.

We prove by induction that we can decode all information symbols from any Rj = kj +
kj
r
−1, j ∈

[a] nodes, each node accesses the first `j symbols.

Base case: From Layer j, since each row of it is part of the (n+ (kj − ka) r+1
r
, kj, r) optimal LRC

code, we can decode this layer from Rj nodes by the property of the optimal LRC codes.

Induction step: Let 1 < j′ ≤ j be given and suppose that Layers j′, j′+1, ..., j are decoded. From

Construction 1, we know that all the extra parities in Layer j′ − 1 are included as the information

symbols in Layers j′, j′ + 1, ..., j and are decoded. Also, we know from the encoding part that the

extra parities in Layer j′ − 1 consist of the r parity symbols in each group of the (n + (kj′−1 −

ka)
r+1
r
, kj′−1, r) optimal LRC codes. Thus, according to the locality, the remaining symbol in all

kj′−1−kj
r

groups in each row can be reconstructed. Therefore, we get additional (kj′−1 − kj)
r+1
r

81

symbols in each row of Layer j′ − 1 from the extra parities. Together with the Rj nodes we

accessed in each row of Layer j′ − 1, we get Rj′−1 symbols and, we are able to decode Layer

j′ − 1.

Locality: Since each row is encoded as a LRC code with locality r, every layer and the entire code

also have locality r.

The proof is completed.

Example 6. We set (n, k, l, r) = (12, 4, 3, 2), (R1, k1, `1) = (8, 6, 2), (R2, k2, `2) = (5, 4, 2). The

code is defined over F = GF (24) = {0, 1, α, ..., α14}, where α is a primitive element of the

field. Totally we have k` = 12 information symbols and we assume they are u1,0, u1,1, ..., u1,5,

u2,0, u2,1, ..., u2,5. The example is based on the optimal LRC code constructions in [92].

The construction is shown below, each column is a node with 3 symbols:

C1,1,1 C1,1,2 · · · C1,1,12

C1,2,1 C1,2,2 · · · C1,2,12

C2,1,1 C2,1,2 · · · C2,1,12

 , (3.3)

where every entry in Row m will be constructed as fm(x) for some polynomial fm(·) and some

field element x as below, m = 1, 2, 3.

The evaluation points are divided into 4 groups as A = {A1 = {1, α5, α10}, A2 = {α, α6, α11},

A3 = {α2, α7, α12}, A4 = {α3, α8, α13}}. We also set A5 = {α4, α9, α14} as the evaluation points

group for the extra parities.

According to [92], we define g(x) = x3, and one can check g(x) is a constant for each group Ai,

82

i ∈ [5]. Then, the first 2 rows are encoded with

fm(x) =
(
um,0 + um,1g(x) + um,2g

2(x)
)

+ x
(
um,3 + um,4g(x) + um,5g

2(x)
)
,m = 1, 2.

(3.4)

The last row is encoded with

f3(x) =
(
f1(α

4) + f1(α
9)g(x)

)
+ x
(
f2(α

4) + f2(α
9)g(x)

)
. (3.5)

Since g(x) is a constant for each group, fm(x),m ∈ [3] can be viewed as a polynomial of degree

2. Any single failure can be recovered from the other 2 available nodes evaluated by the points in

the same group. The locality r = 2 is achieved.

Noticing that f1(x) and f2(x) are polynomials of degree 7, all information symbols can be recon-

structed from the first `1 = 2 rows of any R1 = 8 available nodes.

Moreover, f3(x) has degree 4. With R2 = 5 available nodes, we can first decode f1(α4), f1(α
9),

f2(α
4), f2(α

9) in row 3. Then, f1(α14), f2(α
14) can be decoded due to the locality r = 2. At last,

together with the 5 other evaluations of f1(x) and f2(x) obtained in Rows 1 and 2, we are able to

decode all information symbols.

3.3.2 Flexible PMDS codes

PMDS codes are first introduced in [11] to overcome mixed types of failures in Redundant Arrays

of Independent Disks (RAID) systems using solid-state drives (SSDs). A code consisting of an

` × n array is an (n, k, `, s) PMDS code if it can tolerate n − k node or column failures and s

additional arbitrary symbol failures in the code.

Let `0 = 0 and {(kj, `j) : 1 ≤ j ≤ a} satisfy (3.1). We define an (n, k, `, s) flexible PMDS code

83

parameterized by {(kj, `j) : 1 ≤ j ≤ a} such that any row in [`j−1 + 1, `j] is an (n, kj) MDS code,

and from the first `j rows, we can reconstruct the entire information if there are up to n− kj node

failures and up to s additional arbitrary symbol failures, 1 ≤ j ≤ a. As mentioned, for PMDS

codes, Rj = kj . Note that different from Definition 3, the number of information symbols for a

flexible PMDS code is at most k`− s , K.

Example 7. Consider the example of a (5, 3, 4, 2) flexible PMDS code with {(k1, `1), (k2, `2)} =

{(4, 3), (3, 4)} in Table 3.3. If we only have “∗” as failures, we can use the first 4 nodes to decode,

each node accessing the first 3 symbols. If both “∗” and “4” are failures, we can decode from

Nodes 1, 3, 4, each node accessing 4 symbols. In both cases, the remaining K = k` − s = 10

symbols are independent and sufficient to reconstruct the entire information. The details of the

encoding and decoding for this construction are presented in Theorem 11.

Table 3.3: An example of (5, 3, 4, 2) flexible PMDS code.

C1,1,1 4 C1,1,3 ∗ ∗
C1,2,1 4 C1,2,3 C1,2,4 ∗
C1,3,1 4 ∗ C1,3,4 ∗
C2,1,1 4 C2,1,3 C2,1,4 ∗

A general construction of PMDS codes is proposed in [13] for any k and s using Gabidulin codes.

In this section, we first introduce the construction in [13] and then show how to apply it to flexible

PMDS codes.

Code overview. To tolerate additional symbol failures, the fixed PMDS code in [13] uses Gabidulin

code to encode the information into auxiliary symbols, which are evenly allocated to each row.

Then, an MDS code is applied to the auxiliary symbols in each row, ensuring the protection against

column failures. Our flexible PMDS code encodes the information using Gabidulin code into

auxiliary symbols, which are allocated to each layer according to kj . MDS codes with different

dimensions are then applied to each row, thus ensuring flexible information reconstruction.

An (N,K) Gabidulin code over the finite field F = GF (qL), L ≥ N is defined by the polynomial

84

f(x) =
∑K−1

i=0 uix
qi , where ui ∈ F, i = 0, 1, ..., K−1 is the information symbol. TheN codeword

symbols are f(α1), f(α2), . . . , f(αN) where the N evaluation points {α1, ..., αN} are linearly in-

dependent over GF (q). From any K independent evaluation points over GF (q), the information

can be recovered.

In [13, Construction 1], the (n, k, `, s) codeword is an ` × n matrix over F = GF (qk`) shown

below:

C1,1 C1,2 · · · C1,n

C2,1 C2,2 · · · C2,n

...
...

C`,1 C`,2 · · · C`,n

, (3.6)

where each column is a node. Set K = `k − s. Here, Cm,i ∈ F,m ∈ [`], i ∈ [k] are the K + s

codeword symbols from a (K + s,K) Gabidulin code, and for each row m, m ∈ [`],

[Cm,k+1, ..., Cm,n] = [Cm,1, ..., Cm,k]GMDS, (3.7)

where GMDS is the k × (n − k) encoding matrix of an (n, k) systematic MDS code over GF (q)

that generates the parity.

It is proved in [13, Lemma 2] that tm symbols in row m,m ∈ [`], is equivalent to evaluations of

f(x) with
∑̀
m=1

min(tm, k) evaluation points that are linearly independent over GF (q). Thus, with

any n− k node failures and s symbol failures, we have tm ≤ k and

∑̀
m=1

min(tm, k) =
∑̀
m=1

tm = `k − s = K. (3.8)

Then, with theK linearly independent evaluations of f(x), we can decode all information symbols.

Next, we show how to construct flexible PMDS codes. Rather than generating extra parities as in

85

Construction 1, the main idea here is that we divide our code into multiple layers, and each layer

applies a construction similar to that of (3.6) with a different dimension.

Theorem 11. We can construct an (n, k, `, s) flexible PMDS code over GF (qN) parameterized

by {(kj, `j) : 1 ≤ j ≤ a} satisfying (3.1), with an (N,K) Gabidulin code over GF (qN), N =
a∑
j=1

kj(`j − `j−1), K = `k − s, and a set of (n, kj) systematic MDS codes over GF (q).

Proof: Encoding: Denote Cj,mj ,i the symbol in the mj-th row of Layer j, and in the i-th node,

j ∈ [a],mj ∈ [`j − `j−1], i ∈ [n]. We first encode the K information symbols using the (N,K)

Gabidulin code. Then, we set the first kj codeword symbols in each row: Cj,mj ,i, j ∈ [a],mj ∈

[`j− `j−1], i ∈ [kj], as the codeword symbols in the (N,K) Gabidulin code. The remaining n−kj

codeword symbols in each row are

[Cj,mj ,kj+1, ..., Cj,mj ,n] = [Cj,mj ,1, ..., Cj,mj ,kj]Gn,kj ,

where Gn,kj is the encoding matrix (to generate the parity check symbols) of the (n, kj) systematic

MDS code over GF (q).

Decoding: For n − kJ failures, we access the first `J rows (the first J layers) from each node.

The code structure in each layer is similar to the general PMDS code in [13, Construction 1], from

[13, Lemma 2] we know that for a union of tmj
symbols in Row mj of Layer j, j ≤ J , they

are equivalent to evaluations of f(x) with
J∑
j=1

`j−`j−1∑
mj=1

min(tmj
, kj) linearly independent points over

GF (q) in GF (qN). Thus, with n−kJ node failures and s symbol failures, we have tmj
≤ kJ ≤ kj

for j ∈ [J], and

J∑
j=1

`j−`j−1∑
mj=1

min(tmj
, kj) =

J∑
j=1

`j−`j−1∑
mj=1

tmj
= `JkJ − s = K.

Then, the information symbols can be decoded from K linearly independent evaluations of f(x).

86

3.3.3 Flexible MSR codes

In this section, we study flexible MSR codes. In the following, the number of parity nodes is

denoted by r = n−k 1. The repair bandwidth is defined as the amount of transmission required to

repair a single node erasure, or failure, from all remaining nodes (called helper nodes), normalized

by the size of the node. For an (n, k) MDS code, the repair bandwidth is bounded by the minimum

storage regenerating (MSR) bound [20] as

b ≥ n− 1

n− k
. (3.9)

An MDS code achieving the MSR bound is called an MSR code. MSR vector codes are well

studied in [104, 77, 71, 93, 99, 78, 34, 105], where each symbol is a vector. As one of the most

popular codes in practical systems, Reed-Solomon (RS) code and its repair is studied in [94, 40,

17, 106, 61], where each symbol is a scalar.

We have shown in Theorem 9 that using a set of MDS codes, Construction 1 can recover the

information symbols by any pair (kj, `j), which means that for the first `j symbols in each node,

our code is an (n, kj, `j) MDS code. In addition, we require the optimal repair bandwidth property

for flexible MSR codes. A flexible MSR code is defined to be a flexible storage code as in Definition

3, such that Rj = kj , and a single node failure is recovered using a repair bandwidth satisfying the

MSR bound (2.1).

Code overview. Our codes in this section are similar to Construction 1, with additional restrictions

on the parity check matrices and the extra parities. The key point here is that the extra parities and

the information symbols in lower layers are exactly the same and they also share the same parity

check sub-matrix. To repair the failed symbol with smallest bandwidth, the extra parities are

viewed as additional helpers and the required information can be obtained for free from the repair

of the lower layers.

1Notice that r was used for a different meaning (locality) in LRC codes.

87

We will first show an illustrating example with 2 layers and then present our constructions based

on vector and scalar MSR codes, respectively.

Example 8. We construct an (n, k, `) = (4, 2, 3) flexible MSR code parameterized by (k1, `1) =

(3, 2) and (k2, `2) = (2, 3). The reconstruction of the entire information and the repair bandwidth

are proved in Lemma 12.

Let F = GF (22) = {0, 1, β, β2 = 1 + β}, where β is a primitive element of GF (22). Our

construction is based on the following (4, 2, 2) MSR vector code over F2 with parity check matrix

H =

h1,1 h1,2 h1,3 h1,4

h2,1 h2,2 h2,3 h2,4

 =

0 1 1 0 1 0 0 0

1 1 1 1 0 1 0 0

0 1 1 1 0 0 1 0

1 0 1 0 0 0 0 1

, (3.10)

where each hi,j is a 2 × 2 matrix over F. Namely, a codeword symbol ci is in F2, i = 1, 2, 3, 4,

and the codeword [cT1 , c
T
2 , c

T
3 , c

T
4]T ∈ (F2)4 is in the null space of H . One can check that it is a

(4, 2) MDS code, i.e., any two codeword symbols suffice to reconstruct the entire information. The

repair matrix is defined as

S1 =

1 0 0 0

0 0 0 1

 , S2 =

1 0 0 0

0 0 1 0

 , S3 =

1 0 1 0

0 1 1 0

 , S4 =

0 1 1 0

0 0 0 1

 .
(3.11)

It is easy to check that

rank

S∗
h1,i
h2,i

 =

 2, i = ∗

1, i 6= ∗
. (3.12)

When node ∗ ∈ {1, 2, 3, 4} fails, we can repair node c∗ by equations S∗×H×[cT1 , c
T
2 , c

T
3 , c

T
4]T = 0.

88

In particular, helper i, i 6= ∗, transmits

S∗

h1,i
h2,i

 ci,
which is 1 symbol in F, achieving an optimal total repair bandwidth of 3 symbols in F.

For our flexible MSR code, every entry in the code array is a vector in F2. The code array is shown

as below, each column being a node:

C1,1,1 C1,1,2 C1,1,3 C1,1,4

C1,2,1 C1,2,2 C1,2,3 C1,2,4

C2,1,1 C2,1,2 C2,1,3 C2,1,4

 . (3.13)

The code has 2 layers, where C1,m1,i ∈ F2 are in Layer 1 and C2,m2,i are in Layer 2 with m1 =

1, 2,m2 = 1, i ∈ [4]. Each Cj,mj ,i is the vector [cj,mj ,i,1, cj,mj ,i,2]
T with elements in F. The code

totally contains 48 bits with 24 information bits, and each node contains 12 bits. We define the

code with the 3 parity check matrices shown below. Let

H1 =

h1,1 h1,2 h1,3 h1,4 h1,1

h2,1 h2,2 h2,3 h2,4 βh2,1

 , (3.14)

H2 =

h1,1 h1,2 h1,3 h1,4 h1,2

h2,1 h2,2 h2,3 h2,4 βh2,2

 , (3.15)

H3 =

 h1,1 h1,2 h1,3 h1,4

βh2,1 βh2,2 h2,3 h2,4

 . (3.16)

89

The code is defined by

H1 × [CT
1,1,1, C

T
1,1,2, C

T
1,1,3, C

T
1,1,4, C

T
2,1,1]

T = 0, (3.17)

H2 × [CT
1,2,1, C

T
1,2,2, C

T
1,2,3, C

T
1,2,4, C

T
2,1,2]

T = 0, (3.18)

H3 × [CT
2,1,1, C

T
2,1,2, C

T
2,1,3, C

T
2,1,4]

T = 0. (3.19)

Lemma 12. Example 8 is an (n, k, `) = (4, 2, 3) flexible MSR code parameterized by (kj, `j) ∈

{(3, 2), (2, 3)}.

Proof: It is easy to check that the code defined by H1 or H2 is an (5, 2) MDS code, and H3 defines

an (4, 2) MDS code. Thus, the construction in Example 8 is the same as Construction 1, and the

flexible reconstruction of the entire information is shown in Theorem 9.

Let ∗ ∈ {1, 2, 3, 4} be the index of the failed node. For the repair, we first note that

rank

S∗
h1,i
h2,i

 = rank

S∗
 h1,i
βh2,i

 =

 2, i = ∗

1, i 6= ∗
. (3.20)

for i = 1, 2.

Then, we use the same repair matrix S∗ in (3.11) to repair the failed node ∗:

S∗ ×H1 × [CT
1,1,1, C

T
1,1,2, C

T
1,1,3, C

T
1,1,4, C

T
2,1,1]

T = 0, (3.21)

S∗ ×H2 × [CT
1,2,1, C

T
1,2,2, C

T
1,2,3, C

T
1,2,4, C

T
2,1,2]

T = 0, (3.22)

S∗ ×H3 × [CT
2,1,1, C

T
2,1,2, C

T
2,1,3, C

T
2,1,4]

T = 0. (3.23)

90

For helper i ∈ [4], i 6= ∗, it transmits

S∗

h1,i
h2,i

C1,1,i, (3.24)

S∗

h1,i
h2,i

C1,2,i, (3.25)

S∗

 h1,i
βh2,i

C2,1,i, (3.26)

where β = β if i = 1, 2 and β = 1 if i = 3, 4. Note that to repair the failed node, in Equations

(3.21) and (3.22), we also require S∗

 h1,1
βh2,1

C2,1,1 and S∗

 h1,2
βh2,2

C2,1,2, which can be either

obtained from (3.26) or solved from Equation (3.23).

Then, from (3.12) and (3.20) we have that for any failed node, we only need 1 symbol from each

of the remaining Cj,mj ,i, which meets the MSR bound.

Remark. Notice that in this example, we do not require the codes in the first layer defined by (3.14)

and (3.15) to be MSR codes, thus resulting in a smaller field. However, the rank condition (3.20)

guarantees the optimal repair bandwidth for the entire code. Also, in our general constructions, we

do not require the codes in Layers 1 to a− 1 to be MSR codes.

In the following, we show that by applying Construction 1 to the vector MSR code [104] and the

RS MSR code [94], we can construct flexible MSR codes.

Flexible MSR codes with parity check matrices

Below we present codes defined by parity check matrices similar to Example 8. We show in

Theorem 12 that with certain choices of the parity check matrices, one obtains a flexible MSR

91

code.

Construction 2. The code is defined in some FL parameterized by (kj, `j), j ∈ [a] such that

kj`j = k`, k1 > k2 > ...ka = k, `a = `. We define the parity check matrix for the mj-th row in

Layer j ∈ [a] as:

Hj,mj
=

[
hj,mj ,1 · · · hj,mj ,n gj,mj ,1 · · · gj,mj ,kj−ka

]
, (3.27)

where each hj,mj ,i, gj,mj ,i is an rL×L matrix with elements in F. The (n+kj−ka, kj) MDS code

in the mj-th row of Layer j is defined by

Hj,mj
× [Cj,mj ,1

T , Cj,mj ,2
T , · · · , Cj,mj ,n

T , C ′j,mj ,1
T
, · · · , C ′j,mj ,kj−ka

T
]T = 0, (3.28)

where Cj,mj ,i are the stored codeword symbols and C ′j,mj ,i
are the extra parities. In this construc-

tion, when we encode the extra parities into lower layers, we set the codeword symbols and the

corresponding parity check matrix entries exactly the same. Specifically, for Layers j < j′ ≤ a,

we set

gj,x,y = hj′,x′,y′ , (3.29)

C ′j,x,y = Cj′,x′,y′ . (3.30)

Here, for x ∈ [lj − lj−1], kj′ − ka + 1 ≤ y ≤ kj′−1 − ka, we have gj,x,y corresponds to hj′,x′,y′ in

Layer j′, and

x′ = bx(kj′−1 − kj′) + y

kj′
c, (3.31)

y′ = (x(kj′−1 − kj′) + y) mod kj′ , (3.32)

where “mod” denotes the modulo operation.

92

For instance, in Example 8, the 2 extra parities in Layer 1 are exactly the same as the first 2 symbols

in Layer 2 with C ′1,1,1 = C2,1,1, g1,1,1 = h2,1,1 and C ′1,2,1 = C2,1,2, g1,2,1 = h2,1,2.

Theorem 12. Assume the parity check matrices of Construction 2 in (3.27) satisfy

1). [MDS condition.] The codes defined by (3.27) are (n+ kj − ka, kj) MDS codes.

2). [Rank condition.] The same repair matrices S∗, ∗ ∈ [n] can be used for every parity check

matrix such that

rank(S∗hj,mj ,i) =

 L, i = ∗
L
r
, i 6= ∗

, i ∈ [n]. (3.33)

Then, the code defined by Construction 2 is a flexible MSR code.

Proof: 1). If the MDS property is satisfied, Construction 2 is the same as Construction 1 by defining

the MDS codes with parity check matrices. The flexible reconstruction of the entire information is

presented in Theorem 9.

2). For repair, assume node ∗, ∗ ∈ [n] is failed. We use the repair matrix S∗ in each row to repair

it:

S∗ ×Hj,mj
× [Cj,mj ,1

T , Cj,mj ,2
T , · · · , Cj,mj ,n

T , C ′j,mj ,1
T
, · · · , C ′j,mj ,kj−ka

T
]T = 0. (3.34)

Notice that C ′j,mj ,1
, · · · , C ′j,mj ,kj−ka are also the information symbols in the lower layers with the

same corresponding parity check sub-matrices and can be retrieved from the lower layers. Thus,

the failed node can be repaired from n− 1 helpers.

Clearly from (3.33), we only need L/r symbols from each helper and the optimal repair bandwidth

is achieved.

93

We will now take Ye and Barg’s construction [104] to show how to construct the flexible MSR

codes satisfying conditions in Theorem 12. The code structure in one row is similar to [37].

Assume the field size |E| > rn and λi,j ∈ E, i ∈ [n], j = 0, 1, ..., r − 1 are rn distinct elements.

The parity check matrix for the (n, k) MSR code in [104] can be represented as:

H =

I I · · · I

A1 A2 · · · An
...

...

Ar−11 Ar−12 · · · Ar−1n

, (3.35)

where I is the L× L identity matrix and Ai =
L−1∑
z=0

λi,ziezez
T . ez is a vector of length L = rn with

all elements 0 except the z-th element which is equal to 1. We write the r-ary expansion of z as

z = (znzn−1 . . . z1), where 0 ≤ zi ≤ r− 1 is the i-th digit from the right and z =
r−1∑
i=0

zir
i. Clearly,

Ai is an L× L diagonal matrix with elements λi,zi . The L× rL repair matrix S∗, ∗ ∈ [n] are also

defined in [104] and [37, Sec. IV-A]:

S∗ = Diag(D∗, D∗, ..., D∗) (3.36)

with L
r
× L matrix D∗, and it is shown that

rank

S∗

I

Ai
...

Ar−1i

= rank

D∗

D∗Ai
...

D∗A
r−1
i

=

 L, i = ∗
L
r
, i 6= ∗

. (3.37)

Here, for 0 ≤ x ≤ rn−1 − 1, 0 ≤ y ≤ rn − 1, the (x, y)-th entry of D∗ equals 1 if the r-

ary expansion of x and y satisfies (xn−1, xn−1, . . . , x1) = (yn, yn−1, . . . , yi+1, yi−1, . . . , y1), and

otherwise it equals 0.

94

Consider an extended field F from E and denote F∗ , F\{0}, E∗ , E\{0}. Then F∗ can be

partitioned to t , |F∗|
|E∗| cosets: {β1E∗, β2E∗, ..., βtE∗}, for some elements β1, β2, . . . , βt in F [61,

Lemma 1]. Now, we define for the storage nodes (the first n nodes)

hj,mj ,i =

I

βj,mj
Ai

β2
j,mj

A2
i

...

βr−1j,mj
Ar−1i

, (3.38)

where βj,mj
is chosen from {β1, β2, . . . , βt}. We say βj,mj

is the additional coefficient. Then, the

extra parity entries gj,mj ,i can be obtained accordingly from (3.31) and (3.32). Also, notice that Ai

might show in Hj,mj
several times since the extra parity matrices are the same as the information

symbols in lower layers. We choose the additional coefficients as below.

Condition 1. In each Hj,mj
, the additional coefficients for the same Ai are distinct.

Corollary 3. With parity check matrices defined by (3.38) and Condition 1, Construction 2 is a

flexible MSR code.

Proof: We will prove the construction is flexible MSR using Theorem 12, for any given j ∈

[a],mj ∈ [kj − ka].

1) [MDS condition.] For the codeword (cT1 , c
T
2 , ..., c

T
n+kj−ka) defined by the parity check matrix

Hj,mj
, we write each codeword symbol as ci = (ci,1, ci,2, ..., ci,L)T . Since Ai is a diagonal matrix,

for any z = 0, 1, ..., L− 1, we have

95

1 · · · 1 1 · · · 1

βj,mj
λ1,z1 · · · βj,mj

λn,zn α1γ1 · · · αkj−ka
γkj−ka

...
. . .

...
...

. . .
...

(βj,mjλ1,z1)
r−1 · · · (βj,mjλn,zn)

r−1 (α1γ1)
r−1 · · · (αkj−kaγkj−ka)

r−1

c1,z

c2,z
...

cn+kj−ka,z

= 0.

(3.39)

Here, βj,mj
, α1, α2, ..., αkj−ka are additional coefficients satisfying Condition 1. For y ∈ [kj − ka],

denote γy , λy′,zy′ , corresponding to gj,mj ,y = hj′,x′,y′ , where x′, y′ are computed from (3.31)

and (3.32) with x = mj . Next, we show (3.39) corresponds to a Vandermonde matrix, i.e.,

(c1,z, c2,z, ..., cn+kj−ka,z)
T forms an (n+ kj − ka, kj) Reed-Solomon code. Consider two entries in

the second row of the r × (n + kj − ka) matrix in (3.39). Notice that each entry is the product of

an additional coefficient and a λ variable (or a γ variable). There are three cases. 1) If the λ or the

γ values are identical, by Condition 1, their additional coefficients differ. So, these two entries are

distinct. 2) If the λ or the γ values are distinct, and the additional coefficients are identical, then

the two entries are distinct. 3) The λ or the γ values are distinct, and the additional coefficients are

distinct. Noticing λ and γ belong to E∗, distinct additional coefficients implies that the two entries

are in distinct cosets.

After we combine all z = 0, 1, . . . , L − 1 together, (cT1 , c
T
2 , ..., c

T
n+kj−ka)T is an (n + kj − ka, kj)

MDS vector code.

2) [Rank condition.] Multiplying the row of a matrix by a constant does not change the rank. So,

by (3.37) and (3.38),

rank(S∗hj,mj ,i) = rank

D∗

D∗βAi
...

D∗β
r−1Ar−1i

= rank

D∗

D∗Ai
...

D∗A
r−1
i

=

 L, i = ∗
L
r
, i 6= ∗

. (3.40)

96

Since the code satisfies the above two conditions, using Theorem 12, it is a flexible MSR code.

To calculate the required field size, we study how many additional coefficients are required for our

flexible MSR codes satisfying Condition 1. In the following, we propose 2 possible coefficient

assignments. It should be noticed that one might find better assignments with smaller field sizes.

The simplest coefficient assignment assigns different additional coefficients to different rows, i.e.,

βj,mj
to Row mj in Layer j for the storage nodes (the first n nodes). By doing so, the parity check

matrix βj,mj
Ai, j ∈ [a],mj ∈ [`j − `j−1]i ∈ [n] will show at most twice in Construction 2, i.e.,

in Layer j corresponding to storage Node i, and in Layer j′ corresponding to an extra parity, for

some j > j′. Hence, the same Ai will correspond to different additional coefficients in the same

row and Condition 1 is satisfied. In this case, we need a field size of `|E|.

In the second assignment, we assign different additional coefficients in different layers for the

storage nodes (the first n nodes), but for different rows in the same layer, we might use the same

additional coefficient. For a given row, the storage nodes will not conflict with the extra parities

since the latter correspond to the storage nodes in other layers. Also, the extra parities will not

conflict with each other if they correspond to the storage nodes in different layers. Then, we only

need to check the extra parities in the same row corresponding to storage nodes in the same layer.

For the extra parities/storage nodes gj,x,y = hj′,x′,y′ , given j, x, j′, y′, the additional coefficients

should be different. In this case kj′−ka+1 ≤ y ≤ kj′−1−ka, and there will be at most dkj′−1−kj′
kj′

e

that make y′ a constant in (3.32). As long as we assign dkj′−1−kj′
kj′

e number of β in Layer j′, j′ ≥ 2

(in Layer 1 we only need one β), Condition 1 is satisfied.

The total number of required additional coefficients is 1 +
a∑
j=2

dkj−1−kj
kj
e , t. Notice that (kj−1 −

kj)`j−1 = kj(`j − `j−1), we have

t = 1 +
a∑
j=2

dkj−1 − kj
kj

e = 1 +
a∑
j=2

d`j − `j−1
`j−1

e ≤ 1 +
a∑
j=2

(`j − `j−1) ≤ `. (3.41)

97

Moreover, in the best case when we have kj−1 − kj ≤ kj for all j, the number of additional

coefficients is a, and |F| ≥ a|E|.

Here, we briefly compare our construction with another flexible MSR construction in [95]. In

our code, each node is in F`(n−k)n , where |F| ≥ t(n − k)n. Namely, each node requires `(n −

k)n log2(t(n − k)n) bits. Tamo, Ye and Barg also considered the optimal repair of flexible codes

in [95] under their setting, i.e., the downloaded symbols instead of the accessed symbols in each

node is flexible to reconstruct the entire information. Their nodes are elements in Fs(n−k)n , and

|F| ≥ s(n− k)n, where s is defined such that sj/s = `j/` fraction of information are downloaded

in each node, where s is the least common multiple of s1, s2, ..., sa. Without loss of generality,

we can choose ` = s in our construction. Hence, for Eq. (3.41), the required field size of our

construction is better than that of the construction in [95].

Flexible RS MSR codes

In this section, we introduce the construction of Reed-Solomon (RS) MSR codes.

An RS(n, k) code over the finite field F is defined as

RS(n, k) = {(f(α1), f(α2), . . . , f(αn)) : f ∈ F[x], deg(f) ≤ k − 1},

where the evaluation points are defined as {α1, α2, . . . , αn} ⊆ F, and deg() denotes the degree

of a polynomial. The encoding polynomial f(x) = u0 + u1x + · · · + uk−1x
k−1, where ui ∈

F, i = 0, 1, . . . , k − 1 are the information symbols. Every evaluation symbol f(αi), i ∈ [n] is

called a codeword symbol. RS codes are MDS codes, namely, from any k codeword symbols, the

information can be recovered.

Let B be the base field of F such that F = BL. For repairing RS codes, [40] and [61] shows that

any linear repair scheme for a given RS(n, k) over the finite field F = BL is equivalent to finding

98

a set of repair polynomials p∗,v(x) such that for the failed node f(α∗), ∗ ∈ [n],

rankB({p∗,v(α∗) : v ∈ [L]}) = L, (3.42)

where the rank rankB({γ1, γ2, ..., γi}) is defined as the cardinality of a maximum subset of {γ1,

γ2, ..., γi} that is linearly independent over B.

The transmission from helper f(αi) is

TrF/B(p∗,v(αi)f(αi)), v ∈ [L], (3.43)

where the trace function TrF/B(x) is a linear function such that for all x ∈ F, TrF/B(x) ∈ B [63].

The repair bandwidth for the i-th helper is

bi = rankB({p∗,v(αi) : v ∈ L}) (3.44)

symbols in B.

The flexible RS MSR code construction is similar to Construction 2 based on parity check matrices,

as presented below.

Construction 4. We define a code in F = GF (qL) with a set of pairs (kj, `j), j ∈ [a] such that

kj`j = k`, k1 > k2 > ...ka = k, `a = `, r = n − k. In the mj-th row in Layer j ∈ [a], the

codeword symbols Cj,mj ,i, i ∈ [n] are defined as:

Cj,mj ,i = fj,mj
(αj,mj ,i), (3.45)

and the extra parities C ′j,mj ,i
, i ∈ [kj − ka] are defined as

C ′j,mj ,i
= fj,mj

(αj,mj ,i+n), (3.46)

99

where {fj,mj
(αj,mj ,i), i ∈ [n + kj − ka]} is an RS(n + kj − ka, kj) code. We next define the

encoding polynomial fj,mj
(x) and the evaluation point αj,mj ,i.

In this construction, we set the extra parities and the corresponding evaluation points exactly the

same as the information symbols in lower layers, and we arrange the extra parities the same way

as in Construction 2. Specifically, for C ′j,x,y in Layer j, x ∈ [lj − lj−1], when kj − kj′−1 + 1 ≤ y ≤

kj − kj′ for j + 1 ≤ j′ ≤ a, it is encoded to Layer j′ with αj,x,y+n = αj′,x′,y′ and C ′j,x,y = Cj′,x′,y′ ,

with x′, y′ in (3.31) (3.32). The encoding polynomial fj′,mj′
(x) ∈ F in Layer j′ is defined by the

kj′ evaluation points and the codeword symbols from the extra parities.

Theorem 13. For Construction 4 is a flexible MSR RS code, if it satisfies:

1) [MDS condition.] In Row mj of Layer j, αj,mj ,i, i ∈ [n+ kj − ka] are distinct elements in F.

2) [Rank conditions.] The same set of repair polynomials p∗,v(x), ∗ ∈ [n], v ∈ [L], can be used in

each row such that:

rankB({p∗,v(αj,mj ,∗) : v ∈ [L]}) = L, (3.47)

bi = rankB({p∗,v(αj,mj ,i) : v ∈ [L]}) = L/r, i ∈ [n]\{∗}. (3.48)

Proof: 1). In the case when αj,mj ,i, i ∈ [n+ kj − ka] are distinct elements in F, {fj,mj
(αj,mj ,i), i ∈

[n+ kj − ka]} is RS(n+ kj − ka, kj). Moreover, Layer j′ is encoded from the kj′ extra parities in

Layers 1, 2, . . . , j′ − 1. Thus, Construction 4 is the same as Construction 1 by using the RS codes

as the MDS codes. The flexible reconstruction property is shown in Theorem 9.

2). For the repair, since the extra parities share the same codeword symbols and evaluation points

with the storage nodes in lower layers, from (3.43) we know that the transmission for repair is also

the same. Thus, we only transmit them once when they are shown as storage nodes.

100

From (3.48) we know that in each row, each helper transmits L/r symbols, which is optimal.

We take the construction in [61] as the RS(n + kj − ka, kj), j ∈ [a] codes in Construction 4 to

show how to construct flexible MSR RS codes.

In [61, Theorem 5], the RS code is defined in F with evaluation points chosen from {β1αi,

β2αi, ..., βtαi, i ∈ [n]} such that t = |F∗|
|E∗| for a subfield E = GF (qL) of F, and αi ∈ E, i ∈ [n].

Here β1, . . . , βt correspond to elements in F such that {β1E∗, . . . , βtE∗} forms a partition of F∗

[61, Lemma 1]. For the repair polynomials p∗,v(x) in [61],

rankB({p∗,v(βαi) : v ∈ [L]}) =

 L, i = ∗
L
r
, i 6= ∗

(3.49)

for all β chosen from {β1, ..., βt}. The required subfield size in [61] is |E| ≈ nn.

For Construction 4, we assign the evaluation points in the storage nodes as αj,mj ,i = βj,mj
αi ∈ F,

i ∈ [n], j ∈ [a],mj ∈ [`j − `j−1], where βj,mj
is chosen from {β1, . . . , βt}. The evaluation

points of the extra parities are given by the storage nodes as in (3.31) and (3.32). We assign the

additional coefficient β to satisfy Condition 1. Similar to Construction 2, we guarantee that in each

row, the n + kj − ka evaluation points are distinct and the total number of required β required is

t = 1 +
a∑
j=2

dkj−1−kj
kj
e. In the best case when we have kj−1 − kj ≤ kj for all j, the number of β we

required is a. The required field size is a|E|.

Corollary 5. With the RS code in [61], Construction 4 is a flexible MSR RS code.

Proof: We use Theorem 13 to prove that the code is a flexible MSR RS code.

1) [MDS condition.] We have assigned the evaluation points in each row as distinct elements in F.

2) [Rank conditions.] We know from (3.49) that the rank conditions in Theorem 13 are satisfied.

101

3.4 Latency

In this section, we analyze the latency of obtaining the entire information using our codes with

flexible number of nodes.

One of the key properties of the flexible storage codes presented in this chapter is that the decoding

rows are the first `j rows if we have Rj available nodes. As a result, the decoder can simply

download symbols one by one from each node, and symbols of Layer j can be used for Layers

j, j + 1, . . . , a.

For one pair of (Rj, `j), define a random variable Tj associated with the time for the first Rj

nodes transmitting the first `j symbols. Tj is called the latency for the j-th layer. Instead of

predetermining a fixed pair (R, `) for the system, flexible storage codes allow us to use all possible

pairs (Rj, `j), j ∈ [a]. The decoder downloads symbols from all n nodes and as long as it obtains

`j symbols from Rj nodes, the download is complete. For flexible codes with Layers 1, 2, ..., a, we

use T1,2,...,a = min(Tj, j ∈ [a]) to represent the latency.

Notice that for the fixed code with the same failure tolerance level, i.e., R = Ra, ` = `a, its latency

is Ta. Since

T1,2,...,a = min(Tj, j ∈ [a]) ≤ Ta, (3.50)

we reach the following remark.

Remark 3. Given the storage size per node `, the number of nodes n, and recovery threshold

R = Ra, the flexible storage code can reduce the latency of obtaining the entire information

compared to any fixed array code.

Assume the probability density function (PDF) of Tj is pRj ,`j(t). We calculate the expected delay

102

as

E(Tj) =

∫ ∞
0

τjpRj ,`j(τj)dτj. (3.51)

If a fixed code is adopted, one can optimize the expected latency and get an optimal pair (R∗, `∗) for

a given distribution [57], [73]. However, a flexible storage code still outperforms such an optimal

fixed code in latency due to Remark 3. Moreover, in practice the choice of (n, k,R, `) depends on

the system size and the desired failure tolerance level and is not necessarily optimized for latency.

Next, we take the Hard Disk Drive (HDD) storage system as an example to calculate the latency

of our flexible storage codes and show how much we can save compared to a fixed MDS code. In

this part, we compute the overall latency of a flexible code with (R1, `1), (R2, `2), and length n.

We compare it with the latency of fixed codes with (n,R1, `1) and (n,R2, `2), respectively.

The HDD latency model is derived in [82], where the overall latency consists of the positioning

time and the data transfer time. The positioning time measures the latency to move the hard disk

arm to the desired cylinder and rotate the desired sector to under the disk head. As the accessed

physical address for each node is arbitrary, we assume the positioning time is a random variable

uniformly distributed, denoted by U(0, tpos), where tpos is the maximum latency required to move

through the entire disk. The data transfer time is simply a linear function of the data size, and we

assume the transfer time for a single symbol in our code is ttrans. Therefore, the overall latency

model is X + ` · ttrans, where X ∼ U(0, tpos) and ` is the number of accessed symbols.

Consider an (n,R, `) fixed code. When R nodes finish the transmission of ` symbols, we get all

the information. The corresponding latency is called the R-th order statistics. For n independent

random variables satisfying U(0, tpos), the R-th order statistics for the positioning time, denoted

by UR, satisfies a beta distribution [49]:

UR ∼ Beta(R, n+ 1−R, 0, tpos). (3.52)

103

with expectation E[UR] = R
n+1

tpos. For a random variable Y ∼ Beta(α, β, a, c), the probability

density function (pdf) is defined as

f(Y = y;α, β, a, c) =
(y − a)α−1(c− y)β−1

(c− a)α+β−1B(α, β)
, (3.53)

where

B(α, β) =

∫ 1

t=0

tα−1(1− t)β−1dt (3.54)

is the Beta function.

The expectation of overall latency for an (n,R1, `1) fixed code, denoted by T1, is

E(T1) =
R1

n+ 1
tpos + `1ttrans. (3.55)

Similarly, the expected overall latency E(T2) for the fixed (n,R2, `2) code is

E(T2) =
R2

n+ 1
tpos + `2ttrans. (3.56)

Now, consider our flexible code with 2 layers. The difference of the positioning times UR1 and UR2

is

∆U = UR1 − UR2 ∼ Beta(R1 −R2, n+ 1− (R1 −R2), 0, tpos). (3.57)

104

Thus, we can get the expectation of the overall latency for our flexible code, denoted by T1,2, as

E(T1,2) = E(min(T1, T2))

= E(T1|T1 − T2 ≤ 0)P (T1 − T2 ≤ 0) + E(T2|T1 − T2 > 0)P (T1 − T2 > 0)

= E(T1)− E(T1 − T2|T1 − T2 > 0)P (T1 − T2 > 0)

=
R1

n+ 1
tpos + `1ttrans −

∫ tpos

(`2−`1)ttrans

[∆U − (`2 − `1)ttrans]f(∆U)d∆U, (3.58)

where the last term is the saved latency compared to an (n,R1, `1) code. The saved latency can be

calculated as:

E(T1 − T1,2) =

∫ tpos

(`2−`1)ttrans

[∆U − (`2 − `1)ttrans]f(∆U)d∆U (3.59)

=
atpos

a+ b
I1−x(b, a+ 1)− (`2 − `1)ttransI1−x(b, a),

where x = `2−`1
tpos

ttrans, a = R1 − R2, b = n − (R1 − R2) + 1, and Ix(a, b) is the regularized

incomplete beta function:

Ix(a, b) =
B(x; a, b)

B(a, b)
, (3.60)

with incomplete beta function

B(x; a, b) =

∫ x

t=0

ta−1(1− t)b−1dt. (3.61)

Using the fact that Ix(b, a+ 1) = Ix(b, a) + xb(1−x)a
aB(b,a)

, we have

E(∆T1) = (E(T1)− E(T2))I1−x(b, a) + tpos
R1 −R2

n+ 1

xa(1− x)b

aB(a, b)
. (3.62)

105

Similarly, the saved latency compared to an (n, k2, `2) code is

E(T2 − T1,2) = (E(T2)− E(T1))Ix(a, b) + tpos
R1 −R2

n+ 1

xa(1− x)b

aB(a, b)
. (3.63)

From (3.55) and (3.56) we can see that the latency of a fixed MDS code is a function of n,R, `, tpos,

and ttrans. One can optimize the code reconstruction threshold R∗ similar to [57] and [73] based on

other parameters. However, the system parameters might change over time and one “optimal” R∗

cannot provide low latency in all situations. For example, with fixed n, ` and the total information

size, larger ttrans results in a larger R∗ while larger tpos results in a smaller R∗. In our flexible codes,

we can always pick the best Rj over all j ∈ [a], thus provide a lower latency.

0.15 0.155 0.16 0.165 0.17 0.175 0.18 0.185 0.19 0.195 0.2

T
trans

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

s

Overall latency vs t
trans

overall latency from (15,4) fixed code

overall latency from (12,5) fixed code

overall latency from flexible code

Figure 3.2: Overall latency of fixed codes and flexible codes.

Fig. 3.2 shows the overall latency of fixed codes and flexible recoverable codes with n = 16, R1 =

15, R2 = 12, `1 = 4, `2 = 5.tpos = 1.. We fix other parameters and change the unit data transfer

time ttrans. For fixed codes, a smaller R provides a lower latency with a smaller ttrans, and when

ttrans grows, a larger R is preferred. However, our flexible code always provides a smaller latency,

and can save 2% ∼ 5% compared to the better of the two fixed codes.

Our flexible codes can also be applied to distributed computing systems for matrix-vector multi-

plications [57]. The matrix is divided row-wisely and encoded to n servers using our codes. Each

106

server is assigned ` computation tasks. If any Rj servers complete `j tasks, we can obtain the final

results. Simulation is carried out on Amazon clusters with n = 8 servers (m1.small instances).

And each task is a multiplication of a square matrix and a vector. The results are shown in Fig.

3.3. We can see a similar trend as that of Fig. 3.2. Our flexible code improves the latency by about

6% compared to the better of the two fixed codes when the matrix size is 1500× 1500.

1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Matrix size in each server

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

L
a

te
n

c
y
 (

s
)

Average latency of fixed codes and flexible codes

Fixed code with (R,l)=(4,15)

Fixed code with (R,l)=(5,12)

Flexible code with

(R,l) = (4,15),(5,12)

Figure 3.3: Overall latency of fixed codes and flexible codes for matrix-vector multiplication in
Amazon cluster. n = 8, R1 = 5, R2 = 4, `1 = 12, `2 = 15..

3.5 Conclusion

In this chapter, we proposed flexible storage codes and investigated the construction of such codes

under various settings. Our analysis shows the benefit of our codes in terms of latency. Open

problems include flexible codes for distributed computed problems other than matrix-vector mul-

tiplications, code constructions with a smaller finite field size and smaller sub-packetization, and

storage codes utilizing partial data transmission from each node similar to universally decodable

matrices.

107

Chapter 4

Flexible Constructions for Distributed

Matrix Multiplication

4.1 Introduction

Distributed matrix multiplication has received wide interest because of the huge amount of data

computing required by many popular applications like machine learning. In particular, the follow-

ing basic distributed matrix multiplication is considered: A master wishes to obtain the product of

two massive input matrices A ∈ Fλ×κ and B ∈ Fκ×µ, where F is some finite field. Each matrix is

encoded into N shares and distributed to N servers. Each server performs computation on its own

shares and sends the results to the master. After collecting enough results, the master can decode

the desired productAB. To reduce the overall system latency caused by stragglers (servers that fail

to respond or respond after the master executes the reconstruction), distributed matrix computing

schemes with straggler tolerance are provided in [57, 109, 24, 21, 110, 107, 81, 58, 22, 23, 108,

46, 3, 88, 98, 66, 97, 85, 41, 87, 47, 54, 72, 60, 14, 50, 26, 53, 1, 48, 15, 6, 8, 7]. Among the

state-of-the-art schemes, some are based on matrix partitioning such as Polynomial codes [109],

108

MatDot codes and PolyDot codes [24], Generalized PolyDot codes [21] and Entangled Polynomial

(EP) codes [110], and others are based on batch processing such as Lagrange Coded Computing

[107] and Cross Subspace Alignment codes [48]. The majority of the literature assumes a fixed

number of stragglers, i.e., the data is distributed to N servers and after any R of them complete

their computing, the final product can be obtained by the master. Here R is predetermined and

called the recovery threshold. However, when the number of stragglers is smaller than N − R,

the master still only uses the results from R servers, and the results of other servers are wasted. In

[6, 8, 7, 27, 42, 52, 43, 2, 70], the authors consider a setting in which the number of stragglers is not

known as a priori and design schemes that can cope with this setting. References [27, 2, 70] focus

on the task scheduling for general distributed computing or distributed learning. The matrix-vector

multiplication setting is considered in [6, 8]. Reference[7, 52, 42, 43] consider matrix-matrix mul-

tiplication, but they can only handle a special partitioning, i.e., A is split row-wisely and B is

split column-wisely. Arbitrary partitioning of input matrices is important in massive matrix mul-

tiplication since it enables different utilization of system resources (e.g., the required amount of

storage at each server and the amount of communication from servers to the master). When the

number of stragglers is fixed, EP codes [110] provide an elegant solution for arbitrary partitioning

by encoding the input matrix blocks into a carefully designed polynomial.

This chapter proposes flexible distributed matrix multiplication in order to achieve low latency. The

desired product AB can be decoded from collecting the results of a flexible number of servers. As

long as the master collects enough results from servers, the computing is completed. This idea of

multi-message is also considered in [52, 2, 70]. A naive solution to achieve flexibility is simply

applying the EP code [110] with a recovery threshold of RK, where each server gets K pairs of

shares instead of one pair of shares. The master can calculate the final results with any RN out of

the KN computing results. Thus, each server only needs to compute RK/N results when there is

no straggler, and in general the number of results computed in each server can be adjusted based

on the number of stragglers. However, by doing so, the computation needs to be done in a field

with minimum size of KN , and multiplication in a larger field results in a much bigger delay for

109

each multiplication [31].

To obtain a smaller field size, we propose the following solution. The main idea is that non-

stragglers can finish more tasks to compensate for the effect of the stragglers without knowing the

pattern of the stragglers a priori. Specifically, the computation is divided into 2 layers, where the

first layer has a larger recovery threshold and the second layer has a smaller recovery threshold.

Each server keeps calculating and sending results to the master until enough servers send results

to the master, which can be either a larger number of servers for the first layer or a smaller number

of servers for both 2 layers. The remaining servers are viewed as stragglers. Our construction only

requires a field size of less than 2N . The computation load of each server can be reduced when

there are fewer stragglers than N −R. Since computation load is one of the main reasons of delay,

our scheme performs better than fixed EP codes with respect to delay, as shown in Fig. 4.1. In

Fig. 4.1 we show the Example 1 of Section 4.3. We assume λ = κ = µ = 6U , for some integer

U , and the computation delay for multiplication of two U × U matrices in each server satisfy the

exponential distribution with parameter 0.1. The latency of the EP code is the delay of the 3rd

quickest server, and the slowest 2 servers are viewed as stragglers. For the flexible construction,

the computation is completed in the cases of 5 servers complete 1 task (no straggler), or 4 servers

complete 2 tasks (1 straggler), or of 3 servers complete 3 tasks (2 stragglers). The overall latency

is the smallest latency of these 3 cases. The expected latency is 10.79 for EP code, and 8.20 for the

flexible construction, hence we save 24%.

Notation: We use calligraphic characters to denote sets. For positive integer N , [N] stands for

the set {1, 2, . . . , N}. For a matrix M , |M | denotes its cardinality and when M is partitioned into

blocks, M(i,j) denotes the block in the i-th row and the j-th column.

110

6 7 8 9 10 11 12 13 14

Time slots

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
(x

)

CDF of Latency for Example 1

Latency for EP Code

Latency for flexible construction

Figure 4.1: CDF of latency for flexible construction and EP code in Example 1 of Section 4.3.

4.2 Problem Statement

We consider a problem of matrix multiplication with two input matrices A ∈ Fλ×κ and B ∈ Fκ×µ,

for some integers λ, κ, µ and a field F. We are interested in computing the product S = AB in

a distributed computing environment with 2 sources, a master, and N servers. Sources 1 and 2

hold matrices A and B, respectively. It is assumed that there are up to N − R stragglers among

the servers. In non-flexible distributed matrix multiplication, R is called the recovery threshold.

Given the flexibility parameters R1, R2, where N ≥ R1 > R2 = R, the shares (coded matrix sets)

Ãi and B̃i are generated by sources for Server i, i ∈ [N]. Each share has R1 − R2 + 1 coded

matrices, which are divided into 2 layers. The first layer contains the first coded matrix, denoted

by Ãi,1 or B̃i,1, and the second layer contains the remaining R1 − R2 coded matrices, denoted

by {Ãi,2, · · · , Ãi,R1−R2+1}, or {B̃i,2, · · · , B̃i,R1−R2+1}. For i ∈ [N], the shares and the encoding

functions are

Ãi = {Ãi,j | j ∈ [R1 −R2 + 1]} = fi(A), (4.1)

B̃i = {B̃i,j | j ∈ [R1 −R2 + 1]} = gi(B). (4.2)

Then Ãi and B̃i are sent to Server i from the sources before the computation starts. Each server

is with a storage capacity C 1. To satisfy the storage constraint, for each Server i, i ∈ [N],

1The maximum storage size C is usually smaller than |A| + |B|, otherwise the sources can send A and B to the
servers.

111

∑
M∈Ãi∪B̃i |M | ≤ C.

Server i computes R1 −R2 + 1 tasks in order:

S̃i,j = h
(
Ãi,j, B̃i,j

)
= Ãi,j · B̃i,j, j ∈ [R1 −R2 + 1],

and sends S̃i,j to the master once its computation is finished. Since the results are computed in

order, the master receives S̃i,j1 before S̃i,j2 for ∀i ∈ [N], j1 < j2. Denote S̃i,[j] =
{
S̃i,t | t ∈ [j]

}
and S̃K,[j] =

{
S̃i,[j] | i ∈ K

}
,∀K ⊂ [N].

The decoding function dK,[j] of the master for recovering S satisfies

S = dK,[j]

(
S̃K,[j]

)
,

∀R2 ≤ |K| = R∗ ≤ R1, j = R1 −R∗ + 1. (4.3)

The function set {fi, gi, h, dK,[j] | 1 ≤ i ≤ N,R2 ≤ |K| = R∗ ≤ R1, j = R1 − R∗ + 1} is called

the flexible constructions for distributed matrix multiplication.

In other words, the sources send all R1 −R2 + 1 coded matrices to each server. Then, each server

keeps calculating and sending results to the master until the master obtains enough results – either

when the quickest R1 servers complete the first task, or when the quickest R∗ servers complete the

first R1 − R∗ + 1 tasks, R2 ≤ R∗ < R1. The remaining servers are viewed as stragglers. The

latency is defined as the time required for the master to collect enough results from the start of the

computation. For simplicity, in the analysis of this chapter, we assume a small failure probability

at each server and a constant time for a unit computation at each server if it is not a straggler.

We want to find flexible constructions with the storage capacity C and the computation load (i.e.,

the number of multiplications) at each server as small as possible.

112

4.3 Construction

In this section, we present our flexible constructions. We start from a motivating example.

Example 9. Consider the matrix multiplication of A and B, for A ∈ Fλ×κ, B ∈ Fκ×µ, using

N = 5 servers with at mostN−R = 2 stragglers. AssumeA is partitioned column-wisely andB is

partitioned row-wisely: A = [A1, A2], B =

 B1

B2

, and the master requiresAB = A1B1+A2B2.

Applying the EP code [110], server i, i ∈ [5] receives coded matrices A1 + αiA2 and αiB1 + B2,

and calculates

(A1 + αiA2) · (αiB1 +B2) (4.4)

=A1B2 + αi(A1B1 + A2B2) + α2
iA2B1,

which is a degree 2 polynomial with respect to αi. Thus A1B1 + A2B2 can be calculated by 3

distinct evaluations from {αi | i ∈ [5]} using Lagrange interpolation. The total computation load

of directly multiplyingA andB is L = λκµ, and with EP code the computation load of each server

is L/2. However, when there is no straggler, the computation of 2 servers are wasted.

Alternatively, we can use a flexible scheme to calculate AB, such that any R∗ available servers

can complete the computation, 3 = R2 ≤ R∗ ≤ R1 = 5. First, we partition the matrices and get

A = [A1, A2, A3], B = [BT
1 , B

T
2 , B

T
3]T , and thus the master requires AB = A1B1 +A2B2 +A3B3.

Let {αi|i ∈ [7]} be distinct elements in F. The calculation will be divided into 2 layers.

113

Layer 1: server i, i ∈ [5], calculates

(A1 + αiA2 + α2
iA3) · (α2

iB1 + αiB2 +B3)

=A1B3 + αi(A2B3 + A1B2)

+α2
i (A1B1 + A2B2 + A3B3)

+α3
i (A2B1 + A3B2) + α4

iA3B1. (4.5)

It is a degree 4 polynomial with respect to αi, and the final product can be obtained from all 5

servers. If there is no straggler, we stop here. In this layer, matrices A,B are divided into smaller

pieces compared to fixed EP code and the computation load of each server is L/3. If there are

stragglers, the servers continue the calculation in Layer 2.

Layer 2: We set Aαi
= (A1 + αiA2 + α2

iA3), Bαi
= (α2

iB1 + αiB2 +B3) and we further partition

them into 2 parts,

Aαi
= [Aαi,1, Aαi,2], Bαi

=

 Bαi,1

Bαi,2

 . (4.6)

The calculation of each server is shown in Table 4.1.

Since Layer 2 has a similar structure as (4.4), from any 3 of the servers, we can getAα6 ·Bα6 and/or

Aα7 · Bα7 . If there is one straggler, the master obtains Aα6 · Bα6 from Layer 2, which causes the

additional computation load of L/6 in a server. If there are 2 stragglers, the master obtains both

Aα6 ·Bα6 and Aα7 ·Bα7 , which causes the computation load of L/3 in Layer 2 for each server.

Note that in this example, there are R1 − R2 + 1 = 3 coded matrices in a share. That is, Ãi,1 =

Aαi
, Ãi,2 = Aα6,1 + αiAα6,2, Ãi,3 = Aα7,1 + αiAα7,2, B̃i,1 = Bαi

, B̃i,2 = Bα6,1 + αiBα6,2, B̃i,3 =

Bα7,1 + αiBα7,2, for i ∈ [N]. Server i needs to store Ãi and B̃i before the computation steps.

Each server computes the R1 −R2 + 1 = 3 tasks in order independent of the progress of the other

114

Table 4.1: Calculation tasks in each server for Example 1.

Server 1 Server 2 Server 3 Server 4 Server 5
Layer 1 Aα1 ·Bα1 Aα2 ·Bα2 Aα3 ·Bα3 Aα4 ·Bα4 Aα5 ·Bα5

Layer 2

(Aα6,1 + α1Aα6,2)
·(α1Bα6,1 +Bα6,2),
(Aα7,1 + α1Aα7,2)
·(α1Bα7,1 +Bα7,2)

(Aα6,1 + α2Aα6,2)
·(α2Bα6,1 +Bα6,2),
(Aα7,1 + α2Aα7,2)
·(α2Bα7,1 +Bα7,2)

(Aα6,1 + α3Aα6,2)
·(α3Bα6,1 +Bα6,2),
(Aα7,1 + α3Aα7,2)
·(α3Bα7,1 +Bα7,2)

(Aα6,1 + α4Aα6,2)
·(α4Bα6,1 +Bα6,2),
(Aα7,1 + α4Aα7,2)
·(α4Bα7,1 +Bα7,2)

(Aα6,1 + α5Aα6,2)
·(α5Bα6,1 +Bα6,2),
(Aα7,1 + α5Aα7,2)
·(α5Bα7,1 +Bα7,2)

servers.

From Example 9, when there is no straggler (which is more likely in most practical systems), we

can reduce the computation load of each server from L/2 to L/3. In the worst case, we can tolerate

2 stragglers and get the desired results. The resulting latency under an exponential model is plotted

in Fig. 4.1.

In this example, the storage size required for each server is 2λκ
3

+ 2κµ
3

for our flexible construction,

and λκ
2

+ κµ
2

for the EP code. We will discuss how to partition the matrices to obtain a good

performance on storage size in Section 4.4.

Next, we present the general construction of our flexible schemes.

Construction 6. Assume we have N ≥ R1 > R2 = R, Rj = pjmjnj + pj − 1, j ∈ [2], and

distinct elements {αi | i ∈ [N +R1 −R2]} from the finite field F. With p1,m1, n1, matrices A,B

are partitioned as

A(1,1) · · · A(1,p1)

A(2,1) · · · A(2,p1)

...
...

...

A(m1,1) · · · A(m1,p1)

,

B(1,1) · · · B(1,n1)

B(2,1) · · · B(2,n1)

...
...

...

B(p1,1) · · · B(p1,n1)

.

(4.7)

115

In Layer 1, set A(1) = A,B(1) = B, we calculate f1,A(1)(αi) · f1,B(1)(αi) in server i, where

f1,A(1)(αi) =

m1∑
u=1

p1∑
v=1

A
(1)
(u,v)α

v−1+p1(u−1)
i , (4.8)

f1,B(1)(αi) =

p1∑
u=1

n1∑
v=1

B
(1)
(u,v)α

p1−u+p1m1(v−1)
i , (4.9)

are shares based on EP codes [110]. Here, for Server i, Ãi,1 = f1,A(1)(αi), B̃i,1 = f1,B(1)(αi).

In Layer 2, we partition matrices f1,A(1)(αN+t), f1,B(1)(αN+t), t ∈ [R1 − R2], with parameters

p2,m2, n2. Server i calculates f2,A(2)(αi) · f2,B(2)(αi), where
(
A(2), B(2)

)
∈ {(f1,A(1)(αN+t),

f1,B(1)(αN+t) | t ∈ [R1 −R2]} and

f2,A(2)(αi) =

m2∑
u=1

p2∑
v=1

A
(2)
(u,v)α

v−1+p2(u−1)
i , (4.10)

f2,B(2)(αi) =

p2∑
u=1

n2∑
v=1

B
(2)
(u,v)α

p2−u+p2m2(v−1)
i . (4.11)

In Layer 2, for Server i ∈ [N], index t ∈ [R1−R2],A(2) = f1,A(1)(αN+t), andB(2) = f1,B(1)(αN+t),

the corresponding coded matrices are

Ãi,t+1 = f2,A(2)(αi),

B̃i,t+1 = f2,B(2)(αi).

The calculation tasks in both layers are shown in Table 4.2. Since we only useN+R1−R2 distinct

αi values, the required field size is |F| ≥ N + R1 − R2. In Layer 1, A(1) = A,B(1) = B. Layer 2

calculates for all pairs of
(
A(2), B(2)

)
∈ {
(
f1,A(1)(αN+t), f1,B(1)(αN+t

)
| t ∈ [R1 −R2]}.

116

Table 4.2: Calculation tasks in each server for the general construction.

Server 1 Server 2 . . . Server N
Layer 1 f1,A(1)(α1) · f1,B(1)(α1) f1,A(1)(α2) · f1,B(1)(α2) . . . f1,A(1)(αN) · f1,B(1)(αN)
Layer 2 f2,A(2)(α1) · f2,B(2)(α1) f2,A(2)(α2) · f2,B(2)(α2) . . . f2,A(2)(αN) · f2,B(2)(αN)

Theorem 14. In Construction 6, assume we have R∗ available servers and R2 ≤ R∗ ≤ N , we only

need

Lflex =

λκµ

m1p1n1
, R∗ ≥ R1,

λκµ
m1p1n1

+ λκµ(R1−R∗)
m1m2p1p2n1n2

, R2 ≤ R∗ < R1.

(4.12)

computation load in each server to obtain the final product, and the storage capacity required is

Cflex =
1

p1

(
λκ

m1
+
κµ

n1

)
+
R1 −R2

p1p2

(
λκ

m1m2
+

κµ

n1n2

)
. (4.13)

Proof: We first look at the computation load.

In the case that the number of available servers R∗ ≥ R1, according to the correctness of EP

codes [110], the required results A × B can be obtained by collecting R1 evaluation points of

f1,A(1)(αi)× f1,B(1)(αi). Thus, we only need the computation in Layer 1. In Layer 1, we calculate

f1,A(1)(αi) · f1,B(1)(αi). From (4.7), (4.8) and (4.9) we know that f1,A(1)(αi) has size λ
m1
· κ
p1

and

f1,B(1)(αi) has size κ
p1
· µ
n1

. Thus, normalized by the cost of a single multiplication operation, the

computation in Layer 1 is

L1 =
λκµ

m1p1n1

. (4.14)

When R2 ≤ R∗ < R1, we only have R∗ evaluation points of f1,A(1)(αi) · f1,B(1)(αi) calcu-

lated in Layer 1. Then, we need to obtain additional R1 − R∗ evaluation points. In Layer

2, f2,A(2)(αi) · f2,B(2)(αi), i ∈ [N], are calculated at the servers with (A(2), B(2)) chosen from

{
(
f1,A(1)(αN+t), f1,B(1)(αN+t)

)
}, t ∈ [R1 − R2]}. With each pair of (A(2), B(2)), the master can

117

calculate one evaluation point of f1,A(1)(αN+t) · f1,B(1)(αN+t) since (4.10) and (4.11) are exactly

the EP code [110]. From (4.10) and (4.11), we know that f2,A(2)(αi) has size λ
m1m2

· κ
p1p2

and

f2,B(2)(αi) has size κ
p1p2
· µ
n1n2

. Thus, the total computation in Layer 2 is

L2 =
(R1 −R∗)L1

p2m2n2

. (4.15)

Combining (4.14) and (4.15), the computation load is given as (4.12).

For the storage, we first look at the storage size required for each layer. In Layer 1, we need to

store f1,A(1)(αi), f1,B(1)(αi), then

C1 =
1

p1

(
λκ

m1

+
κµ

n1

)
. (4.16)

In Layer 2, we need to store all pairs of f2,A(2)(αi), f2,B(2)(αi), for R1−R2 choices of (A(2), B(2)).

The required storage size is

C2 =
(R1 −R2)

p1p2

(
λκ

m1m2

+
κµ

n1n2

)
. (4.17)

Thus, we obtain the total required storage size as (4.13).

Remark. Cross Subspace Alignment codes and Generalized Cross Subspace Alignment codes

[48] are designed to handle batch processing of matrix multiplication. Our construction can also

be easily modified to handle batch processing based on these two codes.

118

4.4 Optimization

In this section, we discuss how to pick partitioning parameters p,m, n, to improve the system

performance, i.e., to minimize the computation load given the storage constraint C in each server.

We first discuss fixed EP code with a fixed recovery threshold R, which satisfies R = m0p0n0 +

p0−1 according to [110], for some undetermined p0,m0, n0. The computation load and the storage

size required are shown in [110] as

LEP =
λκµ

m0p0n0

, CEP =
1

p0

(
λκ

m0

+
κµ

n0

)
. (4.18)

Thus, the optimization problem can be formulated as

min
p0,m0,n0

LEP =
λκµ

m0p0n0

,

s.t. R = p0m0n0 + p0 − 1,

λκ

p0m0

+
κµ

p0n0

≤ C,

p0,m0, n0 are integers.

(4.19)

Theorem 15. The optimization in (4.19) without the integer constraint has solution

p∗0 =
1

2
(R + 1)− 1

2

√
(R + 1)2 − 16

λκ2µ

C2
, (4.20)

and m∗0, n
∗
0 are given by m0n0 = R+1

p0
− 1 and λκn0 = κµm0.

Proof: Using the threshold constraint

p0m0n0 = R + 1− p0, (4.21)

we have LEP = λκµ
R+1−p0 , which is an increasing function of p0. So, we minimize p0 under the

119

constraint that

(λκn0 + κµm0)

R + 1− p0
≤ C. (4.22)

Also, we have

λκn0 + κµm0 ≥ 2
√
λκ2µm0n0 = 2

√
λκ2µ

(
R+ 1

p0
− 1

)
(4.23)

and it holds with equality if and only if λκn0 = κµm0. Thus, we have (4.22) as

2

√
λκ2µ

(R + 1− p0)p0
≤ C, (4.24)

which decreases with p0 since the derivative satisfies

d (R+ 1− p0)p0
d p0

= R+ 1− 2p0 = p0m0n0 − p0 ≥ 0. (4.25)

Thus, LEP reaches its optimal value when (4.24) holds with equality and λκn0 = κµm0. Combin-

ing (4.21), the optimal p∗0 is given by (4.20), and then m∗0, n
∗
0 can be obtained accordingly.

Notice that p0,m0, n0 are integers, we pick these 3 parameters close to the optimal values that

satisfy all the constraints in (4.19).

Next, we consider the flexible constructions with predetermined R1, R2 = R. Assume that the

probability that each server is a straggler is ε. The average computation load is

E[Lflex] =
N∑

R∗=R2

(
N

R∗

)
(1− ε)R∗εN−R∗ λκµ

p1m1n1

+

R1−1∑
R∗=R2

(
N

R∗

)
(1− ε)R∗εN−R∗ λκµ(R1 −R∗)

m1m2p1p2n1n2
. (4.26)

In practical systems, ε is small (e.g., less than 110 failures over 3000-node production clusters

120

of Facebook per day [84]), so we ignore the second term in (4.26) and use the approximation

Lflex = λκµ
p1m1n1

in our optimization problem. Combined with (4.13), the optimization problem can

be formulated as

min
p1,m1,n1,p2,m2,n2

Lflex =
λκµ

p1m1n1
,

s.t. Rj = pjmjnj + pj − 1, j ∈ [2],

1

p1

(
λκ

m1
+
κµ

n1

)
+

(R1 −R2)

p1p2

(
λκ

m1m2
+

κµ

n1n2

)
≤ C,

p1,m1, n1, p2,m2, n2 are integers. (4.27)

Theorem 16. The solution to (4.27) without the integer constraint for p1,m1, n1, p2 is

p∗1 =
R1 + 1

2
−

√
(R1 + 1)2

4
− 4λκ2µ(2R1 −R2 + 1)2

C2(R2 + 1)2
, (4.28)

m∗1, n
∗
1 are given by m1n1 = R1+1

p1
− 1 and λκn1 = κµm1, and p∗2 = R2+1

2
,m∗2 = 1, n∗2 = 1.

Proof: Using p1m1n1 = R + 1− p1, we have Lflex = λκµ
R1+1−p1 , which is an increasing function of

p1, so we need to minimize p1.

Using mjnj =
Rj+1

pj
− 1, similar to (4.23), we have:

1

p1
(
λκ

m1

+
κµ

n1

) ≥ 2

√
λκ2µ

(R1 + 1− p1)p1
, (4.29)

(R1 −R2)

p1p2

(
λκ

m1m2

+
κµ

n1n2

)
≥2(R1 −R2)

√
λκ2µ

(R1 + 1− p1)(R2 + 1− p2)p1p2
. (4.30)

Similar to (4.25), we know that (4.30) is a decreasing function of p1 and p2. Thus, when p2

reaches its maximum, p1 is minimized. Noticing that p2 = R2+1
m2n2+1

and m2, n2 are integers, we set

121

p∗2 = R2+1
2
,m∗2 = 1, n∗2 = 1. The optimal p∗1 is obtained from (4.29) and (4.30).

Again, we pick p1,m1, n1, p2,m2, n2 as integers around the optimal value satisfying (4.27) as our

final choice.

Example 10. Assume we have N = 8 servers and we need to tolerate N − R = 1 straggler.

λ = κ = µ and the storage size of each server is limited by C = 8
7
λκ. Using the EP code, the

optimal choice of {p0,m0, n0} is {1, 1, 7}, which results in a storage size of 8
7
λκ and a computation

load per server of 1
7
λκµ = 0.143λκµ. Using the 2-layer flexible codes with R1 = 8 and R2 = 7,

the optimal parameters are chosen as p1 = 1,m1 = 2, n1 = 4, p2 = 4,m2 = 1, n2 = 1, which

cost a storage size of 15
16
λκ and a computation load of 1

8
λκµ when there is no straggler, with an

additional computation load of 1
32
λκµ when there is one straggler. Assuming the probability of

one straggler to be 10%, the average computation load is 0.128λκµ. In this example, we save both

storage size and average computation load while maintaining one straggler tolerance.

4.5 Conclusion

In this chapter, a flexible construction for distributed matrix multiplication is proposed and the

optimal parameters are discussed. The construction can also be generalized to batch processing of

matrix multiplication.

122

Chapter 5

Conclusion and Future Work

In this dissertation, flexible coding constructions and schemes are provided. The repair problem of

RS codes is studied, our code constructions and repair schemes provide a flexible tradeoff between

the repair bandwidth and the sub-packetization size. Aiming at reduce the accessing latency with

unknown failures, flexible storage code constructions are proposed and accessing latency model

is analyzed. The constructions can be applied to different application scenarios. The flexible

distributed matrix computing schemes are also investigated. The code constructions are proposed,

and the optimization problem of assigning tasks to servers is analyzed when given the capacity of

the servers.

For the future work, we would like to extend our flexible constructions and schemes for more

application scenarios, like distributed machine learning algorithms, DNA storage and consistent

data storage. In these scenarios, the stragglers are hard to predict, a flexible construction that

allows efficient use different number of available servers can reduce the latency of the system.

Also, with some feedback and communications from the servers, the flexible constructions and

schemes can be improved. The task assignments can be adjusted according to the feedback and the

servers can be used more efficiently with communications.

123

Bibliography

[1] M. Aliasgari, O. Simeone, and J. Kliewer. Distributed and private coded matrix computation
with flexible communication load. arXiv preprint arXiv:1901.07705, 2019.

[2] M. M. Amiri and D. Gündüz. Computation scheduling for distributed machine learning with
straggling workers. IEEE Transactions on Signal Processing, 67(24):6270–6284, 2019.

[3] T. Baharav, K. Lee, O. Ocal, and K. Ramchandran. Straggler-proofing massive-scale dis-
tributed matrix multiplication with d-dimensional product codes. In 2018 IEEE Interna-
tional Symposium on Information Theory (ISIT), pages 1993–1997. IEEE, 2018.

[4] A. Beimel and Y. Stahl. Robust information-theoretic private information retrieval. Journal
of Cryptology, 20(3):295–321, 2007.

[5] R. Bitar and S. El Rouayheb. Staircase-pir: Universally robust private information retrieval.
In 2018 IEEE Information Theory Workshop (ITW), pages 1–5. IEEE, 2018.

[6] R. Bitar, P. Parag, and S. E. Rouayheb. Minimizing latency for secure coded computing us-
ing secret sharing via staircase codes. IEEE Transactions on Communications, 68(8):4609–
4619, 2020.

[7] R. Bitar, M. Xhemrishi, and A. Wachter-Zeh. Adaptive private distributed matrix multipli-
cation. arXiv preprint arXiv:2101.05681, 2021.

[8] R. Bitar, Y. Xing, Y. Keshtkarjahromi, V. Dasari, S. E. Rouayheb, and H. Seferoglu. Private
and rateless adaptive coded matrix-vector multiplication. arXiv preprint arXiv:1909.12611,
2019.

[9] M. Blaum. Multiple-layer integrated interleaved codes: A class of hierarchical locally re-
coverable codes. arXiv preprint arXiv:2009.12456, 2020.

[10] M. Blaum, J. Bruck, and A. Vardy. MDS array codes with independent parity symbols.
IEEE Transactions on Information Theory, 42(2):529–542, 1996.

[11] M. Blaum, J. L. Hafner, and S. Hetzler. Partial-MDS codes and their application to raid type
of architectures. IEEE Transactions on Information Theory, 59(7):4510–4519, 2013.

[12] V. R. Cadambe, S. A. Jafar, H. Maleki, K. Ramchandran, and C. Suh. Asymptotic interfer-
ence alignment for optimal repair of MDS codes in distributed storage. IEEE Transactions
on Information Theory, 59(5):2974–2987, 2013.

124

[13] G. Calis and O. O. Koyluoglu. A general construction for PMDS codes. IEEE Communica-
tions Letters, 21(3):452–455, 2016.

[14] W. Chang and R. Tandon. On the capacity of secure distributed matrix multiplication. IEEE
Global Communications Conference (GLOBECOM), pages 1–6, 2018.

[15] Z. Chen, Z. Jia, Z. Wang, and S. A. Jafar. GCSA codes with noise alignment for secure coded
multi-party batch matrix multiplication. IEEE Journal on Selected Areas in Information
Theory, Early Access, 2021.

[16] A. Chowdhury and A. Vardy. Improved schemes for asymptotically optimal repair of MDS
codes. arXiv preprint arXiv:1710.01867, 2017.

[17] H. Dau, I. Duursma, H. M. Kiah, and O. Milenkovic. Repairing Reed-Solomon codes with
multiple erasures. IEEE Transactions on Information Theory, 2018.

[18] H. Dau and O. Milenkovic. Optimal repair schemes for some families of full-length Reed-
Solomon codes. In Information Theory (ISIT), 2017 IEEE International Symposium on,
pages 346–350. IEEE, 2017.

[19] C. Devet, I. Goldberg, and N. Heninger. Optimally robust private information retrieval. In
21st {USENIX} Security Symposium ({USENIX} Security 12), pages 269–283, 2012.

[20] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran. Network cod-
ing for distributed storage systems. IEEE Transactions on Information Theory, 56(9):4539–
4551, 2010.

[21] S. Dutta, Z. Bai, H. Jeong, T. Low, and P. Grover. A unified coded deep neural
network training strategy based on generalized polydot codes for matrix multiplication.
ArXiv:1811.10751, Nov. 2018.

[22] S. Dutta, V. Cadambe, and P. Grover. Short-dot: Computing large linear transforms dis-
tributedly using coded short dot products. In Advances In Neural Information Processing
Systems, pages 2100–2108, 2016.

[23] S. Dutta, V. Cadambe, and P. Grover. Coded convolution for parallel and distributed com-
puting within a deadline. arXiv preprint arXiv:1705.03875, 2017.

[24] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and P. Grover. On the opti-
mal recovery threshold of coded matrix multiplication. IEEE Transactions on Information
Theory, 66(1):278–301, 2020.

[25] I. Duursma and H. Dau. Low bandwidth repair of the RS (10, 4) Reed-Solomon code. In
2017 Information Theory and Applications Workshop (ITA), pages 1–10. IEEE, 2017.

[26] R. G. D’Oliveira, S. E. Rouayheb, and D. Karpuk. GASP codes for secure distributed
matrix multiplication. IEEE Transactions on Information Theory, 2020. early access, DOI:
10.1109/TIT.2020.2975021.

125

[27] N. Ferdinand and S. C. Draper. Hierarchical coded computations. IEEE International Sym-
posium on Information Theory, 2018.

[28] A. Fikes. Colossus, successor to Google File System, 2015.

[29] M. Forbes and S. Yekhanin. On the locality of codeword symbols in non-linear codes.
Discrete mathematics, 324:78–84, 2014.

[30] A. Ganesan and P. O. Vontobel. On the existence of universally decodable matrices. IEEE
transactions on information theory, 53(7):2572–2575, 2007.

[31] S. B. Gashkov and I. S. Sergeev. Complexity of computation in finite fields. Journal of
Mathematical Sciences, 191(5):661–685, 2013.

[32] P. Gopalan, C. Huang, B. Jenkins, and S. Yekhanin. Explicit maximally recoverable codes
with locality. IEEE Transactions on Information Theory, 60(9):5245–5256, 2014.

[33] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin. On the locality of codeword symbols.
IEEE Transactions on Information theory, 58(11):6925–6934, 2012.

[34] S. Goparaju, A. Fazeli, and A. Vardy. Minimum storage regenerating codes for all parame-
ters. IEEE Transactions on Information Theory, 63(10):6318–6328, 2017.

[35] D. Goss. Basic structures of function field arithmetic. Springer Science & Business Media,
2012.

[36] K. M. Greenan, E. L. Miller, and S. T. J. Schwarz. Optimizing galois field arithmetic for
diverse processor architectures and applications. In Modeling, Analysis and Simulation of
Computers and Telecommunication Systems, 2008. MASCOTS 2008. IEEE International
Symposium on, pages 1–10. IEEE, 2008.

[37] V. Guruswami, S. V. Lokam, and S. V. M. Jayaraman. Epsilon-MSR codes: Contacting
fewer code blocks for exact repair. arXiv preprint arXiv:1807.01166, 2018.

[38] V. Guruswami and A. S. Rawat. MDS code constructions with small sub-packetization and
near-optimal repair bandwidth. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 2109–2122. Society for Industrial and Applied
Mathematics, 2017.

[39] V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and algebraic-
geometric codes. In Foundations of Computer Science, 1998. Proceedings. 39th Annual
Symposium on, pages 28–37. IEEE, 1998.

[40] V. Guruswami and M. Wootters. Repairing Reed-Solomon codes. IEEE Transactions on
Information Theory, 2017.

[41] F. Haddadpour and V. R. Cadambe. Codes for distributed finite alphabet matrix-vector
multiplication. In 2018 IEEE International Symposium on Information Theory (ISIT), pages
1625–1629. IEEE, 2018.

126

[42] B. Hasırcıoglu, J. Gómez-Vilardebó, and D. Gündüz. Bivariate polynomial coding for ex-
ploiting stragglers in heterogeneous coded computing systems. ArXiv:2001.07227, 2020.

[43] B. Hasırcıoğlu, J. Gómez-Vilardebó, and D. Gündüz. Bivariate hermitian polynomial cod-
ing for efficient distributed matrix multiplicationn. 2020 IEEE Global Communications
Conference, pages 1–6, 2020.

[44] W. Huang, M. Langberg, J. Kliewer, and J. Bruck. Communication efficient secret sharing.
IEEE Transactions on Information Theory, 62(12):7195–7206, 2016.

[45] H. Jafarkhani and M. Hajiaghayi. Cost-efficient repair for storage systems using progressive
engagement, Jan. 22 2019. US Patent 10,187,088.

[46] T. Jahani-Nezhad and M. A. Maddah-Ali. Codedsketch: A coding scheme for distributed
computation of approximated matrix multiplications. arXiv preprint arXiv:1812.10460,
2018.

[47] H. Jeong, F. Ye, and P. Grover. Locally recoverable coded matrix multiplication. In 2018
56th Annual Allerton Conference on Communication, Control, and Computing (Allerton),
pages 715–722. IEEE, 2018.

[48] Z. Jia and S. Jafar. Cross-subspace alignment codes for coded distributed batch computation.
ArXiv:1909.13873, 2019.

[49] M. Jones. Kumaraswamy’s distribution: A beta-type distribution with some tractability
advantages. Statistical methodology, 6(1):70–81, 2009.

[50] J. Kakar, S. Ebadifar, and A. Sezgin. On the capacity and straggler-robustness of distributed
secure matrix multiplication. IEEE Access, 7:45783–45799, 2019.

[51] O. Khan, R. C. Burns, J. S. Plank, W. Pierce, and C. Huang. Rethinking erasure codes for
cloud file systems: minimizing I/O for recovery and degraded reads. In FAST, page 20,
2012.

[52] S. Kiani, N. Ferdinand, and S. C. Draper. Exploitation of stragglers in coded computation.
IEEE International Symposium on Information Theory, 2018.

[53] M. Kim and J. Lee. Private secure coded computation. IEEE Communications Letters,
23(11):1918–1921, 2019.

[54] M. Kim, J.-y. Sohn, and J. Moon. Coded matrix multiplication on a group-based model.
arXiv preprint arXiv:1901.05162, 2019.

[55] K. Kralevska, D. Gligoroski, R. E. Jensen, and H. Øverby. HashTag erasure codes: from
theory to practice. IEEE Transactions on Big Data, 4(4):516–529, 2018.

[56] C. Lai, S. Jiang, L. Yang, S. Lin, G. Sun, Z. Hou, C. Cui, and J. Cong. Atlas: Baidu’s
key-value storage system for cloud data. In 2015 31st Symposium on Mass Storage Systems
and Technologies (MSST), pages 1–14. IEEE, 2015.

127

[57] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran. Speeding up
distributed machine learning using codes. IEEE Transactions on Information Theory,
64(3):1514–1529, 2017.

[58] K. Lee, C. Suh, and K. Ramchandran. High-dimensional coded matrix multiplication.
In 2017 IEEE International Symposium on Information Theory (ISIT), pages 2418–2422.
IEEE, 2017.

[59] J. Li and X. Tang. A systematic construction of mds codes with small sub-packetization
level and near optimal repair bandwidth. arXiv preprint arXiv:1901.08254, 2019.

[60] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr. Coding for distributed fog computing.
IEEE Communications Magazine, 55(4):34–40, 2017.

[61] W. Li, Z. Wang, and H. Jafarkhani. On the sub-packetization size and the repair bandwidth
of reed-solomon codes. IEEE Transactions on Information Theory, 65(9):5484–5502, 2019.

[62] G. Liang and U. C. Kozat. Tofec: Achieving optimal throughput-delay trade-off of cloud
storage using erasure codes. In IEEE INFOCOM 2014-IEEE Conference on Computer
Communications, pages 826–834. IEEE, 2014.

[63] R. Lidl and H. Niederreiter. Introduction to finite fields and their applications. Cambridge
university press, 1994.

[64] J. Luo, K. D. Bowers, A. Oprea, and L. Xu. Efficient software implementations of large
finite fields GF(2n) for secure storage applications. ACM Transactions on Storage (TOS),
8(1):2, 2012.

[65] F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes. Elsevier, 1977.

[66] A. Mallick, M. Chaudhari, U. Sheth, G. Palanikumar, and G. Joshi. Rateless codes for near-
perfect load balancing in distributed matrix-vector multiplication. Proc. ACM Meas. Anal.
Comput. Syst., 3(3), 2019.

[67] J. Mardia, B. Bartan, and M. Wootters. Repairing multiple failures for scalar MDS codes.
IEEE Transactions on Information Theory, 2018.

[68] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu, S. Pan, S. Shankar, V. Sivakumar,
L. Tang, et al. f4: Facebook’s warm BLOB storage system. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 14), pages 383–398, 2014.

[69] P. Narayanan, S. Samal, and S. Nanniyur. Yahoo cloud object store-object storage at exabyte
scale, 2017.

[70] E. Ozfatura, S. Ulukus, and D. Gündüz. Straggler-aware distributed learning:
Communication–computation latency trade-off. Entropy, 22(5):544, 2020.

[71] D. S. Papailiopoulos, A. G. Dimakis, and V. R. Cadambe. Repair optimal erasure codes
through hadamard designs. IEEE Trans. Inf. Theory, 59(5):3021–3037, 2013.

128

[72] H. Park, K. Lee, J.-y. Sohn, C. Suh, and J. Moon. Hierarchical coding for distributed com-
puting. arXiv preprint arXiv:1801.04686, 2018.

[73] P. Peng, E. Soljanin, and P. Whiting. Diversity vs. parallelism in distributed computing with
redundancy. In 2020 IEEE International Symposium on Information Theory (ISIT), pages
257–262. IEEE, 2020.

[74] J. S. Plank, K. M. Greenan, and E. L. Miller. Screaming fast galois field arithmetic using
intel simd instructions. In FAST, pages 299–306, 2013.

[75] J. S. Plank, J. Luo, C. D. Schuman, L. Xu, Z. Wilcox-O’Hearn, et al. A performance
evaluation and examination of open-source erasure coding libraries for storage. In Fast,
volume 9, pages 253–265, 2009.

[76] A. Ramamoorthy, L. Tang, and P. O. Vontobel. Universally decodable matrices for dis-
tributed matrix-vector multiplication. In 2019 IEEE International Symposium on Informa-
tion Theory (ISIT), pages 1777–1781. IEEE, 2019.

[77] K. V. Rashmi, N. B. Shah, and P. V. Kumar. Optimal exact-regenerating codes for distributed
storage at the MSR and MBR points via a product-matrix construction. IEEE Transactions
on Information Theory, 57(8):5227–5239, 2011.

[78] A. S. Rawat, O. O. Koyluoglu, and S. Vishwanath. Progress on high-rate MSR codes: En-
abling arbitrary number of helper nodes. In Information Theory and Applications Workshop
(ITA), 2016, pages 1–6. IEEE, 2016.

[79] A. S. Rawat, O. O. Koyluoglu, and S. Vishwanath. Centralized repair of multiple node
failures with applications to communication efficient secret sharing. IEEE Transactions on
Information Theory, 64(12):7529–7550, 2018.

[80] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of the
society for industrial and applied mathematics, 8(2):300–304, 1960.

[81] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr. Coded computation over
heterogeneous clusters. IEEE Transactions on Information Theory, 65(7):4227–4242, 2019.

[82] C. Ruemmler and J. Wilkes. An introduction to disk drive modeling. Computer, 27(3):17–
28, 1994.

[83] W. Ryan and S. Lin. Channel codes: classical and modern. Cambridge University Press,
2009.

[84] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis, R. Vadali, S. Chen, and
D. Borthakur. Xoring elephants: Novel erasure codes for big data. In Proceedings of the
VLDB Endowment, volume 6, pages 325–336. VLDB Endowment, 2013.

[85] A. Severinson, A. G. i Amat, and E. Rosnes. Block-diagonal and lt codes for distributed
computing with straggling servers. IEEE Transactions on Communications, 67(3):1739–
1753, 2018.

129

[86] K. Shanmugam, D. S. Papailiopoulos, A. G. Dimakis, and G. Caire. A repair framework for
scalar MDS codes. IEEE Journal on Selected Areas in Communications, 32(5):998–1007,
2014.

[87] U. Sheth, S. Dutta, M. Chaudhari, H. Jeong, Y. Yang, J. Kohonen, T. Roos, and P. Grover.
An application of storage-optimal matdot codes for coded matrix multiplication: Fast k-
nearest neighbors estimation. In 2018 IEEE International Conference on Big Data (Big
Data), pages 1113–1120. IEEE, 2018.

[88] G. Suh, K. Lee, and C. Suh. Matrix sparsification for coded matrix multiplication. In 2017
55th Annual Allerton Conference on Communication, Control, and Computing (Allerton),
pages 1271–1278. IEEE, 2017.

[89] H. Sun and S. A. Jafar. The capacity of robust private information retrieval with colluding
databases. IEEE Transactions on Information Theory, 64(4):2361–2370, 2017.

[90] R. Tajeddine and S. El Rouayheb. Robust private information retrieval on coded data.
In 2017 IEEE International Symposium on Information Theory (ISIT), pages 1903–1907.
IEEE, 2017.

[91] R. Tajeddine, O. W. Gnilke, D. Karpuk, R. Freij-Hollanti, and C. Hollanti. Robust private in-
formation retrieval from coded systems with byzantine and colluding servers. In 2018 IEEE
International Symposium on Information Theory (ISIT), pages 2451–2455. IEEE, 2018.

[92] I. Tamo and A. Barg. A family of optimal locally recoverable codes. IEEE Transactions on
Information Theory, 60(8):4661–4676, 2014.

[93] I. Tamo, Z. Wang, and J. Bruck. Zigzag codes: MDS array codes with optimal rebuilding.
IEEE Trans. Inf. Theory, 59(3):1597–1616, March 2013.

[94] I. Tamo, M. Ye, and A. Barg. Optimal repair of Reed-Solomon codes: achieving the cut-set
bound. arXiv preprint arXiv:1706.00112, 2017.

[95] I. Tamo, M. Ye, and A. Barg. Error correction based on partial information. IEEE Transac-
tions on Information Theory, 66(3):1396–1404, 2019.

[96] H. Wang and D. S. Wong. On secret reconstruction in secret sharing schemes. IEEE Trans-
actions on Information Theory, 54(1):473–480, 2008.

[97] S. Wang, J. Liu, and N. Shroff. Coded sparse matrix multiplication. arXiv preprint
arXiv:1802.03430, 2018.

[98] S. Wang, J. Liu, N. Shroff, and P. Yang. Fundamental limits of coded linear transform. arXiv
preprint arXiv:1804.09791, 2018.

[99] Z. Wang, I. Tamo, and J. Bruck. Explicit minimum storage regenerating codes. IEEE
Transactions on Information Theory, 62(8):4466–4480, Aug 2016.

[100] N. Woolsey, R.-R. Chen, and M. Ji. Heterogeneous computation assignments in coded
elastic computing. arXiv preprint arXiv:2001.04005, 2020.

130

[101] N. Woolsey, R.-R. Chen, and M. Ji. Coded elastic computing on machines with heteroge-
neous storage and computation speed. IEEE Transactions on Communications, pages 1–1,
2021.

[102] Y. Yang, M. Interlandi, P. Grover, S. Kar, S. Amizadeh, and M. Weimer. Coded elastic
computing. In 2019 IEEE International Symposium on Information Theory (ISIT), pages
2654–2658. IEEE, 2019.

[103] M. Ye and A. Barg. Explicit constructions of MDS array codes and RS codes with optimal
repair bandwidth. In Information Theory (ISIT), 2016 IEEE International Symposium on,
pages 1202–1206. IEEE, 2016.

[104] M. Ye and A. Barg. Explicit constructions of high-rate MDS array codes with optimal repair
bandwidth. IEEE Transactions on Information Theory, 63(4):2001–2014, 2017.

[105] M. Ye and A. Barg. Explicit constructions of optimal-access MDS codes with nearly optimal
sub-packetization. IEEE Transactions on Information Theory, 63(10):6307–6317, Oct 2017.

[106] M. Ye and A. Barg. Repairing Reed-Solomon codes: universally achieving the cut-set bound
for any number of erasures. arXiv preprint arXiv:1710.07216, 2017.

[107] Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and S. Avestimehr. Lagrange
coded computing: Optimal design for resiliency, security and privacy. ArXiv:1806.00939,
2018.

[108] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr. Coded fourier transform. arXiv preprint
arXiv:1710.06471, 2017.

[109] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr. Polynomial codes: an optimal design for
high-dimensional coded matrix multiplication. arXiv preprint arXiv:1705.10464, 2017.

[110] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr. Straggler mitigation in distributed matrix
multiplication: Fundamental limits and optimal coding. IEEE Transactions on Information
Theory, 66(3):1920–1933, 2020.

[111] X. Zhang. Modified generalized integrated interleaved codes for local erasure recovery.
IEEE Communications Letters, 21(6):1241–1244, 2017.

[112] Z. Zhang, Y. M. Chee, S. Ling, M. Liu, and H. Wang. Threshold changeable secret sharing
schemes revisited. Theoretical Computer Science, 418:106–115, 2012.

[113] M. Zorgui and Z. Wang. On the achievability region of regenerating codes for multiple era-
sures. In 2018 IEEE International Symposium on Information Theory (ISIT), pages 2067–
2071. IEEE, 2018.

[114] M. Zorgui and Z. Wang. Centralized multi-node repair regenerating codes. IEEE Transac-
tions on Information Theory, 2019.

131

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	On the Sub-Packetization Size and the Repair Bandwidth of Reed-Solomon Codes
	Introduction
	Preliminaries
	Reed-Solomon Repair Schemes for Single Erasure
	Schemes in one coset
	Schemes in two cosets
	Schemes in multiple cosets
	Numerical evaluations and discussions

	Reed-Solomon Repair Schemes for Multiple Erasures
	Definitions of the multiple-erasure repair
	Multiple-erasure repair in one coset
	Multiple-erasure repair in multiple cosets
	Numerical evaluations and discussions

	Repair Algorithm for RS(n,k) Codes
	Comparison
	Conclusion
	Detailed Proofs
	Proof of schemes for the case of arbitrary a and '.
	Proof of Theorem 6
	Proof of Lemma 4
	Proof of Lemma 5

	Storage Codes with Flexible Number of Nodes
	Introduction
	The Framework for Flexible Codes
	Constructions
	Flexible LRC
	Flexible PMDS codes
	Flexible MSR codes

	Latency
	Conclusion

	Flexible Constructions for Distributed Matrix Multiplication
	Introduction
	Problem Statement
	Construction
	Optimization
	Conclusion

	Conclusion and Future Work
	Bibliography

