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Abstract

Salmonella enterica serotype Typhimurium (S. Typhimurium) causes acute gut inflammation by 

using its virulence factors to invade the intestinal epithelium and survive in mucosal macrophages. 

The inflammatory response enhances the transmission success of S. Typhimurium by promoting 

its outgrowth in the gut lumen through unknown mechanisms. Here we show that reactive oxygen 

species generated during inflammation reacted with endogenous, luminal sulphur compounds 

(thiosulfate) to form a new respiratory electron acceptor, tetrathionate. The genes conferring the 

ability to utilize tetrathionate as an electron acceptor produced a growth advantage for S. 

Typhimurium over the competing microbiota in the lumen of the inflamed gut. We conclude that 

S. Typhimurium virulence factors induce host-driven production of a new electron acceptor that 

allows the pathogen to use respiration to compete with fermenting gut microbes. Thus, the ability 

to trigger intestinal inflammation is crucial for the biology of this diarrhoeal pathogen.

Introduction

S. Typhimurium is an invasive enteric pathogen associated with diarrhoea, acute intestinal 

inflammation and the presence of neutrophils in stool samples 1. The pathogen triggers 

intestinal inflammation by employing two type III secretion systems (T3SS-1 and T3SS-2) 

that enable S. Typhimurium to invade the intestinal epithelium and survive in mucosal 

macrophages 2. Recent studies suggest that acute intestinal inflammation enhances growth 

of S. Typhimurium in the intestinal lumen 3-5. The resulting increase in numbers establishes 

the pathogen as a prominent species in the gut, thereby enhancing its transmission success 6. 

However, the mechanisms by which S. Typhimurium can overgrow other microbes in the 

hostile environment of the inflamed gut remain uncharacterized.

The ability of S. Typhimurium to overgrow other microbes under certain in vitro growth 

conditions has been exploited for enrichment methods that facilitate its isolation from 

biological samples containing competing microbes. A commonly used approach, known as 

tetrathionate enrichment, was developed in 1923, and is based on the ability of S. 

Typhimurium to use tetrathionate as a terminal electron acceptor 7. It is widely believed that 
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tetrathionate respiration is not important during infection, because there are neither known 

sources of tetrathionate in the mammalian host, nor does a S. Typhimurium mutant deficient 

for tetrathionate respiration exhibit reduced virulence in a mouse model of typhoid fever 

8(Figure S1). These observations suggested that tetrathionate respiration encoded by the 

ttrSR ttrBCA gene cluster (Figure S1A) might be most important when free-living bacteria 

grow in tetrathionate-containing environments such as soil or decomposing carcasses 9.

S4O6 2- availability in the gut

A fresh look at sulphur metabolism in the inflamed intestine suggested an alternative to this 

conventional wisdom (Figure 1). Colonic bacteria produce large quantities of hydrogen 

sulfide (H2S), a highly toxic compound. The cecal mucosa protects itself from the injurious 

effects of H2S by converting it to thiosulfate (S2O3 2-) 10,11 (Figure 1A). While thiosulfate 

is therefore likely to be present in the intestinal lumen, this compound cannot be used as an 

electron acceptor by the ttrSR ttrBCA gene cluster 12. However, tetrathionate broth used for 

enrichment of Salmonella serotypes contains thiosulfate, not tetrathionate (S4O6 2-). Prior to 

use of the medium, thiosulfate is oxidized to tetrathionate by addition of the strong oxidant 

iodine (Figure 1A). We reasoned that oxidation of thiosulfate might occur during intestinal 

inflammation, a condition accompanied by neutrophil transmigration into the gut lumen 

(Figure 1B) and production of nitric oxide radicals (NO) and reactive oxygen species 13.

To test this idea, we measured the formation of tetrathionate in vivo using a mouse colitis 

model 14. Compared to mock-infected animals, infection of mice (C57BL/6) with S. 

Typhimurium resulted in acute cecal inflammation (Figure 1C, 1D, and Figure S2). Infection 

with a mutant deficient for tetrathionate respiration (ttr mutant) was accompanied by 

increased tetrathionate levels, which were detected in cecal contents by reverse phase high 

performance liquid chromatography (HPLC) coupled with mass spectrometry (MS) (Figure 

1E). S. Typhimurium causes intestinal inflammation by employing two type III secretion 

systems, T3SS-1 and T3SS-2, which mediate epithelial invasion and macrophage survival, 

respectively 15. Inactivation of T3SS-1 (through a mutation in invA) and T3SS-2 (through a 

mutation in spiB) renders S. Typhimurium unable to trigger intestinal inflammation in the 

mouse colitis model 16 (Figure 2). Tetrathionate was not detected in mice infected with an 

invA spiB mutant (P < 0.01), suggesting that inflammation is required for generating 

tetrathionate in the intestine. Furthermore, tetrathionate did not accumulate during infection 

with the S. Typhimurium wild-type strain (P < 0.01), which raised the possibility that the ttr 

genes might promote consumption of this electron acceptor during infection.

S4O6 2- promotes growth in the gut

To investigate the growth benefit conferred by tetrathionate respiration in vitro, the S. 

Typhimurium wild-type strain and a ttrA mutant (Figure S1A and B) were co-cultured in 

tetrathionate broth in the presence or absence of oxygen (Figure S1C). When thiosulfate was 

not oxidized to tetrathionate by the addition of iodine, the wild-type strain and the ttrA 

mutant grew equally well. However, in the presence of iodine, tetrathionate respiration 

promoted outgrowth of the S. Typhimurium wild-type strain under anaerobic and 

microaerobic, but not under aerobic growth conditions. A tetrathionate concentration of 2.5 
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mM was sufficient to promote outgrowth of the wild-type strain (Figure S1D) (P < 0.01). 

Co-culture of the S. Typhimurium wild-type strain and the ttrA mutant in mucin broth 

resulted in enrichment for the wild type only in the presence of tetrathionate (Figure 1F) (P 

< 0.01). Collectively, these data suggested that tetrathionate respiration might provide a 

benefit during the anaerobic growth conditions encountered in vivo, e.g. in the intestinal 

mucus layer.

To test this idea, mice were infected with an equal mixture of the S. Typhimurium wild-type 

strain and a ttrA mutant (Figure 2). S. Typhimurium infection resulted in prominent 

intestinal inflammation (Figures 2A and B) and increased mRNA levels of Kc, encoding a 

neutrophil chemoattractant, and Nos2, encoding inducible nitric oxide synthase (iNOS) 

(Figure 2C). A marked enrichment for the S. Typhimurium wild-type strain was observed 4 

days after infection in the colon contents (Figure 2D), suggesting that tetrathionate 

respiration provided an advantage during growth in the lumen of the inflamed gut. In 

contrast, both strains were recovered in similar numbers from the spleen in a mouse model 

of typhoid fever (Fig S1F), suggesting that tetrathionate was not available for growth at 

systemic sites. We next validated our results using a bovine ligated small intestinal (ileal) 

loop model in which S. Typhimurium causes acute mucosal inflammation (Figure 3)17. 

Upon infection with an equal mixture of the S. Typhimurium wild-type and a ttrA mutant, 

higher numbers of the wild-type strain were associated with the mucus fraction and with the 

intestinal mucosa, while equal numbers of both strains were recovered from the luminal 

fluid 8 hours after infection. These data suggested that the selective advantage conferred by 

tetrathionate respiration was greatest in close proximity to the inflamed mucosal surface.

To determine whether tetrathionate respiration provides a colonization advantage in the 

absence of inflammation, mice were infected with an equal mixture of an invA spiB mutant 

and an invA spiB ttrA mutant. Mice infected with this mixture neither developed intestinal 

pathology nor exhibited elevated levels of Nos2 or Kc mRNA (Figures 2A-C). Equal 

numbers of both strains were recovered from colon contents (Figure 2D). During the early 

stages of infection modelled in bovine ligated ileal loops, intestinal inflammation is largely 

dependent on T3SS-1 17. Infection with an equal mixture of an invA mutant and an invA ttrA 

mutant resulted in equal recovery of both strains from bovine ligated ileal loops (Figure 3). 

Collectively, these data suggested that tetrathionate respiration provided no growth benefit 

in the absence of intestinal inflammation.

Oxygen radicals generate S4O6 2-in vivo

Induction of a respiratory burst in blood leukocytes resulted in oxidation of thiosulfate to 

tetrathionate (Figure S1G). To determine whether iNOS or NADPH oxidase are required for 

tetrathionate respiration in vivo, Nos2-deficient mice and Cybb (gp91phox)-deficient mice 

were infected with an equal mixture of the S. Typhimurium wild-type strain and the ttrA 

mutant. S. Typhimurium infection resulted in marked intestinal inflammation (Figure 2A 

and B) and increased mRNA levels of Kc (Figure 2C). While enrichment for wild-type 

bacteria was detectable in Nos2-deficient mice, no enrichment for the S. Typhimurium wild-

type strain was observed in Cybb-deficient mice (Figure 2D) (P < 0.05). Thus, oxygen 

radicals produced by NADPH oxidase may be more important than nitric oxide radicals in 
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promoting tetrathionate respiration in vivo. Infection of Cybb-deficient mice with a ttr 

mutant was not accompanied by production of tetrathionate (Figure 1E). Collectively, these 

data suggested that the respiratory burst of phagocytes recruited during inflammation 

stimulates growth of S. Typhimurium in the gut by providing a terminal electron acceptor.

Outgrowth by S4O6 2- respiration

Under anaerobic conditions, microbes compete for high-energy resources that are available 

for fermentation, but fermentation end products cannot be further utilized. By reducing 

tetrathionate, S. Typhimurium is able to use fermentation end products that can only be 

respired, providing a substantial selective advantage. To test the magnitude of this growth 

advantage, we measured the effect of tetrathionate respiration on the abundance of S. 

Typhimurium in intestinal contents (Figure 4). Mice were inoculated with the S. 

Typhimurium wild-type strain or a ttrA mutant and bacteria were recovered four days after 

infection. The S. Typhimurium wild-type strain was recovered in approximately 80-fold 

higher numbers (P < 0.01) than the ttrA mutant (no tetrathionate respiration) (Figure 4A-C). 

Restoration of tetrathionate respiration in the ttrA mutant by homologous recombination re-

established growth at the level of the wild-type strain. Analysis of the microbiota 

composition indicated that the Typhimurium wild-type strain, but not the ttrA mutant, was 

able to outcompete other bacteria inhabiting the cecum (Figure 4D and Figure S3). These 

results suggested that the ability of S. Typhimurium to outgrow the microbiota during 

inflammation depends on tetrathionate respiration.

Discussion

An important recent conceptual advance in bacterial pathogenesis is the demonstration that 

enteric pathogens can utilize host responses to outgrow the intestinal microbiota, but the 

mechanisms were not clear 3,4,18. Here we show that S. Typhimurium gains a growth 

advantage in the competitive environment of the gut by utilizing a virulence factor-induced 

electron acceptor generated by the host respiratory burst. These data suggest that 

tetrathionate respiration provides a significant selective advantage, because enrichment for 

S. Typhimurium during growth in the inflamed gut leads to increased transmission by the 

fecal-oral route 6. The selective advantage conferred by tetrathionate respiration is likely an 

important reason why S. Typhimurium causes gastrointestinal disease, since this property 

places virulence factors (i.e. T3SS-1 and T3SS-2) that are required for inducing the 

inflammatory host response needed for the formation of tetrathionate in vivo, under 

selection. This may also explain why the ability to reduce tetrathionate is among a 

constellation of functions found in most Salmonella isolates and is historically used as a 

criterion for identification of Salmonellae. It is noteworthy that the ttr gene cluster is also 

present in the enteric pathogen Yersinia enterocolitica, but is absent from a close relative, Y. 

pestis, which does not colonize the intestine 19.

Methods Summary

Bacterial strains and plasmids used are listed in Supplementary Table 1. S. Typhimurium 

was routinely cultured in LB broth or on LB agar plates. Construction of tetrathionate 

Winter et al. Page 5

Nature. Author manuscript; available in PMC 2011 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



respiration deficient mutants is described in the Supplementary Methods. Tetrathionate broth 

(BD Biosciences) or mucin broth (0.05 % hog mucin [Sigma-Aldrich] in minimal media 

supplemented with 40 mM sodium tetrathionate as indicated) was inoculated with 100 

colony forming units(CFU) /ml of each strain and incubated at 37°C for 16 h either with 

aeration, statically or anaerobically as indicated. All animal experiments were approved by 

the Institutional Animal Care and Use Committees at the University of California, Davis 

(mouse experiments) or the Texas A&M University (calf experiments). Ligated ileal loop 

surgery was performed as described previously 17. A S. Typhimurium mouse colitis model 

has been described 14. Groups of 10-12 week old, female mice (C57BL/6, B6.129S-

Cybbtm1Din/J, B6.129P2-Nos2tm1Lau/J; The Jackson Laboratory) were orally infected with S. 

Typhimurium and tissue samples collected 4 days later. Bacterial numbers were determined 

by spreading serial 10-fold dilutions of tissue homogenates on selective media. The 

competitive index was calculated by dividing the number of wild-type cells by the number 

of mutant cells and normalized by the input ratio. Formalin fixed, Hematoxylin and Eosin 

(H&E) stained cecal sections were examined for signs of inflammation (Supplementary 

Figure 2). Tetrathionate concentration of cecal extracts was measured by RP-LC-MS. To 

measure relative expression levels of Kc and Nos2 mRNA, total RNA was isolated from the 

cecum using TRI reagent (Molecular Research Center), reverse transcribed (TaqMan reverse 

transcription reagents; Applied Biosystems) and SYBR-Green (Applied Biosystems) based 

real-time PCR performed using the primers listed in Supplementary Table 2. Fold changes 

in mRNA levels measured by real-time PCR, tetrathionate concentrations, and bacterial 

numbers underwent logarithmic transformation before ANOVA analysis followed by 

Student’s t-test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Tetrathionate becomes available during inflammation
(A) Schematic of intestinal sulfur metabolism. (B-E) Samples from a mouse colitis model 

four days after infection with S. Typhimurium (S. Tm) or mock-infection. (B) H&E stained 

cecal sections. Scale bar, 100 μm. (C) Detection of NADPH oxidase (α–p67phox) or tubulin 

(α–tubulin) in cecal extracts (n=3). (D) Expression of Kc and Nos2 in cecal RNA samples 

(n≥3) using qRT-PCR (fold-increases over mock-infection). (E) Tetrathionate detected in 

cecal contents using LC-MS (n≥3). (F) Competitive indices (CI) for anaerobic growth in 

mucin broth with (+) or without (-) tetrathionate (n=3). (D-F) Bars represent geometric 

means ± standard error. **, P < 0.01.
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Figure 2. Tetrathionate respiration confers growth advantage
(A-D) Samples from a mouse colitis model (n indicated in B) four days after infection with 

S. Typhimurium (S. Tm) or mock-infection. (A) H&E stained cecal sections. Scale bar, 400 

μm. (B) Blinded histopathology scoring showing averages (bars) and individual scores 

(circles). (C) Kc (closed bars) and Nos2 (open bars) expression in cecal RNA samples using 

qRT-PCR (fold-increases over mock-infection). (D) Competitive indices (CI) of indicated S. 

Typhimurium strains determined by recovering bacteria from colon contents. (C-D) Bars 

represent geometric means ± standard error. *, P < 0.05; **, P < 0.01; ns, not significant, 

ND, not determined.
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Figure 3. Tetrathionate respiration promotes growth of S. Typhimurium in close proximity to 
the mucosal surface
Bovine ligated ileal loops (n=3 animals) were infected with a mixture of S. Typhimurium 

T3SS-1 proficient (+) strains (wild-type [AJB715] versus ttrA mutant[SW661]) or T3SS-1-

deficient (-) strains (invA mutant [SW737] versus invA ttrA mutant [SW736]) and samples 

collected 8 hours after infection from the luminal fluid, mucus scrapings and tissue punches 

(tissue-associated bacteria). Bars represent geometric means ± standard error. *, P ≤ 0.05.
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Figure 4. Tetrathionate respiration increases the abundance of S. Typhimurium in the intestinal 
lumen
(A-C) Samples from a mouse colitis model (n indicated in B) four days after infection with 

S. Typhimurium (S. Tm) or mock-infection. (A) H&E stained cecal sections. Scale bar, 400 

μm. (B) Blinded histopathology scoring showing averages (bars) and individual scores 

(circles). (C) Recovery of S. Typhimurium from colon contents. (D) Fraction of S. 

Typhimurium as percentage of the cecal bacterial population using 16S rRNA gene qRT-

PCR (wild-type n=6, ttrA mutant n=6, mock-infected n=4). (C-D) Bars represent geometric 

means ± standard error. *, P < 0.05; **, P < 0.01.
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