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Abstract

Cardiac 18F-FDG PET has been used in clinics to assess myocardial glucose metabolism. Its 

ability for imaging myocardial glucose transport, however, has rarely been exploited in clinics. 

Using the dynamic FDG-PET scans of ten patients with coronary artery disease, we investigate in 

this paper appropriate dynamic scan and kinetic modeling protocols for efficient quantification of 

myocardial glucose transport. Three kinetic models and the effect of scan duration were evaluated 

by using statistical fit quality, assessing the impact on kinetic quantification, and analyzing the 

practical identifiability. The results show that the kinetic model selection depends on the scan 

duration. The reversible two-tissue model was needed for a one-hour dynamic scan. The 

irreversible two-tissue model was optimal for a scan duration of around 10–15 minutes. If the scan 

duration was shortened to 2–3 minutes, a one-tissue model was the most appropriate. For global 

quantification of myocardial glucose transport, we demonstrated that an early dynamic scan with a 

duration of 10–15 minutes and irreversible kinetic modeling was comparable to the full one-hour 

scan with reversible kinetic modeling. Myocardial glucose transport quantification provides an 

additional physiological parameter on top of the existing assessment of glucose metabolism and 

has the potential to enable single tracer multiparametric imaging in the myocardium.
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I. Introduction

Positron emission tomography (PET) with the radiotracer 18F-fluorodeoxyglucose (FDG) is 

broadly used for imaging glucose metabolism [1, 2]. In clinical cardiology, FDG-PET is 

mainly applied to assess myocardial viability, myocardial inflammation, and other cardiac 

inflammatory diseases (e.g., cardiac sarcoidosis) [3–5]. Hibernating myocardium consists of 

viable muscles that are characterized by a perfusion-metabolism mismatch: low perfusion 

tracer uptake but high FDG uptake. In combination with PET perfusion imaging using a 

flow tracer such as 82Rb-chloride [6–10], 15O-water [11, 12], or 13N-ammonia [8, 13], FDG-

PET assessment of myocardial viability has become a valuable clinical tool to identify this 

mismatch [14]. Patients with coronary artery disease who have hibernating myocardium 

usually benefit from additional surgical revascularization [15].

Standard cardiac FDG-PET uses static scanning and provides standardized uptake value 

(SUV) for the characterization of myocardial glucose metabolism. Alternatively, dynamic 

FDG-PET has also been investigated for quantitative myocardial imaging [16–18]. With 

compartmental modeling [19–22] or graphical analysis [23–27], most of these existing 

dynamic cardiac FDG-PET studies focused on quantitative evaluation of glucose 

metabolism. Nevertheless, the ability of dynamic FDG-PET for assessing blood-to-myocytes 

glucose transport has rarely been exploited for clinical applications in cardiac imaging.

We hypothesize that a glucose transport-metabolism mismatch exists in a hibernating 

myocardium, similar to the well-established flow-metabolism mismatch [3, 4]. The 

hypothesis is built upon the potential correlation between glucose transport and blood flow, 

which has been demonstrated for noncardiac tissues such as tumor [28–30] but not yet for 

the myocardium. Successful testing of this hypothesis may lead to a new and more 

accessible imaging solution using FDG-PET only to assess myocardial viability or 

inflammation without the need for a perfusion tracer. This FDG-only method has the 

potential to reduce imaging time, cost, and radiation exposure as compared to the traditional 

two-tracer methods (e.g., Rb-82 PET plus FDG-PET) in clinical use today [31, 32].

The main purpose of this study was to establish an effective and efficient dynamic imaging 

and kinetic analysis approach to quantifying myocardial glucose transport from dynamic 

FDG-PET in human patients. Standard dynamic FDG-PET scanning commonly lasts for one 

hour [33], and use both the irreversible and reversible two-tissue compartmental models for 

model selection with mixed results [22, 34]. In addition, the attention of these previous 

studies was mainly on the FDG net influx rate Ki or the metabolic rate of glucose that 

characterize myocardial glucose metabolism [16–18, 22, 27], but not on glucose transport 

quantification.
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In this paper, we revisited the kinetic model selection for dynamic cardiac FDG-PET 

imaging using cardiac patient scans. In particular, we investigated the effect of scan duration 

on model selection and its impact on quantification of myocardial kinetics with a focus on 

glucose transport quantification. A practical identifiability analysis was conducted to 

evaluate how reliable the myocardial kinetic parameters can be estimated. Our results 

provide supporting data and foundational protocols for the further testing of the myocardial 

glucose transport-metabolism mismatch in future studies using FDG-PET only for 

evaluating myocardial viability.

This paper is organized as follows. Section II describes the methods of dynamic FDG-PET 

data acquisition, kinetic modeling, model selection, and practical identifiability analysis for 

myocardial kinetic quantification. The results are then reported in Section III, followed by a 

detailed discussion of the findings and limitations of this study in Section IV. Finally, 

conclusions are drawn in Section V.

II. Methods

A. Dynamic 18F-FDG PET/CT Data Acquisition

Fourteen patients who were scheduled for PET myocardial viability assessment consented 

into this study. The study was approved by the Institutional Review Board at the University 

of California, Davis. Each patient in the study first received glucose and/or insulin 

administration following a standard clinical protocol to ensure the highest quality of images. 

Patients then underwent a dynamic FDG-PET/CT scan followed by a standard static FDG-

PET/CT scan on a GE Discovery ST PET/CT scanner in two-dimensional mode. The center 

of the scanner axial field of view was positioned at the heart of each patient. Patients 

received approximately 20 mCi 18F-FDG with bolus injection.

For the dynamic PET scan, list-mode data acquisition commenced immediately following 

the FDG injection. A low-dose transmission CT scan was performed before the dynamic 

PET scan for PET attenuation correction.

The raw PET data were binned into a total of 49 dynamic frames: 30 × 10s, 10 × 60s, and 9 

× 300s (i.e., 60 minutes acquisition). Dynamic FDG-PET images were reconstructed using 

the standard ordered subsets expectation maximization (OSEM) algorithm with two 

iterations and 30 subsets as provided in the vendor software. Standard corrections for 

normalization, attenuation, dead-time, scatter, and random coincidences were applied. No 

motion correction was applied in this study.

B. Kinetic Modeling of Dynamic Cardiac FDG-PET Data

(1) Extraction of blood input functions and myocardial time activity curves 
(TACs).—Two 3D regions of interest (ROIs) were manually placed in the approximate 

centers the left ventricle (LV) and right ventricle (RV) to extract the image-derived blood 

input functions CLV(t) and CRV(t) in the unit of Bq/mL. An additional 17 ellipsoidal ROIs 

were placed within the 17 segments of myocardium according to the AHA-17 standard [18]. 

These segment ROIs were combined into a global myocardial ROI and used to extract a 

global myocardial TAC CT(t) using ROI mean. No postprocessing was applied to the TACs. 
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Due to high noise of the dynamic data in individual segments, the analysis of this study was 

focused on global myocardial quantification.

(2) Full Kinetic Modeling.—The reversible two-tissue (2T) compartmental model [35, 

36] shown in Fig. 1 was first used to model the one-hour dynamic data. The corresponding 

ordinary differential equations of this 2T model are:

dC1(t)
dt = K1CLV(t) − k2 + k3 C1(t) + k4C2(t), (1)

dC2(t)
dt = k3C1(t) − k4C2(t), (2)

where C1(t) is the activity concentration of free FDG and C2(t) is the activity concentration 

of metabolized tracer in the myocardium tissue space. K1 (mL/g/min) is the rate of glucose 

transport from the plasma to the tissue space; k2 (/min) is the rate constant of tracer exiting 

the tissue space; k3 (/min) is the rate constant of FDG being phosphorylated; k4 (/min) is the 

rate constant of FDG-6P being dephosphorylated.

The total radioactivity that can be measured by PET is

CT(t; θ) = 1 − vLV − vRV C1(t) + C2(t) + vLVCLV(t) + vRVCRV(t), (3)

where vLV and vRV denote the fractional blood volume parameters attributed from the LV 

and RV, respectively. θ = [vLV, vRV, K1, k2, k3, k4]T is a vector collecting all unknown 

parameters.

The model parameters are estimated by fitting a measured myocardial TAC CT tm  using 

the following nonlinear least-square optimization:

θ = arg min
θ

 RSS(θ), (4)

RSS(θ) = ∑m = 1
M wm CT tm − CT tm; θ 2, (5)

where tm is the mid-point of the mth frame in a total of M time frames and wm is the 

weighting factor. In this work, we used a uniform weight (i.e. wm = 1). RSS(θ) denotes the 

residual sum of squares of the curve fitting. The classic Levenberg-Marquardt algorithm 

with 100 iterations was used to solve the optimization problem in a way similar to our other 

work [37]. The fitting process was implemented using C/C++ programming. In this study, 

the initial value of θ was set to [0.1,0.1, 0.1, 0.1, 0.1, 0.001]T. The lower bound was zero and 

the upper bound was [1.0,1.0, 2.0, 2.0, 1.0, 0.1]T.

For glucose transport quantification, the parameter of our interest is K1. For glucose 

metabolism evaluation, the SUV at one-hour post-injection is a semi-quantitative measure. 
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Hence, we also calculated the FDG net influx rate Ki from the estimated micro parameters 

using the form of:

Ki = K1k3/ k2 + k3 (6)

to provide a quantitative measure of glucose metabolism.

(3) Model selection.—For analyzing the dynamic cardiac FDG-PET data, we compared 

three different tracer kinetic models as listed in Table 1: (1) 2T6P – the reversible two-tissue 

(2T) model with all kinetic parameters [vLV, vRV, K1, k2, k3, k4] estimated, (2) 2T5P – the 

irreversible 2T model with k4 = 0, i.e., the dephosphorylation process is neglected in the 

modeling, and (3) 1T4P - a simplified one-tissue (1T) model without modeling the 

phosphorylation and dephosphorylation processes. This 1T4P model is equivalent to the 2T 

model with k3 = 0 and k4 = 0. Different models were compared for statistical fit quality 

using the Akaike information criteria (AIC) [38, 39],

AIC = M ln RSS
M + 2n + 2n(n + 1)

M − n − 1, (7)

where M denotes the number of time frames used in fitting and n denotes the total number of 

unknown parameters, as listed in Table 1 for different models. Here AIC was corrected for 

finite sample sizes due to the ratio M
n ≤ 40. A lower AIC value indicates a better selection of 

models [40].

(4) Effect of scan duration on model selection and kinetic quantification.—In 

this study, we also investigated the effect of scan duration post tracer injection on kinetic 

model selection. The scan duration was varied from two minutes to one hour following the 

successive time frames used in the scanning protocol. For each scan duration, the three 

candidate models were compared for statistical fit quality evaluation using AIC. The impact 

on myocardial kinetic parameter quantification was evaluated as a function of scan duration. 

The kinetic parameters K1 and Ki estimated by 2T6P of the one-hour dynamic data were 

considered as the reference for the patient data.

C. Practical Identifiability Analysis of Kinetic Quantification

We conducted a practical identifiability analysis using the Monte Carlo simulation approach 

to estimate the statistical properties associated with myocardial kinetic estimation, in a way 

similar to our previous work [41].

(1) Determination of the TAC noise level.—The TAC noise level of the patient data 

in the myocardium is estimated using the noise model [42]:

ΔCT tm = CT tm − CT tm; θ
δm

Gaussian 0, Sc (8)
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where the normalized residual activity ΔCT(tm) in the mth frame is calculated as the 

difference between the noisy measurement CT tm  and the fitted value CT(tm; θ). δm is the 

frame-dependent SD after normalization following the widely used model,

δm = CT tm; θ exp λtm /Δtm (9)

with λ = ln(2/T1/2) the decay factor, T1/2 (min) the half-life of the radiotracer, and Δtm the 

duration of each frame. Sc is the SD of the standardized Gaussian distribution. Its value was 

obtained by fitting the histogram of ΔCT(tm) using the standardized Gaussian distribution 

(see Fig. 5). Scδm together represents the noise level in each time frame m.

(2) Computer simulation.—The estimated FDG kinetic parameter set θ0 from the one-

hour dynamic data with the 2T6P model was taken as the nominal set of parameters for each 

patient. Together with the patient’s blood input function, the nominal parameter set was used 

to generate the noise-free myocardial TAC. Independently and identically distributed noise 

was then added to the noise-free TAC to generate N = 1000 realizations of noisy TACs. The 

noisy TACs were then fitted to obtain the noisy estimates of the kinetic parameters.

(3) Evaluation metrics.—The normalized bias, standard deviation (SD), and root mean 

square error (RMSE) were calculated to evaluate the statistical properties of the kinetic 

parameter estimation,

Bias θk =
Mean θk − θk

0

θk
0 , (10)

SD θk = 1
θk

0
1

N − 1 ∑
n = 1

N
θk − Mean θk

2, (11)

MSE θk = 1
N ∑

n = 1

N θk − θk
0

θk
0

2
, (12)

where θk
0 denotes the kth kinetic parameter in θ0. Mean(·) represents the mean value of the 

noisy kinetic parameter estimates θk. The same simulation process was repeated for all the 

10 patient data sets.

III. Results

A. Patient Characteristics

Ten out of 14 patients completed the one-hour scan. The remaining four patients had shorter 

scan duration, ranging from 30–45 minutes, because patients experienced discomfort. In this 

work, we only included the ten patients who underwent the complete one-hour dynamic scan 

for the data analysis. Of the ten patients, two were female (patient index #4 and #13 in figure 

3) and three were diabetic (#1, #8, #13). Patients had age of 67±10 years in the range of 57–
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83 years, blood sugar level of 106±9 mg/dL in the range of 84–135 mg/dL, and body mass 

index of 30±5 kg/m2 in the range of 22–39 kg/m2.

B. Examples of TAC Fitting

Figure 2 shows an example of measured global myocardial TAC of a patient with the error 

bars denoting the standard deviation of ROI activity quantification across the 17 segments in 

the myocardium. Figure 2(a) shows the fitting of the global myocardial TAC for the full one-

hour data. The fitted TAC using the 2T6P model matched well with the noisy TAC. Figure 

2(b) and 2(c) respectively show the fitting for the early-dynamic TAC of 10 minutes using 

the 2T5P model and the early-dynamic TAC of 120 seconds using the 1T4P model. All 

demonstrated good fitting in the respective time period.

C. AIC Comparison of Kinetic Models for the One-hour Data

To evaluate the quantitative measure of statistical TAC fitting quality, the AIC differences 

between 2T6P and 2T5P or 1T4P are plotted in Fig. 3(a) for the one-hour data for all ten 

applicable patients. A positive AIC difference indicates that the 2T6P model provides a 

better TAC fitting quality than the 2T5P or 1T4P model, and vice versa for a negative value 

of AIC difference. In 8 out of 10 patients, the 2T6P model outperformed the 2T5P and 1T4P 

models. The 1T4P model and the 2T5P model were only favored in one patient. The 

comparison result demonstrated that 2T6P is an appropriate model in most of the patients for 

fitting the one-hour global TAC data.

D. Effect of Scan Duration on Model Selection

Figure 3(b–c) shows the percentage of patients whose TAC fitting preferred the 2T6P, 2T5P, 

and 1T4P models as a function of scan duration. The scan duration varied from one hour to 2 

minutes. In the range from 20 to 60 minutes, the 2T6P model was generally favored in 70–

80% patients. As the scan duration was reduced to 3–15 minutes, the 2T6P model was 

decreasingly preferred and the 2T5P became more appropriate for fitting the TACs. When 

the scan duration was further reduced to 2–3 minutes, the 1T4P model was preferred for 

TAC fitting for most patients.

E. Impact on Myocardial Kinetic Quantification

Figure 4(a) shows how the myocardial FDG K1 values estimated by the 1T4P, 2T5P, and 

2T6P models change as a function of the scan duration varying from 2 minutes to one hour 

in one example patient. Figure 4(b) summarizes the results from all the ten patients. Using 

K1 of 2T6P from the full one-hour data as the reference, the K1 estimation with the 2T6P 

model increasingly deviates as the scan duration is shortened. The difference in K1 exceeded 

5% once the scan duration was shorter than 30 minutes.

The plots in Figure 4(a) and 4(b) also show that the use of the 2T5P model for the one-hour 

data resulted in a more than 20% underestimation in K1 as compared to the reference value, 

indicating that neglecting k4 can actually affect the estimation of K1. However, at short scan 

durations the error in K1 by the 2T5P model decreases as the scan duration increases and 

reaches its minimum 2% at around 10–15 minutes.
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The K1 estimated by 1T4P significantly deviated from the reference K1 when the duration 

was longer than 3–4 minutes, mainly due to the neglect of the phosphorylation parameters 

(k3 and/or k4) in the 1T4P. The mean absolute difference in K1 from 1T4P decreases as the 

scan duration increases and reaches its minimum 10% around 2–3 minutes.

Figure 4(c) shows the mean absolute difference for Ki quantification by the different models. 

Again, the full one-hour data with the 2T6P model was used to provide the reference Ki 

value in each patient. Note that the 1T4P model cannot be used to quantify Ki. Overall, the 

effect of scan duration on Ki quantification was very similar to that of K1. But the error from 

the 2T5P model was larger, over 50% for the full one-hour data and 8% for the shortened 

scan of 10–15 minutes.

F. Identifiability Analysis for FDG K1 Quantification

Figure 5 shows the histogram of the normalized residual activities from the dynamic FDG-

PET scans of 10 patients. The histogram was well-matched with the zero-mean Gaussian 

with a standard deviation of Sc = 0.3. Hence, we used Sc = 0.3 to simulate noisy TACs in the 

practical identifiability analysis unless specified otherwise.

Figure 6 shows the plots of the bias and SD of K1 as a function of scan duration for different 

models. The results here were averaged across multiple patients. Overall, the SD of K1 

estimated by different models generally followed the same trend – decreasing scan duration 

increases the SD. The minimum SD of 2T5P was lower than that of 2T6P (10% vs. 12%) 

because a smaller number of unknown parameters were estimated in the former model, 

which is associated with lower uncertainty. The 1T4P model led to a further reduction in the 

SD as compared to 2T5P and 2T6P.

The bias of K1, however, behaved very differently in the three different models. The bias of 

K1 by 2T6P gradually increased from 3% to 9% as the scan duration decreased from one 

hour to 2 minutes. In comparison, the bias of K1 by 2T5P was 20% at one hour but 

decreased as the scan duration was shortened to 10 minutes where the bias reached its 

minimum of 3%. The bias then increased as the scan duration continued to decrease. The 

bias of K1 by the 1T4P model was nearly 50% with the one-hour scan duration and 

gradually decreased to 6% as the scan duration was shortened to 2 minutes.

The changing trend on the bias of K1 from this simulation study is consistent with the 

patient data presented in figure 3 and figure 4.

G. Identifiability Analysis for Other Kinetic Parameters

Figure 7 shows the mean absolute bias and SD of FDG Ki for the 2T6P and 2T5P models. 

The 1T4P model cannot be used to provide Ki estimation. The trend of the change in Ki was 

very similar to that of K1 in each of the two kinetic models. The minimum bias of Ki was 

4% by the 2T6P model but about 50% by the 2T5P model, indicating that the 2T5P model 

might be inappropriate for accurate Ki quantification in the myocardium. The 2T6P and full 

one-hour data are instead required.
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Table 2 summarizes the mean absolute bias, SD, and RMSE of multiple kinetic parameters 

estimated from the 2-minute (2M) early dynamic scan with the 1T4P model, the 10-minute 

(10M) early-dynamic data with the 2T5P model, and the 1-hour (1H) dynamic data with the 

2T6P model. The three protocols represent the appropriately optimal option for a short, 

medium, and long scan duration. For K1 quantification, the 2T5P-10M protocol achieved 

similar bias, SD and RMSE as compared to the full 2T6P-1H protocol. While the 1T4P-2M 

protocol had a 2 times higher bias, the bias still remained below 10%. For Ki quantification, 

the 2T5P protocol did not show comparable performance. The bias was nearly 3 times the 

bias of the 2T6P-1H protocol for Ki.

Table 2 also shows the results for other parameters including k2, k3, and k4. The bias and SD 

of k3 are generally higher than that of K1 and Ki, indicating it is less stable for clinical use.

H. Effect of Noise Level

Fig. 8 shows the patient-averaged bias and SD of FDG K1 as a function of the noise level Sc 

for the 2T6P-1H, 2T5P-10M, and 1T4P-2M protocols. For the GE Discovery ST scanner 

that we used in this patient study, the noise level in the global myocardium corresponds to Sc 

= 0.3 and the noise level in the myocardial segments of the AHA 17-segment model 

appropriately corresponds to Sc = 1.0. For the 2T6P-1H, as the noise level increases, both 

the bias and SD increase in K1 quantification. At a low noise level (Sc = 0.3), K1 had a bias 

of 3%. At the high noise level Sc = 1.0, the bias of K1 became over 15%. The K1 derived by 

2T5P-10M had a slightly better bias curve than the 2T6P-1H. Because of model mismatch, 

the 1T4P-2M protocol had higher bias for all noise levels.

The SD of K1 quantification with 2T6P-1H was 12% at the low noise level of Sc = 0.3 and 

40% at the high noise level of Sc = 1.0. The 2T5P-10M protocol achieved a very similar 

noise performance as the 2T6P-1H protocol, though the 1T4P-2M protocol was associated 

with higher SD at all noise levels. The bias and SD results indicate the performance of 

2T5P-10M is comparable to that of 2T6P-1H for FDG K1 quantification, while the 

1T4P-2M protocol is less similar.

IV. Discussion

In this paper, we investigated tracer kinetic modeling strategies for dynamic cardiac FDG-

PET for kinetic quantification of myocardial kinetics with emphasis on glucose transport. 

Both the reversible and irreversible two-tissue models were used in previous studies [22, 34]. 

However, the majority of existing dynamic cardiac FDG-PET focused on glucose 

metabolism (Ki) evaluation [16–18, 22, 27, 43], few on glucose transport (K1) evaluation. 

The results from our study indicate that the reversible model (2T6P) is preferred for accurate 

modeling of one-hour dynamic cardiac FDG-PET data in humans (Fig. 3 and Fig. 4), 

suggesting that the dephosphorylation process (i.e., nonzero k4) is non-negligible in kinetic 

modeling of one-hour dynamic cardiac FDG-PET data. The bias and SD associated with 

2T6P of one-hour data were about 3% and 12% for global myocardial K1 quantification, and 

4% and 17% for global Ki quantification, respecitvely (Table 2).
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When analyzing the one-hour dynamic data, the use of the irreversible model (2T5P) could 

result in a large bias in FDG Ki (up to 50%) for glucose metabolism evaluation (Fig. 7b) and 

in FDG K1 (up to 20%) for glucose transport evaluation (Fig. 6b). The Ki results from 2T5P 

and 2T6P in figure 7 are consistent with general consensus that a more complex model is 

more accurate (lower bias) but can be less stable (higher SD), see [44] for an example in 

cardiac imaging.

However, the irreversible model can become increasing accurate for FDG K1 quantification 

if the scan duration is reduced from one hour to about 10–15 minutes (Fig. 6b). The 

estimation of the dephosphorylation rate k4 becomes negligible for the shortened scan 

duration. The associated bias and SD with K1 quantification was 3% and 13% (Table 2), 

respectively, which are comparable to the accuracy achieved by the 2T6P of the one-hour 

data. This suggests it is possible to quantify K1 accurately without using a one-hour scan 

duration but a much-shortened scan with an appropriate kinetic model.

When the scan duration is further reduced to 2–3 minutes, the 1T4P model can become 

appropriate (Fig. 3(c) and Fig. 6(c)), though is associated with a non-negligible bias in FDG 

K1 (~6%) (Fig. 6c and Table 2). These results on 2T6P, 2T5P, and 1T4P confirmed that the 

kinetic model selection depends on the scan duration of dynamic PET imaging.

The finding on the K1 quantification accuracy of the 2T5P model along with a scan duration 

of about 10–15 minutes is significant and can guide our future protocol designs for testing 

and applying single-tracer multiparametric imaging in clinics. FDG K1 has the potential to 

be used as a potential surrogate of myocardial blood flow for simultaneous flow-metabolism 

evaluation or is used directly for evaluating a transport-metabolism relationship. There are 

potentially two implementation options. The first option is to use the full one-hour dynamic 

FDG scanning, which can provide both K1 and Ki using the 2T6P model. A potential benefit 

of this protocol is that quantitative Ki is potentially more beneficial than the semi-

quantitative SUV for the characterization of myocardial glucose metabolism. The 

disadvantage is that compared to standard static scanning, the prolonged dynamic scan 

duration not only increases the scan cost but also may result in compromised dynamic image 

quality or image degradation due to patient movement during the long scan.

The other option is to add an early-dynamic scan of about 10–15 minutes right after the 

FDG injection. This add-on scan protocol is only used for FDG K1 quantification. 

Evaluation of myocardial glucose metabolism is still achieved using the standard clinical 

protocol, i.e., static scanning to provide a late-time SUV usually at 75–95 minutes post-

injection. One potential advantage of this protocol is it would only occupy an additional 

scanner time of 10–15 minutes and allow the same scanner to be used for other patients in 

between the two scans.

This study has several limitations. While our ultimate goal is to develop a single tracer 

multiparametric imaging method using tracer kinetic modeling, this work only focused on 

the first technical step to identify the appropriate method and protocol for kinetic 

quantification without directly evaluating the impact for clinical assessment. The limitations 

also include that we did not have a ground truth for the kinetic parameter quantification, 
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although this is a general challenge for any study using patient data. We instead used the 

estimates of the 2T6P model from the full one-hour dynamic data as the reference. To 

validate the findings of the patient study, we had further conducted a computer simulation 

study to analyze the identifiability of the kinetic model parameters.

The analysis of this study was limited to evaluation of global myocardial quantification, not 

investigating quantification at the level of myocardial segments or parametric imaging. In 

the disease cohort, a global myocardial TAC can be a mix of normal and abnormal tissue 

signals, thus neglecting the potential wide physiological heterogeneity. The major reason 

that we did not include segment-level investigation was the dynamic data of segments in this 

study are very noisy. The scanner used in this study is relatively old (2002 GE Discovery ST 

model) with no time-of-flight (TOF) capability and as a result, noise performance was far 

from optimal for exploring quantification in myocardial segments. The result from the 

practical identifiability analysis indicates it is less reliable to do FDG K1 quantification in 

individual myocardial segments as the resulting bias and SD are high (Fig. 8; corresponding 

to Sc = 1.0).

The study did not consider motion correction, which could affect the accuracy of kinetic 

quantification [45–48]. Nevertheless, the effect of motion is not expected to result in a 

significant change to the results of this study since the spatial resolution of the PET scanner 

is only about 6–8 mm and the quantification was performed on large, global ROIs.

There are a number of options to address the limitations of the study in our future work. 

Compared to the GE Discovery ST scanner used in this study, latest scanners (e.g., Siemens 

Biograph Vision [49], GE Discovery MI [50]) have much higher scanner sensitivity which, 

together with time-of-flight capability, may reduce the noise at the myocardial segmental 

level from Sc = 1.0 to Sc = 0.3 or lower to allow FDG kinetic quantification in individual 

segments. The improved spatial resolution can also justify the increasing need for motion 

correction. In particular, the UIH uEXPLORER total-body PET/CT scanner [51, 52] has 

further improved sensitivity that may make it feasible to implement parametric imaging [53] 

in the myocardium. In addition, the images were reconstructed using standard vendor 

reconstruction in this study. Improved image reconstruction has been developed for dynamic 

PET imaging [53, 54] with the kernel methods [55, 56] as one of recent examples. Thus, our 

future work will explore the use of the latest PET/CT scanners and/or advanced image 

reconstruction to improve data quality for segment-level and voxel-wise kinetic 

quantification in the myocardium.

V. Conclusions

In tracer kinetic modeling of dynamic cardiac FDG-PET, optimal kinetic model selection 

depends on scan duration. The reversible two-tissue model, irreversible two-tissue model, 

and simplified one-tissue model are respectively appropriate for analyzing dynamic FDG 

imaging with a scan duration of about one-hour, 10–15 minutes, and less than 2–3 minutes. 

An early dynamic scan of about 10–15 minutes with irreversible kinetic modeling can be 

comparable to the full one-hour scan with reversible kinetic modeling for the evaluation of 
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glucose transport rate K1 in the myocardium. Our future work will further improve the 

technical method and compare FDG K1 to myocardial blood flow using patient data.
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Figure 1: 
The reversible two-tissue compartment model for myocardial FDG kinetics. K1 is the 

glucose transport rate from plasma to cardiac myocytes and k2 is the transport rate from 

myocytes to plasma. FDG is phosphorylated by hexokinase in cells into FDG 6-phosphate 

with the rate k3 and the process can be reversible by the rate k4. The model becomes 

irreversible if k4=0.

Zuo et al. Page 16

IEEE Trans Radiat Plasma Med Sci. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Example of global myocardial TAC fitting. (a) Fitting of a one-hour TAC with the 2T6P 

model; (b) Fitting of a 10min TAC using the 2T5P model; (c) Fitting of a 120s TAC using 

the 1T4P model.
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Figure 3. 
Comparison of different kinetic models using AIC. (a) AIC comparison in ten out of 14 

patients that are applicable for this analysis. A positive AIC difference indicates that the 

2T6P model provides a better TAC fitting quality than the comparison model; (b–c) Plots of 

the percentage of patients favoring a kinetic model over other models as a function of scan 

duration which varies from 2 minutes to one hour (b) and the zoom-in plots for the first 10 

minutes (c).
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Figure 4. 
Effect of scan duration on myocardial kinetic estimation in different kinetic models. (a) 
Plots of K1 as a function of scan duration for different kinetic models for one example 

patient; (b) Mean absolute difference in K1 quantification as compared to the reference K1 

values. The mean difference was calculated over 10 patients. (c) Mean absolute difference in 

Ki quantification as compared to the reference Ki values.

Zuo et al. Page 19

IEEE Trans Radiat Plasma Med Sci. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Histogram of normalized residual activity ΔCm from the dynamic FDG-PET scans of 14 

patients and a fit with the Gaussian distribution.
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Figure 6. 
Plots of the mean absolute bias and SD of K1 as a function of scan duration for three 

different kinetic models: (a) 2T6P, (b) 2T5P, and (c) 1T4P. The 1T4P model cannot be used 

to estimate a Ki. The scan duration is varied from 2 minutes to one hour. The mean bias and 

SD were calculated from ten applicable patients.
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Figure 7. 
Plots of the mean absolute bias and SD of Ki as a function of scan duration for two different 

kinetic models: (a) 2T6P and (b) 2T5P. The scan duration is varied from 2 minutes to one 

hour.
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Figure 8. 
Plots of patient-averaged bias and standard deviation (SD) of myocardial FDG K1 as a 

function of noise level Sc for the 2T6P-1H, 2T5P-10M, and 1T4P-2M protocols. (a) Bias in 

percentage; (b) SD in percentage.
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Table 1.

List of different kinetic models that are studied in this paper for dynamic cardiac FDG-PET kinetic modeling

Model Type Number of Unknown Parameters, n Kinetic Parameters to Be Estimated Fixed Parameters

2T6P 6 vLV, vRV, K1, k2, k3, k4 N/A

2T5P 5 vLV, vRV, K1, k2, k3 k4 = 0

1T4P 4 vLV, vRV, K1, k2 k3 = 0, k4 = 0
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Table 2.

Mean absolute bias, SD, and RMSE of different kinetic parameters estimated by different kinetic models in all 

patients. 2M, 10M, and 1H refer to 2 minutes, 10 minutes, and 1 hour, respectively.

KINETIC PARAMETER MODEL & TIME BIAS (%) SD (%) RMSE (%)

K1

1T4P, 2 M 6.2 17.0 18.9

2T5P, 10 M 3.1 12.6 13.2

2T6P, 1 H 3.0 12.0 12.6

Ki

1T4P, 2 M / / /

2T5P, 10 M 13.9 20.9 28.1

2T6P, 1 H 3.9 17.0 17.6

k2

1T4P, 2M 12.5 29.0 34.3

2T5P, 10M 5.0 15.7 16.9

2T6P, 1H 4.0 14.6 15.4

k3

1T4P, 2M / / /

2T5P, 10M 17.2 28.8 36.2

2T6P, 1H 6.5 27.2 28.2

k4

1T4P, 2M / / /

2T5P, 10M / / /

2T6P, 1H 3.4 21.5 22.0
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