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Genome Medicine

Sex differences in the polygenic architecture 
of hearing problems in adults
Flavio De Angelis1,2, Oana A. Zeleznik3,4, Frank R. Wendt1,2, Gita A. Pathak1,2, Daniel S. Tylee1,2, 
Antonella De Lillo1,5, Dora Koller1,2,6, Brenda Cabrera‑Mendoza1,2, Royce E. Clifford7,8, Adam X. Maihofer8,9,10, 
Caroline M. Nievergelt8,9,10, Gary C. Curhan3,4, Sharon G. Curhan3,4 and Renato Polimanti1,2*   

Abstract 

Background Hearing problems (HP) in adults are common and are associated with several comorbid conditions. Its 
prevalence increases with age, reflecting the cumulative effect of environmental factors and genetic predisposition. 
Although several risk loci have been already identified, HP biology and epidemiology are still insufficiently investi‑
gated by large‑scale genetic studies.

Methods Leveraging the UK Biobank, the Nurses’ Health Studies (I and II), the Health Professionals Follow‑up Study, 
and the Million Veteran Program, we conducted a comprehensive genome‑wide investigation of HP in 748,668 adult 
participants (discovery N = 501,825; replication N = 226,043; cross‑ancestry replication N = 20,800). We leveraged the 
GWAS findings to characterize HP polygenic architecture, exploring sex differences, polygenic risk across ancestries, 
tissue‑specific transcriptomic regulation, cause‑effect relationships with genetically correlated traits, and gene interac‑
tions with HP environmental risk factors.

Results We identified 54 risk loci and demonstrated that HP polygenic risk is shared across ancestry groups. Our 
transcriptomic regulation analysis highlighted the potential role of the central nervous system in HP pathogenesis. 
The sex‑stratified analyses showed several additional associations related to peripheral hormonally regulated tissues 
reflecting a potential role of estrogen in hearing function. This evidence was supported by the multivariate interaction 
analysis that showed how genes involved in brain development interact with sex, noise pollution, and tobacco smok‑
ing in relation to their HP associations. Additionally, the genetically informed causal inference analysis showed that HP 
is linked to many physical and mental health outcomes.

Conclusions The results provide many novel insights into the biology and epidemiology of HP in adults. Our sex‑
specific analyses and transcriptomic associations highlighted molecular pathways that may be targeted for drug 
development or repurposing. Additionally, the potential causal relationships identified may support novel preventive 
screening programs to identify individuals at risk.
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Background
Acquired hearing problems (HP) are the third most com-
mon chronic health condition [1] and the fourth leading 
cause of disability globally [2]. The World Health Organi-
zation (WHO) reports that nearly 2.5 billion individuals 
will have some degree of HP by 2050 [3]. HP in adults 
is associated with several comorbid conditions [4]. For 
instance, HP-induced impaired communication ability 
particularly among older people can lead to social iso-
lation with major health, psychosocial, and economic 
consequences, reducing the quality of life [4]. HP affects 
individuals of all ages, but its prevalence increases with 
age, reflecting the cumulative effect of environmental 
factors and genetic predisposition [5].

Heritability estimates from family studies of HP range 
from 30 up to 70% [6], highlighting that genetic vari-
ation is a key determinant for individual HP risk. More 
than 100 genes present mutations that result in congeni-
tal HP not associated with disorders in other organs or 
dysmorphic features (non-syndromic HP) [7]. Mutations 
causing congenital HP affect genes involved in cochlear 
function, specifically affecting the sensory and mecha-
nosensory cells [8]. Beyond these Mendelian forms, 
acquired HP appears to be due to the additive contribu-
tion of many common genetic variants with small indi-
vidual effects. Large-scale genome-wide association 
studies (GWAS) conducted in population-based cohorts 
have identified more than 50 common risk variants and 
characterized the regulatory role of these loci in multiple 
cell and tissue types [9–11]. Although these studies have 
generated important insights into the genetic predisposi-
tion to HP in adults, several aspects of HP pathogenesis 
are still unclear. For instance, HP among older adults is 
more common, more severe, and with earlier onset in 
men than in women, even after adjusting for confound-
ing factors such as higher occupational noise exposure in 
men [12]. However, the molecular pathways that underlie 
HP sex differences are unclear. Similarly, we have a lim-
ited understanding of the biological processes interact-
ing with HP environmental risk factors. Several studies 
showed that noise pollution and tobacco smoking are 
HP risk factors [13–15], but to date no large-scale studies 
investigated how genetic variation interacts with noise 
pollution and tobacco smoking in determining HP risk.

In the present study, we conducted an extensive 
genome-wide investigation across the UK Biobank 
(UKB; 251,233 women and 214,549 men) [16], the 
Nurses’ Health Studies (NHS I, 14,978 women; NHS 
II, 12,533 women) [17] and the Health Professionals 
Follow-up Study (HPFS, 8532 men) [18]. The risk loci 
identified were replicated in a sample of 226,043 par-
ticipants (93% males) from the Million Veteran Program 
(MVP) [19]. Our findings provide a more comprehensive 

understanding of the genetic basis of HP sex differences, 
uncovering novel sex-specific risk loci, molecular pro-
cesses, putative cause-effect relationships, and the inter-
action of genetic variation with sex, noise pollution, and 
smoking behaviors.

Methods
Cohorts and hearing‑problem assessment
Leveraging genome-wide information from UKB, NHS 
I, NHS II, HPFS, and MVP cohorts, we investigated the 
polygenic architecture of HP in 748,668 adult partici-
pants (discovery N = 501,825; replication N = 226,043; 
cross-ancestry replication N = 20,800).

UKB is a large population-based research resource, 
containing in-depth genetic and health information from 
over 500,000 UK participants 40–69 years at enrollment 
[16]. UKB HP-related phenotypes were defined by self-
reported items derived from a touchscreen question-
naire and audiometric measurements assessed through 
the Speech Recognition Threshold (SRT) test. The self-
reported items included the following binary traits: “Do 
you have any difficulty with your hearing?” (UKB Field 
ID: 2247); “Do you find it difficult to follow a conversa-
tion if there is background noise (such as TV, radio, chil-
dren playing)?” (UKB Field ID: 2257); and “Do you use 
a hearing aid most of the time?” (UKB Field ID: 3393). 
UKB participants who indicated they were completely 
deaf (N = 144) were excluded from the analysis to reduce 
the likelihood of including congenital forms of HP [11]. 
After excluding deaf individuals, the number of individu-
als with less severe congenital HP are expected to be neg-
ligible, because of the low prevalence of congenital HP. 
For ~ 12% of the UKB participants (59,807 for UKB Field 
ID 2247; 60,448 for UKB Field ID 2257; and 40,656 for 
UKB Field ID 3393), these items were assessed multiple 
times. Since age is a strong risk factor for acquired HP, 
we considered the most recent assessment when multi-
ple assessments were available to improve the ability to 
detect the disease onset. In addition to considering these 
binary traits individually, we combined them in a four-
category ordinal phenotype (Additional file 1: Table S1). 
For the SRT-derived audiometric measurements, we con-
sidered the UKB item “the signal-to-noise ratio at which 
half of the presented speech can be understood correctly” 
for both left and right ears (UKB Field ID: 20,019 and 
20,021, respectively). Because of the much larger sample 
size, we included unrelated UKB participants of Euro-
pean descent (EUR) in the primary discovery sample. 
The other ancestry groups available in UKB were used for 
single-variant and polygenic risk score (PRS) replication 
(see section “Cross-ancestry replication and polygenic 
risk scoring”).
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Additional genome-wide information was derived 
from NHS I, NHS II, and HPFS cohorts. The NHS I 
began in 1976 when 121,700 female registered nurses, 
aged 30–55  years, were enrolled by completing a base-
line questionnaire about their health and lifestyle [20]. In 
1989, the NHS II was established and enrolled 116,429 
younger female registered nurses, aged 25 to 42  years. 
The HPFS began in 1986 and enrolled 51,529 male health 
professionals, aged 40 to 75  years [18]. In each of the 
cohorts, detailed information on demographics, health, 
diet, and lifestyle factors was collected and updated every 
2 years (every 4 years for diet). The follow-up rates in all 
3 cohorts exceed 90% of eligible person-time [20]. Self-
reported hearing status was determined based on par-
ticipants’ responses to biennial questionnaires. “Hearing 
difficulty” was defined as a participant report of a hearing 
problem that was mild, moderate, severe (non-hearing 
aid user), or severe (hearing aid user). Leveraging sam-
ples with genome-wide information, we investigated 
14,978 unrelated female NHS I participants (56% cases), 
12,533 unrelated female NHS II participants (36% cases), 
and 8,532 unrelated male HPFS participants (60% cases), 
all of EUR descent. To maximize the sample size availa-
ble, we meta-analyzed NHS I and II cohorts and referred 
to them hereafter as a single NHS sample.

The MVP is a biobank funded by the US Department of 
Veterans Affairs that to date enrolled more than 800,000 
participants among active users of the Veterans Health 
Administration healthcare system [19]. In our analy-
sis, we used genome-wide information regarding 85,743 
cases and 140,300 controls (93% males) based on self-
reported hearing problems. Information regarding HP 
assessment in MVP has been previously described [21]. 
Briefly, cases were defined as (i) those that reported HP in 
the MVP baseline questionnaire or (ii) those with a diag-
nosis of sensorineural HP in the electronic health record 
(EHR), but not mixed hearing loss, conductive hearing 
loss, ototoxic hearing loss, or sudden hearing loss.

Genome‑wide data quality control and GWAS 
meta‑analysis
In the present study, we analyzed multiple samples that 
were genotyped with different arrays. Quality control 
(QC) of the genetic data was conducted in accordance 
with cohort-specific criteria to ensure that high-qual-
ity data were used in the discovery meta-analysis of the 
UKB, NHS, and HPFS samples and in the subsequent 
replication conducted in the MVP sample. Accordingly, 
some of the QC cutoffs applied varied across the cohorts 
investigated.

Our primary analysis was conducted in UKB EUR 
participants. Considering this ancestry group, we used 
UKB data imputed using the Haplotype Reference 

Consortium [16], filtering variants with imputation 
INFO score < 0.8, minor allele frequency (MAF) < 0.01, 
Hardy–Weinberg equilibrium (HWE) p-values <  10−6, 
and missingness > 0.1. After quality control, we ana-
lyzed up to 9,547,865 variants. For ancestry, sex, and 
relatedness assignments, we used definitions from the 
Pan-UKB analysis [22]. Briefly, related individuals were 
removed considering a kinship coefficient > 0.042. UKB 
participants with sex chromosome aneuploidies were 
excluded from the analysis. Ancestry was assigned 
using a random forest classifier based on features 
predictive of similarities with reference populations 
derived from a combined 1000 Genomes Project plus 
Human Genome Diversity Panel. This is in line with 
the recent report of the US National Academies of Sci-
ences, Engineering, and Medicine [23] recommending 
that population descriptors in genetic research should 
be based on genetic similarities with reference popula-
tions rather than ethnicity-based classification. Addi-
tionally, Pan-UKB ancestry assignments permitted us 
to retain a large number of UKB participants in our 
study [22]. To account for population structure within 
European populations, we used within-ancestry princi-
pal components (PC) previously calculated in the Pan-
UKB analysis.

In the NHS and HPFS cohorts, quality checks included 
the exclusion of those participants with a poor genotype 
call rate (< 95%) and a check for relatedness. A detailed 
description of quality control criteria was previously 
reported [24]. Briefly, a pairwise identity-by-descent 
analysis to estimate relatedness among NHS and HPFS 
participants. As also previously described [24], ancestry 
assignment and population structure covariates were 
derived from cross-ancestry and within-ancestry PC 
analyses, respectively. SNPs with a poor call rate (< 95%), 
out of HWE (P <  10−5), with high duplicate discordance 
rates, or that are monomorphic were excluded. Geno-
typed data from each of the NHS and HPFS studies were 
imputed using the 1000 Genomes Project Phase 3 ref-
erence panel. After imputation, SNPs with imputation 
INFO score < 0.8 or MAF < 0.05 were excluded. We ana-
lyzed a total of 5,550,954 and 5,549,467 imputed variants 
in HPFS and NHS samples, respectively.

Details regarding genotyping and imputation of the 
MVP samples were described elsewhere [25]. Related-
ness among MVP participants was estimated using KING 
[26]. For each pair of subjects with an estimated kinship 
coefficient > 0.088 (2nd degree or closer), one individual 
was removed, with the preference to retain cases. If indi-
viduals had the same diagnostic status, one individual 
was removed at random. HARE (harmonized ancestry 
and race/ethnicity) estimates [27] were used to select 
European-ancestry individuals.
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GWAS were carried out in the UKB, NHS, and HPFS 
by logistic regression (case–control HP phenotype coded 
as dependent variable), using PLINK 2.0 [28] and includ-
ing age and the top-10 within-ancestry PCs as covariates. 
For the sex-combined analyses, sex was also included as a 
covariate. The GWAS generated by the individual cohorts 
were meta-analyzed using the inverse variance-based 
method implemented in METAL [29], using SCHEME 
STDERR option. Genetic associations were considered 
significant when surviving the genome-wide multi-test-
ing correction (p < 5 ×  10−8). The number of variants 
shared across the three cohorts was 5,331,308.

We defined sex-specific genetic associations comparing 
sex-specific effect sizes among those surviving genome-
wide multiple testing correction in one of the two sexes 
(p < 5 ×  10−8). Statistical differences between sex associa-
tion statistics were calculated using z-test: 
z = (betafemale − betamale)/ SE

2

female
+ SE

2

male
 . Z scores 

were then converted to two-tail p-values, hereafter 
referred as difference-p.

In MVP, the replication of the loci identified in the 
UKB-NHS-HPFS GWAS meta-analysis was performed 
using logistic regression of the HP phenotype (case–con-
trol variable coded as the dependent term) on imputed 
SNP dosages including as covariates: the top-10 within-
ancestry PCs, age, and sex, using PLINK 1.9 software 
[28]. In addition to performing a single-variant replica-
tion, we also tested the association of a PRS derived from 
the UKB-NHS-HPFS GWAS meta-analysis with HP 
assessed in the MVP cohort. The analysis was conducted 
with PRSice v. 2.3.1.c [30], using the clumping-thresh-
olding method to maximize the predictive ability of the 
derived polygenic scores [31]. Using 1000 Genomes 
Project EUR populations as reference panel, SNPs were 
clumped based on 250-kb windows, based on clump-r2 
threshold = 0.1 and clump-p threshold = 1, respectively. 
The step size of the threshold was set to 5 ×  10−5, and the 
range of p-value thresholds was from 5 ×  10−8 to p = 1 
using an additive model for regression at each threshold. 
We included as covariates the top-10 within-ancestry 
principal components, age, and sex. For each threshold, 
PRS  R2 statistics (i.e., phenotypic variance explained by 
the PRS) is calculated as: 1− (1− R

2
FULL

)/(1− R
2
NULL

) , 
where R2

FULL
 is the phenotypic variance explained by 

the full model and R2
NULL

 is the phenotypic variance 
explained by the model including only the covariates.

SNP‑based heritability and genetic correlation
SNP-based heritability (SNP-h2) and genetic correlation 
(rg) for all hearing traits were estimated using the link-
age disequilibrium score regression (LDSC) method [32]. 
The analysis was conducted considering the HapMap 3 
reference panel and pre-computed LD scores based on 

the 1000 Genomes Project reference data for EUR indi-
viduals. SNP-h2 and genetic correlations were evalu-
ated among HP traits assessed in the UKB, NHS, HPFS, 
and their meta-analyses. Since functional categories of 
the genome contribute disproportionately to the her-
itability of complex diseases, SNP-h2 partitioning was 
conducted with LDSC using 95 baseline genomic anno-
tations such as allele frequency distributions, conserved 
genomic regions, regulatory elements, and annotations 
for genic, loss-of-function (LoF) intolerant, and positively 
and negatively selected regions [33]. Bonferroni correc-
tion accounting for the number of annotations tested 
(p < 5.26 ×  10−4) was applied to define significant SNP-h2 
enrichments.

We also used the LDSC method [32] to conduct a 
phenome-wide genetic correlation analysis of HP, test-
ing 7153 phenotypes for the sex-combined investigation, 
3287 phenotypes for the female-specific investigation, 
and 3144 phenotypes for the male-specific investigation. 
Bonferroni correction accounting for the number of phe-
notypes tested was applied to define significant genetic 
correlations in the sex-combined and sex-stratified 
phenome-wide analyses (sex-combined p < 6.99 ×  10−6; 
female-specific p < 1.52 ×  10−5; male-specific p < 1.59 × 
 10−5). To maximize the statistical power of this analysis, 
we used European-ancestry genome-wide association 
statistics for the sex-combined analysis available in the 
Pan-UKB data release [22]. We used Pan-UKB genome-
wide association statistics generated from other ancestry 
groups in a cross-ancestry analysis described below (see 
“Cross-ancestry replication and polygenic risk scoring”). 
Sex-specific genome-wide association statistics gener-
ated from European-descent participants were derived 
from a previous UKB analysis [34].

Latent causal variable analysis
To evaluate whether the genetic correlations of HP are 
due to cause-effect relationships, we used the latent 
causal variable (LCV) method to conduct a geneti-
cally informed causal inference analysis [35]. As recom-
mended, only SNPs with MAF > 5% were considered, 
and the major histocompatibility region was removed. 
Considering traits that reached at least a nominally sig-
nificant genetic correlation (p < 0.05) with HP, we tested 
879 traits in the sex-combined analysis, 323 traits in 
the female-specific analysis, and 332 traits in the male-
specific analysis. For each comparison, the genetic cau-
sality proportion (gcp) can range from zero (no partial 
genetic causality) to one (full genetic causality). Positive 
and negative gcp values reflect the direction of the puta-
tive causal effect (i.e., phenotype #1 → phenotype #2 and 
phenotype #2 → phenotype #1, respectively). Informa-
tion regarding the sign of the LCV effect is provided by 
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the LCV rho statistics: rho > 0 corresponds to a positive 
effect while rho < 0 corresponds to a negative effect. To 
define statistically significant gcp estimates, we applied a 
multiple testing correction accounting for the number of 
phenotypes tested (sex-combined p < 5.69 ×  10−5; female-
specific p = 1.55 ×  10−4; male-specific p < 1.51 ×  10−4).

Variant prioritization, fine‑mapping, and multi‑tissue 
transcriptome‑wide association study
To identify the causal loci underlying the statistical asso-
ciation observed, we functionally annotated GWAS 
findings and prioritized the most likely causal SNPs 
and genes using pre-calculated LD structure based on 
1000 Genomes Project EUR reference populations. The 
risk loci identified in the sex-combined and sex-spe-
cific meta-analyses were classified considering the fol-
lowing parameters derived from Functional Mapping 
and Annotation of Genome-Wide Association Studies 
(FUMA) [36]: leadP = 5 ×  10−8; gwasP = 0.05;  R2 = 0.1; 
refpanel = 1000 Genomes Project Phase3 EUR reference 
populations; MAF = 0.01; refSNPs = 1; mergeDist = 250. 
Positional mapping was performed considering Map-
WindowSize = 10 and the minimum Combined Annota-
tion Dependent Depletion (CADD) [37] score for SNP 
filtering was set to 0. Gene-based analysis and gene-set 
analysis were performed with Multi-marker Analysis of 
GenoMic Annotation (MAGMA) [38] integrated into 
FUMA. Tissue enrichment analysis was performed using 
Genotype-Tissue Expression (GTEx) project v8 data [39].

We fine-mapped the association statistics for a 3-Mb 
region around the lead SNP of the genomic risk locus 
identified by FUMA  (r2 = 0.1; window = 250  bp). Each 
region for the respective association was fine-mapped to 
determine 95% credible set (i.e., sets of putative causal 
variants within GWAS-identified loci) using susieR [40] 
with at most 10 causal variants (default). The credible 
set reports variants most likely to be causal based on the 
marginal posterior inclusion probability (PIP) ranging 
from 0 to 1, with values closer to 1 to be most causal.

To further explore transcriptomic regulation in the 
context of HP, we performed a multi-tissue TWAS (tran-
scriptome-wide association study), using the S-MultiX-
can approach to combine information across 49 GTEx 
tissues adjusting for tissue–tissue correlation [41]. Signif-
icant transcriptomic associations were defined as those 
surviving Bonferroni correction accounting for the num-
ber of genes tested (N = 22,335; p < 2.24 ×  10−6).

Cross‑ancestry replication and polygenic risk scoring
We used Pan-UKB data [22] to conduct cross-ancestry 
replication and PRS analyses. We decided to not include 
these data in the discovery meta-analysis, because they 
would provide only a 4% increase in the discovery sample 

size. We derived a PRS from the UKB-NHS-HPFS GWAS 
meta-analysis that was tested in UKB participants of Afri-
can (AFR N = 6636, 11% cases), admixed American (AMR 
N = 980, 16% cases), Central/South Asian (CSA N = 8876, 
17% cases), East Asian (EAS N = 2709, 12% cases), and 
Middle Eastern (MID N = 1599, 16% cases) ancestries 
(target datasets). A total of 9,781,251 variants were ana-
lyzed in the Pan-UKB analysis. In addition to performing 
a single-variant replication, we also conducted a cross-
ancestry PRS analysis. This was performed by analyzing 
genome-wide association statistics (UKB-NHS-HPFS 
GWAS meta-analysis as base and Pan-UKB GWAS as 
target) using the gtx R package incorporated in PRSice 
v1.25 [42]. Although this approach is different from the 
one used in the PRS analysis in the MVP, they are both 
based on clumping-thresholding and the results obtained 
are comparable. Both sets of genome-wide association 
statistics were generated including age, sex, and within-
ancestry principal components as covariates. An approxi-
mate estimate of the explained variance (i.e.,  R2 statistics) 
was calculated from a multivariate regression model [43]. 
The PRSs were calculated after using P-value–informed 
clumping with an LD cutoff of  R2 = 0.1 within a 250-kb 
window. Because the training dataset (i.e., UKB-NHS-
HPFS GWAS) was generated from EUR individuals, we 
used EUR samples from the 1000 Genomes Project as the 
LD reference panel. False discovery rate (FDR) account-
ing for the number of p-value thresholds tested was con-
sidered to define PRS associations surviving multiple 
testing correction.

Multivariate gene‑by‑environment genome‑wide 
interaction study
To explore further the interplay of HP genetics with non-
genetic factors beyond sex differences (investigated in 
our sex-specific GWAS), we conducted a multivariate 
gene-by-environment genome-wide interaction study 
(GEWIS) using StructLMM [44]. This is a linear mixed 
model approach to efficiently detect interactions between 
loci and multiple potentially correlated environments 
[44]. Since StructLMM assumes a quantitative trait, the 
GEWIS was conducted considering the four-category 
ordinal trait described above (Additional file 1: Table S1). 
Because of the known association of noise pollution 
and tobacco smoking with HP [13–15], the multivariate 
GEWIS was performed considering sex, smoking behav-
iors and exposures, and different types of noise pollution 
exposure (Additional file 1: Table S2). Due to the limited 
depth of information in other cohorts and to maximize 
statistical power, the analysis was limited to UKB and to 
items assessed in the majority of UKB participants. Age, 
 age2, and top-10 within-ancestry PCs were included as 
covariates. Since the environmental factors entered are 
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converted to a covariance matrix by the StructLMM 
approach [44], no issue (e.g., increased multiple testing) 
or bias (e.g., collinearity) is expected due to the degree 
of correlation among the environmental factors investi-
gated. Marginal log-likelihoods (log (Bayes factor -BF)) 
between the full model and the reduced model with 
environments removed were used to identify the most 
relevant environments for the detected locus interaction 
effects. A pathway enrichment analysis was conducted 
considering loci with nominally significant multivari-
ate gene-environment interaction. These variants were 
clumped using R ld_clump function (ieugwasr R pack-
age) using clump_kb = 10,000, clump_r2 = 0.001, and 
clump_p = 0.05. The resulting variants showing BF > 1 
were mapped to genes through Ensembl platform [45]. A 
Gene Ontology (GO) enrichment analysis was performed 
using the Database for Annotation, Visualization and 
Integrated Discovery (DAVID) [46]. GO terms surviv-
ing false discovery rate (FDR) multiple testing correction 
(q < 0.05) were retained as significant.

Results
SNP‑based heritability and genetic correlation 
among hearing‑problem traits assessed in the discovery 
cohorts
Because HP assessment was different among the cohorts 
included in the discovery GWAS meta-analysis (see 
“Cohorts and hearing-problem assessment”), we con-
ducted SNP-h2 and genetic correlation among HP traits 
available from UKB, NHS, and HPFS. In UKB, multi-
ple HP traits were available in the UKB (Table 1). These 
included self-reported HP phenotypes and an automated 

hearing assessment (i.e., SRT test). For the questionnaire-
derived HP traits, the SNP-h2 ranged from 0.017 ± 0.002 
for “Hearing aid use” to 0.050 ± 0.002 for “Hearing dif-
ficulties with background noise”. Because of the smaller 
sample size of NHS and HPFS cohorts, their HP SNP-h2 
estimates (NHS: SNP-h2 = 0.077 ± 0.020, z = 3.85; HPFS 
SNP-h2 = 0.161 ± 0.053, z = 3.04) were less accurate than 
those from UKB (Table 1). No statistical differences were 
present between UKB female vs male or between NHS 
vs HPFS SNP-h2 estimates. The UKB genome-wide sta-
tistics of HP traits were characterized by inflation due 
to polygenicity (genomic-control lambda > 1.09) and not 
because of possible confounders (LDSC intercept < 1.03; 
Additional file  1: Table  S3). The null or very low herit-
ability of the SRT-derived traits (see Additional file 2) is 
in line with previous findings [11, 47]. Accordingly, they 
were excluded from further evaluations.

The genetic correlations among the questionnaire-
derived HP traits in UKB ranged from rg = 0.393 ± 0.039 
between “Hearing difficulties with background noise” 
and “Hearing aid use” to rg = 0.830 ± 0.013 between 
“Hearing difficulties” and “Hearing difficulties with back-
ground noise” (Fig.  1; Additional file  1: Table  S4). The 
ordinal phenotype derived from combining the three 
questionnaire-derived HP traits in UKB (Additional file 1: 
Table  S1; hereafter abbreviated as HP-ORD) showed a 
high genetic correlation with each of the binary pheno-
types, ranging from rg = 0.830 ± 0.020 with “Hearing aid 
use” to rg = 0.927 ± 0.015 with “Hearing difficulties”.

We also conducted a sex-stratified analysis, test-
ing the genetic correlation among HP traits assessed in 
UKB and with HP phenotypes assessed in NHS (female 

Table 1 SNP heritability (SNP‑h2) of hearing problems assessed in the UK Biobank. Sample size (N) is reported as case/control and total 
sample size for binary and quantitative traits, respectively. SNP-h2 SNP‑based heritability, SE standard error

Analysis Trait N SNP‑h2 SE SNP‑h2

Z‑score

Sex‑combined Hearing difficulty/problems 125,011/340,771 0.038 0.002 20.16

Hearing difficulty/problems with background noise 183,497/292,534 0.050 0.002 26.11

Hearing aid user 17,754/303,823 0.017 0.002 9.67

Speech‑reception‑threshold (SRT) estimate (left) 195,188 0.002 0.002 0.96

Speech‑reception‑threshold (SRT) estimate (right) 195,916 0.009 0.002 3.74

Hearing problem ordinal trait 300,958 0.045 0.003 15.23

Males Hearing difficulty/problems 68,781/145,768 0.048 0.003 15.45

Hearing difficulty/problems with background noise 97,002/121,104 0.050 0.003 16.23

Hearing aid user 9,882/146,135 0.021 0.003 6.59

Hearing problem ordinal trait 147,788 0.051 0.004 12.73

Females Hearing difficulty/problems 56,230/195,003 0.040 0.003 14.21

Hearing difficulty/problems with background noise 86,495/171,430 0.054 0.003 18.79

Hearing aid user 7,872/157,688 0.017 0.003 5.55

Hearing problem ordinal trait 153,170 0.054 0.004 13.5
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participants only) and HPFS (male participants only). 
With respect to genetic correlation, “Hearing diffi-
culties with background noise” showed the highest rg 
between males and females (rg = 0.882 ± 0.035), while 
the lowest rg between sexes was observed for the HP-
ORD trait (rg = 0.782 ± 0.050). Considering the HPFS 
HP outcome and male-specific UKB analyses, the high-
est genetic correlation was observed for “Hearing dif-
ficulty” (rg = 0.633 ± 0.136). The same trait was the 
one with the highest genetic correlation with the NHS 
HP outcome among the UKB-female-specific analyses 
(rg = 0.737 ± 0.115). Based on the genetic correlations 
among UKB, HPFS, and NHS, the UKB “Hearing dif-
ficulties” was defined as the primary UKB phenotype. 
To maximize the discovery of our analyses, we meta-
analyzed UKB, NHS, and HPFS cohorts (278,744 female 
participants from UKB and NHS and 223,081 male par-
ticipants from UKB and HPFS).

Genome‑wide association meta‑analysis
The HP GWAS meta-analysis of UKB, NHS, and HPFS 
(N = 501,825, 29% cases) identified 4382 genome-wide 
significant (GWS) variants related to 54 LD-independent 
loci (P < 5 ×  10−8; LD r2 < 0.1) (Table  2; Additional file  2: 
Fig. S1). Nine of the 54 lead variants were available only 

in UKB. In the sex-stratified investigation, we gained one 
novel locus in the male-specific GWAS meta-analysis 
(15 LD-independent GWS loci) and five novel loci in the 
female-specific GWAS meta-analysis (24 LD-independent 
GWS loci). Few index variants identified in the sex-spe-
cific GWAS meta-analysis were LD-independent of the 
loci identified in the sex-combined GWAS meta-analysis. 
Additionally, we identified statistical differences in the sex-
specific effects (calculated with a z-test; Bonferroni signif-
icance difference-p = 1.28 ×  10−3) for four female-specific 
GWS variants (Additional file  1: Table  S5): rs13399656 
(female-beta =  − 0.058 vs. male-beta =  − 0.014, differ-
ence-p = 3.94 ×  10−5), rs1808828 (female-beta = 0.047 vs. 
male-beta = 0.011, difference-p = 1.25 ×  10−4), rs11738813 
(female-beta = 0.063 vs. male-beta = 0.031, difference-
p = 5.30 ×  10−4), and rs35624969 (female-beta = -0.047 vs. 
male-beta = -0.012, difference-p = 1.22 ×  10−3).

Considering the 54 loci reaching genome-wide sig-
nificance in the sex-combined discovery GWAS (i.e., 
the meta-analysis of UKB, NHS, and HPFS cohort), 
we tested whether the effects detected were repli-
cated in an independent sample, 226,043 EUR par-
ticipants from the MVP cohort. We observed that 34 
loci were at least nominally replicated in the MVP 
cohort (Table  2; p < 0.05). Considering concordance 

Fig. 1 Genetic correlation among hearing‑problem traits assessed via questionnaire in the UK Biobank. The square shade intensity is proportional 
to the magnitude of the correlation. Details regarding the results shown are available in Additional file 1: Table S4
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Table 2 LD‑independent loci associated with hearing problems reaching genome‑wide significance (p < 5 ×  10−8) in the meta‑
analysis of UK Biobank (UKB), Nurses’ Health Studies (NHS; I and II), and Health Professional Follow‑up Study (HPFS). The results of the 
replication analysis in Million Veteran Program (MVP) are also reported. Abbreviations: CHR chromosome, POS position, bp base pairs, 
EAF effect allele frequency, OR odds ratio, P P‑value

rsID CHR POS (bp) Effect allele Other allele UKB‑NHS‑HPFS meta‑
analysis

MVP replication

OR P OR P

rs11073804 15 89,252,012 A T 0.95 5.60 ×  10−17 0.91 3.50 ×  10−28

rs9493627 6 133,789,728 A G 1.04 1.03 ×  10−17 1.06 1.91 ×  10−19

rs10901863 10 126,812,270 T C 1.05 6.21 ×  10−23 1.06 1.17 ×  10−11

rs1566128 14 52,514,981 A G 1.04 1.02 ×  10−15 1.04 3.98 ×  10−11

rs2254303 6 43,276,390 A G 1.05 1.19 ×  10−23 1.04 5.23 ×  10−11

rs143282422 10 73,377,112 A G 1.16 4.43 ×  10−11 1.22 8.30 ×  10−11

rs7819550 8 74,206,582 A G 1.04 6.96 ×  10−10 1.05 3.92 ×  10−9

rs6662164 1 46,146,230 A T 1.04 6.59 ×  10−17 1.04 7.44 ×  10−9

rs6871548 5 73,076,024 T C 1.05 2.30 ×  10−25 1.04 1.23 ×  10−8

rs6545432 2 54,817,683 A G 1.04 1.05 ×  10−15 1.04 2.37 ×  10−8

rs739138 22 38,122,462 A G 0.95 4.70 ×  10−19 0.96 6.21 ×  10−8

rs67307131 11 118,480,223 T C 0.96 3.12 ×  10−18 0.97 2.83 ×  10−7

rs36062310 22 50,988,105 A G 1.15 2.75 ×  10−32 1.08 4.80 ×  10−6

rs11238325 7 50,853,151 T C 1.04 1.88 ×  10−11 1.04 5.65 ×  10−6

rs11022697 11 13,178,285 C G 0.97 1.17 ×  10−9 0.97 1.15 ×  10−5

rs7712395 5 2,559,538 T C 1.05 3.64 ×  10−11 1.04 6.45 ×  10−5

rs6675438 1 165,112,224 A T 1.03 8.82 ×  10−11 1.03 1.62 ×  10−4

rs2296506 6 158,507,981 A G 1.03 1.70 ×  10−13 1.02 3.36 ×  10−4

rs2877561 3 121,712,051 A C 1.04 1.62 ×  10−14 1.03 4.95 ×  10−4

rs12156228 8 141,701,299 T G 0.97 3.67 ×  10−12 0.97 6.31 ×  10−4

rs222836 17 7,133,162 A G 0.97 1.13 ×  10−11 0.98 7.37 ×  10−4

rs11085064 19 4,209,152 A G 1.04 2.84 ×  10−9 1.03 9.49 ×  10−4

rs57167368 10 80,521,351 A G 0.96 9.91 ×  10−11 0.97 0.001

rs72622588 3 182,003,490 T G 0.95 1.53 ×  10−16 0.97 0.002

rs58919600 5 92,970,519 T C 1.04 1.86 ×  10−9 1.03 0.002

rs13171669 5 148,601,243 A G 0.97 1.15 ×  10−12 0.98 0.007

rs73204028 7 115,092,852 T C 0.97 2.20 ×  10−8 0.98 0.012

rs5800853 12 109,790,748 CAG C 1.03 4.87 ×  10−9 1.02 0.017

rs1171114 6 84,227,646 T C 0.97 2.69 ×  10−10 0.98 0.018

rs35094336 8 82,670,771 A G 1.06 2.07 ×  10−11 1.03 0.021

rs72930998 18 52,632,968 T C 0.97 2.03 ×  10−10 0.98 0.028

rs1928176 6 21,968,899 A G 0.97 5.44 ×  10−9 0.99 0.028

rs61734651 20 61,451,332 T C 1.06 1.30 ×  10−8 1.03 0.028

rs9530470 13 76,416,638 A G 0.97 5.64 ×  10−9 0.99 0.051

rs11041717 11 8,054,933 A C 0.96 7.31 ×  10−15 0.98 0.071

rs717973 2 208,091,112 A G 0.97 4.61 ×  10−10 0.99 0.072

rs8063057 16 53,812,433 T C 1.03 1.64 ×  10−8 1.01 0.081

rs2354376 7 138,487,145 A C 1.03 3.17 ×  10−10 1.01 0.1

rs78229182 6 151,128,784 T C 1.05 2.07 ×  10−8 0.98 0.106

rs148512269 2 227,596,034 T G 1.11 9.83 ×  10−9 1.05 0.133

rs72818515 10 76,060,718 A C 1.03 7.08 ×  10−10 1.01 0.186

rs111935448 16 30,919,807 T C 1.04 1.75 ×  10−9 0.99 0.218

rs35624969 7 72,991,592 T C 0.97 4.66 ×  10−8 0.99 0.218

rs4948502 10 63,839,417 T C 1.03 1.26 ×  10−11 1.01 0.229

rs566673 11 66,401,373 T G 0.97 1.80 ×  10−8 1.01 0.277
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between discovery and replication cohorts, 49 loci 
showed consistent effect direction. The probability of 
observing concordant directions of 49 or more loci 
out of the 54 loci tested by chance is 5.9 ×  10−6. Lev-
eraging our discovery GWAS meta-analysis as a train-
ing dataset, we conducted a PRS analysis in the MVP 
cohort that showed a small but highly statistically 
significant association  (R2 = 0.54%, p = 1.78 ×  10−216; 
Additional file  1: Table  S6). Low but statistically sig-
nificant predictive power was also observed when 
using UKB-only GWAS to perform a PRS analysis with 
respect to NHS-HPFS combined sample  (R2 = 0.05%, 
p = 6.59 ×  10−6; Additional file 1: Table S7). Compared 
with the sex-combined UKB-only PRS analysis, slightly 
higher predictive power was detected in the sex-strati-
fied UKB-only PRS analyses (UKB-female PRS → NHS: 
 R2 = 0.47%, p = 1.77 ×  10−30; Additional file 1: Table S8; 
UKB-male PRS → HPFS:  R2 = 0.50%, p = 2.84 ×  10−11; 
Additional file 1: Table S9).

To assess the cross-ancestry generalizability of the loci 
identified by the GWAS meta-analysis, we conducted 
a replication analysis of the single-variant associa-
tions in the UKB non-EUR participants (AFR N = 6636, 
11% cases; AMR N = 980, 16% cases; CSA N = 8876, 
17% cases; EAS N = 2709, 12% cases; MID N = 1599, 
16% cases). Considering FDR multiple testing correc-
tion (FDR q < 0.1), we replicated the associations of two 
variants: rs6662164 in CSA (OR = 1.14, p = 0.002) and 
rs34993346 in EAS (OR = 0.69, p = 0.001). Nominally 
significant replication was observed for other twelve 
variants (four in AFR, one in AMR, five in CSA, one 
in EAS, one in MID; Additional file  1: Table  S10). The 
limited number of single-loci replication is due to the 
dramatic difference in sample size between the EUR dis-
covery cohort (N = 501,825) and the non-EUR replica-
tion cohorts (total N = 20,800). However, we observed 

a significant cross-ancestry transferability in the HP 
PRS: AFR  R2 = 4.73%, p = 4.65 ×  10−68 (Additional file  1: 
Table  S11; AMR  R2 = 1.96%, p = 1.23 ×  10−5 (Additional 
file  1: Table  S12; CSA  R2 = 3.5%, p = 6.26 ×  10−66 (Addi-
tional file  1: Table  S13; EAS  R2 = 2.45%, p = 1.94 ×  10−15 
(Additional file 1: Table S14).

Variant prioritization, fine‑mapping, and multi‑tissue 
transcriptome‑wide association study
To translate genetic associations identified in our HP dis-
covery GWAS (i.e., UKB-NHS-HPFS GWAS meta-anal-
ysis of “Hearing difficulties”) into information regarding 
potential causal genes associated with HP, we integrated 
different approaches ranging from positional mapping 
to imputation of genetically regulated transcriptomic 
variation.

First, we performed a fine-mapping analysis for each 
GWS locus. Based on the PIP of the 4382 SNP asso-
ciations reaching GWS in the sex-combined GWAS 
meta-analysis, we identified 218 variants that are most 
likely to be causal (PIP > 30%; Additional file  3: Fig. S2). 
Considering a CADD score threshold of 10 (top 1% of 
pathogenic variants across the human genome), we fur-
ther prioritized 24 variants that mapped to 18 unique 
genes (Additional file 1: Table S15). Some of them (e.g., 
ARID5B, CTBP2, and FTO) were previously identified as 
causal loci of Mendelian forms of deafness [6, 11]. Apply-
ing the same mapping strategy to the sex-stratified GWS 
loci, we identified 84 and 46 variants in the credible set 
for female- and male-specific analyses, respectively 
(Additional file  3: Figs. S3 and S4). These included six 
female-specific and two male-specific pathogenic vari-
ants (CADD score > 10). The sex-stratified mapping genes 
mostly overlapped with the ones identified in the sex-
combined GWAS meta-analysis.

Table 2 (continued)

rsID CHR POS (bp) Effect allele Other allele UKB‑NHS‑HPFS meta‑
analysis

MVP replication

OR P OR P

rs34073570 5 103,998,895 CT C 0.97 1.32 ×  10−9 0.99 0.316

rs112725535 1 6,494,086 A G 0.96 7.85 ×  10−10 0.99 0.318

rs2273654 10 102,689,217 T C 0.97 4.01 ×  10−8 0.99 0.425

rs8102051 19 2,370,476 A C 1.03 3.38 ×  10−9 1.01 0.429

rs13147559 4 17,524,570 C G 0.95 3.81 ×  10−14 0.99 0.596

rs61863078 10 94,777,108 A G 1.03 1.54 ×  10−9 1 0.777

rs766262445 (MVP LD‑
proxy: rs9536378)

13 53,830,039 CT(A) C 1.03 2.63 ×  10−8 1 0.787

rs34993346 11 89,046,097 A G 0.95 1.38 ×  10−24 1 0.872

rs9783279 11 68,972,992 A C 0.97 2.97 ×  10−9 1 0.872
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In addition to the positional mapping approach, we 
also implemented an independent method based on the 
genetic regulation of transcriptomic variation. Combin-
ing tissue-specific information regarding expression 
quantitative trait loci (eQTL), we conducted a multi-tis-
sue TWAS using the S-MultiXcan approach [41]. In the 
sex-combined meta-analysis, we identified 107 transcrip-
tome-wide significant (TWS) genes (multi-tissue Bonfer-
roni significance p < 2.24 ×  10−6; Fig.  2; Additional file  1: 
Table S16).

Considering the top tissue-specific effect underly-
ing the cross-tissue associations, we observed that 
five of the top-10 strongest associations were brain-
related: putamen basal ganglia (CRIP3 p = 1.19 ×  10−23), 
spinal cord c-1 (PIK3R3 p = 1.32 ×  10−19), pituitary 
gland (TMEM69 p = 2.14 ×  10−18), caudate basal gan-
glia (IPP p = 3.04 ×  10−18), cerebellar hemisphere 
(SLC22A7 p = 3.56 ×  10−18), and cerebellum (MAST2 

p = 3.17 ×  10−17). The strongest non-brain-related 
TWS associations included tibial artery (ARH-
GEF28 p = 3.29 ×  10−17), cultured fibroblasts (ACAN 
p = 5.17 ×  10−17), left ventricle (DLK2 p = 1.03 ×  10−16), 
and tibial nerve (NASP p = 1.42 ×  10−16). In the sex-
stratified meta-analysis, we identified 55 and 26 
multi-tissue TWS associations in females and males, 
respectively (Additional file  1: Table  S17). The sex-
specific loci mostly overlapped with those identified 
in the sex-combined TWAS: (i) 14 genes were TWS 
in three analyses; (ii) 45 out of 55 female-specific 
TWS genes were also significant in the sex-combined 
TWAS; (iii) 23 out of the 26 male-specific TWS genes 
were also significant in the sex-combined TWAS. 
However, for tissue-specific effects, we observed that 
the top genes were not related to brain transcrip-
tomic regulation (top female-specific association: 

Fig. 2 Multi‑tissue transcriptome‑wide association study of hearing problems based on the sex‑combined meta‑analysis. The y‑axis corresponds 
to two‑tailed − log10 (p‑value of the S‑MultiXcan association). The x‑axis reports the genes grouped based on the best single‑tissue S‑PrediXcan 
association. The red line refers to the Bonferroni multiple testing correction accounting for the number of genes tested (N = 22,335; p < 2.24 × 10.−6). 
Bold labels are reported for the top‑10 Bonferroni significant association. Additional labels are included for the top significant result for each tissue. 
Detailed results are available in Additional file 1: Table S16
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liver-CRIP3 p = 1.59 ×  10−18; top male-specific asso-
ciation: spleen-PHLDB1 p = 1.59 ×  10−11). Addition-
ally, among female-specific associations, we identified 
associations related to female organs: mammary gland 
(ABCC10 p = 6.16 ×  10−15) and vagina (BAIAP2L2 
p = 7.45 ×  10−13).

Enrichment for regulatory elements and biological 
pathways
To dissect further HP polygenic architecture, we par-
titioned its SNP-h2 (estimated from UKB-NHS-HPFS 
GWAS meta-analysis of “Hearing difficulties”) with 
respect to regulatory elements to uncover enrichment 
of relevant biological annotations and processes. We 
observed that several annotations related to the regula-
tory function of the human genome are more likely to 
be involved in HP predisposition than that expected by 
chance (Additional file  1: Table  S18). These included 
evolutionary-conserved regions (e.g., “genomic evo-
lutionary rate profiling scores” p = 1.11 ×  10−16) and 
“elements involved in epigenetic and transcriptomic reg-
ulation (e.g., “CpG dinucleotide content” p = 1.53 ×  10−10; 
“super-enhancer regions” p = 1.54 ×  10−7). In a comple-
mentary approach, we performed gene-set enrichment 
analysis of HP-associated genes (based on positional 
mapping). Two biological pathways were observed to be 
statistically overrepresented: “response to trabectedin” 
(p = 1.58 ×  10−8) and “sensory perception of mechani-
cal stimulus” (p = 1.69 ×  10−7). With respect to both 
analyses, we did not identify statistical differences in the 
enrichments calculated from the sex-specific genetic 
associations.

Phenome‑wide genetic correlation and latent causal 
variable analysis of hearing problems
We analyzed the genetic correlation of HP with human 
traits and diseases, testing our HP discovery GWAS 
(i.e., UKB-NHS-HPFS meta-analysis) with respect to 
EUR genome-wide association statistics available from 
Pan-UKB analysis. Considering a Bonferroni correction 
accounting for the number of phenotypes tested in sex-
combined, female, and male analyses (sex-combined 
N = 5337, p < 6.99 ×  10−6; female N = 2,353, p < 1.52 × 
 10−5; male N = 2249, p < 1.59 ×  10−5), we identified 309, 
79, and 109 significant genetic correlations with HP, 
respectively (Fig. 3; Additional file 1: Table S19). In the 
sex-combined analysis, the strongest genetic correla-
tion was “Tinnitus” (rg = 0.52, p = 2.44 ×  10−55). Other 
strong positive genetic correlations included “Long-
standing illness, disability or infirmity” (rg = 0.36, 
p = 7.12 ×  10−41); and “Frequency of tiredness / lethargy 
in last 2  weeks” (rg = 0.33, p = 3.85 ×  10−37). Among 

negative HP genetic correlations, we observed “Lei-
sure/social activities” (rg =  − 0.19, P = 3.30 ×  10−10) 
and “Belief that own life is meaningful” (rg =  − 0.18, 
p = 3.38 ×  10−6). Although many of the sex-specific 
genetic correlations overlapped with those shared with 
sex-combined analysis, we also identified five traits 
with sex differences statistically significant after Bon-
ferroni correction accounting for the number of phe-
notypes available in both female and male analyses 
(N = 1622; p < 3.08 ×  10−5). Four of them were related to 
educational attainment with the strongest one observed 
for “Qualification: College or University degree” 
(female rg = 0.11, P = 2.52 ×  10−5, male rg =  − 0.12, 
P = 1.15 ×  10−5; psex-difference = 1.16 ×  10−9). The fifth 
genetic correlation was related to “Time spend out-
doors in summer” (female rg =  − 0.16, P = 2.73 ×  10−5, 
male rg = 0.06, P = 0.08; psex-difference = 1.95 ×  10−5).

To distinguish genetic correlations due to shared genetic 
mechanisms from those due to possible cause-effect rela-
tionships, we conducted an LCV analysis, identifying 22 
significant putative causal effects after Bonferroni multiple 
testing correction (p < 5.69 ×  10−5; Fig. 4, Additional file 1: 
Table S20). As mentioned in the methods, in the LCV anal-
ysis, positive and negative gcp values reflect the direction of 
the putative causal effect (i.e., HP → phenotype and pheno-
type → HP, respectively) while the sign of the effect is given 
by the rho statistics. The traits with putative causal effect 
on HP included psychiatric traits (e.g., “Ever had period 
of mania / excitability” gcp =  − 0.508, p = 3.59 ×  10−23; 
rho = 0.275, SE = 0.075), neurological disease (e.g., 
“Migraine” gcp =  − 0.891, p = 7.1 ×  10−21; rho = 0.272, 
SE = 0.072), gastrointestinal outcomes (e.g., “ICD-10 K63 
Other diseases of intestine” gcp =  − 0.883, p = 2.25 ×  10−11; 
rho = 0.226, SE = 0.070), urogenital outcomes (e.g., 
“ICD-10 N32 Other disorders of bladder” gcp =  − 0.755, 
p = 7.83 ×  10−15; rho = 0.212, SE = 0.084), medication 
use (e.g., “Ranitidine” gcp =  − 0.691, p = 1.38 ×  10−12; 
rho = 0.273, SE = 0.074), cardiovascular diseases (“Stroke 
family history” gcp =  − 0.825, p = 6.67 ×  10−11; rho = 0.303, 
SE = 0.075), immunological conditions (“Eczema/dermati-
tis” gcp =  − 0.327, p = 3.82 ×  10−5; rho = 0.103, SE = 0.056), 
and workplace environment (“Workplace very dusty” 
gcp =  − 0.733, p = 2.04 ×  10−10; rho = 0.235, SE = 0.057). 
We also identified genetic evidence that supports a puta-
tive causal role on HP for three outcomes: “Tinnitus” 
(gcp = 0.705, p = 4.85 ×  10−8; rho = 0.519, SE = 0.038); 
“Manifestations of mania or irritability” (gcp = 0.069, 
p = 8.44 ×  10−15; rho = 0.357, SE = 0.075), and “Felt dis-
tant from other people in past month” (gcp = 0.331, 
p = 6.52 ×  10−6; rho = 0.232, SE = 0.074). No gcp estimate 
showed a statistically significant difference between sexes 
after multiple testing correction.
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Multivariate gene‑by‑environment genome‑wide 
interaction analysis
To expand our understanding of possible interactive 
effects beyond those already observed in the sex-strati-
fied GWAS, we conducted a multivariate GEWIS explor-
ing variables related to noise pollution and tobacco 
smoking, well-known HP risk factors [13–15]. Because 
of the assumptions of the linear mixed model approach 
used [44], we conducted the GEWIS, testing HP-ORD 
trait (UKB N = 300,818) with respect to 14 environmen-
tal factors simultaneously (Additional file  1: Table  S2). 
In addition to sex, these include environments related 
to noise pollution (N = 5) and tobacco smoking habits 
(N = 8). The GEWIS was conducted using the structLMM 
approach, which is not affected by the degree of corre-
lation among the environmental factors investigated 
[44]. Although no result survived genome-wide testing 
correction, we identified 1278 LD-independent vari-
ants with nominally significant multivariate interactions 

(Additional file  1: Table  S21) that were enriched for 57 
unique GO terms after FDR multiple testing correc-
tion (FDR q < 0.05; See Additional file  2). The strongest 
enrichments were observed for GOs related to neurode-
velopmental processes (e.g., GO:0,007,399 Nervous sys-
tem development: “Sex” p = 2.0 ×  10−6; “Average evening 
sound level of noise pollution” p = 1.3 ×  10−6; “Maternal 
smoking around birth” p = 3.6 ×  10−7).

Discussion
We conducted a large-scale investigation integrating 
information from genome-wide associations with tis-
sue-specific transcriptomic variation and a genetically 
informed  causal inference analysis to translate genetic 
findings into insights regarding HP biology and epide-
miology. Initially, we compared the SNP-h2 of different 
HP definitions available from UKB. These included three 
questionnaire-derived self-reported hearing traits and 
one trait derived from audiometric measures. Consistent 

Fig. 3 Phenome‑wide genetic correlation of hearing problems in the sex‑combined analysis. The x‑axis reports the genetic correlation of hearing 
problems with the traits tested. The y‑axis corresponds to two‑tailed − log10(p‑value). Blue shades correspond to significance strength, from white, 
non‑significant (p > 0.05), to light blue (nominal significance p < 0.05), to blue (Bonferroni correction p < 6.99 × 10.−6), and dark blue (top 10 results). 
Phenotype labels are included for the top 10 results. Full results are reported in Additional file 1: Table S19
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with the missing heritability observed for complex traits 
[48], we observed that the SNP-based heritability of HP 
traits (up to 5%; in line with previous HP GWAS; [11, 47]) 
was much lower than the heritability estimated by pre-
vious family-based analyses (30–70%) [6]. Nevertheless, 
self-reported HP outcomes showed significant SNP-h2 
that was informative to investigate their polygenic archi-
tecture. This is in line with previous studies that showed 

self-reported HP traits appear to be reliable instruments 
to investigate “real-world” hearing impairment [49–53], 
although they may still be potentially influenced by psy-
chosocial factors [11]. Conversely, in agreement with pre-
vious studies [11, 47], we observed a null SNP-h2 for the 
trait based on the audiometric measures. Further studies 
are needed to understand the potential issues of assess-
ments based on audiometric tests.

Fig. 4 Visual representation of the 22 Bonferroni‑significant putative causal effects identified through the latent causal variable analysis. Brown 
labels: HP has causative effect on the trait in the label. Purple labels: Trait in the label has causative effect on HP. The absolute gcp (genetic causality 
proportion) value for each association is reported within the arrow, and the directions refer to the cause‑effect relationship (Blue: HP causes Trait; 
Red: Trait causes HP). The shade intensity of the arrows is proportional to the statistical significance (i.e., −  log10(p‑value)) of the gcp estimates. A 
description of each trait and details of the associations are available in Additional file 1: Table S20
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We observed a high genetic correlation (rg > 0.7) 
between self-reported HP outcomes with the only 
exception being “Hearing difficulty with background 
noise” and “Hearing aid use” where the genetic corre-
lation was much lower (rg < 0.4). This may be because 
the proportion of individuals who seek hearing aids 
for their HP is very low, even in the UK where hearing 
aids are covered by the National Health Service. Con-
sidering the HP outcome available in NHS and HPFS 
cohorts, we observed the highest correlation with the 
UKB outcome “Hearing difficulties”. Accordingly, these 
traits were used for the GWAS meta-analysis and the 
subsequent in silico investigations.

In the sex-combined GWAS meta-analysis including 
501,825 individuals, we identified 54 LD-independent 
GWS associations, 12 of which are novel with respect 
to those identified by previous HP GWAS [6, 9, 11, 54, 
55]. Although the cohorts included in our discovery 
GWAS (i.e., UKB, NHS, and HPFS) were recruited and 
assessed using different strategies, we did not identify 
heterogeneity among the cohort-specific effects. How-
ever, cross-cohort PRS associations presented a very 
small predictive power likely due to differences in the 
cohort characteristics. A similar situation was also pre-
sent with respect to the MVP cohort (i.e., good single-
variant replication rate but very small predictive power 
in the cross-cohort PRS association).

Although this primary analysis was conducted in EUR 
individuals, we also investigated 20,800 UKB partici-
pants of AFR, AMR, CSA, EAS, and MID descent. Due 
to the limited non-EUR sample, we replicated only few 
single-variant associations and none of them were pre-
sent across multiple ancestries. While the low statistical 
power likely played a key role in the lack of multiple-
ancestry single-variant replications, differences in allele 
frequency and LD structure may also have contributed 
[56]. Conversely, we observed highly statistically sig-
nificant associations of HP PRS derived from the EUR 
discovery GWAS meta-analysis and tested on non-
EUR participants. Consistent with previous studies of 
other health outcomes [57–59], there were large differ-
ences in the predictive power due to the genetic diver-
sity across human populations. Additionally, in some 
cases, the HP variance explained by the cross-ancestry 
PRS association (e.g., EUR-PRSUKB-NHS-HPFS → AFR-
UKB  R2 = 4.73%) is larger than the one observed in the 
same-ancestry PRS association (e.g., EUR-PRSUKB-NHS-

HPFS → EUR-MVP  R2 = 0.54%). This can be explained by 
the fact that the cross-ancestry results are based on the 
UKB cohort where the participants share the same HP 
assessment and sample characteristics. However, we 
cannot exclude that the different LD structures of the 

ancestries investigated may have partially contributed 
to inflate the results observed.

The fine-mapping of the risk loci led to identify-
ing putatively pathogenic variants (CADD score > 10) 
mapped to genes previously demonstrated to be involved 
in HP pathogenesis (see Additional file  2). Our TWAS 
further highlighted that HP genetic basis is partially 
linked to brain transcriptomic regulation. We identified 
several genes previously implicated in HP pathogenesis 
because of their potential involvement in the peripheral 
structures of the auditory system, which also showed 
predicted expression differences in various brain regions 
(see Additional file  2). A recent study investigated sin-
gle-cell RNA-sequencing data from mouse cochlea and 
brain, mapping common variants associated with HP to 
spindle, root, and basal cells from the stria vascularis, a 
structure in the cochlea necessary for normal hearing 
[55]. We also leveraged the genome-wide association sta-
tistics generated by our analyses to explore HP polygenic 
architecture in the context of other traits and diseases. 
Our phenome-wide genetic correlation analysis iden-
tified a wide range of health outcomes that share a sig-
nificant proportion of their genetic liability with HP. The 
subsequent genetically informed causal inference analysis 
showed that some of these genetic correlations may be 
due to cause-effect relationships linking HP to different 
health domains, including neurological, cardiovascular, 
and cancer-related outcomes (see Additional file 2). With 
respect to gene-environment interactions, although our 
multivariate GEWIS analysis identified FDR-significant 
enrichments for several brain-several biological pathways 
(see Additional file 2), no single interactive locus survived 
a genome-wide multiple testing correction. This supports 
that discovery analyses of HP gene-environment interac-
tion may require a larger sample size.

With respect to sex differences, our UKB-NHS-HPFS 
GWAS meta-analysis identified three variants with sta-
tistical differences between sexes in their effect size. 
Specifically, rs13399656 in SPTBN1 was the top finding 
in the sex-difference associations. This gene was pre-
viously recognized as a target for β-estradiol as the top 
upstream regulator [60]. Similarly, rs1808828 mapped 
to ABLIM3 and rs11738813 in ARHGEF28 were identi-
fied as intronic variants mapped in genes involved in 
estrogen signaling pathway [61, 62]. These sex-specific 
associations in significant loci involved in hormonal 
regulating pathways may reflect the potential role of 
estrogen on hearing functions. In line with these find-
ings, our sex-stratified TWAS showed several additional 
associations related to peripheral tissues. In particu-
lar, the female-specific TWAS identified several tran-
scriptomic changes related to breast mammary tissue 
(ABCC10) and vagina (BAIAP2L2). These associations 
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in hormonally regulated tissues may reflect a potential 
role of estrogen in hearing function [63]. Indeed, our 
sex-stratified analyses identified associations mapped in 
genes involved in the estrogen signaling pathway (i.e., 
SPTBN1, ABLIM3, and ARHGEF28). With respect to the 
loci identified by the female-specific TWAS, BAIAP2L2 
is particularly interesting. In mice, mutations of the 
homologous gene Baiap2l2 were associated with altera-
tions in hair cell transduction and deafness while the 
human locus BAIAP2L2 is associated with suppression 
of the estrogen-mediated S–phase entry pathway in cell 
cycle [64]. As HP is associated with reduced estrogen lev-
els, we hypothesize that the interplay between BAIAP2L2 
transcriptomic regulation and estrogen levels may play 
a role in HP in women. With respect to HP pleiotropy, 
our genetic correlation analysis also identified five traits 
that showed statistically significant sex differences in 
their correlation with HP. Four of them were related to 
educational attainment where the genetic correlation 
with HP was positive in females and negative in males. 
A previous study demonstrated that the characteristics 
and the recruitment strategy of the UKB cohort (the larg-
est sample in our meta-analysis) influenced some of the 
sex differences observable in this study population [65]. 
In particular, higher educational attainment (EA) was 
genetically correlated with female sex in UKB, but an 
opposite relationship was observed in cohorts that used 
different recruitment strategies. Accordingly, the sex dif-
ferences observed with respect to educational attainment 
may be specific to the structure of the UKB cohort. The 
other sex difference was related to time spent outside that 
showed a negative genetic correlation in females but not 
in males. This could be related to the higher comorbidity 
of HP with depression observed in women compared to 
men [66].

Although our findings advance our understanding 
of HP and its consequences in adults, we also acknowl-
edge several limitations. Similar to previous HP GWAS 
[6, 9–11, 54, 55], our primary analyses were based on 
self-reported data. These appear to be more informa-
tive than the audiometric measures derived from SRT 
test, but they can still be biased by misreporting linked 
to cognitive processes, social desirability, and survey 
conditions. Our study was focused on acquired HP in 
adults and we excluded individuals with congenital HP 
when possible. However, we did not have information 
regarding HP age of onset across all cohorts investigated. 
Accordingly, a small proportion (< 1%) of congenital HP 
cases may be present in our study populations. We used 
MVP as our primary replication. Although we observed 
a good single-variant replication rate and highly statisti-
cal PRS associations, the sex unbalance present in this 
cohort (93% male participants) may be responsible for 

the limited predictive power of the PRS derived from 
our discovery GWAS (i.e., UKB-NHS-HPFS meta-
analysis), where sexes are more equally represented. No 
sex-specific TWAS models are currently available from 
GTEx. Accordingly, our sex-stratified TWAS was con-
ducted using sex-stratified genome-wide association 
statistics and sex-combined transcriptomic reference 
panels. This has likely reduced the statistical power of 
our analysis. Additionally, GTEx does not include tissues 
related to peripheral auditory systems, limiting our abil-
ity to explore the differences in transcriptomic changes 
in the peripheral and central auditory system. Although 
we showed highly statically significant PRS association 
across multiple ancestry groups, the limited diversity of 
the cohorts investigated did not permit us to explore the 
genetic basis of HP across ancestry groups and provided 
us with very limited statistical power to replicate single-
variant associations. Further studies of more diverse 
populations are needed to conduct powerful gene discov-
ery analyses of HP across ancestry groups. Similarly, our 
genetic correlation and genetically informed causal infer-
ence analyses identified several aging-related outcomes. 
Because our analyses were based on GWAS datasets that 
included covariates to account for age-related effects, we 
believe that these effects are due to the impact of HP on 
human health rather than age-related differences. How-
ever, we cannot exclude that there may be differences 
across different age groups. Unfortunately, the sample 
size available did not provide us with the statistical power 
needed to conduct phenome-wide genetic correlation 
analyses across multiple age groups.

Conclusions
We conducted a comprehensive investigation of the poly-
genic architecture of HP in adults that (i) identified novel 
risk loci, (ii) provided evidence of the shared HP patho-
genesis across human populations, (iii) integrated genetic 
and transcriptomic data to dissect HP biology, (iv) lever-
aged genome-wide information to explore the mecha-
nisms underlying HP comorbidities, and (v) uncovered 
possible biological processes that could underlie inter-
individual differences in susceptibility to the effects of HP 
environmental risk factors. In particular, our sex-specific 
analyses and transcriptomic associations highlighted 
molecular pathways that may be targeted for drug devel-
opment or repurposing. Additionally, the potential causal 
relationships identified may support novel preventive 
screening programs to identify individuals at risk.
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