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The hemodynamic response function (HRF) represents the transfer function linking neural activity 

with the functional MRI (fMRI) signal, modeling neurovascular coupling. Since HRF is 

influenced by non-neural factors, to date it has largely been considered as a confound or has been 

ignored in many analyses. However, underlying biophysics suggests that the HRF may contain 

meaningful correlates of neural activity, which might be unavailable through conventional fMRI 

metrics. Here, we estimated the HRF by performing deconvolution on resting-state fMRI data 

from a longitudinal sample of 25 healthy controls scanned twice and 44 adults with obsessive-

compulsive disorder (OCD) before and after 4-weeks of intensive cognitive-behavioral therapy 

(CBT). HRF response height, time-to-peak and full-width at half-maximum (FWHM) in OCD 

were abnormal before treatment and normalized after treatment in regions including the caudate. 

Pre-treatment HRF predicted treatment outcome (OCD symptom reduction) with 86.4% accuracy, 

using machine learning. Pre-treatment HRF response height in the caudate head and time-to-peak 

in the caudate tail were top-predictors of treatment response. Time-to-peak in the caudate tail, a 

region not typically identified in OCD studies using conventional fMRI activation or connectivity 

measures, may carry novel importance. Additionally, response height in caudate head predicted 

post-treatment OCD severity (R=−0.48, P= 0.001), and was associated with treatment-related 

OCD severity changes (R=−0.44, P=0.0028), underscoring its relevance. With HRF being a 

reliable marker sensitive to brain function, OCD pathology, and intervention-related changes, these 

results could guide future studies towards novel discoveries not possible through conventional 

fMRI approaches like standard BOLD activation or connectivity.

Keywords

Functional magnetic resonance imaging; fMRI; hemodynamic response function; HRF; obsessive-
compulsive disorder; OCD; cognitive-behavioral therapy; CBT; machine learning

INTRODUCTION

Functional magnetic resonance imaging (fMRI) is used extensively for studying the neural 

correlates of brain functioning, which indirectly measures neural activity through changes in 

blood oxygenation. Blood oxygenation is impacted by neural activity, as well as 

neurovascular coupling, blood flow properties, and blood chemistry [1]. The mathematical 

transfer function model of the neurovascular coupling between local neural activity and the 

corresponding blood oxygenation level dependent (BOLD) fMRI signal is called the 

hemodynamic response function (HRF). Studies involving biophysical modeling as well as 

experimental data have suggested that both neural and non-neural factors control the shape 

of the HRF [2]. Consequently, the HRF shape has been shown to vary across brain regions 

and across individuals [1] [3]. It is difficult to delineate the contributions of neural 

(elaborated below) and non-neural factors towards the HRF shape (such as variable size and 

density of vasculature, hematocrit, alcohol/caffeine/lipid ingestion, partial volume imaging 

of veins, global magnetic susceptibilities, slice timing differences and pulse/respiration 

differences [1] [3] [4] [5] [6]). Given this difficulty, previous studies have adopted two 

different strategies. One is deconvolving the HRF from the BOLD time series to estimate 

latent neural activity and in turn building models of the data in this latent space. This is a 

preferred choice for connectivity models such as dynamic causal modeling (DCM) [7]. 
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Granger causality [8] [9] [10] [11] [12] [13] [14] [15], multivariate dynamical systems 

(MDS) [16] [17] [18] and resting-state functional connectivity [19]. The second strategy is 

assuming a standard canonical HRF (typically two gamma functions) as in most task fMRI 

activation studies, and modeling the error introduced by HRF variability as time and 

dispersion derivatives using a general linear model (GLM). This is appropriate and can work 

well since we are interested in the BOLD response time-locked to an external stimulus in 

task-based studies. However, in resting-state connectivity studies wherein, in the absence of 

an external input time reference, time-locked covariations between activity in different brain 

regions are measured, the issue of HRF variability and its effect on connectivity estimates 

needs to be revisited afresh. Resting-state functional connectivity studies have thus far 

mostly ignored HRF variability with the notion that the HRF is similar enough in most 

people that one can ignore intraindividual variability. However, HRF variability has been 

demonstrated in the brain [3] [1] and recent reports provide evidence that ignoring it can 

introduce confounds in connectivity estimates [20] [21] [22] [23] [19]. In fact, a recent study 

found significant HRF variability across healthy individuals that confounded resting-state 

functional connectivity estimates by as much as 15% [19]. Recent studies in PTSD [24] and 

autism [21] have shown that HRF impairments in pathological groups are significant enough 

to confound resting-state connectivity group differences. Earlier studies have demonstrated 

that lag-based effective connectivity models are viable only after minimizing the HRF 

confound [25] [26]. With task fMRI, the impact of HRF variability on task-based functional 

connectivity (e.g. PPI) is yet to be investigated, although evidence suggests that task-based 

effective connectivity estimates are more accurate after deconvolution [27] [28] [29] [30].

Despite the convention of considering HRF variability as a confound, there is evidence that 

the HRF carries information relevant to brain function and pathology. Although the complete 

picture of the underlying biophysics supporting this notion is considerably complex, here we 

present a simplistic explanation. Local neural activation causes vasodilation and increases 

cerebral blood flow (CBF), as formulated in the fMRI balloon model [31]. CBF has been 

found abnormal in psychiatric and neurovascular disorders such as schizophrenia, obsessive-

compulsive disorder (OCD), depression, autism spectrum disorder, and dementia [32] [33] 

[34] [35] [36] [37]. Cerebrovascular reactivity (CVR), the change in CBF in response to 

neural activity, is closely associated with vasodilation and vasoconstriction of local blood 

vessels [38], which in turn modulates the HRF [39] [40]. Recent evidence using Doppler 

ultrasound and infrared spectroscopy suggests abnormalities in CVR in neurological and 

psychiatric disorders [41] [42]. On the other hand, neurovascular coupling (NVC), which is 

the coupling between local neural activity and CBF, has also been associated with brain 

function and pathology [43], and it modulates the HRF [39] [44]. Therefore, neural activity 

influences the HRF through NVC, CBF, CVR and vasodilation/vasoconstriction 

mechanisms.

Through NVC, neurometabolic modulators released by glutamatergic and GABAergic 

interneurons directly and indirectly modulate CBF [45], and subsequently the HRF [46]. 

Glutamate acts on N-methyl-D-aspartate (NMDA) receptors, causing dilation of the blood 

vessels associated with activated local neurons [47], ultimately impacting the HRF. Higher 

glutamate concentration results in taller, quicker and narrower HRFs, while higher GABA 

has the opposite effects [48]. Serotonin (5-hydroxytryptamine) is a vasoconstrictor, which 

Rangaprakash et al. Page 3

Brain Imaging Behav. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



provides blood-brain barrier permeability for modulating NVC. It modulates the HRF via 

the neuronal-astrocytic-vascular tripartite functional unit [49]. To summarize, 

neurometabolic coupling and the balance between inhibitory and excitatory 

neurotransmitters modulates the HRF through NVC. Fig.1 provides a simplistic illustration 

of these relationships.

Thus, there are grounds to postulate that the HRF carries information relevant to brain 

function and pathology. In this paper, we explore whether the HRF is sensitive to brain 

pathology as well as interventional treatment, as tested in a longitudinal sample of adults 

with OCD and matched healthy controls (HC). HRF was estimated from resting-state fMRI 

data.

HRF shape can be characterized by three main parameters [1] [3] (Fig.2): (i) response height 

(RH), (ii) time-to-peak (TTP), and (iii) full-width at half-max (FWHM). RH is a measure of 

HRF amplitude. TTP measures the latency and FWHM relates to the duration of the BOLD 

response. In this study, we assessed two aspects of the HRF to evaluate its utility in 

neuroimaging: HRF’s relevance to pathology and relevance to interventional treatment. 

Additionally, as preliminary analyses, we assessed HRF’s relevance to normal brain function 

as well as HRF’s longitudinal reliability (presented in Supplemental Information S2 and S3 

respectively). We acquired resting-state fMRI data at 3T (Fig.3) before and after 4 weeks of 

no intervention in a sample of 25 HCs and from 44 OCD participants in two sessions: (i) at 

pre-CBT baseline, and (ii) after 4 weeks of intensive cognitive behavioral therapy (CBT). 

Voxel-level HRF parameters were obtained by performing deconvolution on pre-processed 

fMRI data.

We assessed the relevance of the HRF to OCD pathology using the pre-CBT OCD sample, 

and the relevance of HRF to treatment using the longitudinal OCD sample before and after 

intensive CBT. Our recent study [50] indicates that resting-state fMRI functional network 

connectivity tracks CBT-induced brain changes in OCD, but was relatively insensitive to 

differences between OCD patients and HCs at pre-treatment baseline. Here we sought to 

evaluate the ability of the HRF to detect such effects. Regional abnormalities in brain 

metabolism and activation have been observed in OCD that respond to CBT [50] [51] [52] 

[53] [54] [55] [56] [57] [58] [59].

The current study aimed to determine if HRF aberrations are present in OCD, and to explore 

links between HRF and clinical symptoms. Specifically, CBF has been found abnormal in 

OCD [32], as well as altered following CBT treatment in OCD patients [60]. Moreover, CBF 

modulates the HRF [46]. Hence, there is indirect evidence to hypothesize that HRF is 

sensitive to brain pathology in OCD and interventional CBT treatment. Many, although not 

all, of the aforementioned studies in OCD found baseline functional abnormalities in regions 

in cortico-striato-thalamo-cortical (CSTC) circuits. However, due to the novelty of the 

current investigative markers of neural function, we did not put forward specific regional 

hypotheses.

Given this background, we tested two hypotheses: (i) Hypothesis-1: HRF is sensitive to 
pathology. OCD individuals would exhibit HRF aberrations compared to HC at baseline, (ii) 
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Hypothesis-2: HRF is sensitive to treatment, and predictive of treatment response. Testing 

this involved the following sub-hypotheses- 2a: In OCD, CBT would change HRF post-
treatment compared to pre-treatment. 2b: A subset of the pre-CBT HRF aberrations in OCD 
would return to normalcy post-CBT. 2c: Change in HRF with treatment would be associated 
with corresponding changes in OCD symptom severity. 2d: Pre-treatment HRF parameters 
would predict treatment outcome in OCD (reduction in OCD symptom severity) (tested 

using supervised machine learning classification, simultaneously identifying those regions 

whose HRF had the highest predictive ability).

When individuals undergo an intervention that improves symptoms, at least three possible 

changes could happen in the brain: (i) The intervention could ‘repair’ all or a subset of the 

brain abnormalities preexisting in these individuals, (ii) the intervention could result in 

compensatory mechanisms that do not alter the preexisting brain abnormalities, (iii) the 

intervention might not alter the brain. Through hypothesis-2a, we tested whether CBT 

causes HRF changes in any region of the brain, irrespective of whether it was compensatory 

or repair. Through hypothesis-2b we tested whether the intervention could ‘repair’ 

preexisting HRF abnormalities in OCD. We tested these hypotheses using whole-brain 

voxel-level HRF data estimated from resting-state fMRI.

METHODS

Participants

Forty-four individuals with a DSM-IV diagnosis of OCD were recruited from local clinics 

and the community, along with 25 healthy controls (HC). Informed consent was obtained 

from all participants. The UCLA Institutional Review Board approved the study. A board-

certified psychiatrist (JDF) having clinical experience with OCD populations confirmed the 

diagnoses upon performing comprehensive evaluations. The ADIS-IV Mini was employed 

for primary OCD and comorbid diagnoses. Eligible individuals scored ≥16 on the Yale-

Brown Obsessive Compulsive Scale (YBOCS) [61]. See Supplemental Information S1 for 

detailed information, including inclusion/exclusion criteria, comorbidities and medications.

FMRI data acquisition and pre-processing

Whole-brain BOLD fMRI resting-state data was obtained using a Siemens Trio 3T scanner 

(Siemens Medical Solutions USA Inc., Malvern, Pennsylvania) using a 12-channel phased-

array head coil. Scan parameters were as follows: T2* weighted EPI; acquisition time = 7 

minutes; TR/TE=2000/25ms; flip angle=78°; matrix=64×64; field of view= 195 mm; in-

plane voxel size=3×3 mm2; slice thickness=3 mm; total interleaved slices=35. A high 

resolution (1-mm isotropic) T1 weighted MPRAGE sequence was also used to collect 

anatomical data for coregistration. Data was obtained on two different occasions for each 

participant (see Fig.3 for time-flow diagram): (i) OCD participants, pre- and post- 4 weeks 

intensive CBT, and (ii) HCs, sessions 1 and 2 separated by 4 weeks, to form an appropriate 

control for the pre- and post-treatment OCD scans. The exposure and response prevention 

(ERP)-based intensive CBT treatment involved 90-minute one-on-one sessions 5 days a 

week for 4 weeks, was conducted by two licensed therapists, and was focused on improving 

OCD symptoms (for details see [50]). Twenty-one of the OCD patients received an 
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additional fMRI scan 4-weeks prior to the CBT, with no treatment activity during the time 

between this and the pre-treatment MRI scans (allowed assessing the effect of time without 

interventional treatment).

All the fMRI pre-processing steps were performed using Statistical Parametric Mapping 

(SPM8, http://www.fil.ion.ucl.ac.uk/spm), as follows. The first four volumes were discarded 

to allow participants to adapt to scanner noise and to obtain signal equilibrium. The raw EPI 

images were realigned, coregistered, normalized to the 2mm MNI space (affine 

transformation), and smoothed with an 8-mm Gaussian kernel. We used the artifact detection 

tool (ART) (http://www.nitrc.org/projects/artifact_detect) to calculate head motion. For each 

participant, head motion along each of the three translational and three rotational directions 

was computed. The “aggregate” motion calculated by ART was a composite from all six 

head-motion parameters. The exclusion criteria were any relative head motion exceeding 2 

mm along the translational axes or 2 degrees angular motion along the rotational axes. Based 

on these criteria, no participant was excluded. No significant difference was observed in 

aggregate motion between groups (mean±SD; HCs: 0.15±0.06 mm, OCD: 0.13±0.07mm; 

range; HCs: [0.06,0.93], OCD: [0.08, 0.89]; P=0.23). The CompCor method [62] 

(implemented in SPM) was employed to regress-out motion, CSF and white matter signals. 

The resulting whole-brain 3D+time fMRI data was used in further analysis.

Deconvolution

We next performed deconvolution to extract the HRF parameters from the BOLD fMRI data. 

Employing the method of Wu et al. [63], the 3D+time data were deconvolved across time at 

every voxel to get the latent neural time series and the HRF parameters. Several recent 

studies have utilized this technique (for example [8] [20] [64] [22] [65] [66] [67]). The 

validity of this technique has been demonstrated using simulations by Wu et. al. [63], 

Tagliazuchi et. al. [68] as well as Rangaprakash et. al. [19]. The deconvolution procedure is 

“blind” because we have access to the fMRI timeseries (one variable) only, from which the 

technique estimates both the latent neural timeseries and the HRF. Briefly, the technique 

[63] models resting-state fMRI as event-related timeseries with randomly occurring point-

process events [69] (since the participant performs no designed task in resting-state), and 

then evaluates voxel-wise HRFs using Wiener deconvolution [70]. Deconvolution estimated 

one HRF for the entire time series at every voxel. Like in previous studies [65] [8], a 

temporal mask with aggregate head motion <0.3 mm was added to avoid pseudo point-

process events induced by motion artifacts [71]. The measure of deconvolution quality 

(mean squared error between original and fitted data) was assessed and found to be not 

statistically significant between the groups. The deconvolution code is available at [72]. All 

data analysis was performed on the Matlab® R2015a platform.

HRF analysis

Deconvolution estimated the HRF time series at each voxel in every participant for each scan 

session. The HRF was characterized by three parameters – response height (RH), time-to-

peak (TTP), and full-width at half-max (FWHM), as described. RH, a measure of HRF 

amplitude, is conceptually similar, although not identical, to BOLD activation; higher RH 

results from elevated excitatory or decreased inhibitory neurotransmitters, from increased 

Rangaprakash et al. Page 6

Brain Imaging Behav. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.fil.ion.ucl.ac.uk/spm
http://www.nitrc.org/projects/artifact_detect


CBF or vasodilation [3], all of which are also associated with higher activation [31]. While 

higher BOLD signal could result from either larger RH or increased latent neural activity or 

both, the RH allows us to investigate physiological factors other than neural firing, such as 

excitatory/inhibitory neurotransmitter balance, which might contribute towards a larger 

BOLD response. For instance, glutamate acts on NMDA receptors, causing vasodilation [47] 

and increasing the CBF [45], which in turn results in elevated HRF RH [46]. TTP measures 

the latency of the BOLD response, while FWHM is related to the duration of the BOLD 

response, both of which are less likely to be directly associated, if at all, with activation. 

Importantly, RH, TTP and FWHM are not correlated across the brain [73] [74], suggesting 

that they carry unique information and may measure distinct underlying phenomena.

We first performed a 2-way ANOVA with group and time as factors (HC vs OCD and 

session-1 vs session-2), separately for each HRF parameter (p<0.05, cluster-level and FDR 

thresholded, controlled for age, education and head-motion). We additionally performed a 

similar secondary ANOVA analysis to compare changes that occurred over 4 weeks in the 

OCD group that received CBT to the OCD-waitlist subset group that did not receive CBT 

but was scanned twice, separated by 4 weeks. Group and time were the factors, wherein the 

‘group’ factor was CBT vs. no CBT in OCD and time was pre- 4 weeks and post- 4 weeks. 

Compared to the previous ANOVA, this comparison was not confounded by the possibility 

that the HRF in OCD individuals might change differently over 4 weeks of no treatment 

compared to the effects of the same passage of time in HC. Tests for statistical significance 

were performed separately on each of the three parameters to obtain voxel-specific 

differences in HRF parameters (two-sample T-test, p<0.05, cluster-level and FDR 

thresholded, controlled for age, education and head-motion). Cluster thresholding was 

performed through permutation testing. Additionally, we corrected for the multiple 

comparisons of probing three HRF parameters (Bonferroni’s method). We tested each of our 

hypotheses as follows.

(1) Hypothesis-1 (HRF is sensitive to neuropathology: OCD individuals will exhibit HRF 
aberrations compared to HC at baseline): whole-brain statistics (T-test) Session-1 HC vs. 

pre-CBT OCD, separately for RH, TTP and FWHM. As a secondary analysis, we compared 

the HRF against fractional amplitude of low frequency fluctuations (fALFF), which is 

another regional resting-state fMRI measure known to be sensitive to pathology [75] [76] 

(Supplemental Information S4).

(2) Hypothesis-2 (HRF is sensitive to treatment, and predictive of treatment response): (2a) 

In OCD, CBT will change the shape of the HRF post-treatment compared to pre-treatment: 
whole-brain statistics (T-test) post-CBT OCD vs. pre-CBT OCD, separately for RH, TTP 

and FWHM. As a control analysis, we measured HRF differences in HCs between two scans 

spaced 4 weeks apart, as well as in the OCD-waitlist subset group between the two scans 

spaced by 4 weeks of no treatment.

(2b) A subset of the pre-CBT HRF aberrations in OCD will return to normalcy post-CBT: In 

2a, we tested for whole-brain changes in HRF with treatment, that is, we were probing the 

question, “what HRF changes did treatment cause in the entire brain?” In 2b, we probed the 

question, “which of the abnormal regions in pre-CBT OCD, as tested in hypothesis-1, 
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showed change post-treatment?” To test this, we first assessed the group×time interaction, 

followed by T-tests where we limited our statistical analysis to only those regions that were 

found significant with hypothesis-1 (impairments in pre-CBT OCD), and performed 

statistics within those regions: OCD post-treatment vs. pre-treatment, separately for RH, 

TTP and FWHM. Probing this provided us those regions that exhibited significantly 

abnormal HRF in pre-CBT OCD and significantly changed HRF after treatment (i.e., 

abnormal regions that “normalized” with treatment). Among the regions identified, we 

confirmed that there was no significant difference between the HRF values in post-CBT 

OCD compared to Session-2 HC, to ascertain that the HRF “normalized” (that is, not 

significantly different than healthy controls) after treatment. Such observations allowed 

identification of pathological brain regions in OCD that were “corrected” by CBT.

(2c) Change in HRF with treatment will be associated with corresponding changes in OCD 
symptom severity: Using linear regression, we probed the association between the 

percentage change in HRF parameters with treatment (each parameter separately) across 

each of the identified significant regions (hypothesis-2a) and the percentage change in 

YBOCS with treatment.

(2d) Pre-treatment HRF parameters would predict treatment outcome in OCD: We 

performed supervised machine learning classification with HRF data to achieve two 

objectives: (i) determining the ability of OCD pre-treatment HRF values in predicting 

treatment response, and (ii) identifying those brain regions that possessed the highest 

predictive ability. Statistical relationships (such as association) between imaging measures 

and clinical variables do not necessarily imply that they have predictive ability [77]; that is, 

they may not be able to predict at the individual-subject level with reasonable accuracy. 

Since association does not necessarily imply prediction, it is also true that imaging features 

that exhibit both statistical association and predictive ability assume more importance. This 

analysis helped in the identification of such important imaging features that were both 

predictive of and associated with treatment outcome. Treatment responders were defined 

(based on expert consensus [78]) as those exhibiting 35% or more reduction in YBOCS with 

treatment. Binary supervised classification was performed with the pre-treatment HRF 

parameters for distinguishing between treatment responders and non-responders. To 

simultaneously achieve the two objectives, we employed a feature elimination based 

machine learning technique called recursive cluster elimination based support vector 

machine classifier (RCE-SVM) [79] (linear kernel), which recursively eliminates input 

features that contribute poorly towards classification, finally retaining only those features 

that are responsible for the best prediction (for details see [8] [80]). The inputs to the 

classifier were only those HRF parameters from voxels that exhibited significant difference 

in OCD pre-treatment compared to HCs (i.e. findings with hypothesis-1). This was done to 

restrict the features to only those voxels that were relevant to OCD pathology. This did not 

bias the classification since treatment response was not taken into consideration while 

performing OCD pre-treatment vs. HC analysis. In the case of this study, since the 

pathological regions were also found to “normalize” with treatment, this would have inflated 

the performance (although not circularly) [81] because voxels not relevant to OCD 

pathology (that were not included) would be expected to be less discriminatory features. 

Training set comprised of 80% of the participants, with the remaining forming the testing 
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set. The algorithm was initiated with 40 clusters [79] in the first RCE step, and least 

performing 20% of clusters were discarded in each successive RCE step until only one 

cluster remained, giving us the best classification accuracy. Six-fold cross-validation was 

performed to split the data in each iteration into training and testing sets with the ratio 5:1, 

and the algorithm was executed for 100 repetitive loops (in order to account for different 

splits) to give a total of 600 independent classification cycles. Recent studies have shown 

that the choice of these parameters provides reliable results [8] [67]. This technique 

simultaneously provided us the voxel-level top-predictive HRF parameters that best 

predicted treatment response at baseline, and the classification accuracy provided by those 

features (although, it is important to note that this is a multivariate analysis, such that all 

remaining features contribute to the prediction). Lastly, results from statistical analysis, 

associations with clinical variables and top-predictors from machine learning were 

assembled together to draw broader conclusions from this study.

RESULTS

Demographics and clinical variables

Demographics and clinical information for both HC and OCD groups appear in Table 1. 

There were no significant group differences in sex, age or education.

Effects of pathology and time

There was a general, consistent pattern of shorter, quicker and narrower HRFs in OCD pre-

treatment compared to HC at baseline, and relatively taller, longer and broader HRFs in 

OCD post-treatment compared to pre-treatment, implying that lower RH, TTP and FWHM 

are associated with OCD pathology and their increase is associated with CBT treatment. 

With the 2-way ANOVA, we found a significant main effect of group (F=9.69±1.05, 

P=0.002±0.001) (Supplemental Information S5– Fig.S2a–c) and a significant main effect of 

time (F=8.65±0.95, P=0.004±0.001) (Fig.S2d–f) with all 3 HRF parameters, and a 

significant group×time interaction (F=6.89±0.83, P=0.008±0.001) with RH and TTP 

(Fig.S3). With the secondary ANOVA analysis between OCD and OCD-waitlist subset 

groups across time, we found a significant main effect of group (F=8.42±0.99, 

P=0.006±0.001) and a significant main effect of time (F=8.54±0.98, P=0.005±0.001) with 

all 3 HRF parameters, and a significant group×time interaction (F=7.21±0.91, 

P=0.007±0.002) with RH and TTP. In the following paragraphs, we will present pairwise 

group comparisons with RH and TTP in order to test specific hypotheses (pairwise tests with 

FWHM were not performed since it did not exhibit group×time interaction; refer to Fig.S2c 

and Fig.S2f for FWHM ANOVA results).

HRF sensitivity to OCD pathology

With hypothesis-1 (HRF is sensitive to pathology), shorter RH was found in pre-CBT OCD 

than in Session-1 (baseline) HC regionally in right thalamus (mostly in the pulvinar), right 

caudate head, right cuneus, and bilateral superior parietal cortex (Fig.4a) (T=3.23±0.31, 

effect size: Cohen’s d=0.78±0.08). Quicker TTP was found in right caudate tail and left 

supplementary motor area (Fig.4b) (T=3.23±0.30, Cohen’s d=0.78±0.09). Also refer to 

Table 2 for T-statistics, volumes and centroid coordinates of these results.
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HRF sensitivity to CBT treatment

For the OCD post-treatment vs. pre-treatment comparison (hypothesis-2a), increases in RH 

were found in bilateral precuneus (Fig.4c) (T=3.03±0.27, Cohen’s d=0.73±0.09), and 

increases in TTP was found in the right caudate tail (Fig.4d) (T=2.89±0.29, Cohen’s 

d=0.70±0.07). Also refer to Table 2 for T-statistics, volumes and centroid coordinates of 

these results. Part of the caudate tail exhibited baseline abnormalities (hypothesis-1) as well 

as change with treatment (hypothesis-2a), that is, there was a non-zero intersection between 

the two statistical maps in this region. There were no significant HRF differences between 

Session-1 HC and Session-2 HC (P>0.05), nor between the two scans of OCD-waitlist 

subset group without intervening treatment (P>0.05).

Next, regarding hypothesis-2b (subset of OCD pre-CBT HRF aberrations would return to 
normalcy post-CBT), we found evidence that RH in the caudate head and TTP in the caudate 

tail, which were abnormal in pre-CBT OCD, changed after CBT, and did not statistically 

differ (P>0.05, uncorrected) from the values in HC session-2 (the regions identifiable in 

Figs. 4a and 4b, and marked in bold in Table 2). These two regions were abnormal in OCD 

before treatment and normalized towards the HC pattern after treatment. There was no 

significant difference in these voxels between post-CBT OCD and Session-2 HC at 4 weeks. 

Given that RH in caudate head and TTP in caudate tail were among the most important 

findings, we illustrate the corresponding HRFs in these regions (averaged across subjects) 

and boxplots in Fig.5. We also separately compared medicated (N=15) and unmedicated 

(N=29) OCD participants, as well as the entire OCD sample (N=44) compared with 

unmedicated OCD participants, both at the voxel-level across the whole-brain, and found no 

significant differences in RH, TTP, or FWHM in either pre-CBT or post-CBT HRF 

parameters (highest T-value = 1.21, lowest P-value = 0.23) (see Supplemental Information 

S6). Additionally, we found that depressive symptoms did not have an impact on our results 

(see Supplemental Information S7). In summary, we found lower value of HRF parameters 

in OCD pre-treatment compared to HC, and an increase in HRF parameters after treatment 

that appeared to “normalize” towards the HC pattern.

HRF association with OCD severity

In accordance with hypothesis-2c (HRF change with treatment will be associated with 
YBOCS change), we found significant negative association between (Fig.6a) percentage 

change in HRF RH and percentage change in OCD severity (YBOCS) with CBT treatment 

(R=−0.44, R2=0.19, P=0.0028) in the caudate head region. Larger increases in HRF RH with 

treatment were associated with larger decreases in OCD severity. We also assessed various 

quality measures of regression to find that the regression did not violate the 

homoscedasticity assumption (P=0.20, Engle’s ARCH test), the residuals were uniformly 

distributed (P=0.73, Chi-square goodness-of-fit test) and no influential observations were 

found (P<0.008, leave-one-out regressions) (see Supplemental Information S8).

Prediction of treatment outcome

For the machine learning analysis, the inputs to the classifier were, as mentioned earlier, 

only those HRF parameters from hypothesis-1 findings (Session-1 HC vs pre-CBT OCD) 

(Fig.4a–b), which restricted the features to only those relevant to OCD pathology at 
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baseline. We found that pre-treatment HRF values predicted treatment outcome with 86.41% 

accuracy (significantly greater than chance, P<10−50) (sensitivity=92.88%, 

specificity=77.06%). Among the 44 OCD participants, 26 were responders and 18 were non-

responders; we found the balanced classification accuracy to be 84.97%. The final top-

predictive features that resulted in this accuracy were the RH from 24 voxels in the right 

caudate head and 11 voxels in the right thalamus, and TTP from 14 voxels in the right 

caudate tail.

In addition, we performed a null-test using HRF data from different regions, specifically 

those which had the least difference between pre-CBT OCD and Session-1 HC (largest p-

values, P>0.8). Using the same number of input features in an identical machine learning 

framework, we observed an accuracy of 58.84%, which was close to chance accuracy. This 

assures that our accuracy of 86.41% arose primarily from relevant HRF values, which was 

significantly higher than the null-test accuracy (P<10−50).

In addition to pre-CBT HRF predicting post-treatment OCD severity, both also exhibited a 

statistical association. We found a significant negative association between pre-CBT HRF 

RH in the caudate head and OCD severity (YBOCS) after treatment (R=−0.48, R2=0.23, P= 

0.001) (Fig.6b). Higher HRF RH before treatment was associated with lower OCD severity 

after treatment. We also assessed various quality measures of regression to find that the 

regression did not violate the homoscedasticity assumption (P=0.76, Engle’s ARCH test), 

the residuals were uniformly distributed (P=0.14, Chi-square goodness-of-fit test) and no 

influential observations were found (P<0.0076, leave-one-out regressions) (see 

Supplemental Information S8).

RH in the caudate head, in summary, was abnormal before treatment, changed with 

treatment, predicted post-treatment OCD severity, was associated with change in OCD 

severity with treatment, and possessed high predictive ability for treatment outcome. TTP in 

the caudate tail was abnormal before treatment, changed with treatment, and possessed high 

predictive ability for treatment outcome.

DISCUSSION

The goal of this study was to assess the relevance of HRF shape to brain functioning, OCD 

pathology and interventional CBT treatment. This goal was motivated by prior research that 

supports the idea that the HRF carries mechanistically pertinent information related to 

neuronal activity, in spite of prevailing views of the HRF as an undesirable low pass filter of 

neural activity and HRF variability as a confound of no interest. We hypothesized that the 

HRF is sensitive to OCD pathology and CBT treatment.

We found evidence in support of our hypotheses. We found that the HRF is abnormal in 

OCD (hypothesis-1, Fig.4a–c). We found that CBT causes HRF changes in OCD 

(hypothesis-2a, Fig.4d–f), and that a subset of the pre-CBT HRF aberrations in OCD 

“normalize” (change towards the pattern in HC) post-treatment (hypothesis-2b). We found 

that, with treatment, the change in RH was associated with the change in OCD severity 

(hypothesis-2c, Fig.6a). Further, pre-treatment RH predicted post-treatment OCD severity 
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(Fig.6b). Finally, the HRF could predict treatment response with 86.4% accuracy 

(hypothesis-2d). These results suggest that the HRF is sensitive to brain pathology in OCD 

and can detect changes with CBT treatment. We discuss each of these findings in detail.

HRF aberrations in OCD

HRF was sensitive to OCD pathology. RH abnormalities in OCD were observed in parts of 

the conventional CSTC OCD circuit [82] [83]. The caudate head, which is part of the 

striatum, is pivotal in habit learning and procedural memory [84], which are associated with 

core OCD symptoms [85] [86]. Moreover, thalamic impairment has been found to result in 

aberrant orbitofrontal function [85], ultimately exacerbating OCD symptoms. There is 

evidence that, specifically, the right striato-thalamic circuit may be primarily impaired in 

OCD [87], corroborating our findings. While most studies report increased activation of the 

caudate head and thalamus [85] [86], we observed decreased RH in OCD. Recent studies, 

however, have reported decreased activation [88] and magnitude of local resting-state fMRI 

measures in OCD, especially in the CSTC circuit, for example with regional homogeneity 

(ReHo) [89] and fALFF [90]. Another well-designed event-related symptom provocation 

study [91] found deactivation in the caudate while the provocations were perceived intense 

by OCD participants, implying that hyporesponse in the caudate is possible under certain 

task conditions. Better understanding of the HRF parameters from future studies might 

reveal further insights. It is notable that we did not find RH differences in any prefrontal 

regions, including any in the CSTC circuit; in this way, our findings differ qualitatively from 

some previous conventional fMRI studies, many of which identify prefrontal abnormalities 

[82] [85] [90] [89] [92] [93] [94] [95] [96] [97]. In summary, we identified HRF 

abnormalities in subcortical regions largely implicated in OCD pathophysiology in earlier 

conventional fMRI studies.

Abnormal lateral parietal function has also been identified in several OCD studies, 

especially those investigating the fronto-parietal network in OCD [98] [99]. Such studies 

have interpreted impaired superior parietal function as possibly reflecting the inability of 

persons with OCD to disengage from everyday tasks requiring external attention [98]. It is 

interesting to note that the pulvinar (the thalamic region identified in this study) is known to 

have functional relationships with visual regions (also identified in this study) [100]. Taken 

together, RH results share some similarities with findings from conventional fMRI analyses 

from previous studies yet do not completely overlap, suggesting that these differing 

approaches reflect partially distinct neural processes.

CBF, measured using single photon emission computed tomography (SPECT) in [32], has 

been found to be abnormal in OCD in basal ganglia and the occipital cortex, regions 

identified in the current study as having abnormal HRF RH in OCD at baseline. CBF has 

also been found to be reduced in the caudate following CBT treatment in OCD patients [60] 

(measured using positron emission tomography [PET] and SPECT), corroborating our HRF 

RH findings. These interesting similarities between CBF and HRF RH must be studied 

further not only in the context of OCD but also other pathological conditions. FMRI 

acquisition (and thus HRF estimated from it) has certain advantages over direct imaging of 

CBF using PET, SPECT or perfusion MRI, therefore a direct link between PET/SPECT/
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perfusion measures of CBF and fMRI measure of HRF shape would suggest additional 

utility of HRF measures.

TTP and FWHM findings diverged from RH findings, and were not in regions commonly 

identified in previous, conventional OCD fMRI studies. Specifically, there were TTP 

abnormalities in the caudate tail, not often associated with OCD. We reiterate that TTP 

measures the latency of the BOLD signal, which is not captured by conventional activation 

or functional connectivity modeling, hence this finding might indicate previously 

underexplored mechanisms of OCD pathophysiology. The caudate tail is involved in 

learning [101] [102], which is a reflection of neural flexibility. Impaired learning could be 

associated with cognitive rigidity. Huntington’s disease, for example, which involves 

physical rigidity and diminished capacity for motor control and ultimately cognitive rigidity 

in later stages [103], begins in the caudate tail and spreads from there [104]. OCD is also 

characterized by a degree of cognitive rigidity, and diminished capacity for behavioral 

control over motor functions (although not directly a loss over motor control as in 

Huntington’s). The caudate tail may have an important role in OCD origins and 

pathophysiology. To date, fMRI studies have not reported impairments in activation or 

functional connectivity of the caudate tail in OCD. This aspect deserves further investigation 

in future studies.

HRF changes with CBT treatment

The HRF was sensitive to a 4-week intensive CBT treatment. While we noticed lower HRF 

parameters in pre-CBT OCD compared to HCs, post-treatment OCD exhibited higher HRF 

parameters compared to pre-treatment, implying that the HRF parameters changed in the 

healthy direction with treatment. RH changes were observed in bilateral precuneus, 

previously shown to exhibit changes with CBT treatment [57] as part of the default-mode 

network. TTP changes were observed in the caudate tail.

Among those regions that exhibited abnormalities in OCD before treatment, we observed 

significant change in RH with treatment in the caudate head and TTP in the caudate tail 

(hypothesis-1). In these regions, there were no significant differences between post-CBT 

OCD and Session-2 HC, implying that they were abnormal before treatment and were 

“normalized” with treatment. As a control comparison, there were no HRF differences in 

HCs between two scans spaced 4 weeks apart, as well as in the OCD-waitlist subset group 

between the two scans spaced by 4 weeks of no treatment. Additionally, RH in the caudate 

head before treatment predicted OCD severity after treatment, and change in RH with 

treatment in this region was significantly associated with change in OCD severity. The 

direction of these associations was as expected, with higher pre-treatment RH predicting 

lower OCD severity after treatment, and larger increase in RH with treatment corresponding 

with larger reduction in OCD severity. Banca et al. [91] found mean caudate head 

deactivation during single, strong symptom provocation exposure events. Following from 

this finding, our observation of RH in the caudate head being abnormally low prior to 

treatment and changing with treatment (tracking with reduction in YBOCS) could reflect the 

possibility that as those with OCD improve, when their symptoms are provoked the caudate 

would show less deactivation. These findings highlight the behavioral relevance of HRF 
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parameters, specifically the RH in the OCD population. They also highlight the importance 

of RH in the caudate head, a region repeatedly shown to have abnormal activity in OCD 

[105] [86], which was abnormal in OCD before treatment, changed after treatment, was 

associated with reduction in OCD severity with treatment and could predict post-treatment 

OCD severity. Put together, these results lend credence to our hypothesis that the HRF is 

sensitive to brain pathology and interventional treatment. While we have tested this 

proposition in the OCD population, future studies are necessary to explore HRF as a marker 

of pathology and treatment effects in other clinical populations. To this effect, the authors 

have so far explored the HRF as a marker of PTSD [20] and autism [21] pathology.

From the machine learning analysis, we found that pre-treatment HRF data could predict the 

outcome of the intensive 4-week CBT treatment with 86.4% accuracy. More importantly, the 

algorithm determined, in a data driven way, that the RH in the caudate head and thalamus, 

and TTP in the caudate tail were most salient in predicting treatment outcome even before 

the treatment was started.

Implications of our findings

With these findings, we suggest that the resting-state HRF RH in the caudate head and TTP 

in the caudate tail are important for OCD pathology and treatment outcome. RH in the 

caudate head was abnormal before treatment, it changed after treatment, it predicted post-

treatment OCD severity, it was associated with change in OCD severity with treatment and 

lastly it possessed high ability in predicting treatment outcome. TTP in the caudate tail was 

abnormal before treatment, it changed after treatment and lastly it possessed high ability in 

predicting treatment outcome. Although findings from animal [106] and human [107] 

spectroscopic studies have been inconclusive with regard to neurometabolic abnormalities in 

OCD, we observed HRF changes in OCD. Given the relationship between HRF and 

neurometabolites described earlier, our conjecture to explain this disparity is that 

spectroscopic studies focus on specific neurometabolites while the HRF is an aggregate (and 

maybe more robust) measure of multiple neurovascular factors including neuronal activity, 

multiple neurometabolites and neurovascular coupling. In summary, this study provides 

evidence for the utility of the shape of the HRF derived from resting-state fMRI as a marker 

of brain function, pathology and treatment outcome.

In our recent study involving the same participant cohorts [50], network connectivity 

appeared to be less sensitive to baseline abnormalities in OCD, compared with detecting 

changes from CBT. Therefore, connectivity likely identified networks whose changes were 

compensatory in nature rather than representing “normalization” of underlying pathology. 

On the contrary, from the current study, the HRF appeared to possibly be more sensitive to 

baseline abnormalities than to changes with CBT, based simply on the observation that there 

were a larger number of regions and voxels that were significantly different in the former 

case (113 vs. 47 voxels; refer to Table 2). At the very least, this provides evidence that the 

nature of information obtained from the HRF shape is different compared to that obtained by 

functional connectivity analysis of BOLD time series. Nonetheless, the common feature 

between the connectivity and HRF findings was that there was little overlap between the 

regions or networks showing baseline differences (OCD pre-treatment vs. HC) and those 
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showing changes with CBT. This further supports the premise that CBT treatment for OCD, 

at least in the short-term activates largely compensatory mechanisms that are distinct from 

the core neural mechanisms involved in OCD pathology.

The HRF parameters (especially TTP and FWHM) are qualitatively different from 

conventional fMRI-derived measures, and hence might provide novel insights unavailable 

through conventional approaches. FMRI BOLD activation quantifies the relative amplitude 

of brain activity, but not the latency/sluggishness of BOLD response, which is related to how 

quickly the corresponding brain regions are being recruited. This is measured by TTP and 

FWHM, which, as discussed earlier, is modulated by local neurochemistry. While higher 

BOLD signal could result from either larger RH or increased latent neural activity or both, 

looking exclusively at RH allows us to investigate physiological factors other than neural 

firing, such as excitatory/inhibitory neurotransmitter balance, which might contribute 

towards a larger BOLD response. Functional connectivity, which quantifies coactivation, 

also does not directly measure latency. We invite researchers to probe these aspects further 

as additional research is required to confirm these specific observations. The unique 

perspective provided by HRF does not merely arise from which brain regions are implicated 

with HRF differences. Rather, they arise from the fact that activation, connectivity and HRF 

changes tell different things about the underlying mechanism. For example, caudate head is 

implicated in OCD through all of these three approaches (across this and other studies), 

which tells us that OCD involves altered post-synaptic activity (fMRI activation), altered 

neural synchrony with other regions (connectivity) as well as altered neurovascular coupling 

(HRF) in this region. This study was not designed to resolve which of these alterations cause 

which others; in fact, studies in the same participants, rather than across studies with 

different participants, are necessary to directly compare these methods of analyses. However, 

we demonstrate the HRF to be a window into investigating pathology- and treatment-related 

changes, possibly in the same (or different) regions as those implicated by activation and 

connectivity, that may rely on mechanisms that are distinct from those underlying activation 

and connectivity.

Likewise, further research is necessary to assess the interrelationship between the HRF 

parameters. These parameters are generally uncorrelated, although lower RH might possibly 

be associated with larger TTP or FWHM. However, a recent study found lower RH in aging 

and in those with vascular risk but no altered TTP or FWHM in those cases [108]. In our 

study, the majority of regions showing RH changes were not associated with TTP or FWHM 

changes. Within our data, we did not observe significant correlation across subjects between 

whole-brain HRF parameters (see Supplemental Information S9). Despite these 

observations, based on the underlying biophysics, there is sufficient grounds to hypothesize 

a direct relationship between the HRF parameters in healthy adults, as well as a shift in that 

relationship in brain-related illnesses. These questions are open to investigation.

We performed supplemental analyses, which were not central to this study’s hypotheses, yet 

provide some early groundwork for investigation in future studies. First, we assessed the 

relevance of HRF to normal brain function, with the specific case of primary motor function 

(Supplemental Information S2). The difference in RH between the right and left primary 

motor cortices was associated with percentage right handedness. Future studies focusing 
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primarily on the healthy brain are needed to examine possible relationships of the HRF 

shape with other aspects of normal functioning. Second, we assessed the longitudinal 

reliability of HRF. While connectivity dynamics can change in seconds, the HRF is 

reasonably stable over time scales of minutes to hours [1], and perhaps even days/weeks. 

Our supplemental analysis suggested that the HC and OCD-waitlist subset groups (scanned 

twice with no intervening treatment) showed significant, moderate longitudinal reliability 

between HRF parameters obtained 4 weeks apart (see Supplemental Information S3). Taking 

our findings forward in future studies, stability is a necessary condition for use of imaging 

parameters as potential biomarkers of disease [109]. Our results suggest that the HRF has 

promise on this front, although future studies are needed to replicate these results. Third, 

results using fALFF showed highest similarity with RH results, with classification accuracy 

significantly greater than chance although not as high as with the HRF parameters 

(Supplemental Information S4). Future studies could assess the predictive ability of the HRF 

parameters in comparison with other fMRI measures using a larger sample, to assess the 

suitability of the HRF parameters as biomarkers, perhaps augmenting other conventional 

fMRI measures.

There are several implications of these findings, taken together. A general methodological 

implication is that the HRF is an fMRI-derived regional measure that is sensitive to brain 

function, pathology and treatment outcome. Future investigations could probe the 

fundamental relationships between the HRF and other fMRI measures, as well as the 

common and distinguishing characteristics of each of the three HRF parameters. Future 

studies could also utilize this technique to derive novel mechanistic insights into healthy 

brain functioning as well as psychiatric and neurologic disorders. In addition, there are more 

specific clinical implications for the OCD participant sample that we studied. Abnormal RH 

in the caudate head, complementing previous neuroimaging studies’ finding of abnormal 

glucose metabolism, BOLD activity, and regional volumes [105] [86], helps to further 

characterize pathology of this region and circuits involving this region, in OCD. In addition, 

the observation that RH in the caudate head and TTP in the caudate tail “normalize” with 

treatment suggests that this marker of pathology may actually be remediated by CBT. These 

regions are also clinically relevant in that their HRF parameters could predict treatment 

outcome at pre-treatment baseline. Taken together, the most prominent set of findings from 

these analyses that reflect OCD pathophysiology, effects of treatment, and prediction of 

treatment response involve HRF measures in the caudate nucleus. RH in the caudate head 

and TTP in the caudate tail were abnormal before treatment, changed after treatment, and 

possessed strong ability to predict treatment outcome. Additionally, RH in the caudate head 

predicted post-treatment OCD severity and was associated with treatment-related change in 

OCD severity. These findings, if replicated, have direct implications for OCD diagnosis, 

prognosis, tracking treatment progress and mechanistic understanding of the underlying 

neurobiology of OCD.

This study has several limitations. (i) Our sample size was modest. (ii) Our OCD cohort 

included some individuals on medication, which could have influenced the findings; yet, no 

significant HRF differences were found (within the regions identified in this study) between 

medicated and unmedicated individuals, nor between the combined cohort used in this study 

and unmedicated individuals (see Supplemental Information S6). (iii) As typical for fMRI 
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processing, deconvolution of BOLD fMRI only provides analytically best indirect estimates 

of the latent neuronal time series and the ground-truth HRF, while making assumptions 

during the estimation given that events are not defined a priori in resting-state fMRI 

(additional discussion points are provided in Supplemental Information S10). The HRF-

deconvolution utilizes a heuristic scheme to estimate neural events from the time series and 

relies upon temporal shift-invariant linearity of the HRF. While this approach has been 

validated using simulations in previous studies [63] [68] [19], we believe that future 

experimental studies may provide a firm grounding for the deconvolution approach. 

Specifically, in order to know exactly how the estimated data fits the ground truth, one 

would have to invasively measure the hemodynamic response to a single neural event while 

simultaneously acquiring fMRI data [27] [110] [111]. Alternatively, event-related task fMRI 

could be employed [74] (however, see Supplemental Information S10 for issues in using 

event-related task fMRI versus using resting-state fMRI for estimating the HRF). While such 

an endeavor is outside the scope of this paper, such future studies are needed in order to 

make stronger conclusions about links between HRF morphology and pathology. (iv) We 

tested multiple hypotheses in this study and compared across multiple groups and 

longitudinal time points. As such, we performed a high number of statistical tests, despite 

corrections. This renders the study still rather exploratory. (v) By performing a 6-fold cross-

validation, only 5/6th of the participants (i.e. 37 OCD participants, randomly different ones 

in each iteration) were used as training data during machine learning classification. A 

smaller sample size is often associated with higher likelihood of over-fitting [112]. Our 

sample size (NOCD=44) was not large enough for us to use some participants for feature 

selection (using training-testing as done in this study) and the remaining participants as a 

separate hold-out validation set for assessing model performance. We performed feature 

selection and model validation using the entire sample, although cross-validation was 

performed. Future studies with larger samples would enable a left-out validation sample to 

be used. (vi) This study was based on resting-state fMRI, which does not necessarily 

generalize to HRF changes during controlled task experiments [113]. (vi) Unlike RH, the 

temporal resolution of fMRI matters significantly more for accurate estimation of TTP and 

FWHM, since the resolution of these measures is limited by the repetition time (TR) of 

fMRI acquisition. At TR = 2 seconds, our study had relatively low temporal resolution. This 

could result in an inability to detect true group differences as well as associations of TTP 

and FWHM with clinical variables (if they exist). We suggest readers to view negative 

observations regarding TTP and FWHM in this light; we recommend future researchers to 

study this problem with HRF parameters obtained from data with better (sub-second) 

temporal resolution. Newer multiband pulse-sequences with higher temporal resolution may 

mitigate this HRF temporal resolution limitation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig.1. 
A putative biophysical model of neurovascular coupling illustrating neural signaling 

mechanisms which might control the shape of the HRF (adapted from [43]).
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Fig.2. 
The hemodynamic response function (HRF) with its three parameters: response height, time-

to-peak and full-width at half maximum.
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Fig.3. 
Data acquisition time-flow diagram
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Fig.4. 
Hemodynamic response function (HRF) findings for baseline healthy control > OCD pre-

treatment comparison (a-b), and OCD post-treatment > pre-treatment comparison (c-d). (a) 
Brain regions with significant group differences in response height (RH) of the HRF. 

Thalamus (primarily pulvinar), caudate head, cuneus and superior parietal regions were 

abnormal in OCD before treatment, (b) Brain regions with significant group differences in 

time-to-peak (TTP) of the HRF. The caudate tail and supplementary motor area were 

abnormal in OCD pre-treatment. The color bars correspond to the T-values. Table 2 provides 

the coordinates, cluster volumes and statistics for these findings. (c) Brain regions with 

significant differences in HRF RH with treatment in OCD. Bilateral precuneus showed 

changes in the OCD group after treatment, (d) Brain regions with significant differences in 

TTP with treatment in OCD. The caudate tail showed changes in OCD post-treatment. The 

color bars correspond to the T-values. Table 2 provides the coordinates, cluster volumes and 

statistics for these findings. Pairwise T-tests with FWHM were not performed since it did not 

display significant group×time interaction (see Fig.S2 for FWHM ANOVA results).
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Fig.5. 
HRF RH in the caudate head and TTP in the caudate tail were significantly lower in OCD at 

baseline and significantly increased with CBT treatment. Figures show the corresponding 

HRFs (averaged across subjects) and boxplots. Caudate head (top row, a-c): (a) HRFs at 

baseline in OCD and controls, (b) HRFs before (session-1 or S1) and after (S2) treatment in 

OCD, (c) boxplot showing lower RH in OCD at baseline and increased RH with treatment 

(OCD S2 and controls S2 were not significantly different). Caudate tail (bottom row, d-f): 

(d) HRFs at baseline in OCD and controls, (e) HRFs before and after treatment in OCD, (f) 
boxplot showing lower TTP in OCD (median=2s) at baseline and increased TTP with 

treatment (median=4s) (OCD S2 and controls S2 were not significantly different). In the 

boxplots, red line is the median, the box extends from 25th to 75th percentile, the dashed 

lines extend from minimum to maximum excluding outliers and the red ‘+’ are the outliers. 

Note that since TR=2s, TTP could only assume values of multiples of 2s. For controls S1, 

controls S2, and OCD S2, TTP mostly assumed a value of 4s, because of which the 

interquartile range and median were 4s (blue lines and red line all coincide at 4s in the 

figure). In OCD S2, TTP predominantly assumed a value of 2s.
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Fig.6. 
Associations between the hemodynamic response function (HRF) parameters and OCD 

severity measured by the Yale-Brown Obsessive Compulsive Scale (YBOCS) in the caudate 

head. (a) Association between the percentage change in HRF response height (RH) with 

treatment (i.e. post-treatment minus pre-treatment RH) and the percentage change in 

YBOCS score with treatment. Larger increases in RH with treatment were associated with 

larger decreases in OCD severity. R=−0.4396, R2=0.1932, P 0.0028. (b) Association 
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between RH pre-treatment and OCD severity post-treatment. Higher RH before treatment 

was associated with lower OCD severity after treatment. R=−0.4790, R2=0.2294, P= 0.0010.
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Table 1.

Demographics, clinical variables and comorbidities

Healthy Controls (N=25) OCD (N=44)
P-value

Mean ± SD)

Demographics

Age (years) 30.76 ± 11.77 33.61 ± 11.20 0.32 
a

Sex (male/female) 14/11 23/21 0.77 
b

Education (years) 15.40 ± 2.24 15.68 ± 2.36 0.63 
a

Clinical variables

Handedness (percent right handed) 85 ± 19.83 86.6 ± 19.39 0.75 
a

YBOCS (pre-treatment) N/A 24.45 ±4.66

YBOCS (post-treatment) N/A 14.93 ±5.18

HAMA (pre-treatment) 1.32 ± 1.22 12.23 ±5.44 < 0.001 
a

HAMA (post-treatment) 1.08 ± 1.32 8.20 ± 5.13 < 0.001 
a

MADRS (pre-treatment) 1.08 ± 1.22 15.09 ± 9.46 < 0.001 
a

MADRS (post-treatment) 0.72 ± 1.14 10.61 ± 8.89 < 0.001 
a

a
The P-value was obtained by a two-sided t-test

b
The P-value was obtained by a chi-squared test

OCD: obsessive-compulsive disorder; YBOCS: Yale-Brown obsessive-compulsive scale

MADRS: Montgomery-Ăsberg depression rating scale; HAMA: Hamilton anxiety rating scale
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