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Abstract 

In this paper, invariant metrics are constructed for 
Hamiltonian systems. These metrics give rise to norms 
on the space of homeogeneous polynomials of phase-space 
variables. For an accelerator lattice described by a Hamil
tonian, these norms characterize the nonlinear content of 
the lattice. Therefore, the performance of the lattice can 
be improved by minimizing the norm as a function of pa
rameters describing the beam-line elements in the lattice. 
A four-fold increase in the dynamic aperture of a model 
FODO cell is obtained using this procedure. 

I. INTRODUCTION 

Given an accelerator lattice, various correction schemes 
(lumped correctors, shuffling of magnets etc.) can be used 
to improve its performance. However, to be able to imple
ment these schemes, it is essential to have a "merit func
tion" (depending on the parameters describing the beam
line elements) that can be minimized to produce the opti
mal lattice. This merit function should be a reliable mea
sure of the nonlinearilty of the lattice since it is nonlinear 
effects that degrade the performance of the lattice and it is 
these effects that have to be minimized. In this paper, we 
propose a merit function satisfying the above criteria. This 
function will turn out to be a positive definite symmet
ric bilinear form invariant under the action of the unitary 
group U(3). 

We restrict ourselves to accelerator lattices described 
by a (nonlinear) Hamiltonian in a six-dimensional phase 
space. Given such a system, an equivalent description is 
provided by the following one-pass or one-period symplec
tic map[1] 

(1) 

Here, the 6 x 6 matrix !If characterizes the linear part 
of the map and the Lie transformations e:f m: characterize 
the nonlinear part. The operator : f m: is the Lie operator 
corresponding to the homogeneous polynomial fm ( z) of 
degree m in the phase-space variables z; (i = 1, 2, ... 6). 

*Work supported in part by the U.S. Department of Energy 

The polynomial fm(z) can be expanded as follows: 

(2) 

where we have used Einstein's summation convention. 
Here P~m)(z) denotes the following mth degree basis 
monomial 

The monomials are ordered using the index a[2]. The sum
mation over a in Eq. (2) extends from 1 to N(m) where 
N(m) is given by the relation[3] 

(4) 

In this paper, we will construct a symmetric positive def
inite bilinear form on the space spanned by homogeneous 
polynomials of degree m in phase-space variables. This 
will enable us to define a norm on this space. This norm 
will also be invariant under the action of the unitary group 
U(3). Since the nonlinear part of a symplectic map is spec
ified by homogeneous polynomials, a norm defined on the 
space of homogeneous polynomials can be used to quan
tify the nonlinear content of the map (or equivalently the 
lattice). Moreover, the norm is a function of parameters 
specifying the beam-line elements of the accelerator lattice 
under consideration. Therefore, one can vary these pa
rameters so as to minimize this norm. This should lead to 
improvements in performance of the lattice. This is shown 
to be true for a model FO DO cell later in the paper. 

II. CONSTRUCTION OF INVARIANT 
METRICS 

We start by defining a bilinear form ui';) as follows 

(5) 

where (P~m)(z) , P~m)(z) ) denotes a bilinear form defined 
on the space of basis monomials of degree m. We require 
the bilinear form to be symmetric and positive definite so 
that it can be used to define a norm on this space. 



Ideally, we would also require 9~;) to be invariant under 
the action of all symplectic maps. Then, we would obtaih 
a metric as unique as possible. However, this turns out to 
be impossible. The set of all symplectic maps forms a non
compact Lie group[1]. It can be shown that such groups 
can not have invariant metrics[4]. Only compact groups 
can have such metrics. Therefore, we are forced to impose 
a more modest requirement that the metric be invariant 
under the action of the largest compact subgroup of the 

symplectic group. We will require that g~~) be invariant 
under the action of the compact unitary group U(3). 

We define the bilinear form (P~m)(z) , Pt)(::) ) as 
follows[3]: 

(P~m)(z) , P~m)(z) ) = r;m j clrh p}xm)(z) Pt'\z) , 

(6) 
where d05 is the solid angle for the 5-sphere and 1·2 = 
qi +PI + · · · + P5· We show that it is invariant under the 
action of U(3). Consider the following expression 

(UPJxm)(z), (J pf3(rn)(z)) = ~ j dOs p~m)(U z)Pf3(m\U z). 
r-rn 

(7) 
Here, (J is the Lie transformation corresponding to the ele
ment U belonging to U(3)[3]. We change to a new variable 
z' defined to be equal to U z. Since the solid angle d05 is 
invariant under the action of U(3), we obtain the relation 

(U pfxm)(z) , (J PJm)(z) ) = r;rn j dOs p~m)(z')P~rn)(z') 
(8) 

Since U was an arbitrary element of U(3), we get the de
sired result 

(Pim\::) , P~m)(z) ) (9) 

V U E U(3). ·(10) 

It is easily seen from the definition that this bilinear form 
is symmetric. Obviously, it is also positive definite. Hence, 
Eq. (6) gives a valid invariant metric. 

This invariant metric can be evaluated as follows. Con
sider the following equation 

(11) 

This is seen to be correct since we have merely reexpressed 
the infinitesimal volume element d6 z in terms of the radius 
vector rand solid angle d05 . Inserting Eq. (6) in Eq. (11), 
we obtain the relation 

f d6 _,.2p(m)(") p(m)(") 
(m) (m) - z e a - (3 "' 

(Pa (z) , Pf3 (z) ) - J dl·e-r2r2m+5 

(12) 
Both the numerator and the denominator can now evalu
ated easily [3]. 
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Using the above construction, we obtain the following 
expression for 9~3) (we do not list entries below the diago
nal; we also restrict ourselves to the four-dimensional case 
due to lack of space): 

(3) 
9; i C1 i = 1, 11, 17, 20, 

(3) 
9i i C2 i = 2,3,4,5,8, 10,12,13,14,16,18,19, 

(3) 
9; i c3 i = 6, 7, 9, 15, 

(3) (3) (3) (3) 
c2, 91 5 91 8 91 10 92 11 

(3) (3) (3) (3) 
93 17 g4 20 9n 14 gll 16 c2, 

(3) 
g12 17 

(3) 
913 20 

(3) 
g17 19 

(3) 
918 20 c2, 

(3) 
g2 14 

(3) 
g2 16 

(3) 
93 12 

(3) 
g3 19 C3, 

(3) 
g4 13 

(3) 
g4 18 

(3) 
9s 8 

(3) 
9s 10 C3, 

(3) 
98 10 

(3) 
gl2 19 

(3) 
9t3 18 

(3) 
914 16 C3. 

Here the indices 1, 2, ... 20 represent monomials q~, qrp1, 
2 2 2 2 232 q1q2, q1p2, q1p1, q1p1q2, q1P1P2, q1q2, q1q2p2, q1p2,pl,p1q2, 

PiP2, P1 q~, P1q2P2, P1P~, q~, q~p2, q2p~, and p~ respectively. 
And the constants c1, c2, and c3 have the following values 

C1 = 5/64, C2 = Ct/5, C3 = C1/15. (13) 

III. CONSTRUCTION OF NORMS 

Using the metric defined above, we now define a norm on 
the space of homogeneous polynomials of degree m. This 
norm can then serve as a merit function that can be used 
to minimize nonlinearities of degree m. 

Each metric 9~;) gives rise to a norm on the space of 
homogeneous polynomials of degree m. Consider a general 
homogeneous polynomial of degree m denoted by f m. We 
are interested in obtaining a norm for storage ring lattices. 
Since the emittances in the three degrees of freedom can 
be quite different, we normalize them by factoring out the 
betatron functions. This is achieved by going to the so
called normal form[1] of the linear part M of the map M. 
Let A be the symplectic transformation that takes M into 
its normal form N i.e. 

N = AMA- 1 (14) 

where N is a block-diagonal matrix with 2 x 2 blocks on 
the diagonal[5]. Applying the transformation A to the map 
.M, we obtain the result 

N2 = AA1A- 1 = AMA- 1 Ae'h'e:f•: . .. e'fm: ... A- 1 . 

(15) 
Using Eq. (14),we get the relation 

•t - Ne'f~':e:f!': e'f;:.: ./V2- .. • ... (16) 

where[1] 
1::: = Afm(z) = fm(Az). (17) 

Since A depends on M, the J;.:.'s also now depend on the 
linear part of the map. These transformed fm 's can be 
reexpressed in the original basis as follows 

(18) 

"' ; \ 
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We are now in a position to define a norm on the space 
of homogeneous polynomials 

Using Eq. (5), we get the following result 

11/mll = (g~~) b~m)b~n))! · (20) 

From the above equation, we see that the norm llfmll is 
a function of parameters characterizing the beam-line el
ements in the accelerator lattice that we started out with 
(since the coefficients b~n) are deterrnined by these param
eters). Therefore, one can think of varying these parame
ters so as to minimize this norm. Since the norm quantifies 
the nonlinear content of the lattice, this may lead to im
provements in the performance of the system. vVe also note 
that llfm 11 2 is a positive definite quadratic function of the 
strengths of the rn-th order multipoles (e.g. llhW is such a 
function of the sextupole strengths). Hence llfmll 2 is guar
anteed to have an unique global minimum as a function of 
these multipole strengths. 

IV. EXAMPLE 

In this section, we study a model FODO cell with sys
tematic sextupole errors to illustrate the utility of the in
variant metric. The FODO cell consists of the following 
elements: a thin-sextupole corrector, a drift, a focusing
quadrupole with fringe fields and sextupole error, a drift, 
a thin-sextupole corrector, a drift, a defocusing-quadrupole 
with fringe fields and sextupole error, a drift, and finally, 
another thin-sextupole corrector. 

First, we turn off the correctors and compute the norm 
ll!all2 in a four-dimensional phase space. It has a certain 
value ( ~ 400 in our case). Next, we set the corrector 
strengths by minimizing the norm. The minimum is found 
to correspond roughly[6] to setting the corrector strengths 
according to Simpson's rule (i.e. the three strenghts are in 
the ratio 1:4:1)[7]. For this setting, the value of ll!all2 is re
duced (from the uncorrected case) by almost two orders of 
magnitude. To verify that third order nonlinearities have 
actually been reduced in magnitude, the dynamic aperture 
of the FODO cell was computed for these two cases. The 
dynamic aperture for the corrected case was found to be 
larger by a factor of four. 

V. SUMMARY 

In this paper, we constructed invariant merit functions 
for accelerator lattices described by Hamiltonians. These 
metrics were used to define norms on the space of ho
mogeneous polynomials of phase-space variables. These 
norms quantify the nonlinear content of the accelerator lat
tice. They can be minimized as a function of parameters 
describing the beam-line elements to improve the perfor
mance of the lattice. Finally, we considered a model FODO 

cell with sextupole errors. By minimizing the third degree 
norm using correctors, we obtained a four-fold increase in 
the dynamic aperture. 

3 

VI. REFERENCES 

[1] A. J. Dragt, in Physics of High Energy Particle Ac
celerators, edited by R. A. Carrigan, F. R. Huson, 
and M. Month, AlP Conference Proceedings No. 87 
(American Institute of Physics, New York, 1982), p. 
147; see also A. J. Dragt et. al., Annu. Rev. Nucl. 
Part. Sci. 38, 455 (1988). 

[2] One possible indexing scheme can be found m A. 
Giorgilli, Comp. Phys. Comm. 16, 331 (1979). 

[3] G. Rangarajan, Ph. D. thesis, UniversityofMaryland, 
1990. 

[4] J. F. Cornwell, Group Theory in Physics, volumes 1 
and 2 (Academic Press, London, 1984). 

[5] We note that in going to the normal form, we have 
"used up" the non-compact part of the symplectic 
group Sp(6,R) and we are left only with the compact 
subgroup. 

[6] Due to lack of a proper optimizer routine, we did not 
make a global search for the minimum. In this case, 
we already knew what the approximate minimum was 
supposed to be from theoretical considerations. See 
Ref. [7] below. 

[7] D. Neuffer and E. Forest, Phys. Lett. A 135 197 
(1989). 



--· ~ 
LAWRENCE BERKELEY LABORATORY 

UNIVERSITY OF CALIFORNIA 
INFORMATION RESOURCES DEPARTMENT 

BERKELEY, CALIFORNIA 94720 

·- -. "-




