
UC Merced
UC Merced Electronic Theses and Dissertations

Title
Improving Semantic Segmentation for Autonomous Vehicles using Synthetic Images

Permalink
https://escholarship.org/uc/item/64m8j3vr

Author
Divecha, Mehul

Publication Date
2019

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/64m8j3vr
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
Merced

Improving Semantic Segmentation for
Autonomous Vehicles using Synthetic Images

A Master Thesis submitted in partial satisfaction
of the requirements for the degree of

Master of Science

in

Electrical Engineering and Computer Science

by

Mehul Divecha

Committee in Charge:

Professor Shawn Newsam, Chair

Professor Ming-Hsuan Yang

Professor Mukesh Singhal

May 2019



Improving Semantic Segmentation for Autonomous Vehicles using Synthetic

Images

Copyright © 2019

by

Mehul Divecha



The Master Thesis of Mehul Divecha is approved and it is acceptable
in quality and form for publication on microfilm and electronically:

Professor Mukesh Singhal

Professor Ming-Hsuan Yang

Professor Shawn Newsam, Chair

University of California, Merced

2019



To my family and friends for their endless

support and patience.



Acknowledgements

I would like to thank my advisor Prof. Shawn Newsam for the continuous

support during my Master’s and related research for his guidance, patience and

knowledge. His invaluable advice helped me immensely during all the steps of my

research, the writing of my thesis as well other facets of my academic career.

I would like to thank the rest of my thesis committee: Prof. Ming-Hsuan Yang

and Prof. Mukesh Singhal, for their comments and opinions.

I would like to thank my family and friends for their never ending support and

immense patience throughout writing this thesis and my education.



Abstract

Improving Semantic Segmentation for Autonomous Vehicles

using Synthetic Images

Mehul Divecha

With the prevalence of Advanced Driver’s Assistance Systems (ADAS) and

a surge in interest in autonomous vehicles, it has become important that the

computer vision modules that make up these systems understand their natural

surroundings and react appropriately to changes. A key aspect to understanding

such natural scenes is to identify the locations and bounds of the objects present

in the scene. Semantic segmentation is one to way to approach this problem.

With the rise of deep learning techniques, there has been a tremendous progress

in semantic segmentation with great improvements in quality and performance.

However, one down-side of most deep learning methods is the requirement of a

large set of annotated data. This becomes very cumbersome when it comes to

segmentation problems, since they require pixel level annotations. Another issue

that arises is that of a domain gap introduced when deploying a model on data

that is different from what it was trained on. In this thesis we tackle the first

issue by leveraging a practically unlimited source of annotated in the form of

game engines and virtual environments. We then transform the data thus derived



to have a more photo-realistic look matching their real-world counterparts, thus

aiming to solve the second issue. We describe the process we have employed to

transform the synthetic looking images to look as close to the real-world images

as possible and show that there are significant gains to be had by adopting such

a method.
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Chapter 1

Introduction

With the advent of autonomous vehicles, the need for understanding natural

scenes has become quite critical. Autonomous vehicles, particularly self-driving

cars, need to be able understand and recognize their immediate surroundings,

both with very high accuracy as well as in a timely manner.

An autonomous car drives in a world that is very complex and dynamic. It

not only has a short time to react to the changes in the environment, but it needs

to be very accurate in identifying the changes. Compromise in either its ability

to react in time or correctly recognize its surrounding can lead to life-threatening

situations.

Up until a few years ago, it was deemed impossible to build a self-driving

car that relied solely on vision. Hence, approaches that complemented vision with

1



Chapter 1. Introduction

(a) (b)

Figure 1.1: (a) Stanley possesses five laser sensors mounted at five different angles and

angled downwards. These sensors scan the terrain in front of the vehicle as it moves.

(b) Each of the laser sensor acquires a point cloud across multiple scans and over time.

This point cloud is then analyzed for drivable terrain and potential obstacles.

other modalities were tried and found to be successful. Stanley [29] was one of the

first successful self-driving cars that heavily relied on LIDAR for its navigation.

LIDAR works by mapping the environment by measuring the reflected pulses

of a laser. This technique generates a point cloud that gives a depth estimate

of surrounding objects. An illustration of this process in Stanley is shown in

Fig 1.1. However, it’s not without shortcomings. Apart from the high costs

of deploying and maintaining the hardware, it’s also expensive to analyze point

clouds. Additionally, reflections, rain and snow make LIDAR data too noisy to
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Chapter 1. Introduction

be effectively analyzed. Also, LIDAR data is sparse when compared to the dense

data that cameras generate.

In recent years, with the advent of deep learning, it has become quite feasible to

accurately and effectively process large amount of visual data. Deep learning has

shown to outperform classical techniques in many areas like image classification,

object detection, object recognition and semantic segmentation [16], [10], [23],

[22], [4], [9]. Natural scene understanding relies heavily on semantic segmentation

to achieve its goal. The goal of semantic segmentation is to classify each pixel

in an image and label it with a category. In a way, semantic segmentation can

be thought of as a dense classification problem applied to each pixel of an image

instead of the entire image at once.

Although deep learning outperforms traditional methods in many applications,

one requirement for its success is that it needs a large amount of training data, an

order of magnitude higher than what was traditionally needed. This is because

models in deep learning have higher model complexity. This needs a large amount

of data to act as regularizer [1]. For supervised learning problems like classification

or segmentation, this means that this large amount of data needs to be annotated.

This becomes a very labor intensive task for semantic segmentation as it needs

ground truth annotations for every pixel in the image, for all such images in a

dataset.

3



Chapter 1. Introduction

In this work, we adopt a methodology of training a segmentation model on

synthetic data and then testing its performance on real world data. There often

exists a domain gap between the training and test dataset. This occurs because

the synthetic data have a significant difference in their visual appearance than

the real world. To achieve optimum performance, the domain gap needs to be as

small as possible. One way to achieve that is by transforming the synthetic data

to have more photorealism and look more like the real world data.

In this work, we utilize some recent advances in Generative Adversarial Net-

works to transform synthetic images to be photorealistic, and then using these

as training data for segmentation models. The idea here is to make use of the

practically infinite amount of synthetic data available to us instead of the finite

and hard to obtain real world data. Once we have obtained photorealistic training

data, where the domain gap between train and test data is as small as possible, we

train segmentation models using this transformed data and its annotations only.

This saves us the need of compiling annotated real world training data.

Synthetic data for computer vision problems is primarily obtained by modify-

ing games or building simulators that generate annotations readily. At the heart

of these are game engines, like Unity [30] and Unreal [6] that render the graphics

and provide object placement and depth information. A variety of ground truth

data can be generated. For example, CARLA [5] can generate segmentation and

4



Chapter 1. Introduction

depth maps and virtual LIDAR data, apart from vehicle telemetry and virtual

GPS. For image segmentation, we are primarily interested in segmentation maps

that associate each pixel with a class or an instance of a class.

The rest of the thesis is organized as follows. In chapter 2, we discuss datasets

used for evaluations, wherein we describe datasets gathered in real world and

annotated manually as well as datasets generated in virtual environments with

automatic annotations. Chapter 3 discusses the relevant models utilized in this

work. Section 3.1 talks about the primary segmentation model, DeepLab-v3+,

briefly discussing its architecture and some of its components that are relevant

to this work. Section 3.2 discusses UNIT, the framework we use to transform

synthetic image data to look more photorealistic. The section also gives a brief

overview of some of the recent developments in generative modeling such as Vari-

ational Autoencoders and Generative Adversarial Networks. Chapter 4 discusses

the methodology and the results of this work and finally we conclude with a

summary and future work in Chapter 5.

5



Chapter 2

Datasets for Urban Scene

Understanding

2.1 SYNTHIA dataset

SYNTHIA (SYNTHetic collection of Imagery and Annotations) has been gen-

erated to aid semantic segmentation with a specific emphasis on autonomous

driving problems. Although specifically targeted towards semantic segmentation,

it is also useful for other ADAS (Advanced Driver’s Assistance System) and au-

tonomous driving tasks, like object recognition, place identification and change

detection.

6



Chapter 2. Datasets for Urban Scene Understanding

Figure 2.1: Sample of images from SYNTHIA dataset

The dataset contains images that are individual frames rendered from a virtual

city. The labels are pixel level semantic annotations for 13 classes in all. Fig 2.1

shows the 13 classes, which are: sky, building, road, sidewalk, fence, vegetation,

lane-marking, pole, car, traffic signs, pedestrians, cyclists and miscellaneous. Each

of the frame has an associated depth map. The frames are acquired from different

locations and viewpoints, with up to eight viewpoints per location.

2.1.1 Virtual World Generator

The frames for SYNTHIA have been rendered in a virtual urban environment

that has been created using the Unity game engine [30]. The environment has

been modeled after typical cities that includes some of the most common and

frequently observed elements like people, shops, parks and gardens, vegetation,

streets and blocks, lane markings, traffic signs, pavements, lamp poles, highways

and rural areas. These elements form the basic building blocks for the virtual

environment that can be combined in any different manner as suited to create

7
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new scenes, and the annotations for each are obtained at no additional labor

or computational expense. Even the basic properties of each element, such as

color, shape and texture, can be individually controlled to create unique looks

and improve variability of the data.

SYNTHIA attempts to achieve photorealism by a variety of means to get the

virtual environment to look as real as possible. Firstly, the virtual world can be

modelled to have four different seasons for varied appearances, with snowy winters,

sunny summers, wet rainy season and flowery spring. A dynamic illumination

engine can produce different illumination conditions, which models different times

of the day, like noon and dusk, in addition to days that are sunny and cloudy.

Additional realism is added by the engine by simulating realistic shadows cast by

the clouds and other objects in the scene

2.1.2 SYNTHIA-Rand and SYNTHIA-Seqs

SYNTHIA comprises of two datasets: SYNTHIA-Rand and SYNTHIA-Seqs.

The images have a resolution of 960× 720 pixels and a horizontal field of view of

100◦. SYNTHIA-Rand consists of 13400 frames and was generated by an array

of virtual cameras randomly spread across the city. Several frames correspond to

a single camera location, each with different elements in the scene, textures for

each element and illumination of the scene.
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Figure 2.2: Sample from Cityscapes dataset

SYNTHIA-Seqs consists of four video sequences obtained from driving around

a virtual car in the environment across different seasons. Each sequence has about

50,000 frames, thus comprising of 200,000 frames in total. The virtual platform for

acquisition comprises of 8 cameras mounted on various locations of the car with

overlapping field of view to create a 360◦ view of the scene. Each of the cameras

also has an associated depth sensor that is aligned with the camera center and

has a range of 1.5m to 50m. A dynamic behavior for the virtual vehicle is created

when it interacts with other dynamic elements of the environment like pedestrians

and other vehicles.

2.2 Cityscapes dataset

Cityscapes is a large-scale dataset captured in real world setting, with the goal

of providing a rich set of data for semantic segmentation and scene understanding.
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2.2.1 Data specifications

Cityscapes comprises of several hundreds of thousands of frames acquired from

a moving vehicle spanning 50 cities in Germany as well as neighboring countries.

The duration of acquisition ranges over several months and encompasses the sea-

sons of spring, summer and fall. The dataset lacks representation for adverse

weather conditions such as heavy rain or snow, as the authors believe that would

require specialized techniques and datasets.

The recording of the images was done using an automotive grade stereo camera

at a frame rate of 17 Hz. With the sensors mounted behind the windshield, the im-

ages are high dynamic range with 16 bits color depth. Furthermore, these images

were converted to 8-bit low dynamic range by applying a logarithmic compression

curve, to provide comparability and compatibility with existing datasets. 5000

images were chosen from 27 cities for dense pixel level annotation, with the aim

of providing high diversity of foreground objects, background and overall scene

layout. Every 20th frame of a 30 frame video snippet was selected for such anno-

tation. Another 20,000 images in total were obtained from the remaining 27 cities

by coarsely annotating an image for every 20m of driving distance. Apart from

the images and their corresponding annotations, other information provided by

the dataset includes vehicle odometry from in-vehicle sensors, outside temperature

and GPS tracks.

10
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2.3 GTA5 dataset

While SYNTHIA attempts to generate training data by creating a virtual envi-

ronment it can compose and control, it falls short when it comes to photorealism.

The lack of photorealism increases the domain gap between the training and the

target datasets. [25] attempt to solve the issue by leveraging the photorealistic

environments present in commercial games, particularly Grand Theft Auto 5, ab-

breviated as GTA5. GTA5 [7] is an open world simulation game with a variety of

driving scenarios where the rendering engine creates convincing and photorealistic

looking frames. Figure 2.3 shows a sample from the dataset created, henceforth

known as GTA5 dataset. Below we briefly describe the acquisition and annotation

procedure adopted in [25] to create the dataset.

2.3.1 Data acquisition

Since GTA5 is a commercial game and not open-source, it is not easy to access

its internal game engine content. However, there are ways in which it is possible

to intercept the communication between the game and GPU and make use of this

information in constructing a dataset. Particularly, the authors use a technique

called detouring [11] wherein they create a wrapper around the system graphics

API and intercept the calls being made by the game. A wrapper implementing

11
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(a) Images (b) Segmentation

Figure 2.3: Sample of images in GTA5 dataset

such detouring is RenderDoc [12] which the authors utilize to access the game

data. For every 40th frame in the game, the authors intercept the calls made to

12
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graphics subsystem and collect all the resources that is relevant for annotation

and to reproduce the frames, particularly the meshes, textures and shaders used

internally to render it. The resources associated with the mesh, texture and shader

are hashed to create a 128-bit key of their memory locations. These hashes are

used to uniquely identify the usage of these resources across different frames. To

associate these resources to each individual pixel in the frame, a two pass approach

is taken: 1) In the first pass, a color image and its associated buffers are created,

similar to how the frame is rendered in the game, 2) and in the second pass each

pixel then stores the resource ID of mesh, texture and shader that designate the

scene element at that pixel.

The images thus obtained are then decomposed into patches that share a com-

mon mesh, texture and shader combination. These patches resemble superpixels,

though they have some advantages over superpixels: 1) The patches are associated

with the underlying surface in the scene and such surfaces can be easily linked

across different images, 2) the patches are edge accurate, that is, their boundaries

coincide with that of the semantic class and the instance of that class exactly, and

3) the metadata associated with each patch can be used to propagate labels across

instances of object that may not share the same mesh, texture and shader combi-

nation. To speed up the annotation process, associative rule mining is performed

to identify statistical regularities between a resource and a semantic class. The

13
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final step in the annotation process is manual labeling the patches and grouping

the patches that belong to a single instance together. This is done via an inter-

active interface created by the authors. The first frame takes longer to annotate

since the patches are very granular, however, once it is done, the annotation tool

propagates these labels to the subsequent frame.

14



Chapter 3

Models for Semantic

Segmentation

3.1 DeepLab-v3+

In this section we discuss the DeepLab-v3+ architecture that forms the basis

of our evaluation. DeepLab-v3+ [4] builds upon previous similar architectures,

also called DeepLab ([2], [3]). It is based on a family of architectures called

encoder-decoder architectures.

As shown in Figure 3.1, a decoder module is coupled with the encoder module

to recover detailed object boundaries. The output of DeepLab-v3+ encodes rich

15
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Figure 3.1: Representation of the DeepLab-v3+ architecture. The encoder applies

atrous convolution at multiple scales to encode multiscale contextual information. The

decoder is a simple yet effective module that refines the segmentation results along

object boundaries.

semantic information, which the atrous convolution allows us to extract encoder

features from, at various scales.

Atrous convolution generalizes standard convolution operation and allows us

to adjust the filters’ field-of-view in order to capture multiscale information. For

an input feature map x, output feature map y, convolution filter w and for each

location i in y, atrous convolution is applied as follows:

y[i] =
∑
k

x[i+ r · k]w[k]

16
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(a) Depthwise conv. (b) Pointwise conv. (c) Atrous depthwise conv.

Figure 3.2: A 3× 3 depthwise separable convolution is composed of a (a) a depthwise

convolution, which applies a single filter for each input channel and (b) a pointwise

convolution, which combines the outputs from depthwise convolution across channels.

The authors discuss atrous separable convolution where atrous convolution is adopted

in the depthwise convolution. (c) shows atrous separable convolution with rate = 2.

where r is the stride with which the input is sampled. Standard convolution is a

special case in which r = 1. By changing r, we can adaptively modify the filters’

field-of-view.

To reduce computational complexity, DeepLab-v3+ uses depthwise separable

convolution. Depthwise separable convolution factorizes a standard convolution

into a depthwise convolution followed by a pointwise convolution, that is, it first

applies spatial convolution to each channel independently and then performs a

pointwise convolution to combine these outputs. Figure 3.2 illustrates this process.

DeepLab-v3+ uses atrous convolution for depthwise convolution and the result-

ing convolution is referred to as atrous separable convolution. Atrous separable

17
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convolution have been shown [3] to significantly reduce computational complexity

without sacrificing performance.

In the DeepLab-v3+ encoder, atrous convolution is very effective in extracting

features at multiple resolutions. If we refer to the ratio of input resolution to the

final output resolution as output stride, then for the task of image classification,

the stride is usually 32, as the final maps feature maps are often 32 times smaller

than the input resolution. For the task of semantic segmentation, since we need

denser feature extraction, we adopt an output stride of either 16 or 8. This can be

done removing the striding in the last blocks and applying the atrous convolution

correspondingly. In addition, DeepLab-v3+ augments the Atrous Spatial Pyramid

Pooling module, which probes convolutional features at multiple scales by applying

atrous convolution, with the image-level features [20]. The penultimate layer in

the encoder (the one before the logits) is used as the encoder output. It consists

of 256 channels and is rich in semantic information. Moreover, depending on

the computational budget, features can be extracted at arbitrary resolution by

applying the atrous convolution.

The encoder features from DeepLab-v3+ are usually computed with an output

stride of 16. In [3], a very simple decoder module is constructed by bilinearly

upsampling the features by a factor of 16. This naive decoder module fails to

successfully recover segmentation details for the objects. DeepLab-v3+ introduces

18
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a simple and effective decoder module, as shown in Fig 3.1. It works by first

bilinearly upsampling the encoder features by a factor of 4 and then concatenating

them with the corresponding low level features of the same spatial resolution from

the backbone network. Since the low level features often contain a large number

of channels (e.g., 256 or 512), this may make training harder by outweighing the

importance of the semantically rich encoder features. This has been mitigated in

the decoder by 1 × 1 convolution on the low level features to reduce the number

of channels. Once the above mentioned concatenation is done, 3× 3 convolutions

are applied to refine the features followed by one more bilinear upsamplings by

a factor of 4. The authors demonstrate that using an output stride of 16 for the

encoder module provides a good balance between speed and accuracy.

3.2 Unsupervised Image-to-image Translation

Image-to-image translation is a class of problems where in images from one

domain are “translated” to look like images from another domain. Although it is

easier in the supervised regime, wherein a pair of images from the two domains

are chosen manually, the problem of image-to-image translation becomes difficult

when we need to transform distributions in an unsupervised manner. If we con-

sider X1 and X2 to be image domains, then in supervised image-to-image trans-
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Figure 3.3: (a) Illustration of the shared latent space assumption. It is assumed that a

pair of corresponding images (x1, x2) in two different domains X1 and X2 can be mapped

to a same latent code z in a shared latent space Z. Here, the images are mapped to

latent codes by two encoding functions E1 and E2. The latent codes are mapped to

images by two generation functions G1 and G2. (b) Illustration of UNIT framework.

To implement the shared latent assumption, E1, E2, G1 and G2 are represented using

CNNs and a weight sharing constraint is employed where the connection weights of the

high level layers (last few layers) of E1 and E2 are tied, as illustrated by dashed lines.

Similarly the connection weights of the high level layers (first few layers) of G1 and G2

are tied. D1 and D2 are adversarial discriminators for the respective domains, in charge

of evaluating whether the translated images are realistic. x̃1→1
1 and x̃2→2

2 represent the

self-reconstructed images and x̃1→2
1 and x̃2→1

2 represent the domain translated images.

(Figures adapted from [18].)

lation, a pair of samples (x1, x2) is drawn from a joint distribution PX1,X2(x1, x2).

However, in an unsupervised setting, the samples pair is drawn from the marginal
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distributions PX1(x1) and PX2(x2). The inference of the joint distribution from

the marginals is intractable in this case without additional assumptions.

To alleviate this problem, UNsupervised Image-to-image Translation (UNIT)

[18] makes the assumption of shared latent space. Figure 3.3 shows a code z lying

in the shared latent space associated with a pair of samples x1 and x2. The shared

latent space is constructed in a way that makes it feasible to recover both the im-

ages from z and, inversely, z can be computed from each of the two images. To

construct this shared latent space code, UNIT postulates there exist functions E∗1 ,

E∗2 , G∗1, and G∗2 such that, for a given pair of corresponding images (x1, x2) from

the joint distribution, we have z = E∗1(x1) = E∗2(x2) and conversely x1 = G∗1(z)

and x2 = G∗2(z). To map from X1 to X2, the model defines a function F ∗1→2

such that x2 = F ∗1→2(x1), where F ∗1→2 is a composition of G∗2 and E∗1 , defined as

F ∗1→2(x1) = G∗2(E
∗
1(x1)). Similarly, x1 = F ∗2→1(x2) = G∗1(E

∗
2(x2)). Thus the image-

to-image translation problem in UNIT is that of learning F ∗1→2 and F ∗2→1. For opti-

mal learning of F ∗1→2 and F ∗2→1, it is necessary that there exist a cycle-consistency

constraint ([13], [31]): x1 = F ∗2→1(F
∗
1→2(x1)) and x2 = F ∗1→2(F

∗
2→1(x2)). The

shared latent space assumption implicitly enforces this constraint. The next sec-

tion describes the idea in further details.
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3.2.1 Framework

UNIT framework leverages recent progress in variational autoencoders (VAEs)

([15], [17], [24]) and generative adverserial networks (GANs) ([8], [19]). The frame-

work is composed of 6 subnetworks: two domain image encoders E1 and E2, two

domain image generators G1 and G2, and two domain adversarial discriminators

D1 and D2. The framework learns the bidirectional translation in a single shot.

The following paragraphs expound upon the roles of each of the networks.

VAE: The VAE for domain X1, denoted by VAE1, consists of the encoder-

generator pair (E1, G1). For an input image x1 ∈ X1, the VAE1 first maps x1

to a code in a latent space Z via the encoder E1. This code is randomly per-

turbed and subsequently decoded via the generator G1 to reconstruct the input

image. It is assumed that the components of Z are conditionally independent

and sampled from a Gaussian distribution with unit variance. Thus the output

of the encoder is a mean vector Eµ,1(x1) and the distribution of the latent code is

z1, given by q1(z1|x1) ≡ N (z1|Eµ,1(x1), I), where I is an identity matrix. Then,

the reconstructed image is x̃1→1
1 = G1(z1 ∼ q1(z1|x1)). Similarly for domain X2,

the VAE denoted by VAE2, constitutes of pair (E2, G2). Here the output of the

encoder E2 is a mean vector Eµ,2(x2) and the distribution of the latent code z2

is given by q2(z2|x2)N (z2|Eµ,2(x2), I). The reconstructed image in this case is

x̃2→2
2 = G2(z2 ∼ q2(z2|x2)).
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This formulation of VAE is difficult to train via standard backpropagation

as the sampling operation is non-differentiable. This can be solved by utilizing

the reparameterization trick [15]. It reparameterizes the sampling operation as a

differentiable operation using auxiliary random variables. This allows the VAEs to

be trained using standard backpropagation. In the formulation discussed above,

the sampling operations z1 ∼ q1(z1|x1) and z2 ∼ q2(z2|x2) can be implemented via

z1 = Eµ,1(x1) + η and z2 = Eµ,2(x2) + η, respectively. Here, η is a random vector

with a multivariate Gaussian distribution: η ∼ N (η|0, I).

Weight sharing. To make the VAEs converge via the shared latent space

assumption, a weight sharing constraint is enforced. Since the last few layers of

E1 and E2 are responsible for extracting high level semantic representations, the

weights of these layers are shared between the encoders. Similarly, the first few

layers of G1 and G2 are responsible for decoding the high level representations for

the purpose of reconstructing the input images. Thus, the weights of those layers

are shared between the generators.

It is worth noting the weight sharing constraint is not sufficient to guarantee

that a pair of corresponding images from two domains will have the same latent

code. Since we are working in an unsupervised setting, there cannot exist a

pair of corresponding images from two domains such that they can train the

network to output the same latent code. In general, the latent codes for a pair
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of corresponding images will be different. Even in the rare case where the latent

code is same, the components of the code can have different semantic meanings in

different domains. This could lead to the generators to reconstruct two different

images despite the same latent code. Although not possible through traditional

methods, recently with progress in adversarial training techniques, as described

in later sections, it is possible to map a pair of corresponding images from two

domains to a common latent code using E1 and E2 respectively, and inversely,

map a latent code to a pair of corresponding images in the two domains using G1

and G2 respectively.

The shared latent space assumption enables the translation of an image x1 in

X1 to an image in X2 through an information processing stream that is modeled

by G2(z1 ∼ q1(z1|x1)). Such an information processing stream is termed as image

translation stream and there exist two such streams: X1 → X2 and X2 → X1. The

framework performs joint training of these streams with the image reconstruction

streams from the VAEs. A pair of corresponding images, (x1, G2(z1 ∼ q1(z1|x1)))

forms, once such a pair can be encoded to the same latent code and a latent

code can be decoded to such a corresponding pair. Thus, for the unsupervised

image-to-image translation problem discussed previously, F ∗1→2 is approximated

by the composition of the functions E1 and G2 and F ∗2→1 is an approximation of

the functions E2 and G1.
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GANs. The framework consists of two generative adversarial networks: GAN1

= {D1, G1} and GAN2 = {D2, G2}. For GAN1, the discriminator D1 learns to

output true for the original images sampled from the first domain, and false for

images reconstructed by G1. The generator G1 generates images from two types

of streams: 1) x̃1→1
1 = G1(z1 ∼ q1(z1|x1)) from the reconstruction stream and 2)

x̃2→1
2 = G1(z2 ∼ q2(z2|x2)) from the translation stream. The adversarial training is

only applied to images from the translation stream x̃2→1
2 , since the reconstruction

stream can be trained with supervision. Similar processing is done for GAN2

where D2 outputs true for the original images sampled from the second domain

and false for the images reconstructed by G2. To further regularize the translation

problem, the framework enforces the cycle-consistency constraint. This is easier

to do as the shared latent space assumption implies the constraint.

Learning. Given the above, the framework jointly solves the learning of VAE1,

VAE2, GAN1 and GAN2 for the three streams: the image reconstruction stream,

the image translation stream and the cycle-reconstruction stream:

min
E1,E2,G1,G2

max
D1,D2

= LVAE1(E1, G1) + LGAN1(E2, G1, D1) + LCC1(E1, G1, E2, G2)

LVAE2(E2, G2) + LGAN2(E1, G2, D2) + LCC2(E2, G2, E1, G1)
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Here, the VAE objects are as given below and the VAE training aims for

minimizing a variational upper bound

LVAE1(E1, G1) = λ1KL(q1(z1|x1)||pη(z))− λ2Ez1∼q1(z1|x1)[log pG1(x1|z1)]

LVAE2(E2, G2) = λ1KL(q2(z2|x2)||pη(z))− λ2Ez2∼q2(z2|x2)[log pG2(x2|z2)]

where the hyperparameters λ1 and λ2 balance the importance of the objective

terms and KL divergence is needed to penalize any deviation of the distribution of

the latent code from the prior distribution. As discussed in [15], the regularization

makes it easy to sample from the latent space. Here, the Laplacian distribution

is used to model pG1 and pG2 . Since we’re minimizing the negative log-likelihood

term, this has the same effect as minimizing absolute distance between the original

and it’s reconstructed image. The prior distribution is a zero mean Gaussian:

pη(z) = N (z|0, I).

The conditional GAN objective functions are given by

LGAN1(E2, G1, D1) = λ0Ex1∼PX1
[logD1(x1)] + λ0Ez2∼q2(z2|x2)[log(1−D1(G1(z2)))]

LGAN2(E1, G2, D2) = λ0Ex2∼PX2
[logD2(x2)] + λ0Ez1∼q1(z1|x1)[log(1−D2(G2(z1)))]

These ensure that the translated images are as close to the target domain

images as possible. λ0 weighs the individual of these objective functions.
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To model the cycle-consistency constraint, a VAE-like objective function is

utilized:

LCC1(E1, G1, E2, G2) = λ3KL(q1(z1|x1)||pη(z)) + λ3KL(q2(z2|x1→2
1 )||pη(z))−

λ4Ez2∼q2(z2|x1→2
1 )[log pG1(x1|z2)]

LCC2(E2, G2, E1, G1) = λ3KL(q2(z2|x2)||pη(z)) + λ3KL(q1(z1|x2→1
2 )||pη(z))−

λ4Ez1∼q1(z1|x2→1
2 )[log pG2(x2|z1)]

where the negative log-likelihood objective terms ensure that a doubly trans-

lated image ends up resembling the input one. The KL divergence terms are used

to apply a penalty to latent codes that deviate from the prior distribution in the

cycle-reconstruction stream. λ3 and λ4 balance contributions of the two objective

terms respectively.

Just as with training with GANs, learning in the framework relies on opti-

mization to find a saddle point by solving a minimax problem, which can be

considered as a two player zero-sum game. This can be visualized as two teams:

first team consisting of the encoders and generators of the framework and second

team consisting of the adversarial discriminators. Not only does the first team

aim to defeat the second team, it also has the responsibility of minimizing the

VAE as well as cycle-consistency losses.

The end result of this learning is two translation functions that are obtained

by assembling a subset of sub-networks. These are F1→2(x1) = G2(z1 ∼ q1(z1|x1))
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that translates images from domain X1 to X2 and F2→1(x2) = G1(z2 ∼ q2(z2|x2))

that translates images from X2 to X1. This comprises the framework for Unsu-

pervised Image-to-image Translation.
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Methods and Results

Although synthetic datasets do a good job in capturing the scene abstractions

such as objects and their positions, there are differences, particularly in lighting

and textures that make them look different from images that are captured in a real

world setting. These differences introduce a domain gap that limits generalization.

Even though the domain gap is primarily due to low level pixel differences and

may not extend to higher level abstractions of a scene, they nevertheless reduce

performance when transferring the learned model. If we want to save the expense

of annotating large amounts of real world data, we need to bridge this domain

gap to improve transferability. Similar to style transfer, wherein we transfer the

“style” of one image onto another image to achieve new and unique variations of

the target image, we can transfer the pixel level distribution of one dataset onto
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another to create a new dataset that has the same content as the target, but with

the “style” of the source dataset.

In our case, we leverage the UNIT framework described in Chapter 3 to trans-

form the synthetic images to look more like real world images from the test set.

Using the training script at https://github.com/mingyuliutw/UNIT provided

by the authors of [18], we trained two UNIT models, one with GTA5 as source

domain and other with SYNTHIA as source domain. In both cases, the target do-

main was the cityscapes dataset. Both the source and target domain images were

downsized to 800 × 475 pixels and the models were trained for 100k iterations.

The generators and discriminator were optimized using Adam optimizer. Figures

4.2 and 4.3 show examples of transformed images using this method along with

the original synthetic images. As seen, the transformed images capture the look

and feel of real world images (compare them to Cityscapes images in Figure 2.2).

We then train the segmentation model on this transformed dataset and test it on

the real world Cityscapes dataset.

In the next few sections we discuss results obtained using the above method-

ology.
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4.1 Experimental Protocol

We use DeepLab-v3+ [4] as our segmentation model for all our experiments.

The backend for the model is selected to be MobileNet [27]. For training, we

use Adam optimizer [14], with an initial learning rate set to 1e − 4. The ground

truth labels are one-hot encoded and to better utilize hardware resources during

training, we downsize the images to 800 × 475 pixels and set the batch-size to

2. For inference, we test the model on the Cityscapes validation set, which needs

the evaluation images to be 2048 × 1024 pixels. For this reason, we upsample

the images obtained during inference to this size. We also evaluate the effect of

the different loss functions on training. The two loss functions that we tested are

cross-entropy [26] and Dice loss [21], [28].

While cross-entropy loss performs well in classification problems, it tends to

fare poorly for segmentation since it encounters severe class imbalance. Cross-

entropy loss for segmentation is calculated as log loss, summed over all possible

classes:

LCE = −
∑
classes

ytrue · log(ypred)

where ytrue is the ground truth map and ypred is the predicted segmentation

map. This evaluates the class predictions for each pixel individually and then
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averages over all pixels. Thus, pixels belonging to underrepresented classes don’t

always get a significant error signal that can be backpropagated during training.

This causes the network to get trapped in a local minima and become biased

towards the majority classes.

To alleviate this issue, the Dice coefficient loss has recently become popular

to train models for segmentation problems. An important property of Dice loss is

that it estimates the Intersection over Union (IoU) metric, which is more relevant

for segmentation problems. Essentially, it tries to measure the overlap between

ground truth and the predicted segmentation maps. Dice loss as used in this work

is defined as:

LDice = 1−
∑
classes

2 · ytrue · ypred
y2true + y2pred

For upper-bound baseline results, we train the segmentation model on Cityscapes

training set and perform inference using this model. This is described in the next

section. We then evaluate the performance of a model trained on synthetic images

and a model trained on photorealistic versions of these synthetic images.
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road sidewalk building vegetation sky person car
Dice loss 0.963 0.733 0.865 0.866 0.871 0.554 0.869

Cross-entropy 0.960 0.703 0.847 0.859 0.911 0.589 0.843

Table 4.1: Baseline results of cityscapes dataset. The figures represent mIoU score

across the Cityscapes test set

4.2 Baseline results

We first detail results obtained from training DeepLab-v3+ segmentation model

on the Cityscapes training set. This serves as a reference to measure the perfor-

mance of subsequent models. For easier comparison, Table A.1 in Appendix A

combines results on all datasets and different models in a single table.

The model was trained on Cityscapes training set and evaluated on the valida-

tion set using the Cityscapes evaluation script. Table 4.1 details the performance

of DeepLab-v3+ trained with two loss functions: Dice loss and cross-entropy loss.

Training not only converged faster with Dice loss, but also the boundaries are

sharper compared to cross-entropy loss, as can be seen in Figure 4.1.
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(a) (b)

Figure 4.1: Results of training DeepLab-v3+ with Dice loss (column (a)) and cross-

entropy loss (column (b))

34



Chapter 4. Methods and Results

4.3 Training with SYNTHIA images

road sidewalk building vegetation sky person car
Dice Loss 0.666 0.037 0.675 0.650 0.658 0.278 0.264

Cross-Entropy 0.366 0.180 0.506 0.715 0.794 0.315 0.374

Table 4.2: Performance of DeepLab-v3+ model trained on original SYNTHIA dataset

road sidewalk building vegetation sky person car
Dice loss 0.847 0.435 0.671 0.625 0.650 0.332 0.605

Cross-entropy 0.507 0.202 0.684 0.727 0.750 0.374 0.535

Table 4.3: Performance of DeepLab-v3+ model trained on photorealistic images from

SYNTHIA

Next, we train a DeepLab-v3+ model on the original SYNTHIA images. The

particular sequence that we used is SYNTHIA-RAND. The training setup is same

as above. Table 4.2 describes the results for this setup.

We obtain more photorealistic data by transforming the source images, in this

case the SYNTHIA-RAND dataset, using the UNIT framework. A sample of

the source and transformed images is shown in Figure 4.2. As we can see, this

transformation captures the look and feel of Cityscapes quite well. In theory, this

should help close the domain gap to a certain extent. Results in Table 4.3 show

that this is indeed the case.
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(a) Original (d) Transformed

Figure 4.2: Sample of images showing how the photo-realistic transformation looks

like. Column (a) are the original images from SYNTHIA-RAND dataset and column

(b) are the photorealistic versions of them.
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4.4 Training on GTA5 dataset

Since GTA5 leverages the high quality images derived from a commercial game,

its performance tends to be better than the SYNTHIA original images. In other

words, the domain gap between original GTA5 images and real world data is

smaller to begin with. Table 4.4 shows the results of evaluating a model trained

on the original GTA5 images. Transforming these images to be more photorealistic

helps bring the performance very close to those of baseline results, as demonstrated

in Table 4.5.

road sidewalk building vegetation sky person car
Dice loss 0.266 0.203 0.658 0.652 0.496 0.058 0.167

Cross entropy 0.054 0.011 0.353 0.520 0.528 0.103 0.330

Table 4.4: Performance of DeepLab-v3+ model trained on GTA5 original dataset

road sidewalk building vegetation sky person car
Dice loss 0.898 0.435 0.751 0.776 0.746 0.650 0.726

Cross entropy 0.852 0.228 0.714 0.762 0.762 0.260 0.619

Table 4.5: Performance of DeepLab-v3+ model on photoreal GTA5 dataset

Table 4.5 shows the performance of DeepLab-v3+ trained on the photoreal

version of the GTA5 dataset. A sample of the transformed images are shown in

Figure 4.3.
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(a) Images (b) Transformed

Figure 4.3: Sample of images showing how the transformation looks like. Column (a)

are the original images from the GTA5 dataset and column (b) are their photorealistic

versions.
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4.5 Discussion

road sidewalk building vegetation sky person car
Cityscapes 32.64 5.39 20.21 14.10 3.56 1.08 6.19
SYNTHIA 18.68 19.04 29.32 10.41 6.80 4.31 3.92

GTA5 37.76 3.93 13.50 7.84 12.69 0.13 1.84

Table 4.6: Distribution of labels in each dataset (numbers are percent of pixels per

class in entire dataset)

As seen in Sections 4.3 and 4.4, performance improves considerably when we

train the segmentation model on images that are transformed to look more like

Cityscapes images. When trained on original images, the categories “person” and

“car” suffer a lot. This is because there aren’t many instances of these classes for

the model to generalize. As can be seen in Table 4.6, these categories are quite

underrepresented, especially in GTA5. However, these still see a performance

improvement when trained with photorealistic images.

Between Dice loss and cross-entropy loss, Dice loss clearly helps the model

learn correct delineations amongst objects, even though the difference between

these losses is not readily apparent during training as loss figures are not directly

comparable. The performance improvement with Dice loss is due to indirect

optimization of Intersection over Union (IoU) score of the classes, which enforces

spatial constraints over the model during training.
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Conclusion

As deep learning models get more sophisticated and increase in capacity, the

demand for training data will shoot up exponentially. For problems in areas like

semantic and instance segmentation, this could pose as a bottleneck as annotating

every object pixel-wise is labor-intensive and expensive. This calls for other ways

to tackle such problems.

As we see here, games and simulators are practically an infinite source of such

training data. The data is not only easy to obtain, but can model scenarios that

would be impossible to replicate in real world. This provides a means to accelerate

research and development in the field.

However, as demonstrated in this work, simply having this simulated data is

not sufficient to guarantee a good performance in the final model. The problem of
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domain gap stymies the generalization capabilities of many deep learning models

when the test data that inference is performed on is different from the training

data. For a problem in semantic segmentation, especially one that is performed

on high-resolution input images, even minor differences in lighting and textures

can cause significant drop in performance.

Until such time that segmentation methods are general enough to bridge this

domain gap themselves, we’ll need to rely on train or test time data augmen-

tation, such as the one shown in above. As we see from results in the previous

chapter, training data that looks as close as possible to test data can provide large

improvement on segmentation accuracy without the need to change the model or

its architecture. Although it may be prohibitive to have different models for dif-

ferent test distributions, for many practical applications this process needs to be

performed only once. As such, it can greatly improve accuracy without needing

a lot of effort from the practitioner’s end.

This work can progress in many future directions. For starters, having a

renderer that can produce realistic frames that look similar to test distribution

will greatly improve the efficiency of the entire process and can do away with the

need to manually transform training data. Additionally, such transformations can

be built directly into the segmentation model to provide an end-to-end solution

to this particular problem.
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In conclusion, in this thesis, we show the effect of domain gap in segmentation

problems by means of using a deep model trained on synthetic images to perform

inference on real world data. We then show a way to bridge this domain gap by

transforming the synthetic data to have a more photorealistic look using state-of-

the-art techniques in generative modeling. The results thus obtained are promising

enough to warrant further investigation in this direction and we look forward to

seeing more such work being done to overcome the curse of domain gap and

improving the generalization abilities of deep models for problems in semantic

segmentation.
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Appendix A

Results
ro

ad

si
de

w
al

k

bu
ild

in
g

ve
ge

ta
ti

on

sk
y

pe
rs

on

ca
r

Baseline

Dice 0.963 0.733 0.865 0.866 0.871 0.554 0.869

Cross
entropy

0.960 0.703 0.847 0.859 0.911 0.589 0.843

GTA
original

Dice 0.266 0.203 0.658 0.652 0.496 0.058 0.167

Cross
entropy

0.054 0.011 0.353 0.520 0.528 0.103 0.330

GTA
photoreal

Dice 0.898 0.435 0.751 0.776 0.746 0.650 0.726

Cross
entropy

0.852 0.228 0.714 0.762 0.762 0.260 0.619

SYNTHIA
original

Dice 0.666 0.037 0.675 0.650 0.658 0.278 0.264

Cross
entropy

0.366 0.180 0.506 0.715 0.794 0.315 0.374

SYTNHIA
photoreal

Dice 0.847 0.435 0.671 0.625 0.650 0.332 0.605

Cross
entropy

0.507 0.202 0.684 0.727 0.750 0.374 0.535

Table A.1: Results of trained on all datasets for easier comparison. It can be seen
that results on GTA5 with photoereal transformation approach the accuracy of baseline
results

47


	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Datasets for Urban Scene Understanding
	SYNTHIA dataset
	Virtual World Generator
	SYNTHIA-Rand and SYNTHIA-Seqs

	Cityscapes dataset
	Data specifications

	GTA5 dataset
	Data acquisition


	Models for Semantic Segmentation
	DeepLab-v3+
	Unsupervised Image-to-image Translation
	Framework


	Methods and Results
	Experimental Protocol
	Baseline results
	Training with SYNTHIA images
	Training on GTA5 dataset
	Discussion

	Conclusion
	Appendices
	Results




