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Abstract
We review the status of protein-based molecular electronics. First, we define and discuss 
fundamental concepts of electron transfer and transport in and across proteins and proposed 
mechanisms for these processes. We then describe the immobilization of proteins to solid-
state surfaces in both nanoscale and macroscopic approaches, and highlight how different 
methodologies can alter protein electronic properties. Because immobilizing proteins 
while retaining biological activity is crucial to the successful development of bioelectronic 
devices, we discuss this process at length. We briefly discuss computational predictions and 
their connection to experimental results. We then summarize how the biological activity 
of immobilized proteins is beneficial for bioelectronic devices, and how conductance 
measurements can shed light on protein properties. Finally, we consider how the research to 
date could influence the development of future bioelectronic devices.

Keywords: bioelectronic, electron transport, immobilization, electron transfer, monolayer, 
protein
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Glossary

AFM Atomic force microscopy
apo Protein without cofactor
CP-AFM Conductive probe atomic force microscopy
CD Circular dichroism
Cofactor Non-peptide organic or inorganic group or ion 

in protein, necessary for protein’s biological 
activity; can have/be aromatic rings, conjugated 
chains, or metal ions

CPR Cytochrome P450 reductase
CV Cyclic voltammetry
CYP2C9 Cytochrome P450 2C9
CYT C Cytochrome c
EC-STM Electrochemical scanning tunneling microscopy
EDC 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide 

hydrochloride
ET Electron transfer
ETp Electron transport
FAD Flavine adenine dinucleotide
FMN Flavin mononucleotide
FR Flickering resonance
GCE Glassy carbon electrodes

Hab Interaction hamiltonian
Holo Fully intact protein, including cofactor
HSA Human serum albumin
Ka Binding association rate
KD Binding dissociation constant
Kd Binding dissociation rate
kET Electron transfer rate
LbL Layer-by-layer
LOFO Lift-off float-on
Mb Myoglobin protein
MUA 11-mercaptoundecanoic acid
NADPH Nicotinamide adenine dinucleotide phosphate
NHE Normal hydrogen electrode
NHS N-hydroxysuccinimide
OT 8-octanethiol (OT)
P450 Cytochrome P450
PDMS Polydimethylsiloxane
PFV Protein film voltammetry
PG Pyrolytic graphite
Prosthetic 
group Tightly bound cofactor
PSI Photosystem I (protein)
QCM Quartz crystal microbalance
RCI Photosystem I reaction center
SAM Self assembled monolayer
SCE Saturated calomel electrode
SE Superexchange
SERRS Surface-enhanced resonance Raman spectroscopy
SPM Scanning probe microscopy
SPR Surface plasmon resonance
STM Scanning tunneling microscopy
STS Scanning tunneling spectroscopy
Turnover 
rate Rate of protein biological activity for small 

molecule transformation (exp. oxidation or 
reduction)

UV–vis Ultraviolet–visible spectroscopy
YCC Yeast cytochrome c
WT Wild type, i.e. natural form of the protein
β Distance decay factor in tunneling transport [

ln
(

I
I0

)
∝ −βL; L is distance

]

γCPR Yeast cytochrome P450 reductase protein
ε Optical extinction coefficient

1. Introduction

Recent advances in the development of biocompatible elec-
tronics have been motivated by applications where interfac-
ing with sensory function in humans (e.g. artificial retinas) 
is desired, some of which can have direct applications for 
improving human health (e.g. in situ, real time monitoring 
of glucose or drug concentration in the blood). A funda-
mental understanding of the properties of biomaterials at the 
nanoscale is essential for progress towards interfacing with 
sub-cellular organelles or other nanoscale structures present in 
living systems. Moreover, because many biologically relevant 
reactions occur at substrate surfaces and interfaces, exploring 
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interactions between individual biomolecules and various 
substrate surfaces is of fundamental importance.

Proteins have evolved over billions of years into structures 
capable of precise reactions, including highly specific sub-
strate recognition, analyte binding, and facile and directional 
electron tunneling [1]. In addition, proteins are essential to 
many chemical processes essential to life, such as photosyn-
thesis, respiration, water oxidation, molecular oxygen reduc-
tion, and nitrogen fixation [2–7]. Due to their ability to catalyze 
a vast number of reactions, there has been much interest in 
harnessing their abilities. One application is in bio-catalysis 
in synthetic organic chemistry. The high chemo-, regio-, and 
stereo-selectivity of enzymes negates the need for protecting 
groups, and thus reduces synthetic steps and simplifies work 
flow [8]. As such, the pharmaceutical industry is interested in 
proteins in bioreactors (vessels in which chemical reactions 
are carried out by biological components) for production of 
fine chemicals [9–13] and to filter out toxic or hazardous sub-
stances by naturally occurring organisms [14]. The high spec-
ificity of proteins also makes them ideal candidates for use 
as sensors. In many sensor applications, proteins are immo-
bilized onto a solid support and act as transducers of optical 
[15, 16] or electronic [17] signals that correlate with specific 
protein-ligand interactions. Interfacing with solid state elec-
tronics has demonstrated that this approach allows biosensing 
at low voltages with high sensitivities and low detection lim-
its, and offers long-term stability for measurements [18–20]. 
Protein-based biosensors are currently being developed for 
use in drug monitoring [21], environmental toxin detection 
[22, 23], and early disease detection [24, 25].

Using single organic molecules as electronic components 
[26] has been suggested as a possible solution to the physi-
cal limitations of micro- and nano-scale electronic develop-
ment. Proteins could provide a way to realize this, because 
they are small (nm-scale) and capable of undergoing chemo- 
mechanical, electromechanical, opto-mechanical, and opto-
electronic processes [27]. Proteins have been studied for use 
in the design of bio-electronic devices, including field effect 
transistors for sensing [28–32], bio-molecular transistors for 
data storage [33], bio-molecular circuits [34], bio-hybrid 
solar cells [35], bio-computers [36], and enzymatic biofuel 
cells [37–39]. Biomedical applications exist in devices such 
as implantable sensors for monitoring chemicals [40, 41] 
and diagnostics [42], as well as the creation of artificial reti-
nas [43] and noses [44]. There has been extensive research 
done on electron transfer in proteins [45–47] especially in 
well-characterized model systems such as cytochrome c [48], 
plastocyanin [49], and azurin [50–53]. Other studies have 
explored the solid state electronic transport properties of pro-
teins whose mechanisms of action rely on electron transfer, 
ET [54, 55].

Several books [28, 54–59], recent special issues of journals 
(from which we cite results published therein [51, 60]), and 
reviews [1, 47, 51, 61–63] have appeared over the years, going 
back to the early [64] and late 1990s (1st edn. of [55]). All deal 
with various aspects of the topics considered here and, taken 
together, they reflect to some extent the evolution of the idea of 
protein bioelectronics. Recent interest in possible applications 

of new protein electronics have laid bare practical problems 
and stimulated interest in their fundamental scientific issues.

In parallel, the research of ET has remained very active, 
and we rely heavily in this review on our present understand-
ing of ET to discuss what can be learned from protein bio-
electronics devices. We therefore start with a presentation of 
fundamental concepts related to the electronic properties of 
proteins as they relate to ET and electron transport, ETp, (see 
next section for an explanation of the difference between ET 
and ETp) and compare the two processes. Because until now 
all ETp measurements involve immobilizing proteins on an 
electronically conducting solid surface used as an electrode, 
we review the current state of the field regarding protein 
immobilization techniques, including characterization of the 
resulting biomolecular films. Subsequently, we discuss the 
results of measurements on immobilized proteins and their 
impact on our fundamental understanding of protein electron-
ics. Finally, the implications of the research to date and their 
possible implications for future protein bioelectronic devices 
are noted and reviewed.

2. Electron transfer (ET) and electron transport 
(ETp) in proteins

Electron flow through a protein molecule involves intramolec-
ular charge transport and electron exchange with the surround-
ings [65]. These two distinct, and widely studied processes 
cannot be unambiguously separated since the interface of a 
molecule with an adjacent electrode or ionic solution can have 
a profound influence on the molecular properties, and hence 
on the molecule’s electrical conductance [66]. The process of 
directed electron motion, or electron flow, through molecu-
lar structures is termed electron transport or electron transfer, 
depending on the environment in which it occurs. In the dis-
cussion below, we denote as electron transfer (ET) the electron 
flow process with all or part of the protein in direct contact with 
an electrolyte, which is ionically conducting and which can 
function as an electron sink or source via a redox process (fig-
ure 2). The electrolyte also provides charges, which screen the 
change in electrical potential due to the electron flow. Electron 
flow in which an electrolyte is absent, or does not participate 
in the electron flow process, with electrodes that are not ion 
conductors, is termed electron transport (ETp) (figure 2). ETp 
is usually measured in a solid state configuration7. In ETp nor-
mally there is no possibility for charge balance via ions from 
an electrolyte, while ET involves a surrounding medium with 
mobile ions which can provide such charge balance.

ET consists of electrons moving from specific electroni-
cally localized donors to acceptors, which can be domains 
in the protein, redox agents, or one electrode (in an electro-
chemical cell) in contact with the protein. ET is driven by 
a difference in redox potential between donor and acceptor 
[48, 68–70]. ET within proteins occurs between donor and 
acceptor sites. In model systems, one of these is chemically 

7 We note that systems can be thought of where the distinction does not hold, 
such as solid-molecule-solid measurements in an electrolyte or use of an 
ionic liquid to gate a solid state junction.

Rep. Prog. Phys. 81 (2018) 026601
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conjugated to the protein, located at a known position, which 
therefore allows studying ET between specific positions of the 
protein (figure 2).

If the proteins are immobilized on an electrode, ET occurs 
between the electrode and a redox-active protein cofactor, and 
between the cofactor and the protein surface exposed to the 
redox electrolyte used for the experiment (figure 1). Thus, in 
this case, there is a transition from electronic to ionic charge 
transport, as is also the case in nature. Within the protein, 
charge is transferred by electrons, even if a redox center is 
involved, as that redox-active species does not itself move 
within the protein. However, charge transfer out of the pro-
tein requires reduction/oxidation of a redox-active species in 
the electrolyte that contacts the protein. This means that the 
redox-active species is now ionized differently than before, 
and thus the charge will flow with this ionic species until the 
next step in the overall process, as is the case in electron trans-
port chains (discussed further below). The change of charge 
state of the redox-active species in the electrolyte is accompa-
nied by a change in the protein’s electrical charge state. This 
change induces electrical screening to reduce the electrostatic 
energy barrier for the subsequent steps. In nature and in an 
electrochemical experiment, this can occur because of the sur-
rounding electrolyte. Naturally, the polarizability of the pro-
tein itself also affects the ET process.

Multiple ET processes occur in proteins, such as in respira-
tion or photosynthetic complexes, that involve electron trans-
port chains [61, 71, 89, 94]. Proton-coupled electron transport 
(PCET) can also occur, which is especially prevalent at metal 
cofactors that activate carbon, oxygen, nitrogen, and sulphur 
atoms of enzyme substrate molecules [72]. Protein cofac-
tors are organic or inorganic components, with conjugated 
chains, or metal ions that assist the protein’s biological activ-
ity. As noted above, redox reactions with biomolecules such 
as proteins can be studied with electrochemical experiments 

as shown in figure 1, i.e. with one electronically conducting, 
ionically blocking contact (the electrode) and one ionically 
conducting, electronically blocking contact (the redox elec-
trolyte). ETp, however, requires electronic conduction across 
proteins set between two electronically conducting, ionically 
blocking electrodes; it is defined as the flow of electrons 
across/through the protein that is contacted by these elec-
trodes (figure 2)8.

Electric charges in biological systems are generally trans-
ported by ions, and thus in nature ET is always coupled to ionic 
transport where the redox processes serve as donor (Red  →  Ox) 
and acceptor (Ox  →  Red) electrical ‘contacts’. Thus, from a 
device perspective, there is no a priori reason for electrons 
involved in (solid-state) ETp to use the same conduction mech-
anism as those involved in ET processes. Nevertheless, there is 
experimental evidence that a protein’s ETp characteristics are 
correlated with its ET and redox potential [73, 74], and there-
fore it is likely that there is a fundamental connection between 
the ET and ETp processes and mechanisms.

From an experimental point of view (figure 2), measuring 
ETp across bio-molecules in dry, solid state condition is funda-
mentally different from measuring ET. In ETp, the absence of 
a liquid electrolyte (with its above-noted ability for electrical 
screening) will normally drive electrons from source to drain 
electrode, without intra-protein redox process, via some elec-
tron transport mechanism (to be discussed later in this review).

ETp is measured on a single protein or on ensembles of 
proteins (such as monolayers) between the two electronically 
conducting electrodes (see [75] for a discussion of the dif-
ferences between molecular junctions with single and many 
molecules). While this type of junction can be thought of as a 

8 We note that ET and ETp are generally described in terms of holes and 
electrons. We define a hole as is commonly described now days as a missing 
electron, instead of the traditional solid state physics definition of the behav-
ior of electrons of a nearly full band.

Figure 1. (a) Schematic experimental setup for electrochemical charge transfer studies across self-assembled monolayers of redox-
active proteins on conducting electrodes as shown in (b). (c) Time varying electric field applied between counter (CE) and working (WE) 
electrode with respect to reference electrode (RE). (d) Electrochemical current profile during oxidation and reduction process at the surface 
of working electrode (details in [45, 50, 60, 67]).

Rep. Prog. Phys. 81 (2018) 026601
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donor-bridge-acceptor junction, the driving force of the trans-
port is the electrical potential difference between the electrodes 
(if the electrodes are made of the same material [76]) rather 
than a difference in chemical potential of the electrons between 
two regions. In solution experiments, the chemical potential 
differences of the redox-active ions need to be included [47].

For practical purposes, the redox potential can be identi-
fied with the electrochemical potential of the electron, µ̃e
(≃EF, Fermi level) [77–81], where µ̃e   =  μe   +  qφ, the sum 
of the contribution of the electrical potential, φ, (q is the 
electron charge) and that of the electron’s chemical poten-
tial, μe  =  μ0,e  +  kT ln ne. Here μ0,e is the standard chemical 
potential of the electron, kT is the thermal energy, and ne is the 
electron concentration, defined by the difference in activities 
of the reduced and the oxidized form of the redox species. The 
latter can be identified as the difference in chemical potential 
of the (mostly ionic) reduced and oxidized species, and it can 
drive ET, but not ETp (with electrodes of the same materials, 
i.e. with the same electron chemical potential).

An additional important difference between ET and ETp is 
the fact that ET occurs in an electrolyte solution, which allows 
for electrostatic screening around (parts of) the protein. This is 
what makes the change in charge of the protein, which other-
wise would carry a very high electrostatic energy price, possi-
ble. Except for rare cases, no such change in charge state occurs 
in ETp and electroneutrality is preserved. These differences 
allow the characterization of ETp distances not considered 
possible in biological ET. Gray, Winkler, Dutton, and co-
workers have estimated the upper limit of D–A separation dis-
tances in biological ET (pure quantum mechanical tunneling) 
to be  ⩽20 Å and  ⩽14 Å, respectively [61, 82]. However, recent 
ETp measurements across proteins yield measurable currents 
over electrode separations of up to ~100 Å [83].

Cofactors are responsible for the functional properties of 
proteins because they enable redox activity, including the 
metal center of metalloproteins, such as Cu2+ in the blue cop-
per proteins, Fe3+ in the iron-sulfur proteins and cytochromes, 
or flavins found in flavoproteins [64]. Some redox-inactive 
proteins, such as the light-driven transmembrane proteins 
bacteriorhodopsin and halorhodopsin, which contain a retinal 

cofactor, also support ETp, which, remarkably, is at least as 
efficient as that of redox-active proteins.

In measurements of the differences in ETp observed between 
the holo- and apo- forms of proteins, their electrical conduc-
tion properties were shown to depend strongly on having the 
cofactors. Such experiments have been performed with the Cu 
redox protein azurin [1, 53], the heme-redox protein cytochrome 
c [84], the O2-binding protein myoglobin [32, 85], and ferritin 
[86]. Similarly, changes in transport mechanisms have been 
deduced from temperature-dependent ETp studies on the proton 
or Cl¯ pumping photoactive membrane proteins, bacteriorho-
dopsin, bR [87], or halorhodopsin, phR [88], and their deriva-
tives lacking retinal, for bR, or retinal and/or carotenoid for phR.

As noted above, multiple ET processes, often involving 
several proteins and other redox molecules, carry electron 
transfer over relatively large distances. In the respiratory  
[89, 90] and photosynthetic chains (>50 Å) [91–94], ET occurs 
sequentially across several proteins (inter-protein, or protein–
protein ET [95, 96]); in hydrogenases (FeS clusters, ~52 Å) 
[97], carbon monoxide-dehydrogenases [98, 99] and other 
enzymes [100], the processes are within one protein complex. 
This complicated and diverse behavior has made it clear that it 
is important to develop a theoretical understanding of biologi-
cal ET and its possible implications to solid-state ETp.

In the following sub-sections, we review the mechanisms 
that have been developed to explain ET essentially in terms 
of the Marcus model and various mechanisms that rely on it. 
Then we briefly discuss ETp in terms of the Landauer one-
dimensional conduction model, which has been applied to 
molecular electronics, while keeping in mind that once elec-
trons enter the protein, ET-like mechanisms may play an 
important role. ETp is discussed in more detail in terms of 
specific experiments in section 4. We end this section by dis-
cussing the effects of protein structure and protein immobili-
zation on ET and ETp.

2.1. Electron transfer

In 1956, Marcus presented a model describing ET reactions 
from a donor to an acceptor that is close to it [101, 102].  

Figure 2. Diagram representing solid state electron transport (ETp) and electron transfer (ET) measurements using spectroscopy and 
electrochemistry (see introduction to section 2 for more complete distinction between ET and ETp). The very important counter charges 
around the protein are not shown in the ET configurations.

Rep. Prog. Phys. 81 (2018) 026601
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The Marcus theory was originally developed to explain outer 
sphere ET, where participating redox centers are not linked 
by any bridge, and electrons ‘hop’ from the reducing cen-
ter to the acceptor. It has since been extended to cover inner 
sphere ET, where two redox centers are linked covalently dur-
ing transfer, and heterogeneous ET, where an electron moves 
between a biomolecule (protein, small molecule, cofactor, etc) 
and an electrical contact. In the Marcus description, nuclear 
motions of the reactant and the surrounding environment are 
approximated by a simple harmonic oscillator potential along 
a reaction coordinate (figure 3) [103, 104]. The left parabola 
in figure 3(A) represents the Gibbs free energy surfaces for 
the nuclear motion of the reactants prior to ET, and the right 
parabola represents this free energy for the nuclear motion 
of the products after ET. The two driving parameters for the 
ET reaction to overcome the activation free-energy barrier 
(−ΔG‡) are the driving force, characterized by the Gibbs free 
energy of activation (−ΔG0), determined from the difference 
in oxidation potentials of the donor and acceptor, and the reor-
ganization energy (λ) needed for the nuclear rearrangements 
that accompany ET [105]. The rate of electron transfer, kET, 

depends on  −ΔG0 relative to λ. The basic expression for kET 
in the Marcus theory is

kET =
2π
�

H2
AD

1√
4πλkBT

exp

(
−(λ+∆Go)

2

4λkBT

)
 (1)

where HAD is the quantum mechanical electronic coupling 
between the initial and final (donor and acceptor) states, 
kB is the Boltzmann constant, and T is the temper ature. A 
maximum, or optimal ET rate occurs for activation-less ET 
(−ΔG0  =  λ) that decreases with decreasing driving force. The 
Marcus theory also predicts an inverted region (−ΔG0  >  λ) 
where energy must be dissipated to allow ET and where the 
rate decreases with increasing driving force. According to the 
semi-classical Marcus’ theory, electron transfer takes place 
when a thermal fluctuation of the solvent or of the nuclear 
coordinate of the donor and acceptor shifts the donor and 
acceptor electronic states into resonance. The quantity HAD in 
equation (1) originates from Fermi’s Golden Rule. HAD con-
tains the interaction overlap integral (matrix element) between 
the donor (reactant) and acceptor (product) electronic states 

Figure 3. (A) Schematic diagram of the Marcus model for electron transfer, showing the Gibbs free energy (Y-axis) surface for the 
nuclear motion along a reaction coordinate (X-axis) of the donor and acceptor in the initial state, prior to ET (G, DA in blue), and post-ET 
from the donor to the acceptor (G, D+A−, green). ΔG‡, ΔG0, and λ are the activation energy, the free energy driving force, and the outer 
shell reorganization energy of the ET event, respectively. (B) A diagram of the Gibbs free energy surface as in (A) showing the effect of 
increasing ΔG0 on the ΔG‡. As ΔG0 increases, a decrease in ΔG‡ is seen until ΔG‡  =  0 (green curve). After this point increases in ΔG0 
(from the green to red curve) lead to decreases in ΔG‡ as energy must be dissipated for an ET event, which is known as the inverted region. 
Note that λ does not change for the different scenarios in B), because the nuclear coordinate (X-axis) of the post-ET state does not change. 
Adapted from [104] with permission of The Royal Society of Chemistry.

Table 1. Summary of experimentally obtained ET rate constant for different metalloproteins (see text for discussion)a.

Protein

Electrochemical rate 
constant (ET) kET 
(s−1) References

Spectroscopy rate 
constant (ET) 
kET(s−1) References

Cyt C 0.2b [110] 9.4  ×  105b [61]
0.63c [110] 2.7  ×  106c [61]

Myoglobin 60 [111, 112] 2.3  ×  106 [61]

a The difference between the two entries for Cyt C result from experiments with different donor–acceptor separations (different mutations).

b ~14 Å.

c ~17 Å.

Rep. Prog. Phys. 81 (2018) 026601
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and the density of states, and thus depends on the distance 
between the states (see also equation (2) below) [72, 106]. The 
interaction between the donor and acceptor in a polarizable 
solvent is known as the outer-sphere interaction. When elec-
tron transfer occurs within molecules where it causes changes 
in bond lengths and local symmetries, a similar result is 
obtained, although the origin of the interaction energy is more 
complicated. This result related to the so-called inner-sphere 
interactions was developed by Hush [107], and the joint the-
ory of the inner- and outer-sphere interactions is sometimes 
called the Marcus–Hush theory (section 4).

Over the years, several theoretical frameworks and com-
putational tools have been developed to explain the biologi-
cal electron transfer process [108]. In particular, there has 
been much interest in understanding how the protein structure 
determines the protein redox function, the implication being 
that enhanced comprehension could allow for control and 
tailored biological electron transfer by targeted mutants. The 
field has evolved significantly since the early ideas of bridge-
mediated electron tunneling, first proposed by Halpern et al in 
the early 1960s, and the square barrier-tunneling model that 
Hopfield proposed in the 1970s [106, 109].

Many experimental studies have been carried out to under-
stand how long-range biological ET (over, at least, several direct 
bond distances) is accomplished [45, 46, 61, 82, 101, 113]. ET 
rate has been determined in cytochromes from line broadening, 
magnetization transfer, or relaxation measurements in NMR 

[114, 115]. In addition, kET has been extracted from electro-
chemistry of a monolayer of a protein (azurin, cytochrome c, 
myoglobin and other metalloproteins) attached to a working 
electrode (figure 1(d)) [116]. Until now, most conclusive and 
systematic ET rate (kET) data have been obtained via electro-
chemical [110–112, 117] or spectroscopic flash quench studies 
[45, 61, 65, 95, 117–119]. Table 1 gives some experimental 
data for two well-studied proteins, obtained by using mutated 
proteins to vary the donor– acceptor separations.

Gray, Winkler and co-workers have used modified metallo-
proteins to understand distance-dependent ET between a dye 
molecule and a metal ion that acts as quencher in azurin and 
cytochrome b562 proteins (figure 4) using flash-quenching, 
where a foreign dye is introduced on a protein surface and 
ET processes between redox centers of the protein and dye 
molecules are monitored [65, 100, 120]. By introducing ruthe-
nium and rhenium complexes as donors which are known to 
attach to certain histidine residues at known distances from 
Cu (azurin), Fe (in the heme group in cytochrome) or Zn 
(modified cytochrome) cofactors, they were able to show 
exper imentally (figure 4) that

kET ∝ e−βL, (2)

where L represents the donor–acceptor distance and 1/β is a 
characteristic decay distance. Studies by Gray and Winkler 
[121] demonstrated that out of nine kET values for histidine-
modified cyt b562 derivatives, seven were accurately fit by the 

Figure 4. (a) Ribbon diagram indicating the positions of the nine histidine sites on cyt b562, where a Ru complex was connected to 
different histidine groups in different mutants, to measure variations in electrochemical electron transfer rates between each of these sites 
and the heme group. (b) Seven ET rates follow the exponential distance dependency of equation (1), whereas in two cases slower rates than 
predicted by equation (1) were measured. (c) Chemical reaction to connect the Ru complex with different histidines in different mutants. 
From [129]. Reprinted with permission from AAAS.
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tunneling model, but two showed kET slower than predicted 
by equation  (2), as shown in figure 4(b). This implies that a 
different transfer mechanism is at work for those residues. 
Surprisingly, protein electron transfer rates deduced from 
electrochemical and spectroscopic methods were significantly 
different (table 1). This difference may indicate that protein 
immobilization on solid surfaces used in the electrochemical 
methods constrains some of the electron transfer pathways, 
while in spectroscopic methods performed in solution, more 
protein conformations and transfer pathways are available. 
Alternatively, or additionally, the switch from electronic to 
ionic conduction (assuming the redox center to solution step is 
the rate-determining one) may affect the measured rate.

Another useful approach to investigate ET in proteins has 
been pulse radiolysis, primarily those containing transition metal 
ions in the active sites. There were two main, complementary 
objectives guiding these studies. One was attaining an under-
standing of the electron-transfer process within the polypeptide 
matrix separating the redox centers and defining the parameters 
controlling their rates. The second was resolving the detailed 
mechanism of the function(s) performed by the protein, notably 
enzymes [120]. Azurin has been a model system for pursuing 
the first objective and was extensively investigated using pulse 
radiolysis. Triggering an intramolecular ET from the residual 
radical ion to the Cu(II) site over a 2.7 nm separation turned 
out to be useful for examining the impact of specific structural 
differences introduced by mutations on ET rates. Parameters 
examined ranged from changes in the medium separating the 
redox sites to those in the actual coordination of copper site, 
which drastically affected its reorganization energy [122–125].

Over the years, more sophisticated theoretical models 
have been developed to understand ET in proteins, includ-
ing bridge-mediated electron tunneling [109] and square bar-
rier tunneling [106]. These models establish the theory of 
ET between fixed sites within the proteins through electron 
tunneling. In the case of redox proteins, multiple electron 
transfer pathways often exist, and pathways can be highly 
dependent on protein structure and the surrounding environ-
ment. Refinements by Beratan et al [126, 127] of these early 
models show that electrons can tunnel across proteins through 
favorable pathway(s), which include mostly bonded groups, 
with less favorable non-bonded interactions being important 
when the through-bond pathway is prohibitively long and a 
shorter through-space path exists [128].

A square-barrier tunneling model, combined with a suita-
ble decay constant, has given a surprisingly good description 
for experimentally obtained biological ET (figure 2) [130]. 
This model was subsequently refined by Beratan and co-
workers, who proposed that electrons tunnel along specific 
pathways, connecting electron donating and accepting cofac-
tors [130]. The theory of ET in biochemical systems with 
several intermediary tunneling (bridge) states was recently 
reviewed by Blumberger [108], who summarized several 
models that are currently considered viable for explaining 
electron transfer in biomolecules, all based on the Marcus 
theory. These are the super-exchange (multi-step tunneling), 
flickering resonance (proposed by Beratan, Skourtis, and 
coworkers [131]; vide infra), and hopping models, based on 
consecutive, incoherent tunneling steps, as mechanisms of 
electron transfer (figure 5).

Figure 5. (a) Illustration of protein-mediated electron transfer models, tunneling (via super-exchange), flickering resonance and hopping, 
along a chain of 5 redox active sites (as could be the case in a multi-heme or multi-copper protein), where D is the electron donor and A 
is the acceptor (A), leaving three sites (1, 2, 3) between D and A. One-electron energy levels are drawn as black lines for each site. The 
electron that is transferring from D to A is shown as a Gaussian. In (a) thermal fluctuations bring D and A levels into resonance (middle 
scheme), which allows tunneling from D to A. Also during these process sites 1,2, 3 are non-resonant; they enhance tunneling but are not 
significantly occupied by the tunneling electron at any time, i.e. there is no nuclear relaxation as a result of electron occupation. In (b) 
ET occurs only when all levels are in resonance and the tunneling electron transfers ballistically (with tunneling probability of 1). In (c) 
[131] D and nearest neighbor site 1 become resonant, allowing efficient electron tunneling from D to 1, and so forth till A. Reprinted with 
permission from [108]. Copyright (2015) American Chemical Society.
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In the superexchange model for ET the donor and accep-
tor energy levels are brought into resonance via bridge energy 
states, and then direct tunneling occurs, bypassing the inter-
mediate energy levels completely. Superexchange therefore 
provides a model for direct tunneling, with a dependence 
of the electron transfer rate on distance between donor and 
acceptor, R, given by

kET = Ae−β(R−∆R) (3)

where ∆R is the distance between intermediate states, and 1/β 
is a characteristic decay length. The proportionality constant 
A depends on temperature as A ∝ T−1/2 exp(−b/kBT), where 
b is a constant that has units of energy, but is independent of 
R and ∆R, while β ∝ 1/∆R and is temperature-independent.

The flickering resonance (FR) model, proposed by 
Beratan, Skourtis, and coworkers, considers the dynami-
cal nature of the system (see also discussion in section 4.1) 
[131]. For flickering resonance to occur, the energies of the 
donor, acceptor, and intermediate energy levels need all to 
be brought into resonance by thermal fluctuations to allow 
coherent tunneling (≠hopping) between the donor and accep-
tor sites. In this case, the transfer rate has the same distance 
dependence as in equation  (3), with the same β ∝ 1/∆R 
dependence. The proportionality constant A has essentially 
the same temperature dependence as for the superexchange 
mechanism, but with a A ∝ (R/∆R)−1 dependence for its 
upper bound value. Although it has not been possible so 
far to unequivocally identify flickering resonance in exper-
imental data, this model might in principle be applicable to 
ETp in biomolecules if it is sufficiently efficient over long 
distances (10 s of nm to μm). Moreover, biological ET often 
involves multiple groups and redox cofactors in van der 
Waals contact with each other, and coupling rates are highly 
sensitive to conformational fluctuations. Thus, the flickering 
resonance model may be relevant to understand the electrical 

conductance in bacterial nanowires and multiheme proteins, 
with strongly coupled porphyrin arrays with closely packed  
(≲15 Å) redox groups [132, 133].

For larger distances, ET is assumed to occur primarily via 
hopping. In this mechanism, the electron incoherently hops 
from site to site in a sequential fashion, with a certain prob-
ability of hopping backwards and forwards. The transfer rate 
for this model is expected to depend on R as

kHop = A/(c + R/∆R), (4)

where c is independent of temperature and A ∝ exp(−∆ADB/ 
kBT), where ΔADB is the free energy difference between the  
electron on the donor (D) and the bridge (B) sites. The hop-
ping mechanism is thought to be especially relevant for lon-
ger biomolecules, such as membrane proteins (figure 6) [51, 
61], where the electron transfer distance between donor and 
acceptor is more than ~2 nm. The rate of hopping can also be 
described by the relation

kET ∝ Nx, (5)

where N ∼ R/∆R is the total number of steps and x depends 
on whether the steps are reversible or irreversible, and has a 
value between 1 and 2 [7, 105]9. It has been proposed that in 
ribonucleotide reductases, responsible for catalyzing the con-
version of nucleotides to deoxynucleotides in all organisms, the 
long ET distance of 35 Å is covered via short electron hopping 
steps between conserved aromatic amino acids, rather than a 
single superexchange step (as illustrated in figure 7) [134].

2.2. Electron transport

The fundamental mechanisms of ETp via proteins are less 
understood than those of ET processes. One important reason 

Figure 6. Diagram comparing electron transport by superexchange and hopping across single α-helical peptide at nanoscopic 
configuration. Reproduced from [135] with permission of The Royal Society of Chemistry. (b) Diagram of electron transport process across 
dehydrated protein monolayer sandwiched between two macroscopic metal electrodes. SAM: self-assembled monolayer; linker: small 
molecule with terminal groups to bind to the protein and to the substrate. The protein shown is azurin.

9 x  =  2 for unbiased diffusive hopping, 1  <  x  <  2—for acceptor direction-
biased random walk, x  >  2 for donor direction biased random walk.
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is that, as discussed above, ETp measurements are not done in 
solution, and therefore there are no ionic charges in the medium 
surrounding the protein to screen charging as the electron moves 
across the protein. Another reason is that the interaction between 
the metal electrodes, which effectively act as initial and final 
donor and acceptor states, are defined by the Fermi level (elec-
trochemical potential) of the electrons of the metals used, rather 
than by discrete molecular orbitals. Nevertheless, some of the 
ET ideas and models discussed above (figure 5) have been used 
as starting points to describe ETp from a microscopic point of 
view. Some of the most widely accepted ETp models based on 
ET ideas are illustrated in figure 7. The top panel describes a 
scheme with donor and acceptor states (as in ET) that can be the 
two electrodes of a molecular junction in ETp. Different amino 
acid residues, which may also include a cofactor, affect the 
potential that the electron encounters as it is transported through 
the protein. The lower four panels in figure 7 are highly sche-
matic illustrations of one-dimensional modes of ETp under an 
applied electrical potential between the right and left electrodes, 
according to the different proposed models.

In the hopping model, transport between electrodes 
occurs via intermediate sites that are potential wells for the 
electron, requiring activation energy to escape, i.e. this pro-
cess is always incoherent and dissipative. We note that this 
model is not the same as the Hubbard model for the hopping 
mechanism in solid state physics, which relies on an effective 
repulsive potential between sites. For the hopping model, the 
conductance temperature dependence in ETp should be simi-
lar to that in ET, ∝ exp(−b/kBT), because the intermediate 
hopping sites exist within the protein.

In the tunneling via superexchange model, transport is 
coherent in a similar fashion to the superexchange model used 
in ET, but because the Fermi levels of the electrodes are tuned 
by the externally applied electric potential, it does not rely on 
a spontaneous thermal alignment of D–A levels. As a result, 
the temperature dependence related to the D–A energies is dif-
ferent in ETp, and the tunneling barrier is influenced by the 
energy levels of the intervening medium.

The term sequential tunneling has been and is used 
in different publications for different processes and, as a 

Figure 7. Illustration of how ideas and models from ET can be used as bases for ETp models, using figure 5(a) as starting point. The top 
panel describes a scheme with donor and acceptor states (as in ET) that can be the two electrodes of a molecular junction (as in ETp). 
Different amino acid residues, which may include also possible cofactors, are indicated. Below the top panel a possible 1D snapshot of 
the dynamic, varying electric potential profile in the protein, is shown between the electrodes of a molecular junction. The lower four 
panels are highly schematic illustrations of one-dimensional transport modes under an applied electrical potential between the right and 
left electrodes, with the y-axis being an energy scale. The Fermi energy distribution of the metallic contacts (dark-gray rectangles) and the 
broadening of the intervening electronic states within the protein (in red) are indicated with Gaussian(-like) distributions.
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result, its use is ambiguous. It has been stated that sequen-
tial tunneling refers to hopping (see e.g. [71]) or that it is 
equivalent to resonant tunneling [136]. Büttiker considered 
the issue, and concluded that tunneling probability through 
a barrier can in general consist of coherent and incoherent 
parts [137]. The incoherent part, where inelastic processes 
occur, destroys phase coherence. In a completely incoherent 
tunneling process, the electron can scatter backwards or for-
wards. According to Büttiker, purely sequential (incoherent) 
tunneling occurs if tunneling occurs solely through an inelas-
tic channel; on the other hand, if tunneling occurs through the 
coherent channel, coherent resonant tunneling occurs. In 
general, a tunneling process with intervening energy states is 
composed of both incoherent (sequential) and coherent tun-
neling channels. In this situation, Büttiker has demonstrated 
that if the two channels are connected in series, they are not 
independent of each other. In other words, increasing the 
sequential tunneling probability affects the coherent channel 
probability.

Whether the transport process is coherent or incoherent 
depends mainly on the residence time of the electron at the 
intermediate electronic states available for transport in the 
medium between the electrodes. For example, if the electron 
spends enough time in the resonant state so that a nuclear 
relaxation accompanies this process (a time t ∼ 1/f , where 
f  is the characteristic frequency of the vibrational energy 
associated with state), inelastic tunneling will occur. It is also 
important to note that while inelastic transport is always inco-
herent, elastic transport can in general be coherent or incoher-
ent. Randomization of the phase of the electron during elastic, 
incoherent tunneling can occur, for example, because of elas-
tic scattering that randomizes the electron’s momentum direc-
tion without changing its magnitude, as in a diffusive process. 
Another example is when the resonant energy level is suffi-
ciently narrow that the electron is effectively localized for a 
significant amount of time during which memory of the phase 
is lost. Thus, depending on what is meant by sequential tun-
neling, the process can be temperature dependent (hopping) 
or not. Therefore, whenever the term ‘sequential tunneling’ is 
encountered, caveat lector!

The flickering resonance model was described in the ET 
discussion above and is further discussed in section 4.1. The 
main difference between the FR and sequential tunneling 
models is that flickering resonance is a coherent tunneling 
process involving several intermediate resonant energy states, 
where the electron does not spend much time within each 
intermediate energy state, and the entire process is elastic and 
is described by a single wave function within the barrier.

In all four cases, the energy levels of the intervening states 
inside the protein are generally considered to be thermally 
broadened, instead of the sharp resonance states used for the 
ET models shown in figure 5.

Proteins in molecular electronic devices have also been 
modeled as one-dimensional solid-state conductors (such as 
carbon nanotubes), in which case the Landauer formalism has 
been used to describe their ETp characteristics. This model 
ignores inelastic interactions and only takes into account elas-
tic scattering at interfaces. If the molecule is considered a 

tunneling barrier, and the temperature is low, the conductance 
is described by the Landauer formula

G = G0T(EF), (6)

where G0 = 2e2

h ≈ (12.9 kΩ)−1 is the quantum unit of con-
ductance (taking into account spin degeneracy) and T(EF) 
is the transmission coefficient of the barrier evaluated at the 
Fermi energy of the metallic contacts [56, 138]. The Landauer 
model can be extended to include molecular energy levels 
by taking into account resonant tunneling, in which case 
the transmission coefficient can be modeled by an effective 
Lorentzian width of the molecular energy level given by

T (E) =
4ΓLΓR

(E − ε0)
2
+ (ΓL + ΓR)

2 . (7)

In equation (7), known as the Breit–Wigner formula, ΓL and 
ΓR  are the coupling energies of the molecular orbitals to the 
left and right electrodes, respectively, E  is the energy of the 
tunneling electron, and ε0 is the energy of the molecular orbital 
(which in general can depend on the coupling of the orbital to 
the electrodes). This approximation is valid when E ≈ ε0 and 
the separation between molecular energy levels is greater than 
ΓL + ΓR . Note that if E = ε0 and ΓL = ΓR , T (E) = 1, that is, 
perfect resonance occurs which results in ballistic transport.

We reiterate that in this review we focus on describing pro-
tein ETp (electron transport occurring in dry, solid state con-
ditions) and on making further connections with ET (electron 
transfer that occurs in conditions where electrolytes play a role 
in the process) and protein biological function. To make real 
ETp measurements, it is necessary to immobilize the protein 
(unlike in measurements made in solution). This adds com-
plexity to the problem because attachment of the protein to an 
electrode can itself change its electronic structure. This can 
occur as a result of hybridization with the metallic electrical 
contacts and/or the formation of Schottky barriers and image 
charges in the contacts. These interactions can change the 
electronic structure directly or by causing a configurational 
change that in many cases can render the protein biologically 
inactive. Therefore, understanding the effects of immobiliza-
tion of proteins on their electronic structure is crucial to the 
interpretation of real experiments where ETp is measured. We 
discuss the effects of protein structure and immobilization of 
proteins in general on their ET and ETp properties below.

2.3. Protein structure, electron transfer (ET) and electron 
transport (ETp)

Biological functions of proteins are dependent on their struc-
ture in a fundamental way. As a result, preserving protein 
structure and chemical functionalities upon immobilization 
on a solid surface is key for studying both ET and ETp. In 
this section, we discuss some fundamental concepts related to 
protein structure that are relevant to ET and ETp.

Protein structure can be understood at several levels, the 
first being the primary structure, which is the linear sequence 
of amino acids, H2N–(H)C(R)–CO(OH), held together by 
covalent, amide (or peptide) bonds, –(H)N–C(O)–, forming a 
polypeptide chain. The next level is the secondary structure, 
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where the polypeptide chains form higher order three-dimen-
sional features (e.g. α-helices and β-sheets or turns) based on 
hydrogen bonding between amino acid peptide bonds. Lastly, 
a tertiary structure is formed by additional secondary structure 
elements that undergo the necessary folding by specific inter-
actions, including formation of salt bridges, hydrogen bonds, 
and disulfide bonds, to achieve free energy optimization (low-
est entropy) in the solvent, giving rise to a compact structure. 
Proteins are generally amphiphilic, i.e. they contain both 
hydrophobic and hydrophilic parts, with hydrophilic amino 
acids forming a protective shell via folding to minimize the 
exposure of hydrophobic amino acids to the solvent. In the 
case of multi-subunit proteins, where the sub-units are stabi-
lized by the same interactions as the tertiary structure, a qua-
ternary structure refers to the global structure of the connected 
subunits. Multi-subunit proteins are multi-protein complexes, 
with different complexes having different degrees of stability 
over time to achieve a specific set of functions. A well-known 
example is hemoglobin, which is a tetramer composed of four 
sub-units with a high degree of stability.

The oxidation-reduction potential of redox-active proteins 
is extremely sensitive to the structure of the polypeptides. For 
example, a single point mutation or minimal alteration of the 
secondary or tertiary structure of redox proteins can change 
the redox potential by 100 mV or more [139]. Conditions that 
break bonds or disrupt electrostatic interaction within proteins 
may result in a loss of the structural order of proteins, a pro-
cess known as denaturation. Denatured proteins display some 
or complete loss of protein function.

Enzymes are proteins that act as macromolecular biologi-
cal catalysts, and thus accelerate chemical reactions without 
themselves being altered by the reaction, often by binding to 
small molecules. An example of how enzymes work can be 
seen in the cytochrome family when discerning differences 
among members of the cytochrome P450s. Cytochrome P450 
is denoted by ‘CYP’ followed by a number placing it in a gene 
family, a letter that denotes a sub family. An individual gene 
receives a second number. Thus, the name CYP2C9 represents 
a cytochrome P450 in the ‘2’ family, the ‘C’ subfamily, and 
individual gene ‘9’. Both cytochrome c and cytochrome P450 
are heme-containing metalloproteins (with Fe as the metal 
ion) that have comparable redox potentials for ET. P450s 
contain an active site that allows binding of small molecules, 
while cytochrome c does not. Different small molecules bind 
specifically to different P450s, coordinated to the heme group, 
and are known to alter the spin state of the heme Fe [140, 
141]. Studies have shown that the presence of small molecules 
in the active site alters the rate of ET in multiple P450s [141] 
and our research has demonstrated that changes both in ET 
rate and ETp efficiencies of P450 from CYP2C9 occur when 
small molecules are bound inside the active site [142–144].

Electron transport across dry protein monolayers has been 
studied using solid-state protein-based molecular junctions, 
with macroscopic and nanoscopic current–voltage (I–V) 
methods [1, 47, 54, 145, 146]. Results have been reported for 
several protein types, such as those functioning as ET media-
tors, azurin (Az) and cytochrome c (CytC), or bacteriorho-
dopsin (bR), a light-driven H+ pump protein, and proteins 

lacking any bound cofactor (bovine and human serum albu-
min, BSA and HSA). Despite some general similarities, these 
proteins differed in their ETp behavior. For instance, proteins 
with bound cofactors produce higher currents than those that 
lack it. These observations indicate not only that the primary 
sequence of the amino acid, which is mainly responsible for 
secondary structure is important, but also that the presence of 
a cofactor creates relatively efficient current transport paths 
and affects ETp in solid-state measurements.

The importance of the cofactor has also been demonstrated 
in studies of proteins for which the apo form (the protein with-
out the cofactor) can be synthesized while retaining structural 
integrity. Specific examples are azurin, myoglobin and CytC, 
which have undergone rigorous studies in different forms. In 
the apo form, electrochemical redox properties are absent for 
all metalloproteins, and electron conduction efficiencies are 
reduced by only one to two orders of magnitude compared to 
the holo-protein, when both are measured in the dry solid state 
monolayer form [85]. For CytC, removing the heme group 
leads to denaturation, but it is possible to remove only the Fe 
(from the heme group), and this was found NOT to affect ETp 
at all, in contrast to its effect on ET, which showed loss of 
redox activity [147]. Cofactors often serve as the elements that 
facilitate superexchange-mediated tunneling for electronic 
charge carriers and protein-electrode electronic coupling, and 
alterations of these groups can affect ETp significantly [148]. 
Nanogap measurements of single myoglobin molecules in 
solid state demonstrated resonant tunneling through the heme 
group with a strong dependence on gate voltage only for the 
holo- but not the apo-protein [32]. In section  4.3.2 of the 
impact of cofactors on ETp is discussed further.

For electrochemical studies (figure 1), intramolecular 
electron transfer in redox proteins specifically relates to the 
binding sites of redox prosthetic groups and redox-active 
amino acids and their locations with respect to the working 
electrode, which influence the electronic coupling between 
the redox-active center and the electrode contact point  
[48, 50, 147, 149]. ‘Doping’ human serum albumin protein with 
hemin (porphyrin, protoporphyrin IX, with Fe3+; in heme, the 
metal ion is Fe2+) or retinoic acid enhances ETp efficiencies 
by more than an order of magnitude in solid state molecular 
junctions; with hemin, this protein also becomes redox-active 
in an electrochemical cell. The natural heme-containing pro-
tein, Cyt C, shows a symmetric cyclic voltammogram with an 
ET rate constant of ~18 s−1 (measured between the heme and 
the Au electrode), while the HSA–hemin complex exhibits an 
asymmetric curve with a somewhat lower ET rate constant of 
~ 5 s−1 [147, 150]. In case of redox proteins we note that the 
cofactors carry out the redox reactions, which need not be so 
for solid-state ETp (details in section 4) [151].

In solid-state ETp across protein monolayers, electronic 
coupling (Γ, see equation  (7)) to electrodes dramatically 
influences its efficiencies and the electron flow mechanisms  
[152, 153]. Experimentally, the thermal activation energy 
for ETp is found to be governed by Γ for all proteins that we 
have studied. This is illustrated by results on immobilized 
cytochrome c junctions, for which the thermal activation energy 
is reduced by approximately a factor of two, if it is covalently 
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rather than electrostatically bound to the electrode [153]. In 
the case of metalloproteins, electronic coupling is mainly 
controlled by the relative position of the redox cofactor w.r.t. 
the electrodes, and by its oxidation state [151, 153]. Covalent 
protein–electrode binding (hybridization) increases Γ, in the 
tunneling transport regime (30–150 K). Proteins that are cova-
lently bound to the electrode via a cysteine thiolate yield ten 
times higher ETp efficiency than those that are electrostatically 
adsorbed on the surface [47, 84, 153]. Coordination changes 
of metal groups in different oxidation states also affect ETp. 
For example, the Fe in the heme group in myoglobin and 
cytochrome P450 (P450) undergoes a change in coordination 
upon ET that leads to a change between Fe3+ and Fe2+ oxida-
tion states, which have different spin states. This type of coor-
dination change is common in heme-containing proteins, and 
is known to have profound effects on both ET and ETp [51]. 
Another important consideration is how the cofactor is cou-
pled in the ET pathway. Prytkova et al [129] proposed that the 
anomalously slow ET rates seen by Gray and Winkler in their 
histidine-modified cyt b562 derivatives (His 12 and His 73, see 
figure 4) could be explained by different coupling pathways to 
the heme group. In the case of these two slow ET rates, there 
is a pathway coupled to the ligand, axial (perpendicular to) the 
heme plane, as opposed to the other seven predicted rates with 
a pathway coupled to the heme edge.

An increase in transport efficiency was observed across a 
myoglobin monolayer on silicon if Mb was oriented by chem-
ical binding of its hemin group to the substrate (via protein 
reconstitution) compared to a monolayer of Mb that was ran-
domly oriented, i.e. its heme group was randomly oriented 
with respect to the substrate and, thus, with respect to the con-
tacts [85]. This ability to change ET and ETp by binding and 
orientation could allow use of proteins with different proper-
ties in a precise way in bioelectronics.

One method for achieving desired characteristics is the 
design of metalloproteins de novo [154] or by utilizing native 
protein scaffolds [3]. De novo design has allowed the creation 
of metalloproteins with ET, redox-coupled proton exchange 
[155], hydroxylase [156], peroxidase [157], and oxygenase 
[158] activity. Metalloprotein design, using native protein 
scaffolds, has also been useful because the current incomplete 
understanding of protein folding mechanisms limits de novo 
design capabilities. Using techniques such as site-directed 
mutagenesis [159–161], it is possible to introduce new func-
tions, metal specificity, and substrate specificity into existing 
metalloproteins [162–166]. A better understanding of protein 
function will allow greater control of protein design for use in 
bioelectronics.

2.4. General properties of immobilized proteins

The ability to immobilize proteins allows for a direct study 
of their electrical transport properties, including ETp (mea-
sured in solid state conditions) [47]. Protein immobilization 
is a powerful tool for controlling protein assembly and allows 
single molecule analysis. Immobilization entails physically 
localizing proteins in a region of space, usually on a solid-
state substrate, while retaining their function for useful ETp 

studies. Factors that determine protein function after immo-
bilization include amino acid composition of their surface, 
physical and chemical properties of the solid substrate, and 
the type of interface between the protein and the substrate 
(‘coupling’) [167], all of which can affect the structure, orien-
tation, and (average) conformation of the immobilized protein 
[131].

A variety of immobilization techniques have been used to 
link proteins to electronic components. For redox-active pro-
teins immobilization should result in the part that is redox-
active and the electronic component onto which the protein is 
immobilized appropriately positioned for efficient electronic 
coupling (but see discussion on [147], above). For photoac-
tive proteins, immobilization should minimize fluorescence 
quenching by non-radiative energy transfer to the substrate.

Many proteins spontaneously adsorb on solid surfaces 
through hydrophobic or electrostatic interactions (physi-sorp-
tion), but uncontrolled and likely undesirable orientations of 
physisorbed proteins lead to multiple types of contacts and 
interactions with the surface, thus compromising the proteins’ 
inherent functionality, which, for redox proteins often leads to 
a substantially slower electron transfer than in solution [47, 
167–169]. For the creation of bioelectronic devices, achieving 
controlled immobilization via direct chemisorption of func-
tional proteins on metal or semiconductor surfaces remains an 
important task. The challenge is to achieve direct ET between 
the protein and electrode.

Metalloproteins, such as azurin, plastocyanin and 
cytochrome c, adsorbed on the surface of solid substrates, 
have been extensively characterized by a combination of tech-
niques, as assemblies or at the single molecule level. These 
techniques include measurements of their topography, as well 
as spectroscopic, and ET properties [28, 170–176].

Atomic force microscopy (see section 3.6.2) and scanning 
tunneling microscopy (STM) have been employed to investi-
gate morphological properties, ETp, and redox activity of indi-
vidual metalloproteins, chemisorbed on gold substrates [2, 32, 
49, 83, 146, 177–183]. The arrangement and orientation of the 
proteins on a gold substrate, and their structural and dynamic 
properties, have been simulated using molecular dynamics [62, 
178, 184, 185]. Conductive probe AFM (CP-AFM; see sec-
tion  3.6.2) experiments and scanning tunneling spectroscopy 
(STS) have probed ETp across adsorbed proteins. Redox func-
tionality of azurin, cytochrome c, and myoglobin, immobilized 
on gold, were found to be preserved by cyclic voltammetry 
measurements of ET [50, 111, 116, 186–190].

Electrochemical STM (EC-STM, see section 3.6.2) allows 
studying ET in solution with a variable electrochemical poten-
tial difference between sample and a reference electrode. In 
STM-based molecular junctions, redox-active cytochrome b562 
was engineered by introducing a thiol group, allowing for con-
trolled binding to gold electrodes [178, 191].

Various studies using a combination of spectroscopic and 
scanning probe techniques have found that immobilized pro-
teins retain their structure at least partially over a range of elec-
trochemical over-potential differences, as shown, for example, 
by the measurement of the ET properties of azurin immobilized 
on a gold substrate [174, 176, 192–195].
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Proteins can be absorbed on surfaces through electro-
static interactions of charged surface amino acids and the 
solid surface [168], hydrophobic interactions if there are such 
exposed regions, or through tethering with a linker molecule  
[196–199]. Direct immobilization to the substrate not only 
gives poor control of the protein orientation, as noted above, 
but also often results in inactive protein conformations.

Proteins are classified into two groups in terms of rigidity, 
which is a measure of the protein’s ability to resist conforma-
tional changes upon adsorption to a surface [169]. The terms 
‘hard’ and ‘soft’ are used to characterize flexibility of a pro-
tein, as deduced from its molecular adiabatic compressibility 
[200]. Protein rigidity can affect the viability of the protein if 
attached to a solid-state surface. Hard proteins, such as horse-
radish peroxidase, lysozyme, and ribonuclease A, generally 
go through minimal conformational changes upon adsorp-
tion [201]. In contrast, soft proteins, such as bovine serum 
albumin, myoglobin, and hemoglobin, are usually more sus-
ceptible to interaction with the surface onto which they are 
adsorbed and can show marked changes in secondary and 
tertiary structure upon adsorption [202]. Strong interactions 
with a solid substrate can even denature soft proteins that 
lack a rigid structure [201]. The nominal surface coverage 
for maximum protein activity correlates with the rigidity of 
the protein [203]. Although adsorption on a solid surface can 
lower protein activity due to denaturation, in some instances 
it increases stability of proteins, and actually enhances activ-
ity. Several studies have demonstrated an enhancement 
of lipase activity if immobilized to hydrophobic supports  
[204, 205]. Enhancement of protein activity and increased 
stability were also demonstrated on nano-scale platforms, 
where a possible reason may be nano-structuring, i.e. binding 
between substrate and protein promotes more active and/or 

stable conformations than is the case for the unbound protein 
[20, 206–209].

3. Methods of protein immobilization

Immobilizing proteins is critical for studying electron flow 
across proteins, especially those related to ETp, where elec-
tronically conducting contacts are required. For ETp studies 
to be biologically relevant, immobilized proteins must be 
in their native conformation with structural and biological 
activities preserved. For electrical conduction studies and 
other applications, historically the first strategy employed 
was protein immobilization on bare metal electrodes or metal 
electrodes modified with small molecules to promote protein 
adsorption. Direct absorption was found to be ineffective 
because of loss of biological function, and thus electrodes 
modified with organic overlayers were developed to address 
this problem. In this section, we review these attachment 
techniques and the ways in which the attached proteins can 
be characterized.

3.1. Direct adsorption

Polycrystalline metals, conducting polymers, semiconduc-
tors, especially silicon, or metal oxides, and carbon electrodes 
have all been used for direct immobilization (see [210] for a 
recent review of semiconductors as substrates/electrodes for 
molecular electronics) [211–216]). As mentioned previously, 
proteins are immobilized non-covalently by passive adsorp-
tion onto the surface through hydrophobic or electrostatic 
interactions (figure 8).

Redox-active proteins can be studied by protein film 
voltammetry (PFV), pioneered by Armstrong, where the 
protein is adsorbed directly on to the electrode surface and 
probed electrochemically with techniques such as cyclic 
voltammetry (figure 1) [217, 218]. In PFV it is important 
to choose an electrode surface that allows adsorption of the 
protein in an electroactive conformation, usually with the 
redox center near the electrode (figure 9). While electrodes 

Figure 8. Enzyme immobilization on different interfaces and 
possible effects on the enzyme orientation/conformation. High 
charge density (above left) or hydrophobic surface (above right) are 
possible causes of enzyme conformational changes and inactivation. 
Enzyme co-immobilized with hydrophilic polymers (middle, left) 
or tethered (middle, right) can reduce unfolding and inactivating 
support–enzyme interactions. Incorrect orientation (below, left) and 
multilayer formation (below, right) may cause reduction of specific 
activity. Reproduced from [169] with permission of The Royal 
Society of Chemistry.

Figure 9. Effect of orientation of immobilized protein (blue) on 
direct electron transfer with electrode. On the left the redox group 
(green) is far away from the electrode (yellow), and electron 
transfer cannot be observed. On the right, the redox group is close 
to the electrode allowing for efficient electron transfer. Reproduced 
from [234]. CC BY 4.0.
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like pyrolytic graphite (PG), which can be polished to add 
oxide functionalities, making it hydrophilic, have a distinct 
advantage over metals in allowing multiple and varied inter-
actions with protein surfaces, metal electrodes are better 
suited for chrono-amperometric and impedance measure-
ments [69, 219, 220] due to the absence of slow charging 
issues with graphite [221].

Utilizing PFV, Hill, Kuwana, and co-workers dem-
onstrated reversible diffusion-controlled voltammetry 
of adsorbed cytochrome c [222, 223]. This approach was 
further extended to other proteins, including azurin, to 
demonstrate electron-exchange studies [217, 221]. Direct 
adsorption of multi-heme proteins, such as cytochrome c 
nitrite reductase [224, 225], fumurate reductase [226–228], 
and flavocytochrome c3 [229], reveal distinct redox peaks 
for each heme group. These studies enabled interrogation 
of ET in flavin adenine dinucleotide (FAD) cofactors, cova-
lently attached to the redox enzyme fumurate reductase, 
and non-covalently attached to flavocytochrome c3. FAD is 
particularly prominent in voltammetry because of its two-
electron transfer center, which can be detected electrochem-
ically easily, compared to other methods like UV–visible 
spectroscopy, where it is obscured by the intense bands 
from heme groups [230].

In situ vibrational (Raman and IR) spectroscopy measure-
ments have been carried out to examine the retention of the 
structure and conformation of proteins after direct immobili-
zation via adsorption or covalent attachment to electrode sur-
faces [231–233]. ET activity, as measured by electrochemistry, 
is often hindered by the large distance of redox-active groups 
(several nm) from the electrode surface upon adsorption  
(figure 9). The spectroscopy data, together with large changes 
in the electrochemical potentials, also have shown that direct 
immobilization can result in denaturation, such as a loosening 
of the helix packing, including partial dissociation of a histi-
dine ligand in the ferrous state.

3.2. Modified electrodes

Indirect adsorption of proteins using a chemical linker or cross-
linked reagent [235] on modified electrodes allows for better 
protein structure than direct adsorption. Thiol-containing mol-
ecules allow for the formation of self-assembled monolayers 
(SAMs) on metal surfaces, which provide a convenient and 
simple system with which to tailor the interfacial properties 
of electrodes [211, 236–237]. Proteins with a natural dipole 
moment (such as membrane proteins) are electrostatically 
adsorbed to a polar head (carboxylate, amine) group of a SAM, 
which in turn is attached to an electrode. Successful surface 
modifiers are often those that bind the protein in a fashion 
similar to that of known redox factors, i.e. small molecules or 
proteins, which mediate ET from a donor to an acceptor, and 
preferably at the same location [238]. Extensive characteriza-
tion has revealed that binding of proteins to their redox part-
ners often involves hydrophobic and electrostatic interactions 
[239–245], and thus tailoring the choice of surface modifier 
to mimic natural interaction can position and adjust the (aver-
age) protein conformation [131] for optimal electron transfer 
properties upon adsorption.

A number of surface modifiers have been evaluated 
for enhancement of heterogeneous ET of immobilized 
cytochrome c, and it has been proposed that successful modi-
fiers allow a cytochrome c conformation with the prosthetic 
heme group close to the electrode [246, 247]. Later work 
demonstrated that electronic coupling greatly impacts ETp, 
with covalent attachment doubling the current density com-
pared to electrostatic adsorption [153]. No correlation could 
be found between measured current and electrode-heme 
distances, although close electrode-heme distances gener-
ally displayed more efficient ETp [153]. Electron transfer of 
immobilized cytochrome c has been accomplished via vari-
ous small organic linker molecules, especially those contain-
ing thiol groups [248–254].

Figure 10. Example of protein interactions with lipid membranes in nature, which are dictated by the proteins’ hydrophobic and 
hydrophilic surface groups. Membranes consist of amphiphilic phospholipids with hydrophilic phosphate heads and hydrophobic tails. 
Proteins can be embedded within the lipid environment as depicted for integral membrane proteins. They can be bound to lipid head 
groups or exterior surfaces of embedded proteins as seen for peripheral membrane proteins, or they can be linked to the membrane via a 
hydrophobic tail group that buries itself in the lipid membrane.
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Chemically functionalized long-chain molecules, such as 
silanes or thiols, can spontaneously assemble on metal, glass, 
and carbon surfaces to form stable covalent bonds between 
their terminal functional group and the activated metal, metal 
oxide, or silicate. Densely packed, organized molecular lay-
ers assemble approximately orthogonal to the surface via 
extended hydrocarbon chain linkers [236]. Early examples 
include monolayers of long chain alcohols on carbon glass 
[211, 255, 256], long chain amines on platinum [257], alkyl 
trichlorosilanes on silicon and mica [258], and long chain thi-
ols, thioesters, thiones and alkyl disulfides [259–261] on gold.

Amphiphilic molecules, such as siloxanes, alkanethiols 
and carboxylic acids, form well-ordered mono-layers on 
metal and metal oxide surfaces [236, 262–264]. Long chain 
thiols such as the 11 carbon units long 11-mercapto-undeca-
noic acid (MUA; ~1.1. nm), shorter ones such as the 3 carbon 
unit long mercaptopropionic acid, and others have been used 
to immobilize proteins [265]. On metal electrodes, the long-
chain thiols form a dense self-assembled layer that is effec-
tive as a promoter, i.e. an electro-inactive surface modifier 
that enhances ET of immobilized proteins [266, 267]. Linker 
length [47, 268] and composition [262] have been shown to 
affect the electron transfer rate.

The control of protein stability and orientation through sur-
face modification has led to the development of many different 
techniques to enhance ET rates in, and ETp efficiency across 
proteins. In addition to the small molecules mentioned above, 
polymers [111, 198, 269–272], surfactants [185, 250, 273, 274], 
clay composites [275–279], and nanoparticles (NPs) [280–285]  
have been used to modify electrode surfaces to achieve effective 
coupling between the electrode surface and immobilized redox 
proteins. These compounds help to enhance protein immobili-
zation through their entrapment in thin films. Thin films provide 
a favorable microenvironment for proteins, similar to biomem-
branes [286], allowing them to retain their native conformations 
while enhancing the electron transfer to/from the electrode with 
respect to systems where the proteins are closer/tighter bound 
to the substrate. As the adsorbed protein is strongly bound to 
the film, much lower protein concentrations are required for 

SAM-modified surface methods than for direct immobilization, 
where the protein binds reversibly to the surface [287].

Electrodes modified with surfactants and/or lipids can 
mimic the membrane environment where proteins are found 
in nature. This is especially true for enzymes which function 
in nature while bound to, or embedded in bi-layer lipid mem-
branes (figure 10) [288]. These surfactant/lipid films are gen-
erally water-insoluble, have polar head groups, and contain 
one or more relatively long hydrocarbon chains. Lipids and 
surfactants can form stable multilayers through electrostatic 
interactions with electrodes maintaining the native conforma-
tion [274, 286, 289]. Thus, the goal in this approach is to cre-
ate an environment on the electrode that allows proteins to be 
immobilized in a manner that mimics their natural, membrane-
bound environment and maintains their native conformation 
that facilitate electron transfer across protein-based junctions.

Work by Murray and co-workers is the first report of 
reversible ET of a protein incorporated in a polymer film on 
an electrode [290]. In their work, cyclic voltammograms for 
cytochrome c, incorporated in gel coatings of poly-acryla-
mide and polyethylene oxide, yielded reversible peaks, indis-
tinguishable from cytochrome c in aqueous solution. The 
success of this study led to the investigation of different poly-
mers and methodologies for direct electron transfer studies. 
Amphiphilic polymers, polymers containing both polar and 
non-polar groups, have been demonstrated to allow immobi-
lization of myoglobin and hemoglobin, in their native con-
formations [291, 292]. In addition to amphiphilic polymers, 
there has also been increasing interest in using naturally cre-
ated biopolymers as immobilization matrices for proteins 
because of their biocompatibility and non-toxicity, and a vari-
ety of natural supports have been used to immobilize proteins 
successfully [293]. Ultra-thin clay coatings, such as sodium 
montmorillonite, kaolinite, talc, goethite, and ochre, have also 
been demonstrated to promote the direct electrochemistry 
of heme-containing proteins [277–279, 294]. An example is 
sodium montmorillonite, which is used to immobilize redox 
proteins and enzymes onto glassy carbon electrodes (GCE) 
for sensitive chemical and gas sensor applications [295].

Figure 11. Representation of layer-by-layer (LbL) formation on a substrate using polyanions (negatively charged polymers, shown in red) 
and polycations (positively charged polymers, shown in blue). Layers are formed by immersion of the substrate in alternating solutions of 
polycations and polyanions. This allows the creation of a film to entrap a desired protein based on its surface charges, as shown on the right for 
the positively charged protein (in red). Reprinted by permission from Macmillan Publishers Ltd: Nature Materials [269], Copyright (2009).
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Polyelectrolytes, which are polymers with negative charges 
(polyanions) or positive charges (polycations), have also been 
used to immobilize proteins on a substrate surface, using 
layer-by-layer (LbL) deposition (figure 11). First proposed for 
the synthesis of charged colloidal particles and proteins [296], 
later work established that adsorption at every stage of poly-
anion or polycation assembly leads to multilayer formation 
and a reversal in the terminal charge [297]. In LbL growth, 
multiple layers of oppositely charged films of proteins, which 
have natural surface charges, and polyelectrolytes of opposite 
charge, are built up on the electrode surface, providing several 
active layers of entrapped protein (figure 11). Layers can be 
formed by successive submersion/wash/submersion cycles of 
a substrate in solutions of the relevant polyelectrolytes, each at 
a pH suitable for the desired ionization; greater layer control 
and reproducibility can be achieved through electrochemical 
deposition [271]. The ability to incorporate multiple layers on 
an electrode increases the effective protein concentration on 
the surface, and could thus enhance downstream applications 
such as biosensing sensitivity. It, also enhances control over 
the film architecture when compared to solution-casting [289].

In addition to polyelectrolytes, NPs have also been investi-
gated to generate ultrathin protein films [298–300]. Inorganic 
NPs have large surface areas, can have good biocompatibil-
ity, and provide a favorable microenvironment for electron 
transfer from electrodes to proteins. Using NPs in conjunc-
tion with polyelectrolytes leads to protein films on electrodes 
that are more electroactive than what is obtained by layer for-
mation with polyelectrolytes alone. This is evidenced by an 
increase in how thick a protein layer remains electroactive, 
when formed with LbL immobilization: from ~1.4 electro-
active layers for polyelectrolyte—myoglobin films on gold 
[111] to 7 electroactive layers of polyelectrolyte—myoglobin 
films on pyrolytic graphite [270], and up to 10 such layers 
with polycations and manganese oxide NPs [301]. He and Hu 
also demonstrated that LbL films of myoglobin, hemoglobin, 
and horseradish peroxidase with silicon dioxide nanoparticles 

retained their electroactivity of samples up to 6 layers thick, 
and such immobilized proteins can electrochemically catalyze 
reactions with their respective bound ligands [283].

3.3. Protein tethering through linker

Proteins attached to substrate surfaces through an organized 
monomolecular layer with site-specific immobilization should 
provide better reproducibility and better control over electron 
transfer and transport measurements than randomly immo-
bilized proteins, by eliminating unpredictable orientations 
and improving uniformity of protein conformation. Indeed, 
covalent attachment of proteins to an electrode via a tether 
has become a robust method to control protein adsorption  
[53, 192, 302]. This allows for a greater degree of control over 
protein orientation on the SAM surface, for an appropriate 
choice of linker and for controlled coupling chemistry [214].

To overcome the slow ET rates reported in studies of 
electrostatically adsorbed proteins on modified electrodes, 
researchers have immobilized unmodified proteins through 
covalent attachment to SAMs on an electrode. There are vari-
ous techniques that have been used to covalently link pro-
teins to SAMs [303]. One of these uses chemical activation 
with reagents (‘EDC-NHS’ method)10 to bind a protein to a 
carboxylate (COO−)-terminated SAM via a surface-exposed 
amine (NH2) group of the protein. In this method, a covalent, 
amide bond (–(H)N–C(O)–) is formed [304] by activating 
the carboxyl group of the thiol linker molecule to allow bond 
formation with the amine (–NH2) group of the protein [85]. 
If the substrate is reflective, then Fourier transform polariza-
tion-modulation infrared reflection-absorption spectroscopy, 
PM-IRRAS, can serve to confirm bond formation [305]. The 
EDC-NHS method has been used successfully to covalently 

Figure 12. (a) Electrochemical Current–voltage curves, Cyclic Voltammograms, of CYP2C9, covalently immobilized to Au(111) via 
a linker SAM at a scan rate of 1.6 V s−1. Curves were obtained in the absence (curves a, b) and presence of warfarin (curve c), a small 
molecule that binds CYP2C9 and coordinates with its heme group. In the absence of O2 (curve a), the reaction stops at the conversion of 
Fe(3+) to Fe(2+) and there is no reduction. (b) Reduction (of P450) current dependence on the concentration of warfarin. The solid line is 
the non-linear regression fit of the oxygen-saturation data, and the dashed line is the linear regression line of the nitrogen-saturation data. 
Reproduced with permission from [144]. American Society for Pharmacology and Experimental Therapeutics (2009).

10 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. 1-Ethyl-3-(3-dimethyl-
aminopropyl)carbodiimide (https://en.wikipedia.org). Available at: https://
en.wikipedia.org/wiki/1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide.
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attach different proteins to a gold surface [306]. For exam-
ple, immobilized cytochrome P450(CYP2C9) was shown 
to retain its enzymatic activity in the presence of its redox 
partners cytochrome P450 reductase (CPR), and nicotinamide 
adenine dinucleotide phosphate (NADPH, a biological redox 
agent) [144]. A cyclic voltammetry scan of the Au/Linker/
CYP2C9 electrode revealed quasi-reversible reduction and 
oxidation peaks in the range of known redox and oxidation 
potentials for P450s (figure 12(a)) [307]. CYP2C9-modified 
electrodes were also used to sense small molecules. This is 
possible as the current (I)–concentration (C) curves agree with 
the Michaelis–Menten equation [308],

I =
imax C

K app
M ± C

, (8)

where imax is the maximum current, C is the concentration of 
the drug, and Kapp

M  is the Michaelis constant which describes 
how well a small molecule (ligand) binds to the enzyme (fig-
ure 12(a)). The work showed that concentration-dependent 
increases in current were observed only when the full P450 
reaction cycle was completed, in the presence of both O2 and 
Warfarin (ligand). More recently, Fantuzzi et al showed rapid 
determination of small molecule binding to various cyto-
chrome P450s using a SAM linked P450-electrode integrated 

Figure 13. Schematic of a high-throughput drug screening plate with eight parallel cytochrome P450-electrode containing wells. The P450 
was covalently immobilized through coupling between a sulfur atom of the linker molecules and the gold electrode (yellow). Each well 
also contains a Pt counter electrode (black) and carbon reference electrode (gray). Current was measured by a potentiostat as drug is added 
in increasing concentrations to determine current maxima. Reprinted with permission from [310]. Copyright (2011) American Chemical 
Society.

Figure 14. (a) Experimental electrochemical tunneling microscope, EC-STM, set-up for single protein junctions consisting of azurin-
bridged between a gold substrate and the probe of an EC-STM and (b) 2D I–V histogram showing two populations of curves in azurin 
following its orientation in EC-STM junction configuration. (c) Schematic of the mechanically controlled break junction (MCBJ) with a 
liquid cell and scanning electron microscope images of electrodes in MCBJ devices. (d) Schematic of vertical nanogap device with protein 
molecules assembled in the gap (drawing is not to scale); (e) and (f) corresponding scanning electron microscope images. (a) Reprinted 
with permission from [31]. Copyright (2012) American Chemical Society. (b) Reprinted with permission from [316]. Copyright (2011) 
American Chemical Society. (c) Reprinted with permission from [317]. Copyright (2016), AIP Publishing LLC. (d–f) Reproduced from 
[318]. © IOP Publishing Ltd. All rights reserved. 
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into a high-throughput plate format (figure 13) [309, 310]. 
Taken together, these results demonstrate successful use of a 
linker to preserve innate protein functionality, which allow for 
biologically-relevant ET(p) studies and suggest possible bio-
sensing platforms.

Non-redox proteins were also successfully attached on 
Au(1 1 1) surface using carboxylic acid-terminated thiol 
(–SH) molecules, where the thiol group binds to the Au sur-
face following the EDC-NHS reactions discussed above  
[85, 311, 312].

Protein immobilization by itself does not guarantee that 
individual proteins can be placed exclusively on specific sites 
on a device. To achieve placement, multifaceted approaches 
have been implemented that combine different techniques. 
For example, a regular array of Au bottom nanowells (100 nm 
diameter), fabricated using nanosphere lithography, was 
modified by covalent immobilization of biologically active 
cytochrome P450 (CYP2C9) via coupling to a SAM of octa-
nethiol [313]. An array of 10 nm diameter Au nanopillars, 
functionalized with suitable SAMs, allowed reliable deter-
mination of β values (see equation (2)) for alkanethiols that 
agreed with previous studies [314]. With a similar approach, 
we used an indexed array of gold nanopillars as individual 
pixels for protein immobilization to which CYP2C9 could be 
linked using a SAM comprised of a mixed thiol layer [142, 
143]. Indexing of the array allowed multiple studies on the 
same P450 enzyme exposed to different substrates.

3.4. Break-junction, nanoscopic techniques

To help understand protein structure–function relations, and 
explore the use of protein properties for bioelectronics, the 
ability to study single proteins is an important complement 
to the monolayer studies discussed above. Measurements of 
monolayers provide average values of a large ensemble of 
proteins in various conformations, and thus the data represent 
a statistical average over all proteins that may hide specific 
transport features. In single molecule break-junction studies, 
a conductance trace across a single protein captures a time-
averaged statistical histogram of conductance distributions 
over many conformations (>~10 000 traces, depending on 
the temperature and how fast the data are acquired). Thus, the 

method can provide information on conductance variations 
over protein conformation fluctuations.

There have been several investigations of ET and ETp 
properties of single proteins. One method involves the use of 
electrochemical scanning tunneling microscopy (EC-STM; 
see section 3.6.2) to investigate electron transport across a sin-
gle azurin protein [176, 195, 315, 316]. An advantage of this 
method is the high spatial resolution of EC-STM that allows 
visualization of single proteins that are measured (figure 
14(a)). Although EC-STM allows confirmation of the exist-
ence of single proteins, it does not provide a means of control-
ling aggregation. Another disadvantage of this method is that 
it does not allow multiple measurements to be conducted on 
the same protein after removing the sample, which prevents 
systematic studies to be performed under different conditions. 
The recently reported possibility to use mechanical controlled 
break junctions in aqueous environment [317] opens the pos-
sibility of forming such junctions with proteins, which may 
improve the control over the force applied to this floppy sys-
tem, something that is a problem in other single molecule 
junction methods (figure 14(b)).

Another nanoscale technique for studying single proteins 
involves the creation of nano-gap electrodes through mechani-
cal breaking [319, 320] or electromigration techniques [321]. 
Electromigration has been used to create electrodes with 5 nm 
gaps for protein entrapment between Pt source and drain 
electrodes deposited on Si oxide/Si substrates [32]. This nar-
row gap allowed isolation and interrogation of molecular 
energy levels of apo-myoglobin or myoglobin single proteins  
[29, 32].

The availability of apo-myoglobin (myoglobin without 
the heme group) allows performing controlled experiments to 
determine the relevance of the heme group to ETp. The role 
of the heme group was studied explicitly by Li et al using Pt 
break junctions deposited on a SiO2/doped Si substrate. A drop 
of the protein solution was placed on the Pt junction, which 
was then cooled to 6 K and broken by applying a large voltage 
(electromigration) [32]. In a successful sample, a single pro-
tein would fall into the ~5 nm gap, and using the Pt contacts 
as source and drain electrodes, and a bottom contact on the Si 
substrate as a gate electrode, a transistor structure was formed 
(figure 15(a)). Coulomb blockade triangles were observed at 

Figure 15. (a) Sketch of a three-terminal device and AFM image of a bare Pt junction broken by electromigration. The AFM image indicates 
that the gap is on the order of 5 nm wide. (b) Differential conductance (dI/dV) data from a Mb sample (gray scale from 0 (black) to 5.0  ×  10−6 
S (white)) at T  =  6 K. The red arrows point to vibration-assisted (inelastic electron tunneling spectroscopy, IETS, see section 4.3.4. and figure 
29) conduction lines. (c) dI/dV (black) and d2I/dV2 (red, the IETSpectrum) spectra at VG  =  11 V for another myoglobin sample at T  =  6 K. The 
vertical arrows correspond to inelastic tunneling peaks (see section 4.3.4). Reproduced from [32]. © IOP Publishing Ltd. All rights reserved.
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6 K in the drain-source versus gate voltage conductance maps 
for myoglobin samples, indicating the presence of single elec-
tron transistor (SET) behavior (figure 15(b)), but not in any 
apo-myoglobin samples. During the tunneling process in a 
SET, the Coulomb repulsion between a tunneling electron and 
electrons at the contacts precludes simultaneous tunneling of 
more than one electron at a time, and the transport is char-
acterized by Coulomb blockade triangles in the differential 
conductance data. The presence of Coulomb triangles in the 
myoglobin data proved that ETp across the protein can pro-
ceed via energy levels that allow resonant tunneling within 
the protein. We note, however, that the conductivities meas-
ured were an order of magnitude larger than those observed 
in semiconductor quantum dot SETs [322–324]. Inelastic 
electron tunneling spectroscopy (IETS), where the second 
derivative of the conductance data is measured to determine if 
vibrational levels are involved in the tunneling process (IETS 
is discussed further in section 4.3.4), indicated that these reso-
nant energy levels are associated with electronic energy levels 
of the heme group (figure 15(c)) [32]. The results of this work 
are consistent with ETp composed of an incoherent sequen-
tial tunneling process (see section  2.2) through the protein 
with resonant energy levels associated with the iron heme. 
The key role played by the heme group energy levels in the 
enhancement of the (ETp) conductivity in metalloproteins is 
consistent with the work of Raichlin et al [85] on myoglobin 
and apo-myoglobin, and with some of the theoretical models 
discussed in section 2 above, which rely on the alignment of 
internal energy levels for efficient ET and ETp.

In more recent work, ETp in cytochrome c was charac-
terized with a vertical nanogap device [318]. The devices 
were comprised of all silicon contacts and represent the first 
approach towards nanometer-spaced silicon contacts to pro-
teins. The work demonstrated the ability to conduct nano-
scopic solid-state ETp measurements via a protein, revealing 
thermal activation only above 140 K.

The success of these studies on heme-containing myoglo-
bin and cytochrome c is proof that nanogaps can be applied to 
study other (metallo) proteins. However, nanogap contact con-
figurations have several drawbacks. Creation of working junc-
tions is inefficient (low yields) and, if not performed correctly, 
can result in probing of the characteristics of non-molecular 
components of the junction. For example, if metal nanoscale 
islands remain in the gap during the electromigration process, 
they could dominate the measurements instead of the mol-
ecule of interest [32, 325]. In addition, to date it has been not 
possible to control the orientation nor to determine the confor-
mation of the protein on the electrodes. More details about the 
nanoscopic techniques are discussed in section 3.6.2.

3.5. Macroscopic and permanent contact measurement

Studies on the single molecule level are of great scientific 
importance, but reaching conclusions is limited by the sta-
tistics and reproducibility that can be achieved. Ron et  al 
established a broad experimental basis for studying ETp 
across proteins in a dry state, and thus, undoubtedly, at least 
a partially dehydrated solid-state configuration [63, 326]. 

Measuring the collective electrical properties of an ensemble 
of molecules, in the form of a monolayer, led to highly repro-
ducible results, which indicated electrical behavior of these 
macromolecules, comparable to that of organic molecules. 
Surprisingly, the ETp efficiencies (measured as currents at 
a given voltage) were more like conjugated than saturated 
molecules [63]. One advantage of using macroscopic electri-
cal contacts on protein monolayers over nanoscopic meth-
ods is that protein mono layers can be characterized in situ 
by various spectroscopic measurements before a top contact 
is made (IETS, described in section 4.3.4, is an exception). 
Along with obtaining information about protein structure 
upon assembling proteins into a device configuration, it is 
possible to verify protein orientation with respect to the 
electrodes and provide information about in situ structural 
alterations during electron transport. A systematic alteration 
of protein-electrode combinations allows to obtain an under-
standing of how protein/contact interactions can affect ETp 
processes.

For macroscopic contacts, a dense protein monolayer is 
prepared on conducting substrates, such as a highly doped 
Si wafer, or template-stripped gold/silver (rms rough-
ness  ⩽  1 nm), which can serve as substrates and bottom 
electrode of protein-based junctions [87, 88, 148, 216]. Low 
roughness is important for macroscopic junctions, because 
otherwise the probability for electrical shorts is too high, 
leading to questionable results and/or low junction yields. 
Common top contacts are Hg or In–Ga eutectic (E-GaIn) elec-
trodes [254, 327, 328]. The former has the advantage of being 
semi-noble, and with a surface that will thus be much better 
defined and cleaner than those of most other contacts, with 
the possible exception of evaporated Pb (see below). Its main 
disadvantage (in addition to its toxicity) is its relatively high 
vapor pressure, which allows for ready amalgamation with 
Au, unless an extra molecular layer is adsorbed on the Au.

In–Ga was used recently, to fill PDMS micro-channels, 
resulting in a contact configuration with a reportedly bet-
ter defined junction contact area than in earlier experiments, 
allowing recycling these junctions with reproducible meas-
urements [83, 145].

Another method for top contact formation is floating 
ready-made thin metal pads onto mono layers (lift-off float-on, 
LOFO). The pads (circular Au films with  >0.1 mm diameter) 
are then transferred onto protein monolayers in a non-destruc-
tive way, serving as a top electrical contact [88, 148]. This 
protocol helps avoid possible thermal damage to the proteins 
and metal penetration through the monolayer, both of which 
are likely to occur using direct thermal evaporation of most 
metals. An exception is thermal evaporation of Pb, which can 
be done under very mild conditions and which was recently 
shown to allow good contact to bR monolayers, following ear-
lier work with organic molecules [329, 330]. These contacting 
schemes also shield the protein layer from the surrounding 
atmosphere, which is advantageous because it protects the 
proteins. The down side, however, is that the proteins are not 
accessible for chemical interactions with other molecules, 
which is possible in the nanoscopic contacting schemes dis-
cussed above.

Rep. Prog. Phys. 81 (2018) 026601



Review

21

To obtain junctions that are intermediate between mac-
roscopic and AFM-type nanoscopic ones, photo-lithograph-
ically patterned Au substrates and gold nanowires can serve 
to form solid-state molecular junctions with protein mono-
layers [331]. Such junctions are also of interest for monitoring 
optical plasmonic effects [331–336]. Gold nanowires can be 
trapped on molecularly modified electrodes by AC dielectro-
phoresis [337, 338]. As an alternative geometry, devices with 
electrode gaps of 10–50 nm, developed via complex (electron-
beam) lithography have been used to trap proteins so as to 
allow transport measurements while still allowing the proteins 
to interact with the surrounding [30, 32, 339].

Both macroscopic and nanogap junctions demonstrate pos-
sible avenues toward the fabrication of permanent electrical 
junctions, where proteins can be wired without harming them. 
Such a development will allow studying transport mechanisms 
via these junctions in detail, combining different experimental 
techniques, interaction with the environment, and using bio-
logical activity as an active electronic function.

3.6. Measuring protein adsorption and functionality on a 
surface

3.6.1. Optical techniques. Linking ETp measurements across 
proteins, especially enzymes, to their biological electron trans-
fer function requires studies of functional immobilized pro-
teins that are in conformations similar to those of their native 
states. To interpret results obtained from immobilized proteins, 
it is necessary to know the protein layer thickness, density of 
adsorbed proteins, their orientation, secondary and tertiary 
structure, protein stability, and most importantly, the effect of 
adsorption on their biological function [170]. Many studies 
of immobilized proteins use electrochemical techniques, in 
particular cyclic voltammetry (see figure 1), to ensure their 
electroactivity after immobilization. These studies can show 
if immobilized proteins are still capable of catalytic turnover, 
i.e. small molecule transformation. An example can be seen 
in studies of currents through [Fe–Fe]-hydrogenase, immobi-
lized on Au (1 1 1), after adding its specific bound ligand, H2 
in this case. The current obtained was directly proportional 
to the protein’s catalytic turnover rate and to the electrode 
potential [340]. Using this approach, the turnover rate has 
been determined for various hydrogenases [341–343]. The 
finding that the immobilized protein still retains its biological 
activity can also be supported via measurement of products, if 
electrochemical techniques are coupled to standard detection 
techniques such as high performance liquid chromatography 
and liquid chromatography-coupled mass spectrometry [344].

Although these characterization methods offer no infor-
mation on the orientation of the immobilized proteins, infor-
mation can be obtained on the homogeneity, in terms of 
orientation and conformation of the adsorbed proteins, from 
the width of voltammogram peaks. For example, peak widths 
wider than 90 mV, the theoretical value for a typical single 
electron wave of an adsorbed protein [345], point to heteroge-
neous protein orientation [145].

Circular dichroism (CD) spectroscopy is a well-recog-
nized technique for examining the secondary structure of 

proteins, especially the degree of helicity (essentially the 
presence of α-helices)11[346]. Recent solid state CD meas-
urements of intermolecular interactions do not give rise to 
large discrepancies between the L/R absorption spectra [347, 
348]. Thus, no CD data that provide convincing informa-
tion on the conformation of the proteins that make up the 
monolayer have been reported. To overcome this limitation, 
CD measurements in solution of nanoparticles onto which 
proteins are adsorbed as monolayers are sometimes used to 
examine possible structural alterations after immobilization 
[349, 350].

Some properties, such as heme spin state and binding of 
substrates to heme proteins, can be obtained readily with 
UV–vis spectroscopy in solution [351, 352]. For example 
myoglobin’s optical absorption spectrum is characterized by 
its very intense Soret band (molar attenuation coefficient ε  ≈   
0.02 m2  mol−1 in SI units) at 409 nm12 [353] that can be 
detected even in a single monolayer with an absolute photo-
luminescence quantum yield spectrometer [354], and which 
can be used to resolve protein aggregates by monitoring peak 
shifts [355]. Another example is that of cytochrome P450, 
which exhibits a Soret band at 450 nm (ε  ≈  0.0091 m2 mol−1) 
in its reduced form bound to carbon monoxide [356]. This 
peak shifts to 420 nm (ε  ≈  0.01765 m2 mol−1) if the protein is 
denatured, and can be used to estimate which fractions of the 
protein are native or denatured [357].

A very sensitive technique for measuring attachment of 
ultra-thin films of atoms or molecules, including proteins, 
is that of a quartz crystal microbalance (QCM). The QCM 
technique measures changes in oscillating frequency of the 
substrate upon mass load to determine layer thickness [170]. 
Electrodes covering the QCM piezoelectric crystal can be 
coated with practically any desired thin film, allowing tailor-
ing to the relevant immobilization scheme.

Optical techniques are widely used for monitoring protein 
structure, conformation and specific functions [358, 359]. 
Proteins with photo-induced conformational changes (bR, 
Halorhodopsin, photoreceptor-YtvA, Dronpa,) show shifts 
in the optical absorption band when converted between light- 
and dark-adapted states, not only in buffer solution but also 
after immobilization on quartz as a monolayer [88, 360–362]. 
In a few cases, a small shift in the optical absorption has been 
observed, which has been explained by the absence of hydra-
tion shells surrounding the optically active components upon 
monolayer preparation [360]. Recently, photoswitching was 
reported for Sn-substituted Cyt C and attributed to photoex-
cited hole transport [254].

Different optical techniques are employed to determine 
monolayer surface coverage on different substrate and protein-
electrode interactions. The thickness and quality of protein 
monolayers, prepared by chemi- or physisorption on differ-
ent solid substrate surfaces, have been routinely monitored 

11 A detailed review on the CD approach, its application to the study of 
protein structure, guidelines for obtaining reliable data and analysis method 
can be found at [346].
12 According to the Beer–Lambert law, the absorbance of a material A  =  εcl; 
where ε is the molar attenuation coefficient; c is the molar concentration; ℓ 
is the pathlength.
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with spectroscopic ellipsometry (SE). SE is typically used 
for films with thickness in the range of less than a nm up to 
a μm or more, allowing for single protein layer resolution, 
and can be tailored by changing the wavelength of incoming 
light. However, using optical absorption often yields thick-
ness values, that are less than the actual protein dimensions 
obtained from crystallography [63, 326]. The sensitivity of 
spectr oscopy ellipsometry techniques is approximately  ±5 Å, 
such that changes of protein monolayer thickness (~18–90 Å) 
on a different substrate surface can be monitored even after 
multiple layer applications [362].

Other useful techniques are the earlier-mentioned 
PM-IRRAS and grazing angle attenuated total reflection 
(GATR)—FTIR spectroscopy, which can be used to char-
acterize protein structure and orientation in thin films or 
monolayers on metal substrates. Surface-enhanced infrared 
absorption spectroscopy (SEIRA) can be used to probe a 
protein monolayer’s functionality, such as label-free in situ 
study of biomolecular interactions [363, 364]. All of these 
techniques can be used to determine if protein conformation 
and activity are affected by immobilization. Surface-enhanced 
resonance Raman spectroscopy (SERRS) [365, 366] can also 
be used to study protein conformation and interactions by ana-
lyzing various vibrational modes of amino acids and cofac-
tors [367, 368]. Raman spectroscopy has been used to study 
conformation, and cofactor coordination of heme proteins 
[369–371], and non-redox proteins [372–374]. SERRS can 
also yield information about protein stability and retention of 
native function. An example is a SERRS study conducted on 
a CY(1 0 1) immobilized on a SAM on Ag electrodes which 

showed that both the ferric (Fe3+) and ferrous (Fe2+) states 
of the protein were in an inactive form [375]. A more recent 
study demonstrated that cytochrome P450 2D6 (CYP2D6) 
immobilized via a SAM on Ag electrodes was able to revers-
ibly bind its small molecule ligand, dextromethorphan, and 
retained its native structure [376]. However, Raman shifts 
were also observed, indicative of the inactive form, and it was 
not possible to reduce the protein’s heme group. This result is 
interesting given recent work, which demonstrated that bio-
logically active CYP2D6 can be adsorbed via a SAM on Au 
[377], and may reveal surface-specific differences in immobi-
lized P450 function.

Surface plasmon resonance (SPR) spectroscopy has been 
successfully used to study multi-layer/aggregation formation 
during immobilization (figure 16) [378–381]. The surface 
plasmon resonances are highly sensitive to the electrons’ local 
environment. Attachment of molecules to the surface changes 
the local dielectric constant, and thus alters the resonance angle 
and finally the shape of the SPR absorption/scattering spectra.

SPR studies in conjunction with electrochemical stud-
ies are used to determine electroactivity characteristics in 
protein assemblies. Jin et  al measured layer formation of 
alternating ds-DNA and Mb layers, and found that full elec-
troactivity is seen only in the first layer with electron transfer 
occurring mainly through hopping [381]. In-depth studies by 
Advincula et al using simultaneous SPR, AFM, and electro-
chemical measurements allowed for collection of dielectric, 
surface morphology, and electrical current data (figure 17) 
[383, 384]. Together with electrochemical surface plasmon 
resonance (EC-SPR), the same group demonstrated protein 

Figure 16. Diagram of surface plasmon resonance, SPR, spectroscopy with a cross-linked enzyme system. The black bar in the 
detector represents the resonance angle where the light is absorbed by the electrons in the metal creating the SPR dip. From [382]. 
CC BY-SA 3.0.
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adsorption of a soluble polypyrrole-terminated with the glu-
cose oxidase (GOx) enzyme (figure 17(B)). When exposed to 
glucose, GOx is reduced and glucose in turn is oxidized and 
converted to gluconolactone and hydrogen peroxide. Of note 
in this study is the difference in glucose sensing, determined 
optically (figure 17(C)) and electrochemically (figure 17(D)), 
which reveals that the choice of layer composition should be 
based on the relevant downstream application. In the present 
case, to create an optical sensor, an undoped polymer would 
allow for glucose sensing with higher sensitivity, whereas a 
doped polymer allows for enhanced electrochemical sensing. 
In other words, even when biological viability upon attach-
ment is demonstrated, the details are important when a bioel-
ectronic device is the desired end product.

3.6.2. Scanning probe techniques. Scanning probe tech-
niques have revealed a great deal of information about immo-
bilized proteins due to their high spatial resolution. Scanning 
tunneling microscopy (STM) has a lateral resolution down to 
the atomic level, allowing single protein measurements, and 
in principle can also provide information on adsorbed protein 
structure. The high spatial resolution has also been exploited 
for a better understanding of immobilized protein orientation 
[31, 177, 195, 316].

Electrochemical STM (EC-STM) combines conventional 
STM and cyclic voltammetry [176]. The conducting substrate 

and STM tip act as working electrodes in an electrolyte solu-
tion, allowing measurement of ET. Reference and counter elec-
trodes are located in the solution on opposite sides of the tip. 
The reference electrode is often an Ag wire, whose potential is 
measured to obtain a measurement that can be referred to the 
standard hydrogen electrode potential. A bipotentiostat allows 
independent control of the potential of the two working elec-
trodes, the substrate and the tip, with respect to the reference 
electrode, and their potential difference represents the STM’s 
tunneling bias. The counter electrode allows the current to flow.

In EC-STM, electrons tunnel between the working elec-
trodes via the protein due to alignment of energy levels of 
the protein with the Fermi levels of the contact electrodes. 
This alignment can be obtained through application of a 
bias voltage or nuclear fluctuations of the protein [171, 315]. 
The first single molecule studies of a redox-active molecule 
by EC-STM were conducted by Tao, who investigated the 
oxidized (hemin) form of the redox-active prosthetic group 
of heme proteins, Fe(III)-protoporphyrin (FePP), and the 
redox-inactive protoporphyrin (PP) which lacks the Fe ion 
[385]. Using PP as a reference, Tao demonstrated the appar-
ent STM-measured height of FePP with respect to PP as a 
function of substrate potential that gave resonant tunneling-
like behavior. In addition, in an STM image FePP had a larger 
apparent height than the reference PP at a substrate potential 
near the redox potential of FePP, resulting from the increase 

Figure 17. (A) Setup of EC-SPR, with multilayer of water-soluble polypyrrole, poly(N, N-dimethylethyl-3-(1H-pyrrol-1-yl)propan-1-
ammoniumchloride) or (PPy), poly(3,4-ethylene dioxythiophene) (PEDOT), and glucose oxidase (GOx) immobilized onto a dielectric SPR 
platform (Au on glass). Buffer is phosphate-buffered saline (PBS). (B) Real-time SPR plot showing changes in reflectivity upon adsorption 
of layers. Inset shows the change in SPR absorption dip, due to layer formation. (C) SPR glucose sensing as a function of glucose 
concentration for doped and de-doped states of PPy. (D) Amperometric glucose sensing as a function of glucose concentration for doped 
and de-doped states of PPy. Reprinted (adapted) with permission from [384]. Copyright (2010) American Chemical Society.
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in tunneling current of the FePP, demonstrating the usefulness 
of this technique [385].

Extensive work by Ulstrup and co-workers combined 
cyclic voltammetry and STM to study a diheme protein, cyt 
c4 [386]. STM demonstrated a controlled adsorption of cyt c4 
(a di-heme protein, i.e. with one heme on each side) on a SAM 
in an orientation perpendicular to the substrate, with the heme 
at the C-terminal (i.e. the carboxyl group peptide’s chain end) 
adjacent to the electrode and the heme at the N-terminal above 
it, and observed an interheme kET of 8000–30 000 s−1. These 
values are much higher than those previously obtained by the 
same group using standard cyclic voltammetry (1600 s−1), a 
result that the authors explain was plagued with exper imental 
error due to diffusion of the adsorbed protein, and lower 
cur rent density due to an inability to generate well-oriented 
mono layers [387].

EC-STM measurements have also provided mechanistic 
information about ET in redox proteins and changes in redox 
potential and conformation. For example, there have been 
extensive studies of azurin using EC-STM, which have yielded 
mechanistic information on ET [176]. Gorostiza and co-work-
ers used EC-STM to monitor changes in the barrier height for 
transport in relation to the copper redox state, and to calculate 
β from current distance measurements (see equation  (3) in 
section 2.1) [316]. EC-STM experiments were performed also 
on other classes of immobilized proteins, including hydroge-
nases and oxidases [341, 388, 389]. Madden et al [341] meas-
ured the rate of the reduction of a single H2 molecule by a 
hydrogenase, CaHydA, immobilized as SAM onto Au(1 1 1), 
as a function of the applied potential.

Atomic force microscopy (AFM) is another scanning 
probe technique extensively used in protein surface charac-
terization [390]. AFM measures the topography of a surface 
using a tip consisting of a small probe attached to a cantilever. 
Depending on the AFM method, the tip either makes direct 
contact with the surface (contact mode), or oscillates while 
driven close to its resonance frequency near the surface so that 
van der Waals forces cause changes in its oscillation phase 
and amplitude (tapping mode). AFM has been used to monitor 
protein interaction with lipid bilayers [391, 392], to determine 
protein surface coverage [306, 391, 393, 394], and to demon-
strate protein–protein interactions [395, 396].

Conductive probe AFM (CP-AFM) is used to measure the 
local conductivity of a sample in contact mode. In CP-AFM, 
an electric potential is applied between the tip and the sample 
(generally via a conducting substrate for the sample), and the 
current that flows can then be used to measure ETp locally. 
Current images can also be obtained if the imaging mode is 
used. An important feature of CP-AFM is its ability to con-
duct electrical measurements as a function of applied force, 
which can be used not only to change the distance between 
the electrodes, but also to measure the effect of compression 
on the measured object. Proteins are relatively soft and their 
stability under compressive (and tensile) stress can affect ETp 
[179, 183]. For example, force-dependent I–V studies have 
shown that holo-azurin, i.e. with the Cu redox group pre-
sent, retains higher stability with increasing force (until ~30 
nN) than the protein from which the Cu has been removed, 

apo-azurin. However, even for holo-Az plastic deformation 
sets in at an applied force above ~10 nN [53, 179, 183]. For 
a more complex protein such as bR, oriented with its long 
axis perpendicular to the substrate, and in ether one of the two 
possible remaining orientations, junction conductance lin-
early increases in the 3–10 nN applied force range reversibly, 
confirming retention of its native conformation. Under higher 
applied forces (>10 nN), the protein exhibits structural defor-
mations and the change in conductance with force is no longer 
reversible, i.e. plastic deformation occurs (figure 18) [360]. 
Force-dependent ETp investigations of Az, bR, CYP2C9, and 
other proteins after immobilizing onto gold substrates, have 
demonstrated added protein stability in the presence of cofac-
tors or small molecule binders [53, 143].

The response to an applied force of the conductance of 
an Az monolayer under cyclic mechanical loading (with 
CP-AFM) resembled memristive behavior, which could be 
modeled empirically using the viscoelastic property of the 
protein. Importantly, the Az conductance was found to depend 
not only on the force magnitude, but also on loading time. A 
possible general conclusion could be that conductance, meas-
ured by CP-AFM, is process-related and dominated by the 
time integral of the applied force [397].

Nanoscopic ETp using CP-AFM measurements showed 
high reproducibility if applied to the indexed nanopillar struc-
ture discussed in section  3 (figure 19(a)) even on different 
days after P450 protein immobilization. The ability to com-
plete repeated studies on the same enzyme demonstrated that 
ETp correlates with rates of metabolism, i.e. the biological 
function of the cytochrome P450, and that competitive inhibi-
tors not only block the active site, but also inhibit transfer of 
electrons through the protein (figure 19(b)) [142, 143]. This 
exciting technique, which combines the high spatial resolu-
tion of CP-AFM with the high reproducibility of the indexed 
nanopillar architecture, allows for precise measurement of 
effects of small molecule interactions with proteins on ETp.

3.7. Artifacts in ET and ETp measurements

Artifacts are associated with electron transfer and transport 
measurements, both in solution electrochemistry and solid-state 
experimental configurations. Artifacts in STM and CP-AFM 
measurements generally originate from protein denaturation 
and conformational rearrangements during the force application 
by sharp probes [179, 183]. In some cases it is possible to detect 
changes in protein conformation in situ by IR-absorption mea-
surements, Raman scattering, fluorescence and/or electrochem-
ical characterization [398, 399]. Gold substrate topography 
influences ET rates (investigated with interfacial electrochemi-
cal method) across cytochrome c, when adsorbed on carbox-
ylic acid-terminated self-assembled monolayers [400, 401]. 
With smoother topography, SAMs exhibit an increased ability 
to block a solution probe molecule, which decreases spurious 
signals from direct contact between the electrode and solution 
molecules [400]. The extent of physisorption and the magnitude 
of the electrochemical response of chemisorbed redox-proteins 
decrease significantly with decreasing substrate roughness. 
Roughness limits the electrostatically driven adsorption of 
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proteins onto a SAM-covered surface and the effectiveness of 
the protein’s electronic coupling to the SAM-covered substrate 
[400]. Substrate roughness also leads to artifacts in exper-
imental electrochemical studies from topography-dependent 
acid/base properties of the SAMs [400, 401].

In macroscopic transport studies, most of the artifacts origi-
nate from defects of the self-assembled monolayer, including 
pinholes and the random orientation of proteins in mono layers. 
In general, current density (at high bias) across the chem-
isorbed linker monolayer is ~103 times larger than that across a 
monolayer of proteins that is connected to the substrate surface 
via a monolayer of a  <1 nm long linker molecule, or directly.

Considering simple tunneling transport (equation (2)), a 
decay length constant of β ~ 0.12–0.3 Å−1 is obtained from 

solid-state electron transport (ETp) measurements across pro-
tein monolayers [326]. We note that this value is several times 
smaller than that obtained for ET [65, 95, 119]. Conduction 
through pinholes in a protein monolayer can only compete 
with direct transport via the proteins if the gap between the 
two electrodes is ~3 Å. Given that this will be a vacuum-, 
air- or maybe (adventitious) hydrocarbon-filled gap, this is 
extremely unlikely with protein monolayers of ~2.5–7 nm 
thickness considering the mechanical stiffness of the top 
electrode or the surface tension of Hg (inset in figure 20), as 
explained in the next paragraph [88].

In the lower inset of figure 20 we show a representation of a 
monolayer-covered surface, which as an empirical grid, where 
each pixel represents a unit of a tunneling element, proteins 

Figure 18. (a) Variation in ETp efficiency expressed by I–V characteristics, with applied force in protein-based conducting AFM junctions. 
(b) Resistance of bR-protein-based CP-AFM junction with applied force (along with adhesion force of 3 nN). Inset shows same variation with 
proteins of different secondary structures. Reprinted (adapted) with permission from [360]. Copyright (2014) American Chemical Society.

Figure 19. (a) Height distributions (fitted with a Gaussian model) for Au pillars before (blue squares) and after (red circles) cytochrome 
P450 (CYP2C9) attachment via tethering to a SAM of linker molecules. Inset: AFM height image of array with 421 Au pillars (20–40 nm 
diameter), used for protein attachment. The increased peak width indicates an increase in surface heterogeneity [143]. (b) Measured 
I–V curves (with standard error) for one pillar with (1) nanopillar with attached CYP2C9, (2) the same protein as in (1) exposed 
to sulfaphenazole, a small molecule that specifically binds and inhibits its function, and (3) the same protein as in (1) exposed to 
flurbiprofen  +  dapsone, small molecules that specifically bind to this protein and coordinate with its heme group. A wash step with doubly 
deionized water was used to remove small molecules in between exposures. Adapted from [143]. © IOP Publishing Ltd. All rights reserved.
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(white) or pinholes (red). This is illustrated more graphically 
in the upper-right inset of the figure. The figure itself shows the 
tunneling currents per pixel, as a function of the tunneling dis-
tance (x-axis), where the pinholes are filled with hydrocarbon, 
i.e. the medium with the smallest tunneling decay constant, 
compared to those of vacuum or air (β ~ 1 Å−1). The plots 
start at tunneling lengths of 3 Å for pinholes with hydrocarbon 
impurity (red-white arched region, defined by a range of pos-
sible β values of 0.6–1 Å−1) and 20 Å for protein (black-white 
arced region, defined by β values of 0.12–0.3) [63]. It is clear 
that currents through hydrocarbon-filled pinholes in a protein 
monolayer (red-arced) will not be significant for a ~30–60 Å 
deep pinhole, compared to the currents through the proteins 
(black-arced). Thus, most of the current must flow through 
protein domains rather than through small pinholes with impu-
rities in protein SAMs. If the pinholes are filled with air or are 
empty, i.e. in vacuum, the probability decreases even further.

It is relatively straightforward to calculate that the ability of 
liquid Hg (used for electrical contacts) to penetrate pinholes 
with diameters of ~15 nm between ~100 nm protein domains 
(as found from high-resolution AFM) is negligible compared 
to the few nm protein monolayer thickness, because of Hg’s 
high surface tension. With solid contacts, such penetration is 
impossible because of their stiffness.

The next issue to consider for possible conduction artifacts 
that bypass the proteins is the roughness of the substrate (see 
section 3.5). Here rms roughness is not a good indicator, but 
rather, maximum roughness information is needed over μm2 
to tenths of mm2 areas. To assure minimal roughness, highly 
polished doped Si and template-stripped noble metals are 
desirable conducting substrates.

4. Electronic and structural properties  
of immobilized proteins

4.1. What can be expected experimentally from  
electronic and structural studies of properties  
by computational methods?

The ETp mechanisms discussed in section  2.1 and illus-
trated in figure 7 suggest that a variety of combined paths 
may exist in a given protein structure that connects donor 
and acceptor residues in an ET process. In computational 
models, after defining donor and acceptor residues in a pro-
tein structure, an algorithm is used to calculate the attenu-
ation factors for a large number of paths that connect these 
two specific residues. The path with the smallest attenuation 
factor is selected as the preferred path. In this ‘pathway’ 
method, protein structure and composition are computation-
ally analyzed to determine electron transfer with exponential 
length attenuation factors that take into account the atomic 
structure of the protein. The method is derived from the pro-
tein physics: electronic interactions decay much more rap-
idly through vacuum than through chemical bonds, and the 
protein is viewed as fully coarse-grained, described by way 
of a dielectric permittivity of the medium and local environ-
ment. The simplest structured protein models employ tun-
neling pathway and average packing density analyses to 
identify specific tunneling paths and transport-mediating 
protein residues; the outcomes can be experimentally tested 
by protein mutation studies [402].

Another interesting question is whether electron tunneling 
paths, selected by evolution are defined solely by donor–accep-
tor separation distance, or by other factors. Electrochemical 
studies on smaller bio-molecules, such as peptides and 
cysteine-linked peptide nucleic acids (PNA) immobilized on 
conducting electrodes, demonstrate that peptide backbones, 
and even amino acid side chains, affect electron transfer pro-
cesses. Experiments have verified that backbone rigidity and 
electron-rich side chains increase ET efficiency across peptide 
monolayers, supporting the idea that electronic state localiza-
tion occurs on amino acid side chains [403]. The difference 
between the Fermi level of the gold electrodes and the near-
est peptide orbital energy, determined from density functional 
theory (DFT) gas phase computations, has been interpreted 
as a transport barrier height for ETp studies across differ-
ent homopeptide junctions. A direct comparison was made 
between a DFT-computed transport barrier and experimental 
results from a solid state system (monolayer on Au surface) 
obtained from ultraviolet photoelectron spectr oscopy (UPS) 
[403, 404]. Detailed ETp studies with a nanowire junction con-
figuration (see figure 27, below) showed that ETp efficiency 
across a series of different homopeptides directly correlated 
with the computed electronic barrier and UPS observations.

Preferred pathways for ET (in biologically-relevant, elec-
trolyte solution conditions) via the peptide backbone might 
exist, depending on the peptide’s secondary structure [405]. 
The effect of secondary structure on electronic transport 
has been experimentally demonstrated with molecular junc-
tions of extended helical Ala and Lys homopeptide mono-
layers. Monolayers of 20-mer alanine and 20-mer lysine 

Figure 20. (a) Calculated approximate current (in normalized 
form) decay profiles over varying tunneling distances (defined by 
electrode separation) for pinholes and proteins. The y-axis is in units 
of amperes. Lower inset shows an empirical grid where each pixel 
represents a unit of tunneling elements. A red filled pixel represents 
a pinhole pixel whereas a white one is a protein pixel. Upper inset 
shows a schematic illustration of a pinhole as deduced from high 
resolution AFM scans. Reprinted (adapted) with permission from 
[88]. Copyright (2015) American Chemical Society.
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(neutral), which have a high propensity to form a helix, are 
only 4 Å longer than the respective extended hepta-peptides. 
Nevertheless, ETp comparisons showed that conduction via 
the helices was substantially higher than via the extended pep-
tides [152, 404]. In further work, coupling to the electrode 
contact was found to be critical for ETp efficiency across 
Au/7-peptide/Au junctions, as shown by comparing ETp 
between peptides with tryptophan (an amino acid with an aro-
matic indole side chain) in different positions along the chain.

In most biological ET processes, the cofactor of the pro-
tein is thought to enhance the electron tunneling probability 
with respect to vacuum tunneling. Protein cofactor-mediated 
tunneling is generally described by superexchange, with the 
assumption that electron tunneling between donor and accep-
tor is mediated by unoccupied energy levels (for electron tun-
neling) or occupied states (for hole tunneling) of the cofactor, 
but the electrons that tunnel this way do not have any signifi-
cant residence time on the bridge at any time. Similar to the 
pathway model, important amino acids or cofactors between 
donors and acceptors need to be selected to model superex-
change-mediated tunneling in protein ET. This ET mech anism 
was developed assuming that the energy gaps between high-
est occupied/lowest unoccupied electronic energy levels of the 
bridging units and the redox-active donor and acceptor levels 
are large compared to the electronic coupling energy between 
donor/acceptor and the bridge [57]. Naturally, charge transfer 
can also occur via hole transfer (HT) superexchange. As an 
example, a bridge site close to the oxidized acceptor donates an 
electron to the acceptor and the resultant hole tunnels through 
occupied bridge states to the donor. In early studies involving 
periodic alkane bridges, Beratan and Hopfield showed that both 
electron- and hole-mediated propagation could be explored to 
model distance-dependent transfer decay [406].

Theoretical models of ET processes (in solution) can be 
used to simulate ETp, in a solid state configuration, across 
proteins that connect two electronically conducting elec-
trodes. Single proteins or monolayers of azurin, cytochrome-
c, and myoglobin were modeled by a square potential barrier 
with an effective barrier height [47, 85, 148, 326]. Tunneling 
can describe protein-mediated solid state ETp over length 
scales up to a few tens of Å, but it is not clear how it can 
serve to describe electron transport over longer distances 
(⩾50 Å) [407]. Very long-range (>100 Å) ET in biological 
systems occurs via redox-active cofactors using chains with 
close cofactor spacing of typically 15–20 Å. Transport across 
photosynthetic and mitochondrial membranes includes pro-
tein–protein ET, and, within a protein or protein complex,is 
generally described as multi-step hopping between multiple 
redox cofactors, or via multiple aromatic residues [61, 65, 95, 
134]. Metal-containing cofactors, protein residues of trypto-
phan, tyrosine, or cysteines may act as electron relays, in e.g. 
ribonucleotide reductase, photosystem II, DNA photolyase, 
and cytochrome c/cytochrome c peroxidase [65].

Identifying the transition between coherent single-step 
transport (tunneling) and incoherent multistep tunneling (hop-
ping) theor etically and experimentally remains a great chal-
lenge. Recent computational studies on charge recombination 
between hemes in the cytochrome c/cytochrome c peroxidase 

complexes explored the tunneling versus hopping transition as 
function of transport distance [408]. The analysis indicates that 
even for moderate donor–acceptor separation, hopping involv-
ing a tryptophan (residue 191) governs ET. Experimental ET 
studies of complex mutants with varying donor–acceptor dis-
tance indicate that coupling pathways and reorganization ener-
gies dictate ET kinetics and also reveal how hopping through 
aromatic residues can accelerate ET [409].

Open questions remain concerning electron transport in 
biology over much larger distances. As a rather ad hoc specu-
lation, band-like coherent conduction was proposed as an 
alternative to hopping for transport along biological nanow-
ires (see figure 21) [410]. Such an idea is problematic using 
an electronic band model, because electronic bands originate 
in solid-state physics for systems that obey the Bloch condi-
tion of periodicity, and is described in its simplest (1D) form 
by the Kronig–Penney model. Possibly models like those used 
for liquid metals and semiconductors may need to be revis-
ited, but to the best of our knowledge, that has not yet been 
done for extra long-range ETp in biology [411]. A very recent 
report argues, based on experimental evidence, that the mech-
anisms for all long-range transport reports are electrochemical 
nature [412].

Flickering resonance (FR), mentioned in sections 2.1 and 
2.2, and in the discussions of figures 5 and 7, has been used 
to describe multistate biological electron transport across a 
chain of biological redox active units with donor, acceptor, 
and bridge levels that are similar in energy [132]. The trans-
port efficiencies expected from this model were compared 
with those of the established superexchange (SE) and hop-
ping models [108, 132, 133]. To understand FR, we note that 
site vibrational energies in biological systems can broaden 
electronic energy levels on a scale of 100s of meV. Thus, 
short-lived (fs scale) coherences could form among multiple 
electronic states and create band-like states. Such transient 
situations would contribute to ET charge transport rates with 
a soft exponential distance dependence (small β values). This 
is the process that lies at the heart of the flickering resonance 
idea and could be important in the 1–10 nm range, before inco-
herent hopping becomes the more efficient transport process. 
In the FR model, the medium between donor and acceptor 
is not only a bridge enhancing electronic coupling (as in the 
superexchange model), but is also a chain of redox sites, each 
of which can participate in electron or hole transport when 
in resonance. Long-range transport is assumed to take place 
when thermal fluctuations bring the redox-active energy levels 
of donor, bridge, and acceptor sites simultaneously in reso-
nance. In contrast to charge hopping, where the carrier moves 
sequentially from one site to the next with nuclear relaxation 
at each step, charges in flickering resonance are assumed to 
move through the ‘in resonance intermediate-states’ without 
further nuclear relaxation until they reach the acceptor (fig-
ures 5 and 7) [108].

The FR model accounts for both exponential distance 
dependence and partial excess charge location on the bridge. 
It has been successfully implemented to analyze experimental 
results obtained for short-range transport in DNA instead of 
the superexchange model.
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The riddle of transport across bacterial nanowires (essen-
tially parts of the Shewanella oneidensis membrane) [410] and 
across pili (hair-like bacterial structures) [413] of Geobacter 
sulfurreducens, inspired a flickering resonance model to 
explore the physical constraints under which high currents 
could flow across such wires (figure 21) [413, 414]. It was 
found that a combination of thermal fluctuations and hopping-
like transport could reproduce the experimental I–V curves, 
with plausible values of reaction free energies, reorganiza-
tion energies, and a packing density for redox cofactors (e.g. 
hemes), consistent with that of multi-heme proteins found on 
the bacterial cell surface [131, 133, 415, 416]. However, one 
could argue that FR should be less relevant for ET along heme 
wires in proteins because of the relatively small electronic 
coupling between heme cofactors. While clearly the last word 
on ET (and ETp?) across bacterial nanowires and pili has 
not been written [410, 413, 414], we paraphrase Blumberger 
[108] and note that it is highly desirable to design experi-
ments, motivated and guided by theory, that can elucidate the 
true mechanism(s) of electron flow in proteins.

There is no a priori reason to think that nuclear relaxation 
could not occur during resonant tunneling processes itself. 
As an example, consider the resonant tunneling in a metal-
loprotein discussed in section 3.4 above. If tunneling occurs 
via resonance with a heme group, when the electron reduces 
the Fe atom during the tunneling process, a structural change 
could occur, depending on how fast is the tunneling process. 
If the resonant tunneling process is slow, a nuclear configu-
rational change could occur which changes the energy level 
of the resonance. This is analogous to Franck-Condon trans-
itions in molecules in which electronic transitions (induced 
optically, for example) result in a change in the nuclear con-
figuration and an excited vibronic state. In ETp, if the occupa-
tion of the excited electronic state by the tunneling electron 
is long enough, this causes the nuclear configuration change. 
Li et al have shown that theoretically this could be identified 
in a single electron transistor (SET) measurement by a gap in 
the SET Coulomb triangles, that is, there would be a vertical 
separation between Coulomb triangles at the point where they 

join to normally give a non-zero differential conductance at 
zero bias (see figure 15) [32]. However, the experimental data 
are somewhat unclear about this [32], and so far this Franck-
Condon-like effect in tunneling phenomena in proteins has 
not been unambiguously identified.

Recently, solid state conduction efficiency and existence 
of multiple transport pathways across bacteriorhodopsin, bR, 
were investigated theoretically using the extended Marcus–
Hush theory [417]. The computed electronic charge mobili-
ties of bR (1.3  ×  10−2 and 9.7  ×  10−4 cm2 V−1 s−1 for holes 
and electrons, respectively) based on a hopping mechanism 
were remarkably similar to the experimentally obtained aver-
age electron mobility of 9  ×  10−4 cm2 V−1 s−1 for a system 
consisting of bR, bound to a TiO2 nanowire [418].

Overall, it seems that only a combination of models 
described in section 2 and earlier in this section can quantita-
tively describe some of the experimental ETp data well, which 
indicates that our fundamental understanding is incomplete. 
Further control experiments, together with sophisticated com-
putational work, are needed to improve our understanding of 
ETp in proteins. Obtaining detailed, microscopic information 
about the protein’s structure in the experiments may be neces-
sary to determine which of the models fits the electrical con-
ductivity data best. The ideal experiment should use samples 
where the protein structure is well understood, the protein is 
not denatured, and the protein binding configuration can be 
measured and varied independently of the ETp measurements. 
While the various conditions have been met separately, real-
izing such an experiment remains one of the great challenges 
of the field. In this section, we describe various efforts aimed 
at dealing with these problems.

4.2. Effects of immobilization on protein structure  
and electronic properties

Protein immobilization on metal surfaces appears to be 
advantageous for the study and use of a protein’s biological 
activities under solid-state conditions. In most cases, pro-
teins retain their biological functionality when assembled 

Figure 21. (a) ETp studies across bacterial nanowire (extensions of the membrane of the bacterium) from a Shewanella oneidensis MR-1  
cell with Pt electrodes as macroscopic contact. (b) Cartoon of possible efficient ETp process in bacterial nanowires via hopping sites  
(star shapes) which mainly originate from closely spaced heme groups. Reproduced from [133] with permission of The Royal Society of 
Chemistry.
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on metal electrodes functionalized with self-assembled 
monolayers (SAMs) via electrostatic and hydrophobic inter-
actions as well as by covalent cross-linking. A few studies 
report conformational transitions and redox potential shifts 
of redox active proteins. For example, the redox potential of 
the electrostatically adsorbed P450 protein decreases upon 
shortening of the length of the carboxyl-terminated SAMs, 
i.e. upon increasing the strength of the local electric field 
[375]. Thus, it is important to summarize how immobiliza-
tion affects protein structure and electrical properties. Upon 
immobilization, two competing effects modulate the redox 
potential of the adsorbed protein. First, the increased hydro-
phobicity of the redox environment brought about by immo-
bilization on the SAM tends to increase the redox potential 
by stabilizing the formally neutral form. Second, increasing 
the electric field tends to stabilize the positively charged 
oxidized form, thus reducing the redox potential. From the 
device perspective, here we summarize ongoing research 
of immobilization effects on protein’s redox and electrical 
properties.

4.2.1. Effects of choice of modified substrate surfaces on 
electron transfer. Few proteins directly adsorb on a solid-
state substrate without substrate or protein modification. As 
discussed above, direct binding offers poor control of protein 
conformation and often results in reduced biological activity 
due to denaturation, and in the case of enzymes, by blocking 
active sites. These issues not only hinder protein functional-
ity, but also hamper analysis of results due to the ambiguous 
nature of the protein state on the electrode surface.

A commonly used method allowing some protein confor-
mational control is the direct immobilization on bare gold 
using surface-exposed cysteine groups of the protein via the 
formation of Au–S bonds. This has been used successfully 
implemented in yeast cytochrome c (YCC) to achieve elec-
troactivity of immobilized species, as measured by cyclic 
voltammetry on a polycrystalline bare gold wire [189, 419]. 
Studies of cytochrome c immobilized on Au (1 1 1) via Cys102 
(cysteine at position 102 in the protein amino acid sequence) 
[420] yielded a kET  =  1.8  ×  103 s−1; work on the immo-
bilization of cytochrome C555m via Cys18 yielded a kET  =   
1.4  ×  104 s−1 [421]. Thus, extremely fast ET, with a large kET, 

is possible through direct electron transfer between the elec-
trode and the covalently immobilized protein.

Azurin, which has a surface disulfide (Cys3-Cys26) that 
is suitable for covalent linking to Au (1 1 1), has been immo-
bilized on Au via these disulfide groups while retaining its 
structure [50, 116]. This has allowed azurin to be probed 
electrochemically by both CP-AFM [179, 183] and EC-STM 
[176]. However, several studies have shown that immobi-
lization of azurin on Au (1 1 1) by this method produces an 
electrochemically-inactive protein with kET values (30 s−1 
and 300–400 s−1) [116, 422] that are significantly slower than 
that of azurin adsorbed onto pyrolytic edge-plane graphite, 
for which kET values are as high as 5000 s−1 [221]. Davis and 
co-workers have demonstrated the importance of the orien-
tation by measuring electrochemically active azurin on Au 
(1 1 1) with the cysteine residues that bind to Au on differ-
ent parts of the protein’s surface, with limited perturbation 
of the native structure [422, 423]. Of note is that the fastest 
kET  =  300–570 s−1, obtained for an Az mutant with a cysteine 
near the copper center (S118C), is still an order of magni-
tude slower than for azurin, adsorbed to pyrolytic edge-plane 
graphite electrodes. These observations indicate that, along 
with protein orientation, adsorption modes on specific sub-
strates do effect ET [116].

Direct absorption of cytochrome P450 proteins, first 
reported by Hill and co-workers who immobilized CYP101 
to edge-plane pyrolytic graphite (PG) electrodes [424], has 
been less successful. The study concluded that electrostatic 
interactions by positively charged amino acids (Arg-72, Arg-
112, Lys-344, and Arg-364) located near the redox center 
with the negative charges on edge-plane PG allowed for 
electrochemically driven catalysis yielding substrate poten-
tials. Work by Fantuzzi et  al [425] demonstrated that P450 
CYP2E1 adsorbed directly to bare glassy carbon electrodes is 
more electrochemically active, but with very slow kET (5 s−1). 
In a recent study, the electrochemical (redox) activity of WT 
CYP101 was compared to that of mutants with all surface 
cysteines replaced by inert alanines (surface cysteine-free, 
SCF) and a mutant containing only one surface cysteine near 
to the redox center (SCF-K334C) [426]. The single cysteine 
mutant yielded anodic (−50 mV versus SCE) and cathodic 
(−170 mV versus SCE) peaks in cyclic voltammograms (see 
figure 1), while no difference from background was observed 

Figure 22. Schematic presentation of Cyt C (circles) adsorbed to a Au electrode without modifiers (Type I), co-adsorbed with 4,4′- 
bipyridyl (purple, Type II), and co-adsorbed with bis(4-pyridyl) disulfide (orange, Type III). In Type I and Type II adsorption denaturing of 
the protein (depicted as flattening of the circle that represents the protein) is seen, due to interaction with the electrode. Red depicts highly 
denatured Cyt C, while the blue depicts partially denatured Cyt C. In Type II we see some, and in Type III complete preservation of the 
native conformation (green) through interaction with the modifier on top of the electrode. Denaturing of Cyt C strongly affects the protein’s 
redox potential. Reprinted with permission from [431]. Copyright (1990) American Chemical Society.
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in the WT and SCF mutant. The result indicates that multiple 
inactive conformations of the WT P450 protein may exist, and 
that the enhanced electroactivity of SCF P450 may originate 
from the differences in P450 orientation. In general, protein 
immobilization in a controlled orientation helps to bypass dif-
ficulties such as electroactive prosthetic groups buried within 
the protein, denaturation of proteins upon adsorption, and 
unfavorable protein conformations/orientation at electrodes 
[218, 286, 427].

Studies by Waldeck and co-workers have demonstrated 
that the kET of cytochrome c varies from  ⩽10−4 to ~10−1  
cm s−1, depending on the type of SAM used [240, 428]. Using 
alkanethiol linker molecules to tether the protein to the Au 
electrode increased kET because the orientation of the protein 
was changed so that the redox center faced the gold electrode 
upon adsorption. In contrast, when the protein is adsorbed on 
bare gold, the redox center is close to the protein side opposite 
to the gold electrode. In addition, by changing the alkanethiol 
length, the interfacial kET could be controlled [50, 116, 429].
Hydrophobic surfaces, obtained from adsorption of methyl-
terminated hexanethiol on gold, have been exploited to mimic 

the interaction of a biological redox partner, binding to the 
protein, thus preserving native conformations and enhancing 
conduction [430].

Using various 4-pyridyl derivatives as linker molecules, 
it was confirmed that two scenarios exist, one in which the 
protein adsorbs on top of the surface modifier and retains its 
native confirmation, and another where the protein adsorbs 
both on the modifier and on the electrode surface [431]. 
Therefore, denaturation of the protein can be mitigated by 
modifying the electrode, and a proper choice of modifier is 
necessary to retain full protein functionality. Also, changes in 
the redox potential are linked to the amount of unfolding of 
cytochrome c caused by adsorption (figure 22) [431]. While 
the kET of myoglobin on bare PG has been shown to be so 
small and irreversible that it is almost impossible to measure  
[273, 432], the reversible ET rate in myoglobin on PG, modi-
fied by a positively charged polymer (poly(ester sulfonic 
acid)), was sufficiently fast to be measured (kET  =  52  ±  6 s−1) 
[292]. Using Nafion cast from aqueous mixtures on to the basal 
plane pyrolytic graphite, reversible CV peaks were measured 
for cytochrome c551, cytochrome b5, and azurin films [433]. 

Figure 23. (a) I–V curves of bacterial reaction centers of photosystem I, PSI, deposited onto Au substrates modified with different linker 
molecules including 2-mercaptopyridine (2MP), 2-mercaptoethanol (2ME), 4-mercaptopyridine (4MP), 2-mercaptoacetic acid (MAC); 
error bars indicate the variability between different sets of I–V curves. (b) Schematic of possible orientations of PSI on chemically modified 
Au surfaces. Semi-log plots of current (c) and current density (d) versus voltage for junctions measured using CP-AFM (c) and EGaIn (d) 
for SAMs of PSI on sodium 3-mercapto-1-propanesulfonate, MPS (purple) and 2ME (black), respectively. Black arrows in inset schematic 
indicate the two different orientations of the PSI complexes on the surface. (a) Reproduced with permission from [436]. Copyright @ 
American Scientific Publishers. (b–d) Reprinted with permission from [83]. Copyright (2015) American Chemical Society.
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This demonstrates that surfaces can be specifically tailored 
through modification to promote effective conduction in dif-
ferent proteins.

With glassy carbon electrodes (GCE), immobilized 
CYP101 has a positive shift of the redox potential (−361 mV 
versus Ag/AgCl) in comparison to CYP101 in solution (−525 
mV versus Ag/AgCl). Immobilization on hydrophobic sub-
strate causes partial dehydration of CYP101, excluding water 
from the heme pocket changing the coordination of the heme 
iron following shift from low to high spin [67]. Sodium mont-
morillonite modified GCE with immobilized myoglobin also 
yielded redox-active protein with quasi-reversible CV peaks, 
and the ability to detect nitric oxide concentration through 
changes in heme coordination [276]. The examples discussed 
above demonstrate heterogeneous values of kET, which were 
not found to be influenced by the co-adsorption of the second 
heme protein, leading to the possibility of developing biosen-
sors capable of simultaneously measuring different analytes.

A quartz crystal microbalance method is another impor-
tant technique to demonstrate regular and reproducible 
layer formation via alternating layers of proteins utilizing 
polyions such as cationic poly(ethyleneimine) (PEI) or ani-
onic poly(styrenesulfonate) (PSS) on gold [111, 434]. It has 
been experimentally demonstrated that styrene epoxidation 
enhances turnover on a carbon cloth electrode when function-
alized with a protein multilayer, which could be used as a sen-
sitive protein multilayer device.

4.2.2. Effects of modified substrate surfaces on protein con-
formation and electron transport. Two fundamental issues 
for the field of bioelectronics are (i) how to order proteins 
on the electrodes with respect to their conformation, position 
of active sites and (ii) how to affirm electrical contact area 
between the protein and the electrode. Immobilized protein 
orientation and electrical contacts significantly alter electron 
transport mechanisms and junction properties in ETp mea-
surements. Macroscopic and nanoscopic measurements of 

photosynthesis proteins immobilized on metal substrates show 
different electrical conductivities based on protein orientation 
[83, 435, 436]. Control over the orientation of the photosys-
tem I (PSI) protein complex and especially of its reaction 
center (RC I; this is the protein part without the majority of 
chlorophyll molecules, which are used for light-harvesting) 
on surfaces can be achieved by its direct covalent attachment. 
This control can be achieved by mutations which provide an 
exposed cysteine amino acid (has an SH group available for 
binding) and/or by modification of the surface with functional 
groups that can bind to exposed amino acids or interact elec-
trostatically with different parts of the protein complex [435, 
437].

ETp has been measured across the RC from Rhodobacter 
sphaeroides on SAM-modified Au (1 1 1) substrates using 
CP-AFM. Orientation-dependent ETp efficiency was deter-
mined using different linkers to the Au substrate, as shown in 
figures 23(a) and (b). The large tunneling distance (~7.5 nm) 
rules out direct tunneling as an ETp mechanism, and the vari-
ations in the tunneling current thus support the existence of 
alternative electron transport pathways and electronic states 
(localized or delocalized over the entire structure) across the 
protein complex. Slight rectification (at negative bias range) 
in the cases of the mercaptoethanol SAM-modified Au (1 1 1) 
electrode (figures 23(a) and (c)) reflects preferential adsorp-
tion of the RC such that electrons from the Au-coated AFM 
probe flow to the chemically modified Au(1 1 1) [436]. The 
variations in transport efficiency with PSI and RC orientation 
mainly originate from electronic interactions between pro-
tein complexes and substrate energy levels, which affect the 
electron injection barrier [83]. For efficient electron injection 
into proteins, the work function of the electrode has to match 
the energy level of the lowest unoccupied molecular orbital 
(LUMO) or highest occupied molecular orbital (HOMO) of 
the conducting species [439], taking into account that the 
work function of the electrode will be affected by the SAM. 
In these studies, electrode modification was carried out only 

Figure 24. Molecular schemes of the different CytC mutants along with WT azurin, bound to the bottom electrode where the position and 
orientation of the heme cofactor is systemically modified with respect to the bottom electrode. The calculated distances between where the 
Cys thiolate is bound to the bottom electrode to the Fe in the heme cofactor, and from there to the other end of the protein (in contact with 
the top electrode), are indicated. Reproduced with permission from [156]. Proc. Natl. Acad. Sci (2014).
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on the conducting substrates, which seems to contradict the 
effect of orientation on ETp. Orientation-dependent conduct-
ance effects need to be determined by measurements that 
combine modified-Au (1 1 1) substrates and modified-Au-
coated probes, which eliminate the effect of lowering carrier 
injection barrier only at the substrate-protein interfaces.

An investigation of CytC protein monolayers in a sandwich 
configuration indicates that covalent protein–electrode binding 
significantly enhances electronic interactions, as currents across 
CytC mutants bound covalently to the electrode via a cysteine 
thiolate are orders of magnitude higher than those through elec-
trostatically adsorbed CytC [147, 153]. Seven different mutants 
of CytC, where a cysteine (Cys) residue was incorporated at dif-
ferent locations on the protein’s surface, were bound covalently 
to the electrode, forming seven different orientations of CytC 
with distinct electrode–heme distances (figure 24). The differ-
ences in electrical current magnitude efficiency with different 
CytC mutants indicate that ETp mostly depends on electrode–
heme distance rather than on the separation distance between 
electrodes [440, 441]. A configuration with small electrode–
heme distance provides efficient electronic interaction/cou-
pling, allowing for more efficient tunneling from the heme to 
one of the contacts at low T (80–130 K) and thermally activated 
transport dominated via electrode (silicon wafer)-protein cou-
pling at higher T (>150 K) [84, 440].

4.3. Electronic measurements: interpreting results in terms  
of ET and ETp

4.3.1. Electron transfer and transport across immobilized pro-
teins. The ability to conduct controlled measurements of ETp 
on immobilized proteins has allowed mechanistic interrogation 
of ETp in a variety of proteins with different functionalities. 
Studies ranging from nanometer to macroscopic scales have 
demonstrated that ETp at low temperatures (<150–200 K) 
occurs mainly by tunneling, and can switch to thermally acti-
vated transport originating primarily in electrode–protein 

coupling at higher temperatures (>200 K) [47]. By combining 
these ETp measurements with the structural characterization 
of immobilized proteins, it is possible to determine at least 
some of the crucial factors that modulate the electronic trans-
port behavior of these proteins. Aside from the cases discussed 
in section  4.2.2 above, another example is work by Rinaldi 
et al [194] which demonstrates that the orientation of azurin 
immobilized on a SiO2 substrate strongly affects the measured 
current intensity. Oriented azurin was approximately ten times 
more conducting than randomly oriented azurin, as depicted 
in figure  25. Remarkably, electrical conductance was mea-
sured over a huge 60–100 nm gap. We suggest that this might 
be explained by the at least 50% relative ambient humidity. 
Parallel orientations of the azurin Cys3-Cys26 bridge result in 
a distribution of parallel dipoles that favors conduction, while 
random electrostatic interactions on the non-oriented layer 
result in random dipole orientations, and thus a reduced total 
dipole field and a lower ETp efficiency [194].

In STM-based molecular junctions, the orientation of 
cytochrome b562 was engineered by introducing two thiol 
groups spanning different axes of the protein for controlled 
binding to gold electrodes, which yielded a larger conductance 
than the wild type (WT) protein immobilized through electro-
static interactions [178, 191]. In macroscopic configurations, 
covalent attachment to both electrodes offers higher conduction 
and reduced thermal activation energy compared to one-side 
chemical attachments or electrostatically bound proteins [153]. 
As in the Cyt C experiments described above, these studies 
indicate that currents, i.e. ETp efficiencies, are mostly affected 
by heme-electrode distance rather than by electrode’s separa-
tion distance, illustrating the importance of redox cofactors in 
ETp [153, 191]. These and the previous results also demonstrate 
experimentally a connection between ETp and ET (pathways).

Given the importance of redox-active prosthetic groups in 
ETp, studies of modified proteins which replace redox cofac-
tors with non-redox place fillers, or which remove prosthetic 
groups/cofactors entirely, have been carried out to understand 

Figure 25. I–V curves of non-oriented azurin bound by electrostatics (sample A) and oriented azurin covalently bonded by surface-exposed 
cysteins (sample B), both over a remarkably wide gap of > 60 nm! [194] John Wiley & Sons. © 2002 WILEY-VCH Verlag GmbH & Co. 
KGaA, Weinheim.
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the role of these metal centers in metalloproteins [84, 147, 
151, 153]. Findings from these studies have demonstrated that 
redox centers are not only important for maintaining protein 
conformation, but also for mediating the ET and ETp mech-
anism. Mukhopadhyay and co-workers conducted solid-state 
electron transport through holo- and apo-ferritin as well as 
three metal core-reconstituted ferritins including Mn(III)-
ferritin, Co(III)-ferritin, and Cu(II)-ferritin using CP-AFM 
[146]. The study concludes that the metal core has a direct 
effect on electronic conductivities of the ferritins [146]. In fur-
ther work, they concluded that the ferritins behave as n-type 
semiconductors with variable bandgaps (0.8–2.6 eV) deter-
mined from differential conductance data, with the largest 
gap found in apo-ferritin [216]. ETp studies across holo- and 
apo-ferritin by the Davis group and Nijhuis group also show 
increased conductivity of the holo protein over the apo-pro-
tein [86, 145]. Macroscopic and break junction experiments 
on apo- and holo- heme-proteins such as CytC and myoglo-
bin conclude that ETp depends on the relative position of the 
heme group with respect to the electrodes [29, 32, 85]. In 
the solid-state, the porphyrin ring of the heme-proteins (with 
and without iron ion) contributes significantly to determin-
ing the protein’s ETp characteristics, perhaps acting as a tun-
neling resonant center. In this scenario, solid-state transport 
processes differ significantly from electrochemical charge 
transfer mechanism, which center only on the metal ion for 
redox reactions. We discuss this issue in more detail in the 
next section.

4.3.2. Biological relevance of electron transfer and transport 
measurements. Theoretical studies of biological electron 
transfer aim to understand the effect of molecular and sol-
vent properties on observed rates and yields, mostly following 
Marcus theory (section 2.1). The connections between molec-
ular charge transfer (ET) kinetics and molecular conductance 
(ETp) in protein-based molecular junctions may be unrav-
elled by a fundamental understanding of electronic conduc-
tion channels (ETp pathways in the pathway model) across 
macromolecular structures.

ETp in proteins shares common mechanisms with ET, such 
as superexchange mediated tunneling or hopping via protein 
residues and/or cofactors (sections 2.1 and 4.1). A hypotheti-
cal relation between protein ET and ETp could be obtained 
by comparing WT and modified forms of proteins with/with-
out their biological activities. ET and ETp of holo- and apo-
proteins have been studied in cytochrome c [84, 147], azurin 
[53, 151], and myoglobin [85], with increased conductance 
(G)/turnover rates in the holo proteins. Other relevant results 
include those from the study of macroscopic ETp of holo-
CytC compared to CytC without its Fe ion (porphyrin-CytC), 
and apo-CytC (without heme) [84].

Chemical ‘doping’ of human serum albumin (HSA) with 
hemin reveals similar electrochemical and solid-state ETp as 
CytC [147]. While removal of Fe from heme eliminates ET 
activity in both CytC and hemin-doped HSA, it has almost 
no effect on solid-state ETp measurements, demonstrating a 
clear difference between ETp and ET [147]. A likely reason is 
that ET requires redox activity of the protein which depends 

on electrochemical potentials, reflecting the thermodynamic 
and kinetic dispersion of protein response, whereas ETp does 
not require it. We compared ET rates with ETp currents (also 
rates!) after correcting for ~103–104 ratios between actual and 
geometric contact area in macroscopic measurements and 
for protein lengths, solid-state ETp measurements with dif-
ferent proteins overlap, covering a range of rates [47]. The 
obtained ETp rate is at least an order of magnitude larger than 
those determined from spectroscopic ET data. Experimentally 
obtained electrochemical ET rate data are even lower, likely 
because of the additional electronic to ionic transport step at 
the protein/solution interface.

Temperature-dependent (~10–360 K) transport studies can 
be a powerful tool to identify possible transport mech anisms. 
Such studies were carried out for ET (mostly on frozen solu-
tions, in a glassy state) some time ago and were surpris-
ingly independent of temperature in some cases [442, 443]. 
Temperature-dependent ETp studies are relatively straight-
forward if suitable device structures that are stable under 
temperature cycling are used. Two-electrode, sandwich-con-
figuration devices have been used for such measurements on 
azurin [148], cytochrome C [153], human and bovine serum 
albumin [87, 150], ferritin [145], and on membrane proteins 
such as bacteriorhodopsin [87], halorhodopsin (phR) [88] and 
PS-1 [83]. Temperature-independent transport over a wide 
temperature range (160–320 K and 200–300 K) was found for 
PS-I, azurin, phR and ferritin proteins [53, 83, 88, 145, 148], 
although [216] suggests ferritin is a semiconductor, which 
would be incompatible with temperature- independent trans-
port. Indeed, temperature-independent transport behavior is 
surprising because while azurin is a relatively small protein 
(~3.5 nm along its largest dimension, some 2–2.5 nm between 
electrodes because of tilt), all others are large (⩾6 nm) and 
form monolayers that are well over 5 nm thick. These dis-
tances exceed the maximum length over which ETp across 
conjugated organic molecules was found to be temperature-
independent (via tunneling) [444, 445].

Recent data have shown that it is the coupling of the pro-
tein to the electrodes that determines if there is temperature 
dependence, likely because of the absence/presence of an 
electrostatic barrier [446]. Thus, strong electrode-protein 
coupling in azurin and halorhodopsin junctions could allow 
superexchange-mediated tunneling, which is temperature-
independent, except for the small temperature dependence 
due to thermal broadening of the Fermi–Dirac distribution of 
the electrons in the contacts (although [447] argues to the con-
trary for strong temperature dependence). This hypothesis is 
supported by the study of ETp in different CytC mutants (dis-
cussed earlier in this review) with different electrode-protein 
couplings, due to different orientations between the protein 
and the electrodes imposed by the location of the binding 
cysteine [153].

In addition to the redox protein examples, given above, mod-
ifications of the non-redox photoactive proteins bacteriorho-
dopsin [87] and halorhodopsin [99, 360] have demonstrated 
the importance of cofactors for the temperature-dependent 
ETp, and by inference, for the dominant electron transport 
mechanism. ETp efficiency decreases for bacteriorhodopsin 
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(bR)-based junctions upon retinal removal, similar to what 
happens in azurin upon Cu removal. Replacement with reti-
nal oxime (RO) results in a different temperature dependence, 
suggesting a different dominant ETp mechanism than in WT 
bR [87]. Halorhodopsin (phR) contains two cofactors, which 
are chromophores, and which undergo a conformational 
change following visible light absorption. These chromophore 
cofactors are directly responsible for halorhodopsin’s bio-
logical function as a chloride ion pump. In halorhodopsin the 
removal of conjugated cofactors led to a change of ETp from a 
temperature independent to a temperature dependent behavior 
[87, 88]. The alterations of the ETp pathway upon removal 
of cofactors were not the result of conformational changes, 
as CD measurements showed minimal changes in secondary 
structure, but, in view of the experimentally found role of elec-
trode-protein coupling for ETp temperature (in)dependence in 
the above-mentioned recent data, it is likely that the surface 
charge density distribution changed. In the case of phR, it was 
necessary to have both cofactors for maximal ETp efficiency 
and to retain temperature-independent transport [88].

In conclusion, macroscopic ETp measurements down to 
low temperatures with different protein monolayers show that 
temperature-independent transport always dominates  <150 K, 
even though junction currents differ markedly in their magni-
tude for different proteins [47, 85, 87, 153]. As the temper ature 
increases, currents in different types of proteins converge to 
a similar magnitude [151]. Temperature-dependent ETp is in 
keeping with hopping as the dominant mechanism for trans-
port and can occur if a barrier exists at the electrode-contact 
interface. Thus, given temperature-independent coupling to the 

electrodes, ETp across proteins is temperature-independent, a 
conclusion that will require careful experimental scrutiny, as 
it challenges our present understanding of electron transport.

One can view the α-helices and β-sheets that make up 
about ¾ of proteins as possible bridges with multiple hopping 
sites, each site with vibronic broadening. As the temperature 
increases, the phonon–electron coupling increases, as well as 
level broadening. Thus, coupling between adjacent sites can be 
strong enough to create efficient conduction paths that do not 
involve the cofactor moiety. The convergence of the currents 
at room temperature implies that at elevated temper atures the 
proteins interact strongly with the electrodes, which domi-
nates the measurements, and there is no dependence on the 
protein’s exact composition. At low temperatures, molecular 
vibrations are quenched or, at least, strongly suppressed, and 
therefore other pathways can dominate ETp. Judging from 
the differences in currents at lower temperature, we presume 
that those pathways depend strongly on the presence of the 
cofactors. Cofactors with delocalized electronic states can be 
viewed as a ‘dopant’ of the peptide skeleton. Such a picture 
is consistent with super-exchange-mediated off-resonance 
tunneling as a mechanism for temperature-independent ETp.

At low temperatures, ETp efficiency across a dry protein 
monolayer that is covalently bound to an electrode is signifi-
cantly higher if the protein is oriented with respect to the elec-
trode than if it is randomly oriented [85]. This is apparently due 
to the stronger protein-electrode electronic coupling via covalent 
bonding of the protein to the substrate, and via cofactors for the 
case of oriented proteins that may allow highly efficient protein-
electrode electronic coupling.

Figure 26. (A) I–V curves measured for two nanopillars through the course of an experiment. Curve (a) shows the bare gold nanopillars 
prior to any attachment; curve (b) is after attachment of a thiol SAM (MUA: OT), curve (c) is after covalent bonding of CYP2C9 to SAM. 
The remaining curves represent covalently tethered CYP2C9 exposed to small molecule binders flurbiprofen (d), dapsone (e), to both 
flurbiprofen and dapsone simultaneously (f), and to inhibitor aniline (g). The gold and SAM data are not shown for nanopillar 2 for clarity. 
(B) shows Poole–Frenkel plots for the data obtained in A) for positive bias voltages using the same color scheme. The symbols are the data 
and the lines are fits to a straight line. Reprinted with permission from [142]. Copyright (2013) American Chemical Society.
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4.3.3. Protein structure and electron transport measure-
ments. Conformational changes, especially if they affect a 
protein’s active site, can have large effects on ETp. Stabi-
lization of a protein’s active site prior to immobilization on 
a substrate is necessary to retain substrate binding specific-
ity, metabolic functionality, and activity levels comparable 
to its solution metabolism [144, 306, 448]. This is important 
because immobilizing the protein has been shown to alter 
functionality even while stabilizing the protein’s native struc-
ture [306]. The method of an indexed array (of gold nano-
pillars) allows sequential measurements of the same protein 
under varied conditions (addition and removal of small mol-
ecules) when a protein is covalently tethered to the pillars 
[142, 143]. It was demonstrated that the addition of small 
molecules greatly impact ETp in immobilized P450 CYP2C9 
through analysis of I–V plots, fitted to the Poole–Frenkel 
(PF) emission model (figure 26) [142, 143]. The PF model 
consists of electrons conducting from one localized state to 
another within an insulating layer [449], and in this sense is 
akin to the hopping mechanism discussed in section 2.1 (fig-
ure 5). In the PF model, the current I is described by

I = CV exp

[
−q

(
ΦB −

√
qV/πdε0εs

kT

)]
, (9)

where V is the applied (bias) voltage, q is the charge of an elec-
tron, ΦB is the effective voltage barrier that the electron must 
overcome to move from one localized state to another, d is the 
distance across which the voltage is applied, εο is the permit-
tivity of free space, and εs is the relative permeability of the 
material (immobilized protein) at high frequencies, assuming 
that there is no local polarization induced, k is Boltzmann’s 

constant, T is the absolute temperature, and C is a constant 
that depends on the intrinsic mobility of the charge carriers, 
the effective area of the electrical contact, and the effective 
distance d across which V is applied. Taking the natural log of 
both sides results in

ln
(

I
V

)
= lnC − qB

kT
+

q
kT

(
q

πdε0εs

)1/2

V1/2,
 

(10)

so that a plot of ln(I/V) as a function of V1/2 yields a straight 
line with an intercept component proportional to ΦB (figure 
26). Using this model, changes in ΦB were measured in the 
same CYP2C9 protein after exposure to different small mol-
ecules with known impact on CYP2C9 functionality. These 
studies demonstrated ETp is enhanced by known CYP2C9 
small molecule ligands, and reduced by a known CYP2C9 
inhibitor. Furthermore, ETp results correlated well with the 
known biological activity of the protein for activators com-
pared to non-activators.

We previously noted that ETp need not be limited to the 
same pathways as ET, and thus it is possible that ET and ETp 
phenomena are not correlated. However, in this study there 
was a clear correlation of ET efficiency and ETp as related 
to biological function of the measured protein. This is espe-
cially relevant in the case of flurbiprofen and dapsone, two 
small molecules that are readily transformed by CYP2C9, 
and which have different effects on the spin state of the heme 
iron. Flurbiprofen is known to promote a high spin state of the 
heme iron, while dapsone has no effect on the spin state, but 
no correlation is observed between ETp and spin state (see 
section 4.3.6 for spintronic effects in proteins). These small 
molecules have, however, been shown to bind simultaneously 

Figure 27. I–V curves for two nanopillars with CYP2C9 immobilized via thiol SAM. (A) Curves for a nanopillar with CYP2C9 alone 
(Pillar A) and CYP2C9 exposed to small molecule binder flurbiprofen (Pillar B) for the different tip forces shown in the legend. All curves 
were measured on the same pillar and therefore the same CYP2C9 protein. (B) Changes in the energy barrier height ϕB and the relative 
change in the distance between hopping sites d relative to the distance at a tip force of 3 nN (d0) as a function of force for nanopillars in 
(A) showing decreasing barrier height with force, but increasing d/d0. Data points at 32 nN were extracted for fits for different bias voltage 
regions using the Poole–Frenkel model, with Fit 1 (measured between 1.6 and 1.8 V1/2) being consistent with the rest of the data obtained at 
lower forces. Reproduced from [143]. © IOP Publishing Ltd. All rights reserved.
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Figure 28. (a) and (b) Schematic of metal-molecule-metal junctions and energy band diagram with a vibrational mode of frequency ω 
localized inside the junction. ‘a’ represents the elastic tunneling process; ‘b’ is the inelastic tunneling process. (c) Corresponding I(V),  
dI/dV, and d2I/dV2 characteristics. Reprinted with permission from [453]. Copyright (2002), AIP Publishing LLC.

Figure 29. (a) Scheme of the azurin junction fabricated by trapping nanowires by ac electric field. (b) IETS spectrum for the azurin 
junction (c) IETS spectrum of azurin junction at around 5.5 K with 6 mV ac modulation amplitude, with tentative assignments of the peaks, 
are based on previously reported IR spectra of the protein. Reprinted with permission from [337]. Copyright (2015) American Chemical 
Society.
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and greatly promote CYP2C9 activity [450], which cor-
relates well with the observed changes in ΦB. The conduct-
ance related to the addition of the small molecules themselves 
cannot explain differences in the observed electrical conduc-
tion, leading to the assumption that induced conformational 
changes of the protein or heme may lead to altered ETp path-
ways. Evidence for this comes from I–V studies as a func-
tion of tip force which reveal an apparent phase transition at 
high force (32 nN) in proteins not containing a small molecule 
within the active site, but absent in the presence of a small 
molecule possibly due to protein stabilization (figure 27(A)) 
[143]. Using the Poole–Frenkel model, changes in the ETp 
pathway as a function of force can be estimated using a very 
low force as a baseline. From this analysis, an increase in the 
pathway length with increasing force was deduced, possibly 
explained by a zig-zag pathway upon compression of the pro-
tein (figure 27(B)).

Lastly, these studies demonstrated for the first time that 
two known inhibitors, thought to function only by blocking 
the entrance into the protein’s active site, both lower ETp con-
ductance [142, 143]. This may provide mechanistic insight on 
how CYP2C9 is inhibited, and could also delineate key struc-
tural features of small molecules that keep them from being 
transformed, which is of great importance in drug design.

Taken together, these results also suggest that functional 
groups within proteins play an important part in determin-
ing mechanisms and pathways for ETp, and those ETp char-
acteristics correlate with protein biological function. Protein 

conformation is a crucial factor for determining electron trans-
port pathways. When proteins are in known active conforma-
tions, studies have shown higher conductivities. This implies 
that there is some correlation between conformations with 
higher ETp and conformations for biological activity. This 
work is another example that cofactors impact electron trans-
port with minimal changes in secondary structure, showing 
that cofactors play a larger role than just stabilizing conforma-
tions. The ability to study holo- and apo-proteins, or proteins 
with known small molecule ligands, will allow better correla-
tion of ETp measurements with biological functionality in the 
future. These studies provide a glimpse of how results from 
ETp measurements can inform on mech anisms of protein 
activity for proteins whose functionality is dependent upon ET.

4.3.4. Molecular vibration contribution to electron transport 
measurements. Molecular vibrations within proteins, which 
are sensitive to the protein’s atomic conformations, sometimes 
alter the tunneling matrix element during charge transport [451, 
452]. When a molecular vibrational mode with a characteristic 
frequency fvib = ω/2π is involved in the transport, depending 
on the applied bias, the electron can lose or gain a quantum 
of energy Evib = �ω to (de)excite the vibrational mode dur-
ing transport (figure 28(a)). This opens an inelastic tunneling 
channel when the energy difference between the Fermi levels 
of the electrodes is greater than �ω, which increases the total 
conductance. Thus, the total junction-current shows a kink as a 
function of the applied bias for |eVbias| > �ω. This kink results 

Figure 30. (a) Conformation alteration of retinal cofactor in bacteriorhodopsin upon light absorption. (b) Schematic device configuration 
for ITO/bR/Au/GaAs heterostructure showing terminal connection for measuring photoconduction; (c) measured photoresponse with 
630 nm light modulation for device under ambient humidity conditions. (d) Time trace of contact potential difference (CPD) from bR layer 
on solid support (Si/Al/AlOx/APS/bR) with green light modulation. (e) Empirical energy level diagram explains the results from CPD 
measurement, with the polarity of the dipole for each layer shown above the diagram. Dashed lines indicate experimentally observed shifts 
after irradiation with green light. (a– c) Reproduced with permission from [457]. © Copyright 2001 IEEE. (d, e) [459] John Wiley & Sons. 
Copyright © 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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in a step-like signal in the differential conductance (dI/dV) 
plot, and becomes a peak in a d2I/dV2 plot. Since only a small 
fraction of electrons are transported inelastically, the conduc-
tance step is small. A phase-sensitive (‘lock-in’) second har-
monic detection technique can be used to directly measure the  
d2I/dV2 peaks (due to inelastic electron tunneling; hence the 
name Inelastic Electron Tunneling Spectroscopy, IETS) with 
more sensitivity than taking numerical derivatives of I(V ) data.

Early IETS research included studies of biologically impor-
tant molecules such as RNA and DNA, and even myoglobin, by 
Hansma and co-workers [454]. A porous (inorganic) insulator, 
doped with the (bio)organic molecule of interest, was used in 
a metal-insulator-metal junction configuration. While indeed 
IETS measurements on molecular junctions provide informa-
tion on the vibrational modes of the molecules involved in 
transport, the ill-defined coverage and random orientations of 
molecules in the junctions of these pioneering studies made 
them act as dopants of the main (inorganic) tunneling barrier. 
Thus, it was difficult to draw conclusions about the ETp prop-
erties of the molecules. Recently, the IETS of an azurin-based 
molecular junction was measured where the most prominent 
inelastic transport peak was the C–H stretching mode around 
2900 cm−1 [337]. Because of the special conformation of the 
junction (azurin between two Au electrodes; see figure 29(a)) 
this could be a double junction, in which case the applied volt-
age would be divided and cause the C–H stretching peak to 
appear at a higher applied volt age of ~5800 cm−1. Other IETS 
peaks were observed around 1600 cm−1, corresponding to 
amide I and II vibrational modes with significant amplitudes, 
i.e. the intensity ratio was quite different from that seen in the IR 
(infrared) spectrum of a monolayer on Au (using PM-IRRAS) 
[337].The other peaks could be assigned to modes of the side 
groups of amino acids, such as the NH2 in-plane bending and 
C=C or CN bonds in aromatic side groups present in tyrosine, 
phenylalanine, and tryptophan. These findings confirm that the 
side groups of the amino acids play a role in the inelastic part 

of the transport (which is at most a few percent of the total cur-
rent in the case of the azurin junction) across proteins.

4.3.5. Opto-electronic properties of immobilized proteins. The 
development of optoelectronic biomaterials has been driven by 
the convergence of biochemical techniques for peptide/protein 
engineering. Multilayers of photoactive rhodopsin families 
of (mutated) proteins have been explored over the last three 
decades as optical sensors and memory devices [58]. To date, 
much of the protein-based optoelectronics research has focused 
on the photoresponse characteristics of the light-sensitive pro-
tein bacteriorhodopsin (bR) with the aim of developing light 
switches, or modulators using semiconductor-based photonic 
crystals [455]. No membrane protein has been studied as exten-
sively as bR, where the reversible photocycle is triggered by 
light-induced trans  →  cis retinal double bond isomerization, as 
occurs in human visual pigments. The configuration alteration of 
the retinal chromophore, which is covalently bound to the pro-
tein and in located at the center of the protein, results in a con-
formational change of the surrounding protein and in the proton 
pumping action (figure 30(a)) [456]. Transient (photo-voltage/-
current) and steady-state photoconduction with bR, acting as the 
light-sensitive material across an indium tin oxide (ITO)/bR/
Au/GaAs heterostructure, has been reported (figure 30(a)–(c)) 
[457]. Light-induced optical memory elements have been real-
ized with a genetically engineered or chemically modified bR, 
with long excited state lifetimes (~minutes) [458]. Photoinduced 
surface potential alteration of bR patches has been employed as 
electrostatic memory using scanning surface potential micros-
copy (figures 30(d) and (e)) [459, 460]. bR-FET-VCSEL mono-
lithically integrated bio-photo-receivers and photo-transceiver 
arrays have been successfully designed, fabricated, and char-
acterized for standard communication applications [461]. The 
large electro-optic effect in bR films can in principle be used in 
other novel all-optical light switches in bio-hybrid semiconduc-
tor photonic crystals [462].

Figure 31. (a) Schematic of Au/WT-bR (oriented)/APTMS/AlOx/Al junction, with geometric area ~2  ×  10–3 cm2. Measurements were 
carried out upon illumination with green light (λ  >  550 nm), and after varying times in the dark, after this illumination, (b) Reversible 
I–V curves upon illumination at λ  >  550 nm (green) and upon illumination with (380 nm  <  λ  <  440 nm; black) light. Inset represents 
differential-adsorption spectra of bacteriorhodopsin monolayers. The black curve shows the irradiated–dark measurements; the green curve 
shows the (dark after illumination)–irradiated measurements. (a) [465] John Wiley & Sons. Copyright © 2007 WILEY-VCH Verlag GmbH 
& Co. KGaA, Weinheim. (b) Reproduced from [466] with permission of The Royal Society of Chemisty.
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Monolayers of bR could be more suitable for optoelectronic 
transport studies than multilayers because the protein structure 
and orientation in monolayers are better defined. The transient 
photocurrent of bR monolayers in an aqueous environ ment 
has been measured in a photo-electrochemical cell where a 
bR monolayer was created at the interface between a trans-
parent conductive electrode and an aqueous electrolyte gel  
[463, 464]. Systematic optoelectronic transport studies  
(at 293 K and 40% RH) were reported with monolayers of 
bR that were prepared as follows: bR was extracted from its 
natural purple membrane and reconstituted with a detergent 

to form membranes with the detergent, containing ~ 80 % bR  
in terms of area. Such membranes close on themselves to form 
spherical vesicles. These vesicles were self-assembled on a 
suitable solid support, such as surface-modified silicon or gold, 
and spontaneously opened when incubated in water (pH  −7). 
By using positively charged silicon surfaces as electrically con-
ducting supports with semi-transparent (30–50%) gold-pads as 
top electrodes, planar junction structures were fabricated, as 
shown schematically in the inset of figure 31(b) [465]. Those 
junctions were then used to test if the so-called photocycle, i.e. 
the photochromic activity of bR that is central to its biological 

Figure 32. (a) Surface potential cross-section of wild-type purple membrane, PM, patches, immobilized on gold, as mapped by KPFM, in 
the dark (red line) and under illumination of λ  >  495 nm (black line). The difference between the left and right hand traces in the figure are 
attributed to probing the extracellular and cytoplasmic sides of the membrane patch, respectively. (b) Comparison of light-induced surface 
potential modulation for wild-type bR in PM, delipidated wild-type bR and delipidated bR, oriented onto the substrate via a cysteine 
mutation. [468] John Wiley & Sons. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Figure 33. (a) Schematic of electron transport measurement across bR momoners with conducting probe atomic force microscopy. (b) 
Schematic of bR photocycle in dry dehydrated condition, (c) typical light-induced conduction modulation of a junction with delipidated bR, 
dLbR, i.e. bR with most of the lipids removed. I–V characteristics of a dLbR junction in the dark (black), under green illumination (green), 
and with blue+green illumination (blue). (d) Conductance modulation of a dLbR junction (numbers on top of bars, in nS) under different 
illumination conditions (shown at bottom). Reprinted with permission from [360]. Copyright (2014) American Chemical Society.
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proton-pumping action (see figures  30(a) and 33(b)), is pre-
served in a dry solid-state monolayer configuration.

As shown in figure 31, the electrical current could indeed 
be optically modulated in a dry, solid-state bR monolayer 
junction with electrostatically favorable protein orienta-
tions, following the photocycle of the protein. The origin of 
photo-induced current enhancement was further confirmed 
via UV–visible absorption of bR monolayer in the presence 
of green light (abs. maximum around ~560 nm). Upon green 
light (>495 nm) illumination the 560 nm absorption peak of 
bR disappeared and a new band appeared at ~420 nm, indicat-
ing the formation of the so-called M-state, which results from 
the retinal in the bR undergoing the trans-cis isomerization 
that triggers the photocycle (figures 30(a) and 31(b), inset).

The photochemically induced intermediate M-state ther-
mally decayed to the ground state in a few msec, as deduced 
from the re-appearance of the 560 nm band and the disappear-
ance of the 420 nm band. The enhancement, induced by green 
light of the junction conduction can then be directly associated 
with the bR photocycle, implying more efficient conduction 
via the photochemically induced M intermediate state protein 
conformation which occurs upon irradiating the junction with 
green light. M-state involvement in photoconduction was fur-
ther confirmed through control experiments with apo-retinal 
bR, where no photocurrent enhancement was obtained, which 
at least correlates with the known lack of M-state formation in 
the apo-form of bR [466].

Davis, Watts, and coworkers studied largely lipid-free 
(25% of endogenous lipid remaining) bR and reported repro-
ducible, robust and controlled interfacial assembly [467–469]. 
They explored both partial delipidation and single-site muta-
tion of bacteriorhodopsin (bRcys) where one of the amino 
acids, methione (Met-163), located on the cytoplasmic side 
of bR (i.e. the side exposed to the bacteria’s inside cytoplasm 
in the purple membrane), was replaced with a cysteine. This 
allows for direct binding of the protein to Au via a Au–S bond, 
resulting in a unidirectional uniform orientation of the protein 

on a gold substrate (figure 31). Along with the photo-cycle, 
proto n flux movement across protein structure-induced poten-
tial changes was mapped out by scanning probe microscopy 
[460]. The magnitude of the surface potential switch upon 
illumination is consistently larger for bRcys (delipidated or 
PM embedded) than with the WT-type bR. Strikingly, the 
photoinduced surface potential switch was solely unidirec-
tional (positive direction), which confirms the designed and 
confined surface molecular orientation (figure 32).

The study concludes that the process of freeing the protein 
from its associated lipid and introducing a reactive surface 
cysteine residue preserves the protein’s photophysical charac-
teristics, while enabling a more intimate interfacial sampling 
on gold electrodes compared to purple membrane. The modu-
lated, wavelength-specific irradiation of a bRcys monolayer 
generates current transients similar to those naturally observed 
during the native membrane’s proton pumping activities [43]. 
The chemical binding of functional, delipidated bRcys onto 
solid surfaces allowed analysis of potential photoswitching, 
which may be relevant to the development of derived nanoscale 
photoresponsive devices (the ‘molecular pixel’) [467].

To enhance photoconduction across bR-containing mono-
layers, ETp was probed across higher protein concentrations 
in partially delipidated WT-bR, where ~75% of the PM lipids 
were removed [360]. bR was immobilized as a monolayer, 
taking advantage of interactions of the WT surfaces, which 
are normally in contact with lipids, with the surface of highly 
ordered pyrolytic graphite (HOPG) used as a conducting sub-
strate (figure 33(a)). The hydrophobic interaction induces 
bR to a ‘lying down’ configuration rather than ‘standing up’ 
like on gold or silicon substrate. This junction configuration 
reduces the tunneling barrier height from 6 nm, as for bRcys, 
to 2.5 nm, thus enhancing junction current and light-induced 
conductance variations with electro-optical modulation.

The conductance of bR monomer junctions was signifi-
cantly enhanced under green light illumination compared to 
that measured in the dark, as long as junctions were probed with 

Figure 34. (a) Structure of photosynthetic reaction center I (RC I) based upon crystallographic data (PDB 2O01). (b) and (c) Scanning 
Kelvin probe force microscopy, SKPFM (see figure 35(b)), images of the PS I monolayer on a gold surface and corresponding topography 
images of oriented PS I monolayer. Reprinted with permission from [439]. Copyright (2007) American Chemical Society. (d) Schematic 
energy level diagram of the gold-PS I junction based on experimentally determined contact potential difference. Reprinted with permission 
from [471]. Copyright (2000) American Chemical Society.
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an applied force within the elastic force range (2–10 nN; see 
figure 18(b)) (figures 33(a) and (b)). In the elastic force regime, 
the relative photo-conductance, ΔG/Gdark, induced by green 
illumination does not depend on tip force and Ggreen/Gdark  =  2 
(i.e. ΔG/Gdark  =  1).

At higher applied forces (>10 nN; see figure 18(a)), in the 
plastic regime, the change in the relative photo-induced con-
ductance decreases, and ΔG/Gdark reduces to as little as 0.2, 
decreasing monotonically with force (see section 3.6.2). This 
behavior can be interpreted as follows: at low forces, there is 
efficient conversion of the ground state to the M-like interme-
diate under green illumination and minor structural perturba-
tion of the bR monomer (figure 33(b)). In the plastic range 
bR monomers are under higher applied force, which hinders 
the light-induced conformational changes and impedes M-like 
state formation (figure 33(b)), leading to a decrease in pho-
toconductance. During successive green and (blue+green) 
illumination cycles, a reproducible conductance variation was 
observed over typically three to four full cycles (figures 33(c) 
and (d)). These results rule out junction heating upon illumi-
nation as the cause of the conductance changes and strongly 

support the interpretation of photochemically induced M-like 
intermediate accumulation during green light illumination, 
which increases the conductance (refer to figure 31). Exposure 
to blue light, on top of the green light, decreases the fraction of 
M-like intermediate in the mixture by accelerating its conver-
sion back to the initial dark bR state, which further decreases 
the conductance (figures 33(c) and (d)). Humidity-dependent 
light responses at two distinct applied forces, in the elastic (9 
nN) and in the plastic (23 nN) regimes, demonstrate relative 
current enhancement with increasing humidity followed by 
saturation above 70% relative humidity.

Like bacteriorhodopsin, a dry photosystem I protein  
(PS I) monolayer on a linker-modified gold surface retains its 
fundamental optoelectronic properties, as deduced from the 
optical absorption spectra and the surface photovoltage spec-
tral response (SPV) [439]. However, the SPV spectrum was 
broad and slightly blue-shifted (~10–20 nm) when compared 
to the absorption spectrum, which can be due to electronic 
coupling of PS I to the electronic energy states of the gold, 
i.e. substanti al mixing between the molecular and substrate 
wave functions [470]. Illumination of the PS I monolayer with 

Figure 35. Schematic illustration of SKPFM technique used for photovoltage measurement of single reaction centers of Photosystem I, RC 
I. Dual measurements employed (a) tapping mode AFM for topographic imaging and (b) lift-mode Kelvin Probe Force mode for voltage 
imaging. (c) Topographic and (d) electric potential image maps (500  ×  500 nm) of the same set of isolated and oriented PS I reaction 
centers on a 2-mercaptoethanolmodified gold surface. (d) Demonstrates a clear light-induced PS I electric potential reversal from positive 
voltage to negative upon illumination. The scanning directions for each raster of the constructed images were from left to right and top to 
bottom. Reprinted with permission from [471]. Copyright (2000) American Chemical Society.

Figure 36. (a) Construction of graphene-based biohybrid light-harvesting architectures consisting of RC I adsorbed onto π-system-
modified graphene interfaces. (b) Photochronoamperometric examination of a graphene·dicarboxylic-anthracene-PSI electrode, recorded 
with different light intensities (2, 10, 20, 40, 60, 100 mW cm–2). Cathodic photocurrents are shown in the figure; all measurements have 
been performed under air saturation. Reprinted with permission from [472]. Copyright (2015) American Chemical Society.

Rep. Prog. Phys. 81 (2018) 026601



Review

42

632 nm (some 50 nm below the peak, but within the absorp-
tion band of PS I) caused a dramatic reversible increase of 
~0.45 V in the contact potential difference (figure 34). This 
photovolt age modification was explained by the light-induced 
charge separation that drives electron transfer across the reac-
tion center, resulting in the appearance of a negative charge at 
the reducing end of the protein away from the gold surface. 
The explanation implies that PS I protein was highly orien-
tated on the linker-modified gold substrate, possibly due to the 
intrinsic dipole moment of protein itself. In the dark, charge 
recombination takes place and the photovoltage nulls to origi-
nal levels.

Scanning Kelvin force probe microscopy was used to study 
the electrostatic potentials generated at single PS I reaction 
centers (RC I), immobilized on linker-modified atomically flat 
gold (figure 35) [471]. The photovoltage at the central region 
of the PS I domains was more positive than at the peripheral 
envelop area by 240–360 meV. This energy difference sug-
gests a possible mechanism following the Calvin–Benson 
cycle, whereby negatively charged ferredoxin, the soluble 
electron carrier from RC I, is anchored and positioned at the 
reducing end of RC I for electron transfer. Under illumination, 
the electric potentials of RC I acceptors develop a negative 
voltage following electron capture, whereas in the dark, the 
potential is positive.

Unidirectional photocurrent of RC I on π-system-modified 
graphene electrodes has been pursued in the quest for devel-
oping functional photobiohybrid systems (figure 36) [472]. 
Naphthalene derivatives provide a suitable surface for the 
adsorption of RC I, and their combination yield, already at 
(the dark) open-circuit potential, a high cathodic photocurrent 
output of 4.5  ±  0.1 μA cm−2, which is significant for bio-
hybrid device applications.

What were likely close to monolayers of cytochrome c, 
with Sn instead of Fe, were found to act as reversible and 
efficient photo-switches in hexane-immersed solid-state junc-
tions. Excitations in either the longer wavelength (Q-)band,  
@ 535 nm, or in the Soret band @ 405 nm led to significant  
on/off ratios of up to 25. While no mechanistic studies were 
done, it was suggested that intramolecular excitations, rather 
than photo-induced conformational changes, opened new 
transport channels [252].

Conductance switching in the photoswitchable protein 
dronpa (similar to GFP, green fluorescent protein) self-assem-
bled onto gold substrates (1 1 1), was measured using scan-
ning tunneling microscopy (STM) and scanning tunneling 
spectroscopy (STS) methods before and after the protein was 
reversibly switched to a non-fluorescent dark state and to 
the fluorescent bright state in a cyclic fashion using 488 and 
405 nm light (figure 37) [473].

ETp studies on photoreceptor proteins containing a flavin 
chromophore have shown that chromophore-protein interac-
tions, and the electronic environment (which mostly origi-
nates from protein residues) around the chromophore, plays 
an important in light-induced transport enhancements [361].

To use proteins as tunable soft-matter building blocks for 
optoelectronic applications, they must be modified to gener-
ate properties beyond their native biological functions, which 
is possible using biochemistry and via mutations. A further 
level in functionality can be reached by combining proteins, 
as indeed occurs in several cases in nature (e.g. in the pho-
tosynthetic and mitochondrial electron transport chains). An 
example, demonstrated in an electrochemical set-up by Lee 
et  al [474] is an artificial photosynthetic cascade, where a 
monolayer of the redox-active electron transfer, ET protein 
CytC is attached, by chemical modification, to a monolayer of 

Figure 37. (a) and (b) Structure of bright state and dark state of Dronpa (PDB ID: 2Z1O and 2POX) with N-terminus highlighted in blue. 
The chromophore, which is represented in white, resides at different positions of the β-barrel in different states, (c) averaged STS I–V 
spectra of His-tagged Dronpa as the protein is cycled through dark and bright states. Inset—showing ohmic region (−0.1 V to  +0.1 V) of 
I–V spectra. An increase in conductance is visible upon switching from the bright state to the dark state. Reprinted with permission from 
[473]. Copyright (2012) American Chemical Society.
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the redox-active ET protein azurin. Future work may allow to 
extend this approach to the solid state by sandwiching the pro-
tein bilayer between an electron- and a transparent hole-selec-
tive electrode. In their natural environment, protein–protein 
docking enables electron transfer between these two proteins.

To date, the challenge in bio-opto-electronics has been to 
be able to choose and chemically modify proteins to get pre-
dictable ETp modulation characteristics with illumination. To 
that end, the origin of dominant ETp modulation mech anisms 
must be identified and parameters crucial for tailoring the 
optoelectronic properties of these biomolecules, such as the 
relations between ETp and protein structure and composition, 
will have to be determined.

4.3.6. Spintronic properties. The possible role of the 
electron spin electronics, or spintronics, in chemistry and 
biology has received much attention recently (see also sec-
tion 4.3.3. and discussion of figures 26 and 27). For example, 
it was recently discovered that the earth’s magnetic field has 
a significant effect on bird and fish navigation [475, 476]. 
A general spin-selectivity effect, due to electrons passing 
through chiral molecules, the so-called chiral-induced spin 
selectivity, CISS, was observed first in electron transmission 

(i.e. photoemission) through organic molecules and DNA 
attached to gold electrodes [477–479]. Later, a similar effect 
was observed in electrochemical ET experiments [480], and 
in a few cases also in solid state (CP-AFM) ETp studies [481, 
482]. Spin filtering by chiral molecules has been suggested 
to be a result of evolution, which would increase the conduc-
tance of one spin channel (e.g. spin-up) while decreasing the 
conductance of the other spin channel (e.g. spin-down) [478, 
483, 484]. Spin selectivity in biological electron transfer was 
first observed in an oriented monolayer of PSI protein mono-
layers [485]. Spin polarization in ET across PSI was evalu-
ated following photo-induced charge transport in PSI, from 
the primary electron donor, P700, to a tightly bound phyllo-
quinone molecule, through the primary acceptor, chlorophyll 
a. Spin-selective measurements with different orientations of 
the PSI protein complex show that spin polarization is depen-
dent on the ET path in PSI. Different substrate magnetiza-
tions also demonstrate that light-induced electron transfer 
through oriented PSI is spin selective and that the favorable 
electron spin is aligned parallel to the ET direction in the pro-
tein [485].

Recent studies also demonstrate spin-dependent electron 
transmission through helical structured bR proteins embedded 

Figure 38. (a) Schematic of spin-dependent photoelectron experimental setup. UV laser radiation (blue) excites photoelectrons from a 
bR-coated poly-Al substrate (a scanning electron microscope image of a partial monolayer is shown). The excited electrons are extracted 
antiparallel to the light incidence, bent by 90°, and guided into the Mott polarimeter to determine their longitudinal spin polarization 
(green and red dots indicate electrons with different polarizations). (b) Spin polarization of photoelectrons ejected by linearly polarized UV 
excitation from an aluminum substrate after having traversed a purple membrane containing bR 10% in volume. When the electrons were 
ejected from aluminum substrates, a spin polarization of about 15% was measured. (c) Spin-dependent electrochemistry setup where the 
working electrode was made from nickel; a permanent magnet was used to control the magnetic direction of substrate. (d) Spin-dependent 
electrochemical studies as obtained, using a thin film of bR, physisorbed on the Ni working electrode; arrows in the figures indicate the two 
possible directions (conventionally UP and DOWN) of the magnetic field (H  =  0.35 T), which is orthogonal to the surface of the working 
electrode. (Inset) CVs of a bR/Ni thin film without magnetic field (i) freshly deposited bR on Ni and (ii) after the electrochemical burning 
of the bR. Reproduced from [486–488]with permission from Proc. Natl. Acad. Sci. (2013).
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in their native membrane environment (figure 38) [486]. The 
results point to the possibility that the spin degree of freedom 
may play a role in ETp in biological systems. Both spin-fil-
tered photoelectron transmission through an adsorbed protein 
membrane film and spin-dependent cyclic voltammetry across 
patches of purple membranes, deposited on externally mag-
netized Ni substrates, showed efficient spin filtering by a bR 
layer.

The efficiency of electron spin filtering through purple 
membranes films and its mutant was controlled by illumina-
tion with green light, in line with the bR photocycle [487, 
488]. Whereas significant spin-dependent electron transmis-
sion through the native membranes was observed, illumina-
tion with green light dramatically reduced the spin filtering 
of a bR mutant. These studies are consistent with the idea that 
the accumulation of the M-intermediate state in films upon 
illumination opens, or facilitates transport along pathways for 
spin-down electrons, thus resulting in lower electron spin fil-
tering efficiency.

5. Summary and future outlook

In this report, we have we have summarized what we view 
as some of the important new findings in the field of protein-
based biomolecular electronics, in recent years. While for-
midable progress has been made in towards a fundamental 
understanding of ET, the understanding of the solid-state ana-
logue, ETp, is far less advanced. Further measurements that 
incorporate more detailed interrogation at the single molecule 
level, and more advanced control of variables, related to pro-
tein conformation and orientation, may provide parameters 
needed to optimize the use of proteins in bioelectronics. The 
remarkable electronic transport efficiencies of proteins might 
be an unintended consequence of properties that evolved, over 
billions of years of evolution, for other purposes. The solid-
state junction (ETp) approach to contacting proteins might be 
more similar to what happens in nature (i.e. ET processes) 
than would seem to be the case at first sight (see section 4.1, 
discussion of figure 21). If this is not accidental, then the rea-
sons for it are not (yet) clear. Understanding of ETp and any 
fundamental relationships with ET, and finding conditions 
when these two can be combined, may well become possible 
in the near future.

Proteins already represent refined structures capable of 
complex and specific reactions. By exploiting the electronic 
properties of protein-based molecular junctions in various 
environments, we foresee the creation of advanced solid-state 
biosensing devices and bio-circuits that integrate such sens-
ing devices. Implantable electronics for real-time monitor-
ing has been a reality for some time (e.g. heart pace makers), 
and, using organic electronics, flexible electronic implants 
are rapidly developing towards widespread use. The ability 
to use proteins as electronic components can avoid biocom-
patibility concerns that are present with artificial electronic 
components, and may allow easier integration into biologi-
cal systems. However, before proteins can be used in these 
applications, it is crucial to control how they interact with 

the solid-state platforms to which they will likely be coupled 
to communicate with the outside world. Such connections 
should preserve their functionality in downstream platforms, 
and this requires understanding the fundamental electronic 
transport properties.

There are many aspects in the selection of the solid-state 
substrate and binding methodologies that need to be con-
sidered for successful immobilization of active proteins. An 
important conclusion is that protein conformation plays a key 
role in maintaining protein stability and function after immo-
bilization and can play a decisive role in the measurement of 
reproducible electron transport characteristics. In nature, pro-
teins have evolved to function in very specific ways. To use 
these functionalities, protein function must be preserved on 
solid supports, and specifically must preserve the integrity of 
what are known or assumed to be important functional groups. 
Although maintaining protein structural integrity is challeng-
ing in the experimental work discussed here, the results reveal 
that immobilization methodology can be tailored to obtain 
useful results.

Our review of the literature shows that immobilization 
schemes that mimic the protein’s biological attachment 
(e.g. figures 6 and 10) and which allow for interrogation of 
desired aspects is an effective way to retain protein function 
and to obtain reproducible results. Different proteins assume 
a variety of conformations that are necessary for biological 
functionality, and using this information to immobilize the 
proteins can yield optimal protein function. For example, 
if the goal of an experiment is to measure transport involv-
ing a particular site of the protein known to participate in 
ET with a partner (small molecule, ion etc), immobilization 
onto the electrode for in situ electrochemical ET measure-
ments or solid-state ETp measurements after ex situ bind-
ing should be optimized to assure that the natural binding 
surface remains exposed for interaction. If the protein of 
interest is membrane-bound in nature, it is likely to retain 
its function if covalently tethered using a SAM, rather than 
directly bound to a solid surface. Taking these steps allows 
for retention of protein activity, which can then be used in 
bioelectronic devices. By determining protein orientation 
and conformation when immobilized, the ability to correlate 
ETp with biological activity will be enhanced. For example, 
when optically active cofactors of the membrane-bound pro-
teins bacteriorhodopsin and halorhodopsin, were modified 
through chemical reactions, the alteration in their optical 
absorptions was directly correlated to their ETp efficien-
cies. Altering or removing metal-ion containing cofactors 
was directly manifested in both their ET and ETp behavior 
and in their optical absorption properties. Bacteriorhodopsin, 
immobilized on a ferromagnetic substrate, serves as a spin-
filter for electrons that are transmitted across it, which has 
been ascribed to the 7 left-handed α-helices that define its 
secondary conformation. Combining spin-filtering with 
optoelectronic properties of proteins, which rely strongly on 
their conformations, is a fascinating opportunity to under-
stand the role of spin in biology and, possibly, to future  
‘biospintronic’ devices.
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Quite a few studies of protein ETp both at the nanoscale 
and macroscale have been made, as discussed in this report. 
Large area monolayer structures can in principle be inte-
grated in future devices, in contrast to what seems (at least 
presently) possible for single proteins. Therefore, the fabri-
cation of macroscopic electrical junctions, described in this 
report, which use protein monolayers of geometric areas 
ranging from 102 to 2  ×  105 μm2 (as defined by the small-
est electrode), constitute an important step towards using 
proteins as electronic components. In the future, further 
miniaturization to a few μm2 areas may well become pos-
sible. At the same time working at the nanoscale and prob-
ing ETp of single (or few) proteins can elucidate details 
about protein function that may be averaged out in mac-
roscopic measurements of the ensemble. In a biological 
system, proteins are usually not in a monolayer structure, 
and are often isolated (non-aggregated), implying that sin-
gle molecule studies could offer more accurate information 
on actual protein function if it is present in an environment 
that mimics their natural state (e.g. a membrane protein 
in low concentrations in a monolayer of detergent). Thus, 
while unlikely to become part of bioelectronic devices in 
the near future, studies at the single protein level are impor-
tant for obtaining fundamental understanding to make bio-
electronic devices.

Presently most single molecule studies rely on nanoscale 
SPM techniques, apart of some studies on break junctions 
described above. However, the conductance data for proteins 
(and those for conjugated organic molecules) have a much 
larger degree of variability for nanoscopic junctions than 
for macroscopic ones [47], even though both show the same 
trends. ETp efficiency of proteins is remarkably high when 
compared to ET rates in proteins and to the transport effi-
ciency through conjugated molecules.

While the ETp studies reviewed here provide informa-
tion that may well be necessary for incorporating proteins 
into solid-state platforms, the question remains what have we 
learned, and what can we learn about the transport mechanism 
across these proteins from these measurements. Compared 
to organic molecules, what allows electron transport across 
proteins to be more efficient than expected? How does elec-
trode-protein (and protein–protein) coupling affect solid-state 
electronic transport? How can electron transport across rela-
tively long distances (⩾6 nm) observed in proteins be temper-
ature-independent? Although it is too ambitious to hope that 
solid state bioelectronics research can answer all these ques-
tions in the short term, progress towards understanding the 
connections between transport efficiency, protein–electrode 
coupling, and temperature-independent transport are good 
places to start.

While there is a clear difference between the ionic trans-
port-coupled electron transfer in biology and all-electronic 
transport in the artificial solid-state - like systems for future 
bioelectronics, an understanding of ETp may be relevant to 
ET because the presence of efficient transport channels in 
a protein can be expected to affect both. This possibility is 
intriguing within the context of the earlier mentioned (section 

4.1), surprising long-distance electron transport in pili of  
G. sulfurreducens and in nanowires of S. oneidensis.

Findings in various report on ETp in/through proteins can 
be linked back to the proteins’ innate function, strengthen-
ing the notion that at least some of the biological function-
ality can be studied with ETp. The importance of cofactors 
has been demonstrated in redox-active and redox-inactive pro-
teins, illustrating that cofactors are not simple hopping sites. 
Possibly, the cofactors’ effects are related to the conformation 
and/or charge envelope, as well as to the electronic energy 
levels of the protein, relevant to transport. The interactions 
of cofactors with proteins that affect ETp may be relevant to 
protein function, and understanding how these changes occur 
may shed light on transport mechanisms and pathways. An 
important step to understand the effects of cofactors will be 
to develop the ability to apply gate voltages to protein elec-
tronic junctions. While some reports of this exist (and are dis-
cussed in this report), it has not yet been possible to achieve 
gating in a manner that is clear enough so that it can be readily 
reproduced.

We have experimentally demonstrated that the interaction 
of proteins with biological binding partners influences ETp 
characteristics. A possible next step is to determine if ETp 
changes are related to the degree of conformational change 
caused by binding, and to determine how ETp pathways are 
altered.

Although high-resolution SPM imaging allows observ-
ing single proteins, it does not always guarantee isolation. 
This is important not only to prevent aggregation, but also to 
enable future studies where the same protein can be studied 
under different conditions, as is usually the case in biology. 
Nanolithography has helped create nanoarrays that allow both 
isolation and indexing for enhanced studies, but control of 
protein conformation remains a challenge. In-depth under-
standing of protein structure and conformation after immo-
bilization is indeed a great challenge. Protein conformation is 
highly dynamic around room temperature, and movements of 
different structural elements have been demonstrated to affect 
ETp. Currently, spectroscopic techniques can offer snapshots 
of some general structural elements, but this is far from the 
ability to trace pathways of electronic transfer or transport. To 
understand real-time conformational changes, and how they 
relate to ETp, more quantitative molecular modeling of the 
protein conformation in the monolayer environment will be 
required.

In closing, we note that, although the worlds of molecu-
lar life sciences and electronics are often separated by a 
large divide, the growing mutual interest of these areas in 
each other to address common challenges, is contributing to 
the creation of new scientific and technological disciplines. 
Harnessing the unique chemical and physical properties of 
proteins could allow devices that can be fully integrated with 
biological systems. We hope that this report will boost inter-
disciplinary discussions and studies of topics that include bio- 
and bio-inspired -electronics, with an eye also towards future 
implantable bio-compatible integrated circuits and innovative 
healthcare applications.
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Note added in proof During the final corrections to the 
proofs amn interesting report by [489] appeared, which 
shows how another electrochemically inactive protein, inte-
grin, passes pulses of nA currents during msecs between two 
electrodes over ~ 5 nm, using peptides to bind the protein to 
the tip and electrode. transitions from low to high cnductance 
were observed, aupon bias application. Accompanying com-
putational theory results of energy levels were interpreted as 
indicative of a possible quantum-critical state of the protein, 
between loclized and band-like electronics states.
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