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ABSTRACT
Posttraumatic stress disorder (PTSD) is defined by classic psychological manifestations, although among the
characteristics are significantly increased rates of serious somatic comorbidities, such as cardiovascular disease,
immune dysfunction, and metabolic syndrome. In this review, we assess the evidence for disturbances that may
contribute to somatic pathology in inflammation, metabolic syndrome, and circulating metabolites (implicating
mitochondrial dysfunction) in individuals with PTSD and in animal models simulating features of PTSD. The clinical
and preclinical data highlight probable interrelated features of PTSD pathophysiology, including a proinflammatory
milieu, metabolomic changes (implicating mitochondrial and other processes), and metabolic dysregulation. These
data suggest that PTSD may be a systemic illness, or that it at least has systemic manifestations, and the behavioral
manifestations are those most easily discerned. Whether somatic pathology precedes the development of PTSD (and
thus may be a risk factor) or follows the development of PTSD (as a result of either shared pathophysiologies or
lifestyle adaptations), comorbid PTSD and somatic illness is a potent combination placing affected individuals at
increased physical as well as mental health risk. We conclude with directions for future research and novel treatment
approaches based on these abnormalities.
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Posttraumatic stress disorder (PTSD) is highly prevalent, with
an estimate of prevalence among adult Americans to be 6.8%
by the National Comorbidity Survey Replication (1). Rates vary
greatly by characteristics of the individual and of the trauma,
with rates generally higher after exposure to intentional,
personally directed trauma as opposed to unintentional, non-
personally directed trauma (2). Lifetime PTSD prevalence rates
following combat trauma may be especially high, ranging from
10.1% to 30.9% in United States veterans (Vietnam and sub-
sequent conflicts) (3–5). PTSD is precipitated by experiencing
or witnessing actual or threatened death, serious injury, or
violence, and it has manifestations that include reexperiencing,
avoidance, negative thoughts or moods associated with the
traumatic event, and hyperarousal (6). In addition to these
traditional symptoms, individuals with PTSD, on average, have
a substantially higher medical burden, with increased rates of
cardiovascular disease, metabolic syndrome (MetS), diabetes,
autoimmune diseases, and early mortality, suggesting wide-
spread physical concomitants of PTSD (7–10). In addition to
lifestyle-related factors (e.g., decreased physical activity,
obesity, tobacco and substance use, medications) (11), certain
processes intrinsic to PTSD pathophysiology have been pro-
posed as contributing to somatic disease risk in PTSD, such as
accelerated biological aging, sympathetic and glucocorticoid
dysregulation, metabolic changes, inflammation, and others
(12–17). Thus, PTSD might be considered to be either a sys-
temic condition or one with significant systemic pathologies,
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rather than solely a mental illness or a brain disorder
(9,12,13,18–21). This article is not intended to be an exhaustive
review of the biology of PTSD. Rather, it is a selective overview
of certain aspects of PTSD that have been under-studied,
namely: 1) inflammation; 2) metabolic dysregulation; and 3)
changes in circulating metabolites (especially those implicating
mitochondrial dysfunction) that may play a role, not just in the
medical disease burden but also in the core psychological
symptoms of PTSD. Investigating these processes may reveal
interconnected networks or pathways leading to the pathol-
ogies in PTSD or following in its wake (19,22–24). An important
aspect of this article is the comparison of clinical and animal
data for each of the processes we highlight, the latter being
useful for mechanistic studies but limited by replicating only
selected features of human PTSD. Methodological differences
in the clinical studies include the severity and nature of the
trauma (e.g., combat vs. civilian trauma, multiple vs. single
exposure, interpersonal or intentional trauma vs. witnessed or
nonpersonally directed trauma, psychological state, social
support and coping abilities of the affected individuals, psy-
chiatric and somatic comorbidities, recency of the trauma
relative to the time of testing and source of recruitment of the
study sample). Of particular importance in the preclinical
studies are the ecological validity of the trauma, single versus
multiple (or multimodal) trauma exposures and time of testing
relative to the trauma exposure. Discussion of these and other
methodological aspects are available for the interested reader
lished by Elsevier Inc on behalf of Society of Biological Psychiatry. 1
Biological Psychiatry - -, 2018; -:-–- www.sobp.org/journal

f � 3 April 2018 � 1:34 pm � ce

https://doi.org/10.1016/j.biopsych.2018.02.007
http://www.sobp.org/journal/www.sobp.org/journal
norwitza
Author proof review



Metabolism, Metabolomics, and Inflammation in PTSD
Biological
Psychiatry
(25,26). We conclude our review with a discussion of possible
linkages between metabolomic, metabolic, and inflammatory
abnormalities in this illness and with suggestions for novel
treatments (Table 1).

INFLAMMATION

Clinical Studies

Human studies of PTSD have consistently found pronounced
immune alterations, including increased concentrations of in-
flammatory cytokines and imbalances in immune cell pro-
portions (27–32); these may increase medical morbidity and
contribute to core symptoms of PTSD itself (29). In a recent
meta-analysis of 20 studies (30), concentrations of interleukin-
1b (IL-1b), IL-6, and interferon gamma (IFNg) were significantly
elevated in PTSD individuals compared with those of control
participants. These remained significantly elevated after
excluding individuals with comorbid major depressive disorder
(MDD), although one study found elevated overnight serum IL-
6 levels in individuals with PTSD plus comorbid MDD
compared with levels in either control participants or those
with PTSD alone (33). When only unmedicated participants
were evaluated, these same cytokines plus tumor necrosis
factor a (TNFa) were found to be significantly elevated in in-
dividuals with PTSD (34).

In one of largest studies exclusively in men exposed to
combat trauma, those with PTSD showed a significantly
elevated composite “proinflammatory score” comprising IL-1b,
Table 1. Hypothesized Druggable Targets in PTSD

Target and/or
Process Drug Mechanism of Action

Metabolism;
Glucose and
Insulin Regulation

Insulin and insulin
sensitizers

Insulin (e.g., intra

PPAR agonists Thiazolidinedione

Adiponectin upregulation PPAR agonists; a
receptor type I
cannabinoid re
thiazolidinedion

Inflammation Anti-inflammatories Cortisol; TNFa a

Mitochondrial
Biogenesis and
Energetics

PPARg coactivator 1 Bezafibrate/fenofi

AICAR

AMP kinase–activated
protein kinase

Sirtuins (SIRT 1 activator) Quercetin; resver

Mitochondrial antioxidants Coenzyme Q10

Enhance ATP production Creatine; lipoic a

Trigger the NRF2 antioxidant
response element

Oleanolic acid de

Current pharmacologic treatment of PTSD is inadequate. The disordere
therapeutics, such as insulin sensitizers, lipid regulators, mitochondrial bio
biochemical targets reviewed in this article are listed here. Many other p
concepts, especially if they are analyzed in conjunction with indices of tar
treating PTSD, and their use would be investigational at this point. Curr
involve aerobic exercise and caloric restriction and, to some extent, sele
should involve improving physical as well as mental health; therefore,
psychological symptoms of PTSD, their amelioration of physical disease an

ACE, angiotensin-converting enzyme; AICAR, 5-amino-imidazole-4-ca
adenosine triphosphate; NRF2, nuclear factor erythroid 2–related factor 2;
peroxisome proliferator–activated receptor; PTSD, posttraumatic stress dis
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IL-6, TNFa, IFNg, and C-reactive protein (CRP) levels
compared with scores in those without PTSD (19). The indi-
vidual cytokines whose levels significantly differed between
groups included TNFa and IFNg, with a trend for IL-6. The
proinflammatory score remained significantly higher in in-
dividuals with PTSD after controlling for early-life trauma, MDD
and its severity, body mass index, ethnicity, education, asthma
and/or allergies, time since combat, potentially confounding
inflammatory illnesses, and medications. Significant immune
activation in PTSD was replicated by the same investigators in
a separate group of combat trauma–exposed men (18).

The increase in inflammatory cytokines in PTSD is likely of
clinical significance, since chronic inflammation can negatively
affect cardiovascular and other aspects of physical health (7)
and since individuals with PTSD are significantly more likely
to suffer autoimmune disorders compared with individuals with
other psychiatric diagnoses (9). Immune mediators, such as IL-
1, IL-6, and TNFa, are able to cross the blood-brain barrier (35),
and overproduction of proinflammatory cytokines can activate
brain microglia (36,37). Nonetheless, the relationship of pe-
ripheral markers of inflammation to neuroinflammation is not
clear (28,30,38,39). A few small studies have examined cere-
brospinal fluid levels of cytokines in PTSD and have yielded
conflicting results (40,41).

The underlying causes of immune activation in PTSD are not
understood but may represent “sterile inflammation”; in other
words, they may be related to diminished glucocorticoid levels
(and/or altered glucocorticoid receptor sensitivity) and
Examples References

nasal); metformin (116,118,119,123–127)

s; PPAR/PGC-1a activators (128)

ngiotensin
blockers; ACE inhibitors;
ceptor antagonists;
es; omega-3 fatty acids

(129)

ntagonists (42,52,53,130,131)

brate; rosiglitazone/pioglitazone (116,118,119,124,125,127,132–134)

(127)

(127)

atrol; SRT1720 (127)

(133)

cid; carnitine (127)

rivatives (127)

d processes presented in this article, if verified, would suggest novel
genesis and/or function enhancers, and anti-inflammatories. Only the
otential targets exist. Trials with such agents could provide proof of
get engagement. None of these classes of drugs is yet approved for
ent first-line approaches for most of these targets and/or processes
ctive serotonin reuptake inhibitors. In any event, treatment of PTSD
even if the approaches suggested here fail to ameliorate the core
d disease risk would be salutary.
rbaxamide ribonucleotide; AMP, adenosine monophosphate; ATP,
PGC, peroxisome proliferator–activated receptor g coactivator; PPAR,
order; TNFa, tumor necrosis factor a.
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increased sympatho-medullary-adrenal activity as well as
increased visceral adiposity, although this hypothesis remains to
be adequately tested (29,42). It is also possible that the immune
activation is related to microbial antigens (the gut microbiome),
but further studies are needed (43–45). Longitudinal studies
could assess directions of causality and determine whether the
proinflammatory state follows the development of PTSD or
whether it represents a preexisting risk factor for developing
PTSD (29,42). One longitudinal study, the Marine Resiliency
Study, showed that preexisting concentrations of CRP were
directly correlated with the occurrence and severity of PTSD 3
months after a 7-month military deployment (adjusted for PTSD
severity, trauma exposure, etc.) (46). In a study of civilian PTSD
from orthopedic injury, elevated levels of IL-6, IL-8, and trans-
forming growth factor b during hospitalization predicted the
development of PTSD 1 month later (47). These data raise the
possibility that immune dysregulation predisposes individuals to
PTSD, although others disagree (20). Inflammation and PTSD
could be either reciprocally related or indirectly rather than
directly related, and connected via common mechanisms
(28,29,42,48). Several studies suggest genetic and epigenetic
mechanisms underlie aspects of the proinflammatory milieu in
PTSD (49–51).

In summary, immune activation, along with possible imbal-
ances in immune cell types, are among the most replicable
biological findings in PTSD. Almost all clinical studies have
assessed blood-based markers of inflammation; these may or
may not be relevant to brain inflammatory activity. However,
peripheral immune activation could contribute to the somatic
illnesses seen in PTSD, although definitive routes or even di-
rections of causality have not been proven. Results of studies
predicting PTSD treatment response by baseline immune
activation or by treatment-associated changes in immune
activation have been inconsistent (28,30). Surprisingly few
clinical studies have investigated whether primary treatment of
immune abnormalities would improve PTSD symptoms
(42,52,53). The one notable exception is treatment with hy-
drocortisone, which showed a therapeutic effect (52,53);
however, mechanistic interpretation is difficult. In light of
emerging evidence that immune blockade may benefit certain
patients with MDD (namely, those with baseline evidence of
immune activation) (54), immunosuppressant trials should be a
research priority in selected patients with PTSD who show
immune activation.

Preclinical Studies

Multiple animal models simulating features of PTSD have been
developed and are discussed in the Supplement and in recent
reviews (55–57). Inflammatory responses in animal models were
seen in specific brain regions and throughout the system. A
predator-exposure rat study found increased proinflammatory
cytokines in the hippocampus, amygdala, and prefrontal cortex,
with a concomitant reduction in anti-inflammatory cytokines
(58,59). Similarly, a stress-enhanced fear-learning model showed
increased hippocampal IL-1b concentrations, and the learning
decrement was prevented by blocking central IL-1b signaling
after the stress (60). In a predator scent–stress mouse model,
activation of the pathway of the nuclear factor k light-chain
enhancer of activated B cells promoted anxiety, and inhibition
B
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of this pathway reduced both IL-1b concentrations and anxiety
levels (61).

Molecular investigations found neuroinflammation to relate
to behavioral manifestations of simulated PTSD in rodents (62).
That study showed proinflammatory mediators (TNFa, CRP,
IL-6, IFNg, IL-1b, and cysteine-cysteine chemokine receptor
type 2) upregulated in brain and spleen immediately and up to
4 weeks after stress withdrawal. These cytokines inhibited
neurogenesis (62). Similarly, upregulation of haptoglobin,
myeloperoxidase, and serum amyloid P-component in plasma
samples indicated that there was inflammation resulting from
aggressor-exposure stress (63). This indication was strength-
ened by the finding of elevated inflammation in liver and heart
(64) immediately after aggressor exposure; this inflammation in
the heart paralleled transcriptomic and histopathologic data,
indicating cardiac susceptibility (64), which may have rele-
vance for cardiovascular disease associated with human
PTSD. Importantly, the kinetics of increased inflammatory re-
sponses have not been studied thoroughly, so it is unclear
whether this response is sustained, and if so, for how long.

Animal studies have investigated the impact of anti-
inflammatory therapies to alter PTSD-like features (65–70). In
a rat model of psychogenic stress with elevated cytokine
levels, treatment with minocycline, an anti-inflammatory, anti-
apoptotic, and neuroprotective tetracycline agent, reduced
levels of the cytokines IL-1, IL-6 and TNFa in the hippocam-
pus, frontal cortex, and hypothalamus and reduced anxious
behaviors (69). In another model with increased inflammation,
ibuprofen not only decreased hippocampal expression of
proinflammatory mediators TNFa, IL-1b, and brain-derived
neurotrophic factor but also alleviated anxiety symptoms
(68). A mouse foot-shock fear-conditioning study used treat-
ment with cyclooxygenase-2 inhibitors, reducing a variety of
stress-induced behavioral pathologies (65). Selective serotonin
reuptake inhibitors, including fluoxetine, are considered first-
line medication treatments for human PTSD. Using the foot-
shock fear-conditioning mouse model (67), administration of
fluoxetine improved PTSD symptoms while concurrently
inhibiting stress-induced inflammatory gene expression
(65,71).

Thus, the animal data, like the human data, support an in-
flammatory component of PTSD both systemically and locally
in the brain, both on characterization of inflammatory mediator
production and their inhibition.

METABOLIC SYNDROME

Clinical Studies

PTSD also is associated with a significantly elevated risk for
MetS and for its individual components of obesity, insulin
resistance and/or elevated fasting glucose, hypertension, and
dyslipidemia (8,12,72). The presence of MetS is highly prog-
nostic of future cardiovascular events and could contribute to
the increased morbidity and mortality seen in PTSD (73).
Markers of systemic inflammation have been proposed to be
included in the definition of MetS, since increased CRP and IL-
6 levels are correlated with individual components of MetS and
they confer additional health risks beyond those ascribed to
MetS alone (74,75). This interrelationship may have causal
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elements, because inflammation can lead to obesity and in-
sulin resistance (74), and since increased adiposity can lead to
increased production of inflammatory cytokines including
TNFa and IL-6. Supporting this interrelationship, Marsland
et al. (75) studied inflammatory and MetS markers in 645
community volunteers aged 30 to 54 years (48% male, 82%
European American, 18% African American), and found, using
structural equation modeling, that a higher order common
factor of MetS variables (especially adiposity) was significantly
and positively correlated with inflammation (elevated CRP
and IL-6).

One meta-analyses compared MetS prevalence in PTSD
with that in participants from the general population and found
an almost doubled risk for MetS with PTSD (relative risk, 1.82;
95% confidence interval, 1.72–1.92) (72); the pooled MetS
prevalence for the PTSD group was 38.7%; abdominal obesity,
49.3%; hyperglycemia, 36.1%; hypertriglyceridemia, 45.9%;
lowered high-density lipoprotein cholesterol, 46.4%; and hy-
pertension, 76.9%. The prevalence of MetS in PTSD was in-
dependent of geographical region or population of participants
(combat vs. noncombat PTSD, men vs. women, with vs.
without comorbid MDD). A second meta-analysis (76) showed
the pooled odds ratio (95% confidence interval) for MetS in
PTSD compared with healthy control participants was 1.37
(1.03–1.82).

In a recent study of combat-related trauma in men (8) (with
PTSD, n = 82; without PTSD, n = 82), the prevalence of MetS
was significantly higher in individuals with PTSD (18.8% vs.
1.3%, p , .0005). The participants with PTSD showed signif-
icantly elevated homeostatic model assessment–estimated
insulin resistance, fasting glucose concentration, and fasting
insulin concentration, even adjusting for body mass index.
These differences also remained significant after adjusting for
tobacco use, comorbid MDD, and antidepressant use.

Thus, PTSD is associated with a significantly increased
incidence of MetS and of its components, which may ulti-
mately relate to the higher disease risk and mortality (12). Apart
from contributing to somatic illness risk, MetS may also
contribute to core psychiatric symptoms of PTSD, since
increased fasting glucose levels and insulin resistance may be
associated with damaging effects in the central nervous sys-
tem (77,78).

While the direction of causality between PTSD and MetS, if
any, is not known, Wolf et al. (79) examined MetS and PTSD in
a longitudinal study and found that PTSD severity predicted
subsequent increases in MetS after 2.5 years, but MetS did not
predict subsequent PTSD. The causes of increased glucose
concentration, insulin resistance, obesity, dyslipidemia, and
hypertension found in PTSD are unclear, although increased
inflammation, hypothalamic-pituitary-adrenal axis and sym-
pathetic nervous system dysregulation, mitochondrial impair-
ment, and metabolically active hormones (e.g., neuropeptide
Y, leptin, adiponectin), as well as lifestyle changes (11,78,80),
are possible (12,81–84). For example, Blessing et al. (8) found
that insulin resistance, a hallmark of MetS, was directly
correlated with pulse and the inflammatory marker CRP,
although not with IL-6 or TNFa, suggesting a relationship for
immune and sympathetic regulation. Polygenic risk for obesity
(85) as well as early-life adversity (86) may also play a role in
the interaction between MetS and PTSD.
4 Biological Psychiatry - -, 2018; -:-–- www.sobp.org/journal
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In sum, PTSD is characterized by increased rates of MetS
and of its components. When MetS is comorbid with PTSD, it
may increase somatic illness comorbidity and possibly affect
brain function.

Preclinical Studies

As with human studies, metabolic dysregulation of lipids was
observed in several preclinical studies. Rats exposed to repeated
python aggression showed delayed (6 weeks) decreases in
“good” high-density lipoprotein cholesterol and sharp increases
in serum triglycerides (a risk for cardiovascular disease) (87). In
the resident–intruder model, mice exhibited features of MetS with
weight gain (88), lipid dysregulation, and indicators of insulin
resistance (63) plus activation of hormone-sensitive lipases
leading to mobilization of lipids from adipose tissue, while car-
bohydrate and amino acid mobilization were suppressed. This
was supported by increased activity in the liver, with the upre-
gulation of lipid metabolism, fatty acid uptake, and lipogenesis.
Human PTSD patients showed significantly reduced fatty acids
and few differences in other lipid classes (metabolomics analysis)
(18,19,23; Mellon et al., Ph.D., unpublished data, December
2017), with increased levels of total cholesterol, triglycerides, and
low-density lipoprotein cholesterol and decreased high-density
lipoprotein cholesterol levels (8).

Chronic psychosocial stress in mice also induced lipid dys-
regulation (89) and intrahepatic accumulation of triglycerides and
indicators of MetS (90,91). In aggressor-exposed mice, changes
associated with metabolic disorders also were observed by
profiling transcripts in blood, brain, and spleen (62) and metab-
olites in plasma (63). The detection of 2-hydroxybutyrate, an in-
dicator of insulin resistance and impaired glucose regulation, was
significantly greater in the stressed mice, suggesting potential
changes in insulin function (76,92).

Consistent with the human data (79), the animal literature
also suggests that PTSD may predispose individuals to MetS
(89,93–95), but data suggesting that MetS predisposes in-
dividuals to PTSD are scant (96). In sum, both human and
animal data suggest a relationship between PTSD and MetS.
The mechanisms (and causality, if any) remain unknown.

METABOLOMIC ANALYSIS IN PTSD

Many psychiatric and somatic diseases disrupt metabolism,
resulting in long-lasting metabolic signatures for a particular
disease. Metabolomics studies have the advantage of probing
a very large number of metabolites, but personal lifestyle dif-
ferences may add noise. Metabolomics data are most
convincing when 1) identified metabolites interrelate in meta-
bolic pathways and 2) results are replicated in separate sam-
ples of participants.

Clinical Studies

The first clinical study applying unbiased metabolomics using
serum from PTSD cases showed glycerophospholipids and
endocannabinoid signaling as potential pathologic pathways in
PTSD (97). The Department of Defense–funded Systems
Biology of PTSD study is the only other study utilizing an un-
biased metabolomics analysis in PTSD (18,19,23; Mellon et al.,
Ph.D., unpublished data, December 2017), and it included 164
combat trauma–exposed men: 82 PTSD cases and 82 control
3 April 2018 � 1:34 pm � ce
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participants. Data for these men were discussed previously
regarding inflammatory markers (18,19) and MetS (8). Most of
the metabolomics differences were found in energy-related
pathways and in dysregulation of carbohydrate, lipid, and
amino acid production and utilization. PTSD cases had
increased plasma glucose levels and alterations in down-
stream glucose metabolites, shuttling toward much less effi-
cient nonaerobic metabolism (extramitochondrial) versus
aerobic (mitochondrial tricarboxylic acid [TCA] cycle–related)
glycolytic pathways, which results in lactic acid buildup and
inefficient energy production. Importantly, three separate in-
termediates of the TCA pathway (lactate, pyruvate, and citrate)
showed coordinated changes in the PTSD participants, sug-
gesting decreased entry of pyruvate into the mitochondrial TCA
cycle. Also, PTSD cases had reduced plasma concentrations of
many essential and nonessential fatty acids, including linoleate,
linolenate, eicosapentaenoate, docosapentaenoate, and doco-
sahexaenoate, as well as saturated and unsaturated fatty acids.
The reduced abundance of some of these omega-3 fatty acids
(docosapentaenoate, docosahexaenoate, and eicosapentae-
noate) may contribute to insulin resistance and increased cyto-
kine production as well as to cardiovascular disease (98) and
reduced neuroprotective capacity (99). While the overall meta-
bolic profile in PTSD pointed to inflammation, reduced energy
utilization, and possibly mitochondrial dysfunction, the differ-
ences observed in levels of essential fatty acids may result from
altered nutrient absorption or diet, issues with the gut micro-
biome, or differences in hepatic handling and metabolism of fatty
acids.

Apart from metabolomic evidence, preclinical (reviewed
below) and clinical studies have also suggested mitochondrial
dysfunction in PTSD. Studies of human blood and postmortem
brain samples (15,16) showed large numbers of dysregulated
genes associated with mitochondrial function, many of which
correlated significantly with the severity of PTSD symptoms.
Among these, two common dysregulated pathways were found
in PTSD: fatty acid metabolism (p = .0027) and peroxisome
proliferator–activated receptors (PPARs) (p = .006). Additionally,
mitochondrial DNA copy number, which is related to mitochon-
drial biogenesis, was positively correlated with positive affect
ratings and was low in participants with combat-related PTSD
(23). Mitochondrial DNA copy number is normally tightly regu-
lated (100); hence, differences in the mitochondrial DNA copy
number in PTSD participants may reflect dysregulation of this
cellular process.

In sum, preliminary data from humans suggest the involve-
ment of mitochondrial dysfunction in PTSD pathophysiology. The
causes of possible mitochondrial dysfunction in PTSD are un-
known but could be related to genetic or epigenetic factors,
oxidative stress, cell damage responses, or premature cell aging,
among others (101,102). The potential sequelae of mitochondrial
dysfunction are extensive and include diminished fuel utilization
and energy synthesis (e.g., anaerobic compared with aerobic
respiration), altered glucose and lipid utilization, increased
oxidative stress, cellular senescence and/or apoptosis (101–104),
and others. It is possible that mitochondrial function may be a
key target to prevent or reverse certain neurobehavioral and
physiological aspects of PTSD (15,101,105,106) or may be
directly related to immune activation and MetS in PTSD, as
discussed below.
B
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Preclinical Studies

A brain microdialysis metabolomics study in live mice enabled
in vivo investigation of metabolites (at baseline) as predictors
of subsequent sensitivity or resilience to PTSD-like behaviors
in a foot-shock model (107). At day 2 after a stress event,
behavioral symptoms (hyperarousal) in shocked mice were
predicted by the enrichment of the TCA cycle and glyoxylate
and dicarboxylate metabolism in the medial prefrontal cortex
prior to foot shock. Another study also showed increased TCA
cycle activity in synaptosomes of high-anxiety mice (108),
suggesting that there may be inherent differences in functional
synapses, which are enriched with mitochondria in control
mice and high-anxiety mice.

The same investigators used proteomic and metabolomic
analysis of specific brain regions in the foot-shock model to
assess stress-induced dysregulated metabolic pathways after
foot shock and to assess metabolic pathways that are
responsive to treatment (fluoxetine). The stress led to de-
creases in TCA cycle pathway enzyme abundance and me-
tabolites in the nucleus accumbens and the anterior cingulate
cortex (66). Interestingly, fluoxetine treatment (12 hours after
foot shock) prevented alterations of the TCA cycle in the nu-
cleus accumbens and anterior cingulate cortex and decreased
conditioned fear responses (66).

In a rat model of single, prolonged stress (109), ultrastruc-
tural examination of hippocampal neurons showed differential
cellular organelle damage. Increased cytochrome oxidase
release (mitochondrial) and enlarged and/or swollen mito-
chondrial structures with vacuolar and crest degeneration
suggested mitochondrial damage.

Mice exposed to prolonged inescapable tail-shock stress
showed induction of hippocampal apoptosis, suggesting
involvement of mitochondrial pathways (16,110–113). Studies
also found that 34 mitochondrial-focused genes were upre-
gulated in the amygdala of stressed rats (16). As with humans,
fatty acid metabolism and PPARs were among the 10 path-
ways found to be dysregulated. Finally, mitochondrial
dysfunction, and the effects of risperidone and paroxetine on
mitochondrial function, were studied in a rat model (114). Both
drugs ameliorated stress-induced behavioral symptoms;
risperidone ameliorated stress-induced increases in brain
mitochondrial enzyme activities, and both drugs reduced stress-
induced brain apoptosis, suggesting that both apoptosis and
mitochondrial dysfunction may contribute to PTSD-like behav-
ioral symptoms.

In summary, metabolomic changes in PTSD are under-
studied, especially in large clinical samples. Nonetheless,
clinical and preclinical studies to date suggest that PTSD in-
volves some aspects of mitochondrial dysfunction, and these
may be related to the other abnormalities.

ARE INFLAMMATION, MetS, AND MITOCHONDRIAL
DYSFUNCTION INTERRELATED IN PTSD?

In this review, we have highlighted inflammation, MetS, and
metabolomic changes, especially those involving mitochon-
drial function, as potential individual pathologies in PTSD.
However, these and other pathological features may be inter-
related, although there is insufficient evidence to posit causal
relationships. For example, mitochondrial dysfunction can lead
iological Psychiatry - -, 2018; -:-–- www.sobp.org/journal 5
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to reduced fatty acid metabolism (beta oxidation) and
increased lipid accumulation in muscle and liver tissue,
resulting in increased diacylglycerol, ceramide, and acylcarni-
tine accumulation and increased reactive oxygen species
levels, all of which can lead to insulin resistance and further
mitochondrial damage. Mitochondrial dysfunction can also
result in increased inflammation via reactive oxygen species;
reactive oxygen species trigger inflammasome (nucleotide-
binding domain and leucine-rich repeat containing protein 3)
activation, resulting in increased cytokine (e.g., IL1b and IL-18)
levels. Nucleotide-binding domain and leucine-rich repeat
containing protein 3 activation reciprocally regulates glucose
and lipid metabolism. Central adiposity (and macrophages
accumulating in adipose tissue) generates inflammatory cyto-
kines (e.g., TNF) and inflammatory adipokines, leading to an
inflammatory state seen with obesity and insulin resistance
[see (22,115–120)].

Apart from these interrelationships, a “mitochondrial allo-
static load” model has also been proposed to connect these
perturbations (104). In this model, metabolic dysregulation and
chronically elevated glucose concentration, as seen in PTSD,
damage mitochondria and mitochondrial DNA, generating
byproducts that promote systemic inflammation, alter gene
expression and accelerate cellular aging. Lastly, mitochondrial
dysfunction can affect cellular responses, suggesting “meta-
bolic checkpoints” (121) or “cell danger responses” (101) that
connect metabolism with mitochondrial function (121). In all of
these models, mitochondrial dysfunction may be a “central
link” between inflammation, oxidative stress, and metabolism,
as suggested by Kusminski and Scherer (118).

A “systems biology” approach, assessing multiple features
and levels of analysis in the same individuals, holds the
greatest promise for delineating interlinked pathology, hope-
fully delineating biologically informed phenotypes, subgroup-
ing, and diagnoses (122).
CONCLUSIONS

An accumulation of evidence suggests that PTSD has signifi-
cant somatic manifestations and may, in fact, have aspects of
a systemic illness or of an illness with significant systemic
comorbidities. Any model of PTSD should, therefore, account
not only for psychological symptoms but also for the physical
morbidity and premature mortality seen in this illness. We have
reviewed several, but far from all, systemic pathologies that
may accompany PTSD, although it is not known how well
these peripheral pathologies are reflected in the brain. Whether
somatic pathology precedes the development of PTSD (and
thus, may be a risk factor) or follows the development of PTSD
(as a result of either shared pathophysiologies or of lifestyle
factors), comorbid PTSD and somatic illness place affected
individuals at increased health risk. Identification of novel
mechanism-based treatment targets in PTSD holds promise
for relieving both the psychological and somatic symptoms in
this prevalent disorder.

To the extent the processes reviewed here participate in the
pathophysiology of PTSD, new therapeutic opportunities,
based on specific pathological targets, may exist. Certain such
possibilities are listed in Table 1, but very few of these in-
terventions have yet been tested. Even if the psychological
6 Biological Psychiatry - -, 2018; -:-–- www.sobp.org/journal
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symptoms of PTSD do not respond to these novel types of
interventions, somatic health might improve and novel
biochemical targets might be clarified.
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