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Abstract

The categorization literature often considers two types of cat-
egories as equivalent: (a) standard categories and (b) negation
categories. For example, category learning studies typically
conflate learning categories A and B with learning categories
A and NOT A. This study represents the first attempt at de-
lineating these two separate types of generated categories. We
specifically test for differences in the distributional structure of
generated categories, demonstrating that categories identified
as not what was known are larger and wider-spread compared
to categories that were identified with a specific label. We also
observe consistency in distributional structure across multiple
generated categories, replicating and extending previous find-
ings. These results are discussed in the context of providing a
foundation for future modeling work.

Keywords: categorization; category generation; contrast; cat-
egory learning;

Introduction
People are remarkable in their capacity to innovate new and
different ideas. Is creating a new idea the same as creating
a different idea? Consider a restaurant that serves one meal
per night. Their chef cooked red curry last night and wants
to create and cook a new dish tonight. Is that the same as
wanting to create and cook a new dish that is not red curry?
While the former is identified as its own category, the latter is
identified in relation to a known category.

While categorization researchers have primarily focused
their effort on classification (associating an exemplar with a
category given its features), and inference (predicting exem-
plar features given its category), work on category generation
– predicting all exemplar features for a novel category – is
relatively scarce. This is surprising because category genera-
tion is not an uncommon phenomenon – people are constantly
challenged to generate novel categories, such as a new meal
plan for the week, a new music playlist for an upcoming road
trip, or a new exercise regimen to stay healthy.

Recent category generation work has established a few key
findings. Earlier studies have shown that generated categories
tend to share distributional statistics with learned categories
(Jern & Kemp, 2013; Thomas, 1998; Ward, 1994). More re-
cently, Austerweil, Conaway, Liew, and Kurtz (in prepara-
tion) and Conaway and Austerweil (2017) have found that
category contrast is an important factor in category gener-
ation and learning – computational models sensitive to the
differences between categories were a better fit to generated

categories than models which did not take categories contrast
into account.

Although previous work has established a few key findings,
the basic phenomena and processes involved in category gen-
eration are still not well understood. In this article, we exam-
ine whether given a known category in a domain, generating
a new category is different from generating a category that
is not the learned category. If the only category is A, most
formal accounts of categorization would consider generating
a new category B as equivalent to generating not A. In order
to better understand the nature of generated categories, it is
necessary to distinguish between these two possible types of
generated categories: one driven by its own identity – an in-
dependently identified category, and another driven by a mo-
tivation to be not what is known – a category-by-negation.

Current models of category generation do not explicitly
make this distinction. One of the first computational models
of category generation, Jern and Kemp (2013)’s hierarchical
sampling model, is a Bayesian model that reproduces distri-
butionally similar categories by assuming that the covariance
matrix of features of exemplars from generated categories is
generated by the same prior that generated the covariance ma-
trix of the known categories. An alternative proposed model,
PACKER (Conaway & Austerweil, 2017), is an extension
of the classic Generalized Context Model (GCM; Nosofsky,
1984, 1986). It explicitly incorporates contrast into the simi-
larity function by including a penalty for being similar to ex-
emplars from a known category. A contrast parameter allows
candidate categories that are more different from the known
category to be weighted more heavily than candidate cate-
gories similar to the known category. Both models are flexible
enough to describe how generated categories can be distribu-
tionally similar (or different) from an experimenter-defined
category. However, they do not distinguish between generat-
ing an independently identified category and a category-by-
negation because there is no mechanism to account for these
different identities.

This issue also extends to the methodology applied in cat-
egory generation (as well as most categorization studies.) In
Ward (1994), participants were told to generate aliens that
belonged to a different species from a prior group of aliens,
without applying any specific label to this new group of
aliens. Similarly, Jern and Kemp (2013) instructed partici-
pants to generate a new, different type of crystal after having
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observed two different types of crystals. In contrast, Conaway
and Austerweil (2017) prompted participants to generate ex-
emplars from a novel “Beta” category, while avoiding an ex-
plicit instruction for participants to create something “differ-
ent”. In each of these studies there appears to be an implicit
assumption that generating an independently identified cate-
gory is equivalent to generating a category-by-negation.

In this paper, we challenge this null assumption by posit-
ing that the explicit association of categories-by-negation to
its known counterpart (i.e., the explicit identification of the
to-be-generated category as not a known category) should
result in the observer taking advantage of the entire area of
the feature space not occupied by the known category. In
contrast, observers generating independently identified cate-
gories should be less focused on the unoccupied feature space
and instead construct their categories based on the structure of
known categories. From this we can predict that categories-
by-negation should occupy larger areas of the feature space
compared to independently identified categories. In addi-
tion, the similarity in distributional statistics should extend
not only from the learned category to the first independently
identified category to be generated (as previous studies have
found), but also between subsequent independently identified
categories. We test these predictions by adapting and ex-
tending a category generation experiment by Conaway and
Austerweil (2017) and explore the implications of its results.

Experiment
Our current experiment closely mirrors the the experimen-
tal design of Conaway and Austerweil (2017), where partici-
pants are first trained on a category named ‘Alpha’ before be-
ing tasked to generate exemplars from a new category. While
Conaway and Austerweil (2017) were primarily interested in
the measuring the location of generated categories relative to
learned categories, our current investigation focuses on ana-
lyzing the differences in distributional statistics across differ-
ent generated categories. Consequently, in addition to vary-
ing the shape and location of the Alpha category (i.e., across
different Alpha conditions where the position of the Alpha
exemplars are systematically varied) in three distinct ways,
we include an additional independent variable comprising
three different generation conditions: a Not-Alpha condition,
where participants generate a new category that is not the
learned Alpha category; a Beta-Only condition, where par-
ticipants generate a new category named ‘Beta’; and a Beta-
and-Gamma condition, where participants generate a cate-
gory ‘Beta’ as well as a category ‘Gamma’. The resulting
3-by-3 design is applied in a between-subjects fashion – par-
ticipants can be in only one of the nine unique conditions.

The main advantage of adapting the experiment by
Conaway and Austerweil (2017) is that the simplicity of their
stimuli allow for a straightforward test of the distributional
similarities across known and generated categories. In addi-
tion, the variety of Alpha categories used (i.e., the different
shapes of the Alpha categories) also allows us to observe the

effect of generated category identity across multiple scenar-
ios.

In line with our earlier predictions, we expect that the
Not-Alpha conditions on average generate categories that are
larger in area and more widely dispersed than categories from
the Beta-Only as well as Beta-and-Gamma conditions. In
addition, we predict that within the Beta-and-Gamma con-
ditions, the generated Beta and generated Gamma categories
should be distributionally similar.

Method
Participants and materials We recruited 240 participants
through Amazon Mechanical Turk and randomly assigned
them to one of the nine unique conditions. Sample sizes of
each condition are presented in Table 1.

Stimuli were squares that varied along two dimensions:
color (grayscale 9.8% – 90.2%) and size (3.0 – 5.8cm on each
side). The assignment of perceptual features (color, size) to
axes of the domain space (x, y), as well as the direction of
variation along each axis (e.g., increasing or decreasing size)
was counterbalanced across participants. Feature values were
evenly-spaced on a 50-by-50 grid, giving a near-continuous
space from which exemplars can be generated. An example
of the feature space is presented in Figure 1a.

The three Alpha conditions are Cluster, Row, and Diag-
onal. In the Cluster condition, Alpha exemplars occupy a
small area towards one corner of the feature space. In the
Row condition, the exemplars are nearly equal along one fea-
ture, while equally spread out along the other feature. The Di-
agonal condition has Alpha exemplars equally spaced along
the diagonal of the feature space in a similar fashion to the
diagonal conditions of Jern and Kemp (2013). In order to
ensure that exemplars are not completely identical along any
one feature, exemplar feature values are slightly jittered. The
exact same amount of jitter is applied to all Alpha exemplars
within a given Alpha condition. The locations of these dif-
ferent Alpha categories in the feature space are presented in
Figures 1b to 1d.

Procedure In the first phase of the experiment (Figure 2),
participants learned the Alpha category exemplars by observ-
ing a unique exemplar on each trial. This was repeated over a
total of three blocks (four trials per block – one corresponding
to each unique exemplar,) with the order of exemplar presen-
tation randomized within each block. Prior to the presenta-
tion of each exemplar, a fixation cross was shown for 1000
ms. Participants were allowed to spend as much time as they
wanted on each trial and were also shown the full range of
possible feature values prior to training.

The next phase comprised a series of generation trials (Fig-
ure 3). Depending on their generation condition, participants
generated either eight exemplars from a category that was
‘Not-Alpha’ (Not-Alpha generation condition), eight exem-
plars from a category called ‘Beta’ (Beta-Only generation
condition), or four exemplars from a category ‘Beta’ and four
exemplars from a third category ‘Gamma’ (Beta-and-Gamma
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Figure 1: (a) Example of stimuli located at the corners of the
feature space. (b-d) Locations of Alpha category exemplars
for each Alpha condition.

generation condition). More specifically, participants in the
Not-Alpha generation condition were asked to produce “what
[they] think is likely to NOT be in the Alpha category”, while
participants in the other conditions were asked to produce
“what [they] think is likely to be in the Beta [or Gamma] cat-
egory”. Exemplars were generated on each trial using two
on-screen sliding scales, with each scale controlling the in-
dividual features (color and size) of the generated exemplar.
Feature values could take any one of 50 evenly-spaced val-
ues between the specified boundaries. Previously generated
exemplars were not allowed to be generated a second time.
Participants were shown an on-screen preview of their exem-
plar on each trial as they interacted with the sliders, but could
not see previously generated exemplars or exemplars from the
Alpha category.

Table 1: Sample sizes for each condition.

Generation Condition Cluster Row Diagonal
Not-Alpha 26 28 25
Only Beta 30 27 25
Beta-and-Gamma 26 27 26

Analyses We analyze our data in two stages. First, to pro-
vide a coarse overview of the distribution of different patterns
of generated categories, we classify the generated categories

into six different profiles: Positives, where the correlation be-
tween the dimensions is more than r; Negatives, where the
correlation between the dimensions is less than −r; Rows,
where the range of values across the x dimension is at least d
times more than the range across the y dimension; Columns,
where the range of y dimension values is at least d times more
than the range of x dimension values; Clusters, where the
ranges across both dimensions are less than a; and Dispersed,
where the ranges across both dimensions are more than a.
Next, we compare the generated categories on four key dis-
tributional measures: ranges of each feature, the feature cor-
relations, and the area enclosed by the generated exemplars in
the feature space (i.e., their convex hull). Differences along
each of these statistics are performed using Bayesian t-tests
(Rouder, Speckman, Sun, Morey, & Iverson, 2009), yielding
Bayes factors (BF01) which indicate evidence for the null hy-
pothesis when BF01 > 1, with larger values indicating greater
evidence for the null hypothesis. BF01 < 1 indicates evidence
for the alternative hypothesis. Interpretations of the sizes of
Bayes factors are guided by Jeffreys (1961).

Results

We took a subset of the data and tuned each of the profil-
ing parameters such that the profiles of this subset were ad-
equately captured. Subsequently, we applied this profiling
scheme to the entire dataset. Overall, we found that setting
r = .7, a = .25, and d = 5 was useful in capturing the differ-
ent profiles of generated categories. The results were robust
to moderate variations in the profiling parameters (e.g., set-
ting .5 < r < .9, .1 < a < .4, and d > 1 returned very similar
results.) A representative sample of each profile is shown in
Figure 4 and the frequency plot of the different profiles is pre-
sented in Figure 5.

The most striking patterns to note here are the high fre-
quencies of Row category profiles from participants in the
Row conditions, and the high frequencies of Dispersed cate-
gory profiles from participants in the Not-Alpha conditions.
The former indicates that the distributional similarities be-
tween learned and generated categories are especially strong
in the Row conditions, while the latter provides preliminary
evidence that generated categories from the Not-Alpha condi-
tions tends to be more widely dispersed. Also noteworthy are
the low counts of both Positive and Negative category pro-
files across the whole data set – in contrast to the Row condi-
tions, this indicates low similarity in distributional structure
between the learned and generated categories for the Diago-
nal condition.
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Figure 2: Instructions and trials observed by each participant during the category learning phase. The instructions screen is
shown once, followed by 12 presentations of Alpha exemplars (4 exemplars across 3 blocks.)

Figure 3: Instructions and trials during the generation phase, observed by a participant in the Not-Alpha condition. Participants
in the Beta-Only and Beta-Gamma conditions experienced similar trials, with the exception that those in the Beta-Gamma
condition were asked to generate 4 Beta exemplars then 4 Gamma exemplars.
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Figure 4: Representative samples of the six different category
generation profiles.

Focusing on the distributional statistics, when broken down
by the Alpha conditions (Figure 6), we found that the Cluster
conditions tended to have categories with a smaller range of
both features, and with correspondingly small sizes. The Row
conditions produced categories that are high on the x dimen-
sion but not the y dimension. These observations indicate that
the distributional statistics were carried over from the known
category to the generated category in these two Alpha con-
ditions. However, the Diagonal conditions did not have sim-
ilar distributional statistics observed – instead of a positive
correlation, the Diagonal conditions tended to produce large,
dispersed categories. Austerweil et al. (in preparation) also
observed a similar effect (although they found more evidence
for a negative correlation). Overall, in alignment with previ-
ous research, at least two out of the three Alpha conditions in
our experiment generated categories that share distributional
statistics as the known category.

More interestingly, when the data is broken down by the
generation conditions (Figure 7), we found that compared to
the Not-Alpha conditions, there is moderate evidence show-
ing Beta-Only conditions with a lower y dimension range
(t(162)= 3.00, BF01 = 0.16) and moderate to strong evidence
that their generated categories are smaller in area (t(162) =
3.16, BF01 = 0.10). There is moderate evidence that the Not-
Alpha and Beta conditions share equal range of x dimension
values (t(162) = 1.33, BF01 = 4.82). With Beta-and-Gamma
conditions, we find greater evidence for smaller and tighter
categories compared to the Not-Alpha conditions. Specifi-
cally, there is very strong evidence that both Beta and Gamma
categories from the Beta-and-Gamma condition are smaller in
both x (t(156) = 4.83, BF01 = 2.55× 10−4; t(156) = 4.21,
BF01 = 2.94 × 10−3, respectively) and y (t(156) = 4.57,
BF01 = 7.40 × 10−4; t(156) = 7.56, BF01 = 4.30 × 10−10,
respectively) ranges compared to the Not-Alpha conditions.
Similarly, there is very strong evidence that both categories in

the Beta-and-Gamma conditions are smaller in area than the
Not-Alpha conditions (t(156) = 5.70, BF01 = 5.41× 10−6;
t(156) = 7.69, BF01 = 2.07× 10−10, respectively). Overall,
when comparing the Not-Alpha conditions to categories from
other generation conditions, we consistently find moderate
to very strong evidence that Not-Alpha categories are more
widely dispersed (in their range values) and also larger (in
their area), with the only exception being the comparison of
x dimension ranges between the Not-Alpha and Beta-Only
conditions.

When comparing the distributions of the Beta and Gamma
categories generated within the Beta-and-Gamma conditions,
we find an overall weak-to-moderate evidence for equal dis-
tributional statistics. Specifically, there was moderate evi-
dence for equal x dimension ranges (t(150) = 0.56, BF01 =
9.47) and weak evidence for both feature correlations and
area size (t(150) = 1.85,BF01 = 2.10; t(150) = 1.77, BF01 =
2.40, respectively). When measured on their y dimen-
sion ranges, we found weak evidence for lower values from
Gamma categories compared to the Beta categories (t(150) =
2.47, BF01 = 0.59).

Discussion
At first glance, it seems reasonable to assume that generat-
ing a new category Y after learning category X is the same
as generating a new category Not-X. An independently iden-
tified category should already be a category-by-negation (in
that an independently identified category is not what was pre-
viously known.) Further, if the categories are already iden-
tified by arbitrary labels, then it may be easy to assume that
identifying the negation of a known category cannot add any
additional information in category generation.

Our results have indicated otherwise. Specifically, when
tasked to produce categories-by-negation, participants tended
to generate wider and larger new categories compared to
when tasked with producing independently identified cate-
gories. To our knowledge, this paper represents the first piece
of evidence distinguishing these separate types of categories.

Aside from demonstrating a new effect, this study has con-
tinued to show the robustness of the distributional similari-
ties between learned and generated categories. In this sense,
the results from the different Alpha conditions are similar to
those observed in Austerweil et al. (in preparation). The gen-
erated categories from the Cluster condition tend to possess
lower x and y ranges, with a correspondingly smaller area,
and the generated categories from the Row condition tend to
adopt Row-type profiles. There is also similar lack of cate-
gories with positively correlated features from the Diagonal
condition.

However, one notable difference is that while Austerweil
et al. (in preparation) found evidence of negatively-correlated
generated categories in their XOR condition, we found no
evidence of negatively-correlated generated categories in our
comparable Diagonal condition. Austerweil et al. (in prepa-
ration) explained that the presence of negatively-correlated
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Figure 5: Frequencies of category generation profiles broken down by Alpha condition (left plot) and generation condition
(right plot).
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Figure 6: Box-plots of the distributional statistics from the generated categories. Boxes depict the median and quartiles of each
Alpha condition, with whiskers placed at 1.5 inter-quartile range. All points outside this region are marked individually.
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features in this condition was indicative of the effect of cat-
egory contrast – that is, categories with negatively correlated
features are generated because they are particularly different
to categories with positively correlated features. It is possible
that due to the reduced strength of the positive correlation in
our study compared to Austerweil et al. (in preparation) (be-
cause of the addition of noise to the feature values), partici-
pants were no longer as sensitive to the negative correlations
in the experimenter-defined category and therefore started to
produce uncorrelated but widely dispersed categories.

Beyond replicating previous studies, the current study has
demonstrated that the consistency in distributional statistics
can persist beyond the first generated category. However, evi-
dence showing this was ultimately weak. One possible reason
for this is the relatively small feature space employed in the
tasks. The generation of a second novel category is necessar-
ily more constrained in the feature space than the generation
of the first novel category, possibly contributing to differences
in distributional structure. By exploring stimuli features with
less defined boundaries (e.g., orientation), we may expect to
see greater consistency in distributional structure over multi-
ple generated categories.

Although we have observed participants generating mul-
tiple independently identified categories, we do not want to
imply that categories-by-negation can only happen once. It
would be worth investigating how participants might proceed
to generate additional categories-by-negation (e.g., by asking
observers to generate a category that is Not-Alpha and Not
Beta). Packing Theory (Hidaka & Smith, 2011) – a hypoth-
esis that suggests categories can be neatly ‘packed’ into the
feature space – may indicate that successive categories-by-
negation are generated in a fashion that preferentially occu-
pies spaces between observed categories. Further, although
none of the current models of category generation can di-
rectly account for the effects observed in this study, they may
be useful components in a larger category generation frame-
work. For instance, future work may consider implementing
the hierarchical sampling model from Jern and Kemp (2013)
in a framework of overhypotheses (Kemp, Perfors, & Tenen-
baum, 2007), where a prior can be placed over a category
identity space, allowing models to behave differently under
different regions of generated category identity.

Ultimately, the nature of newly generated categories ap-
pears to vary depending on the identity they were associated
with. The extent to which they may differ, and the mech-
anisms driving these differences represent fascinating areas
for future research.
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