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Abstract: Alpha herpesvirus infections (α-HVs) are widespread, affecting more than 70% of the
adult human population. Typically, the infections start in the mucosal epithelia, from which the
viral particles invade the axons of the peripheral nervous system. In the nuclei of the peripheral
ganglia, α-HVs establish a lifelong latency and eventually undergo multiple reactivation cycles. Upon
reactivation, viral progeny can move into the nerves, back out toward the periphery where they
entered the organism, or they can move toward the central nervous system (CNS). This latency–
reactivation cycle is remarkably well controlled by the intricate actions of the intrinsic and innate
immune responses of the host, and finely counteracted by the viral proteins in an effort to co-exist in
the population. If this yin-yang- or Nash-equilibrium-like balance state is broken due to immune
suppression or genetic mutations in the host response factors particularly in the CNS, or the presence
of other pathogenic stimuli, α-HV reactivations might lead to life-threatening pathologies. In this
review, we will summarize the molecular virus–host interactions starting from mucosal epithelia
infections leading to the establishment of latency in the PNS and to possible CNS invasion by α-HVs,
highlighting the pathologies associated with uncontrolled virus replication in the NS.

Keywords: alpha herpesvirus; latency; reactivation; neurotropic virus; neuronal response

1. Introduction

Virus infections in peripheral tissues usually do not spread to the nervous system
(NS) because of effective immune responses and multi-layer anatomical barriers. However,
occasionally if these barriers are breached, infectious virus particles gain access to the NS
via the bloodstream or by direct infection of nerves that innervate peripheral tissues [1].
Accidental nervous system infections by emerging viruses usually result in debilitating
direct and immune-mediated pathology and mostly represent a dead-end for the host
and the pathogen. However, few virus families, notably the alpha herpesviruses (α-HVs)
such as herpes simplex virus (HSV), varicella-zoster virus (VZV), and pseudorabies virus
(PRV) have evolved to enter the NS efficiently [2–4]. After entry, these virus particles move
long distances by directed transport in the nerves to reach and establish infections in the
peripheral ganglia [2,5]. Remarkably, α-HVs do not target the nervous system for a short
period of time as in the case of rhabdoviruses (e.g., rabies virus), but rather for the life of the
host [6,7]. In the lifetime of the infected host, α-HV infection can reactivate multiple times to
spread to other hosts. This ingenious lifecycle is achieved by establishing a quiescent form
of infection (i.e., latency) in the peripheral nervous system (PNS) after the primary infection
of mucosal epithelia, with rare but often fatal central nervous system (CNS) pathology [8].
α-HV latency can be characterized by the episomal persistence of the viral genomes in the
neuronal nuclei with limited transcription activity and lack of progeny production. This
quiescent state can be reversed by the activation of stress signaling pathways leading to
reactivation of the viral genome and initiation of productive replication [9].

Natural α-HV infections begin in a small number of epithelial cells at the mucosal
surface. In response to virus infection, these cells manifest a local inflammatory response
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to clear the primary infection in the epithelial cells and to warn the surrounding cells of a
potential danger via paracrine signaling [10,11]. Neurons innervating the infected epithelia
are the primary target of the neurotropic α-HVs [12]. The axon termini of these neurons
are not only the viral entry sites, but also are exposed to the inflammation environment
initiated by the infected epithelia. In the PNS, axons extend long distances from the cell
bodies to innervate distant tissues. Such a differentiated cellular architecture must have
finely tuned long-distance communication between the axon termini and the cell bodies
in the PNS ganglia to enable timely, effective, and properly controlled responses against
infectious agents.

How can α-HVs establish a lifelong latency in the host nervous system in the presence
of active innate and adaptive immune responses without causing pathologies in other-
wise healthy individuals? And how, in particular situations, do these infections lead to
serious neuropathologies? To be able to understand this fascinating interplay and balance
between the viral proteins, host neurons and the innate immune system, we will take a
step-by-step approach dissecting the α-HV infection establishment in the NS after intro-
ducing the basics of α-HV infection and host response: (i) mucosal epithelial cell infection,
(ii) neuroinvasion through the nerve fibers, (iii) latency establishment and reactivations in
the PNS ganglia, and (iv) access to the CNS tissue (Figure 1). We will review findings on
the intrinsic responses of each tissue to viral invasion together with viral countermeasures,
and highlight the pathologies caused by α-HV infections due to specific mutations of the
host genes or defects in the intrinsic and innate defense systems.
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latency (except the LAT region). Activation of STAT1 and STAT3 leads to induction of a subset of 

Figure 1. Model of HSV-1 infection and spread to the nervous system: (1) HSV-1 enters the mucosal
epithelial cell and starts productive replication. Infection is detected by PRRs such as TLRs, cGAS-
STING, RIG-I, and MDA-5, and receptor complexes, which induce the secretion of type I and
III IFNs. Viral proteins such as ICP0, ICP27, ICP34.5, US3, and UL37 counteract antiviral sensing.
(2) Once capsids enter axons of sensory neurons, outer tegument proteins are released in the cytoplasm
while inner tegument proteins, such as UL36 (VP1/2), UL37, and US3, remain attached to the capsid.
Within the axons, p-STAT1 is accumulated upon exposure to type I IFNs limiting retrograde viral
particle transport. (3) HSV-1 genomes are maintained as circular chromatinized episomes during
latency (except the LAT region). Activation of STAT1 and STAT3 leads to induction of a subset
of ISGs in neurons. IFN exposure induces PML-NB formation in the neuronal nuclei. Autophagy
restricts HSV-1 replication in neurons; however, UL34.5 inhibits Beclin-1-dependent autophagy.
HDAC/CoREST/LSD1/REST repressor complex regulates latency and reactivation of viral genomes.
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(4) Reactivation of HSV-1 is triggered by stress signaling pathways, which alter silencing his-
tone modifications, initiating the transcription of viral genes to produce infectious progeny. The
new progeny can be transported anterogradely from the cell body toward the initial site of entry
(5) triggering re-establishment of infection that can lead to cold sores, genital lesions, or shingles.
Severe cases may result in oral or genital ulcerations, keratitis, or blindness via HSK, or post-herpetic
neuralgia (PHN). (6) Upon reactivation, new progeny can also be transported anterogradely to the
CNS, which is one synapse away. TLRs and cGAS-STING prompt an antiviral response in the CNS.
TLR2 and TLR3 have demonstrated predominant protection against HSV-1 in the CNS. Astrocytes
and neurons mostly rely on TLR3 for IFN production, with microglia activating the cGAS-STING
pathway. VP1/2 targets the cGAS-STING in the CNS. It is still unclear whether α-HVs can es-
tablish latency in the CNS. References and abbreviations can be found throughout the text under
corresponding sections.

2. Basics of Intrinsic and Innate Immunity against Alpha Herpesvirus Infections

Alphaherpesvirinae is a subfamily that belongs to the Herpesviridae family, which
infects a broad range of hosts [13]. The human α-HVs include herpes simplex virus 1 and 2
(HSV-1 and HSV-2), and varicella zoster virus (VZV) [14]. Well-studied veterinary α-HVs
include pseudorabies virus (PRV), bovine herpesvirus 1 (BHV-1), and equine herpesviruses
1 and 4 (EHV-1 and EHV-4) [13,15]. PRV has been extensively used to study α-HV spread
kinetics in neuronal culture and animal models. α-HVs are characterized by the large size
of their double-stranded DNA. The dsDNA is encapsulated in a capsid, which is covered
by a complex tegument layer and a membranous envelope. Most α-HV infections begin at
the mucosal epithelium in the periphery such as the oral, genital, nasal, or oropharyngeal
mucosa [16].

α-HV infections within the mucosal epithelia result in productive replication leading
to the production of hundreds to thousands of progenies per infected cell [17,18]. Some of
these newly made virus particles spread the infection to neighboring epithelial cells, fibrob-
lasts, or nerve endings. Despite recent discoveries, there is a large knowledge gap between
the connection of the mucosal epithelia and the PNS junction. Importantly, the virus–host
interactions during the α-HV spread from epithelial cells to latency establishment within
the peripheral ganglia have not yet been clearly understood.

Host intrinsic and innate responses play a vital role in protection against the spread
of viral progeny and the induction of a systemic antiviral response against invading a-
HV virions [10]. Both intrinsic and innate immune responses synergize to reduce or
delay acute replication, albeit dependent on the cell type [19–21]. Intrinsic immunity
provides an immediate and direct antiviral response against invasion of a pathogen, which
is mediated via physical barriers and restriction factors. However, it lacks cell-to-cell
communication and response amplification [22,23]. Intrinsic antiviral immunity is conferred
by constitutively expressed host cell restriction factors that are encoded by almost all cell
types [24,25]. To counteract viral invasion, these restriction factors directly and immediately
act to subvert viral gene expression by inhibiting stages of the productive replication cycle,
mostly followed by a self-degenerating process. Thus, understanding the host’s intrinsic
immunity, and how it is induced and regulated in different cell types, is essential in
understanding host cell protection and virus evasion mechanisms.

Various cell types contribute to the innate immune response in both mucosal epithelia
and the nervous system, providing additional support and protection during α-HV inva-
sion [8,22,26]. Some of these cells include neutrophils, plasmacytoid dendritic cells (pDCs),
and natural killer (NK) cells [27–30]. These cells play a vital role in the antiviral response
partly due to their role in the synthesis and production of cytokines. Cytokines are small,
secreted effector proteins that orchestrate the innate response against viral invasion. IFNs
are cytokines produced in response to pathogenic invasion, and they activate a cascade
of protein modification and transcription events through autocrine and paracrine signal-
ing [31–34]. There are three categories of IFNs: type I, type II, and type III. Type I and type
III IFNs are involved in intrinsic and innate immunity, whereas type II IFN (IFN-γ) is crucial
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in regulating innate and adaptive immune responses and will therefore not be discussed
in the context of this review [26,27,35]. Type I and type III IFNs signal through distinct
heterodimeric receptors that induce gene expression via the Janus kinase-signal transduc-
ers and activators of the transcription (JAK-STAT) pathway [36–38]. Upon activation of
the JAK-STAT pathway, the IFN-stimulated gene factor 3 (ISGF3) complex, composed of
phosphorylated STAT1 and STAT2 (p-STAT1 and p-STAT2) along with interferon regulatory
receptor 9 (IRF9), is stimulated [31]. The ISGF3 complex enters the nucleus via the nuclear
pores before binding to the IFN-stimulated response elements (ISREs) of IFN-stimulated
genes (ISGs) [33]. Regardless of the overlapping downstream signaling pathways of type I
and III IFNs, there are significant differences in the magnitude and kinetics of ISG induction
between these two types of IFNs [39–41].

Type I IFNs (IFN-α and IFN-β) are essential to mediate a wide range of innate immune
responses against viral infection and share a heterodimeric receptor, IFN alpha receptor
(IFNAR), comprised of IFNAR1 and IFNAR2 subunits, which is ubiquitously expressed [31].
Early production of type I IFNs is crucial for initiating an antiviral response in infected and
neighboring cells [42]. In vivo studies have shown that mice lacking type I IFN signaling
have increased susceptibility to HSV-1 infection [43]. Furthermore, type I IFN deficiencies
in humans have been linked to severe disease progression upon HSV-1 infection, such as
herpes simplex encephalitis (HSE) [27,36,44–46].

In contrast to type I IFNs, type III IFN (IFN-λ) receptors are not ubiquitously expressed
and have instead shown preferential expression on mucosal epithelial cells and immune
cells such as neutrophils [31,38,41,47]. Type III IFNs consist of subsets IFN-λ 1-4 in humans
while only IFN-λ2 and -λ3 are found in mice [31,48]. Type III IFN receptors consist of
IL-10RB and IFNLR1 heterodimer. IL-10RB is broadly expressed and can be recognized
by other members of the interleukin (IL) family whereas IFNLR1 has limited expression
in epithelial cells and some immune cells [49,50]. Mucosal epithelial cells are a subset
of epithelia that line the genital, respiratory, and gastrointestinal mucosal barriers [51].
Studies conducted on human intestinal epithelial cells suggest that the induction of and
responsiveness to type III IFN are crucial aspects of an effective antiviral response [41].
Type III IFNs have demonstrated preferential antiviral response in mucosal epithelial
cells as opposed to type I IFNs [52,53]. Type III IFN treatment of mucosal epithelia cells
upon α-HV infection had a higher protective response when compared to type I IFN
treatment [47,54,55]. Importantly, intravaginal pre-treatment of IFN-λ prior to HSV-2
infection in a murine model elicited a potent antiviral response [39,47,55]. Interestingly,
the production of IFN-λ increases as cells polarize, and the quality of the IFN response is
determined by the differentiation state of the mucosal epithelial cells [41,56].

3. Viral Infection Starts at the Mucosal Epithelia

HSV-1 entry into epithelial cells is achieved by receptor-mediated fusion of the viral
envelope with the plasma membrane, requiring the concerted action of viral glycoproteins;
gC, gB, gD, gH, and gL [57–59]. Cellular receptors nectin-1, a member of the tumor necrosis
factor receptor family, and herpesvirus entry mediator (HVEM) serve as HSV-1 entry
receptors [57,59–61]. The role of these receptors differs depending on the cell type and
the route of infection. Nectin-1 is the major entry receptor for neuronal infection and is
shown to be accumulated at cell–cell junctions [12,60–63]. gD on the viral membrane can
bind to nectin-1, HVEM, or 3-O-sulfated heparan sulfate. Of those receptors, nectin-1 is
the main entry receptor for neuronal and epithelial cells [64]. HVEM and nectin-1 as gD
receptors and paired immunoglobulin-like type 2 receptor α (PILRA), myelin-associated
glycoprotein (MAG), and myosin heavy chain 9 (MYH9) as gB receptors are also present
in the adult human brain with increased expression in the hippocampus, which suggests
underlying susceptibility of this brain region to HSV infection [65].

When bound to its receptor, gD undergoes conformational changes and activates the
gH/gL heterodimer, which, in turn, activates gB, the principal fusogen that mediates the
fusion of viral envelope and host cell membrane [66,67]. Upon entry, the viral nucleocapsid
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is transported to the nucleus via molecular motors. Only the inner tegument proteins (e.g.,
US3, UL37, and UL36) stay associated with the incoming nucleocapsids [3,68–72]. Outer
tegument protein co-transport with nucleocapsids has rarely been observed during PRV
and HSV post-entry transport [73]. Once the viral capsid and tegument proteins enter the
cytoplasm, the tegument protein VP16, along with the host cell factors HCF-1 and Oct-1,
travel to the nucleus independently, while the inner tegument proteins: UL36, UL37, and
US3, remain attached to the capsid to facilitate transport on microtubules toward the cell
nucleus [71,72,74]. Viral DNA is ejected into the nucleus, and viral genes are transcribed
by host RNA polymerase II [75]. Productive α-HV infection follows a temporal cascade
of protein synthesis, starting with immediate-early (IE) and early (E) gene expression,
and followed by DNA replication and subsequent late (L) protein synthesis [7,17]. The
relatively large genomes of α-HVs are not assembled into nucleosomes in the virions,
but upon translocation into the nucleus, host histones are rapidly recruited onto viral
genomes [76]. Through interactions with HCF-1 and Oct-1, incoming VP16 initiates the
transcription of IE genes including infected cell proteins (ICPs): ICP0, ICP4, ICP22, ICP27,
and ICP47 [77–79]. The IE proteins then participate in the transcription of early and late
genes. Early proteins such as ICP8 and thymidine kinase (TK) carry out functions involved
in viral DNA replication [17,80].

Once DNA replication occurs, late genes are expressed, followed by virus
assembly [78,81]. Late genes can be subdivided into two classes: “leaky-late” or “true-late”
genes. “Leaky-late” gene expression is amplified upon viral DNA replication with apprecia-
ble levels prior to replication while “strict-late” genes are expressed only upon viral DNA
replication [82,83]. Viral DNA replication, capsid assembly, and DNA packaging occur in
the nucleus [84]. Mature capsids bud from the nuclear membrane, acquire tegument pro-
teins, and undergo secondary envelopment through the trans-Golgi network (TGN) [85,86].
Inner tegument proteins associate with the capsid first, while outer tegument proteins
do so later [73,87,88]. The virions can egress from the infected cells to infect distant cells
by using the canonical fusion machinery [66]. Alternatively, they can infect neighboring
cells through cell–cell junctions using gE/gI heterodimers [89]. Besides viral proteins
required for HSV-1 spread, Carmichael et al. recently discovered that host protein tyrosine
phosphatase (PTP1B) is important for HSV-1 cell-to-cell spread [90].

During primary infection, the innate immune responses initiated at the infected mu-
cosal surface are key in determining the efficiency of HSV-1 neuroinvasion and latency estab-
lishment. Innate immunity is activated upon the detection of viruses via pattern-recognition
receptors (PRRs) [27,28]. PRRs recognize pathogen-associated molecular patterns (PAMPs),
viral nucleic acids, and viral proteins, along with damage-associated molecular patterns
(DAMPs) [91]. Cytosolic PRRs include the toll-like receptor (TLR) family, along with RNA
sensors, RIG-I-like receptors (RLRs), and DNA sensors including cyclic GMP-AMP syn-
thase (cGAS) [92–96]. Both RIG-I and MDA-5 are cytosolic RNA sensors that have been
shown to be crucial factors for the detection of α-HV dsRNA [97,98]. Recently, it was
found that HSV-1 viral kinase, Us3 specifically phosphorylates RIG-1 blocking downstream
signaling that would otherwise lead to IFN production [99]. The function and regulation of
RIG-I and MDA-5 have been reviewed during viral infection [94,95]. Here, we will focus
on TLRs, the cGAS-STING pathway, and nuclear DNA sensors as host defense mechanisms
that are targeted by multiple α-HV proteins, as one of the many functions of the α-HV IE
genes is to circumvent host cell defenses to efficiently initiate viral gene expression.

3.1. Intrinsic Restriction Factors versus IE Proteins: TLRs

Toll-like receptors (TLRs) are PRRs that sense viral pathogen-associated molecular
patterns, which initiate an intrinsic immune response and subsequent release of cytokines
including IFNs [42]. Therein, TLRs play a pivotal role in HSV-1 infection and host response.
There are ten functional TLRs encoded by the human genome (TLRs 1–10), whereas the
mouse genome encodes for twelve functional TLRs: TLRs 1–9 and TLRs 11–13 [100]. Most
studies, commonly utilizing genetically modified murine models, have investigated the
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PRR response to HSV-1 infection, demonstrating that TLR2, -3, -4, and -9 detect HSV
glycoproteins [97,100–102]. It has been shown that TLR2, a plasma membrane receptor
that recognizes HSV-1 glycoprotein B (gB), is activated upon α-HV infection, inducing a
pro-inflammatory response [21]. Prior studies have highlighted the significance of the TLR2-
mediated inflammatory response during HSV-1 infection, demonstrating the conferred
protective effects of TLR2 and its cooperative role with other TLRs such as TLR4 and
TLR9 [30,101,102].

Similarly, TLR4 recognizes the short-hairpin DNA during an HSV-2 infection, and
this has been shown to increase the TLR4-dependent innate immune response in cervical
epithelial cells [96,101]. Together, TLR2 and TLR4 launch a MyD88-dependent signaling
cascade that induces macrophages and NK cells. However, ICP0, an IE protein of HSV-1,
is capable of suppressing the TLR2-mediated innate immune response [103]. The role of
TLR2 and TLR4 seems to be to contain viral infection as early as possible by activating
cytokine expression in response to HSV infection.

On the other hand, TLR3 has been demonstrated to have a higher protective effect
than TLR2 against α-HVs [46]. TLR3 is the only member of the TLR family that recruits
toll/IL-1R domain-containing adaptor-inducing IFN-β (TRIF) and (TNF-associated factor)
TRAF, signal transduction factors, instead of inducing a MyD88-dependent signaling
pathway and inducing IFN synthesis upon HSV-1 recognition [46,100]. Recently, it has
also been shown that TLR3 induces type I IFN in human fibroblasts and cortical neurons,
restricting viral growth in vitro [97]. Studies have since shown substantial evidence of the
protective role of TLR3 in HSV-1-mediated encephalitis, discussed in a later chapter in this
review. HSV-1 evades TLR3 recognition by inhibiting its expression via the viral tegument
protein kinase, US3, which inhibits the TNF receptor-associated factor-6, an adaptor of TLR
signaling [104,105].

TLR9 is a complex DNA sensor with an essential role in IFN production, coordinating
with other TLRs such as TLR2 to induce a pro-inflammatory immune response against
α-HV infection [102]. During an HSV-1 infection, TLR9 initiates early and rapid production
of type I IFNs and cytokine secretion via the interleukin-1 receptor-associated kinase 4
(IRAK-4) and MyD88-signaling pathways [21,106]. In mice, the main site of resistance
against HSV-1 CNS disease seems to be TG because of the TLR2 and TLR9-mediated innate
immune responses in the ganglia [107]. Interestingly, TLR2−/− mice showed an increase in
TLR9 expression but TLR9−/− mice are not able to establish a successful immune response
and are more susceptible to HSV-1-induced death [107]. In vivo, early type I IFN response
seems to be dependent on TLR9 recognition of HSV-1 infection [108]. Additionally, HSV-1
infection in human cortical neurons resulted in the upregulation and activation of TLR9
upon type III IFN treatment [109]. TLR9 has also been shown to cooperate with DNA
sensors such as the cyclic guanosine monophosphate–adenosine monophosphate (cGAMP)
synthase (cGAS)—STING (The Stimulator of Interferon Genes) [110,111]. The activation
of the cGAS-STING pathway leads to inhibitory signals that interfere with TLR9 activity.
Further studies will elucidate the role of TLR9 and DNA sensors in combating α-HV
infections in the NS.

3.2. cGAS-STING

Cytosolic α-HV DNA detection triggers the cGAS-STING pathway, leading to the ex-
pression of type I IFN-stimulated genes and the activation of innate immune responses [93].
cGAS produces cyclic GMP–AMP (cGAMP), which activates STING. Subsequently, STING
dimerization is induced via TRIM56-mediated ubiquitination before being poli-ubiquitinated
by TRIM32 in the Golgi complex. Tank binding kinase 1 (TBK1) binds and activates
phosphorylation of STING, which then activates IRF3, a transcription factor, and induces
transcription of type I IFNs [112]. STING deficiency in mice led to increased susceptibility
to HSV-1 infection due to a lack of type I IFN induction [113].

Studies have demonstrated that STING is important for innate immunity against HSV-
1 replication but is also essential for successful cell-specific viral replication [114]. Detection
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of viral DNA activates the cGAS/STING pathway to induce IFN production to combat viral
replication, but several viral proteins have evolved to block this pathway: UL37 deamidates
cGAS, ICP27 targets TBK1-mediated STING signaling, and UL41 binds to STING, blocking
its translocation [115,116]. Moreover, the viral protein kinase US3 hyperphosphorylates
IRF3, blocking its activation by TBK1 [117]. US3 also hyperphosphorylates and inactivates
p65, a subunit of transcription factor NFκB, which is crucial for IFN-β induction [28,118].
HSV-1 neurovirulence factor ICP34.5 binds and inhibits TBK1 [119]. Viral transcriptional
activator VP16 blocks IRF3-CBP interaction [120]. A new pathway was discovered where
HSV-1 induces expression of a miRNA targeting STING synthesis [121]. The interferon-
inducible protein 16 (IFI16) is a nuclear DNA sensor recognizing the dsDNA of pathogens
including that of α-HVs [122]. If IFI16 binding to the viral DNA is not blocked, this results
in the induction of cytokines partly through the STING-TBK1-IRF3 signaling axis [114,123].
Therefore, ICP0, a viral E3 ubiquitin ligase and one of the first proteins to be expressed
during HSV-1 infection, targets IFI16 for degradation. These findings emphasize that α-HVs
encode multiple factors to ensure the success of its viral countermeasures.

In contrast to other PRRs, the cGAS-STING pathway is also capable of IFN-independent
gene activation to mediate STING-dependent antiviral responses and induce a subset of
ISGs [124,125]. The effect of the cGAS-STING pathway in CNS neurons will be discussed
further in this review.

3.3. PML-NB (ND10)

Another set of nuclear proteins that are targeted by α-HVs is the components of the
nuclear domains 10 (ND10), commonly known as promyelocytic leukemia protein nuclear
bodies (PML-NB) [126]. PML-NBs are subnuclear organelles composed of several proteins
that have the capacity to inhibit viral replication and transcription [127]. Therefore, these
domains represent a major target for many DNA viruses, including α-HVs. Specifically, in
HSV-1 infections, PML-NB is rapidly targeted and disrupted by ICP0. Immediately after the
translocation of the viral genome into the host cell nucleus, HSV-1 genomes co-localize with
PML-NB constituent proteins [128]. If ICP0 protein is not made, genomes continue to be
“trapped” by these domains, which subsequently reduce the efficiency of viral transcription
and replication.

ICP0 induces the degradation of cellular proteins such as PML-NBs and the cen-
tromeric repressive histone H3 variants [129–132] Other PML-NB constituent proteins
include Sp100 (speckled protein of 100 kDa), hDaxx (human-death-domain-associated
protein 6), and ATRX (alpha thalassemia/mental retardation syndrome X-linked), which
have been demonstrated to limit the replication of ICP0-null mutants [131,133]. Since
PML proteins act as the scaffold of PML-NB, they maintain and recruit other proteins
to these nuclear domains. Therefore, PML loss leads to a dispersal of PML-NB-resident
proteins and loss of intrinsic response [134,135]. Interestingly, studies have shown that
exposure of cells to IFNs leads to an increase in the number of PML-NB bodies and an
increase in PML proteins. PML +/+ Hep2 cells treated with IFN led to a drastic reduction
in HSV-1 virus yield while the antiviral effect was minimal in IFN-treated PML −/− Hep2
cells, indicating that PML-NBs contribute to IFN signaling resulting in a broad intrinsic
antiviral activity [135–137]. Paradoxically, HSV-1 virus yield was substantially reduced in
the absence of PML proteins in Hep2 cells at low-dose infections, suggesting a supportive
role of PML-NB components for efficient virus replication [135].

Small ubiquitin-like modifiers (SUMO) are known to regulate and modify proteins of
the PML-NB complex including PML and Sp100 [138]. ICP0 has been shown to directly
degrade PML and Sp100 modified with SUMO proteins and work to counteract the intrinsic
antiviral resistance of PML-NB and SUMO [139]. Conversely, SUMOylation has been shown
to repress HSV-1 replication; loss of SUMOylation in cells enhances the permissiveness of
HSV-1 ICP0-null mutants [139].

The inability of HSV-1 to initiate productive infection leads to the formation of latency-
associated viral DNA-containing PML-NBs (vDCP-NBs), and this pattern is more likely to
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be initiated if the type I IFN pathway was activated prior to infection ([140]. The protein
inhibitor of activated STAT1 (PIAS1) is a constituent PML-NB protein and part of the vDCP-
NB complex that contributes to intrinsic antiviral response [141]. Both PIAS1 and PIAS2-α
have been reported to localize to PML-NBs and to regulate PML SUMO modification, but
only PIAS1 was shown to be a permanent constituent of PML-NBs ([141–143]. PIAS4 also
plays a vital role in intrinsic immunity and is recruited independently of PML, a novel role
that contrasts the known roles of PIAS proteins as suppressors of innate immunity to DNA
virus infection [144].

PML-NB-associated proteins, ATRX and hDaxx, are involved in the formation of
repressive chromatin modification on the HSV-1 genome. Although the exact role of ICP0 is
not fully understood in this process, it has been found that hDaxx can act as a transcriptional
repressor by interacting with histone deacetylases (HDACs) to induce the silencing of lytic
viral promoters. Moreover, ATRX and hDaxx have been identified as critical regulators
of replication-independent chromatin assembly [145]. Recent research has indicated that
hDaxx and ATRX expression represses transcriptional activation, which is relieved by the
expression of ICP0 [146].

Another strategy of host cells to repress viral gene expression involves chromatin
repressor complexes and epigenetic modification mechanisms such as the HDAC/CoREST/
LSD1/REST repressor complex, which acts as a critical component in regulating latency
and reactivation [147]. ICP0 efficiently targets the components of the repressor complex
and reverts its repressive activity on HSV-1 genomes [147]. ICP0 also promotes other
chromatin modifications that stimulate productive infection [148,149]. ICP0-null mutants
have impaired viral growth and replication deficiency in cell types such as fibroblasts and
keratinocytes [150], mostly due to the presence of these nuclear host restriction factors
providing a strong intrinsic anti-viral response to α-HV infections.

3.4. DNA Damage Response (DDR) Machinery

For successful DNA replication during productive infection, α-HV proteins must also
counteract the host cell DNA damage responses (DDR). Genomes of incoming viral progeny
are recognized by cellular DDR, and this activates DNA-damage-sensing kinases. These
phosphatidylinositol 3-kinase-like serine/threonine protein kinases (PIKKs) include the
DNA-dependent protein kinase (DNA-PK), ataxia telangiectasia mutated (ATM), and ATM
and Rad3 related (ATR) along with the poly ADP-ribose polymerase (PARP) family [84,151].
PIKKs phosphorylate downstream factors and recruit repair factors or apoptosis in the
case of damage [152]. The DNA-PK complex consists of the Ku70/Ku/80 heterodimer and
promotes nonhomologous end joining (NHEJ) repair of DNA damage upon viral infection.
Both ATM and ATR promote apoptosis in cells upon viral detection [153,154]. ATM is a
chief controller of DDR and is activated by double-strand breaks [155]. ATM senses and
promotes the repair of double-stranded DNA through both homologous recombination
(HR) and single-strand annealing (SSA) [84,155]. ATR is activated through recognition of
replicative stress during infection where it then induces DNA repair, cell cycle checkpoints,
or apoptosis. ATR serves as a sensor for DNA replication fork collapse and replication
complex uncoupling, making it essential for DNA replication [152].

Although DDRs induce an intrinsic antiviral response, HSV-1 manipulates DDR path-
way components to support HSV-1 replication [156]. Prior studies have determined that
ICP0 promotes the degradation of DDR factors, such as DNA-PK, preventing it from pro-
cessing HSV DNA ends [84,152,157]. HSV-1 interferes with DDR machinery by promoting
MDC1 and yH2AX accumulation at the viral genome along with interfering with crucial
components for DNA repair such as p53 binding protein (53BP1) and BRCA1 [122]. In
cortical neurons, HSV-1 has been shown to impair DNA repair by degrading KU complex
components, impairing NHEJ activity [158]. Conversely, ATM and ATR have been shown
to promote HSV-1 gene expression or promote replication in some instances during HSV-1
infection [156,159,160]. ATR is inhibited by HSV-1 ICP0 protein via the mislocalization of
the ATR interacting protein during infection [161]. ICP0 targets histone ubiquitin ligases,
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RING (really interesting new gene) finger protein (RNF)-8, and RNF-168 downstream
of ATM signaling to support viral DNA replication and efficient packaging of the viral
genomes [162,163].

These studies provide insight into ways α-HVs can evade intrinsic antiviral response
during productive infection in mucosal epithelia by targeting multiple sensors and repres-
sive complexes. They also highlight the evolutionary importance of efficiently replicating
the viral genome and yielding high numbers of progeny while combating a multi-faceted
host immune response, some of which will invade the nervous system to establish a
lifelong infection.

4. Recognition of Inflammation and Neuroinvasion of Peripheral Nerves

To establish life-long infections, α-HV particles egressing from mucosal epithelial cells
must efficiently enter the peripheral nervous system (PNS) via the axonal termini of these
neurons. The inflammatory cytokines secreted by the mucosal epithelial cells are sensed by
the PNS axons even before the invasion by the viral progeny. How do neurons respond to
this cytokine milieu? Can there be local antiviral responses in axons that are exposed to
cytokines before they are exposed to infectious virus particles? Recent research shows that,
in fact, these early communications between infected peripheral tissues and the nervous
system play a pivotal role in determining the mode of infection in the neuronal ganglia and
further affect the replication and reactivation dynamics [164–166].

4.1. Interferon Response: Type I versus Type III IFN

Neurons can sense and respond to immunostimulatory molecules and express type
I IFNs themselves; albeit less than in mitotic cells [45,167,168]. The differential response
to infection between different neuron types can influence the heterogeneity of HSV-1
latency as IFN-induced responses to HSV-1 in murine DRG-derived neurons seem to
be reduced [168]. Interestingly, type I IFN treatment of neurons prior to infection with
HSV-1 limited productive replication, promoted latency establishment, and even restricted
reactivation of viral genomes in individual neurons [169,170]. In vitro cultures of TG have
also demonstrated decreased viral replication upon dose-dependent type I IFN treatment
prior to infection [171,172]. In the NS, type I IFNs have been shown to have a role in the
early control of HSV-1 replication within trigeminal ganglia (TG), where they are sensed
through the axons [172,173].

It is possible that during the early stages of infection, while the virus replication is
controlled by the intrinsic and innate defenses at the mucosal surface, exposure of nerve
termini to type I and III IFNs stimulate local responses in axons, independent of the distant
cell bodies, which limit the entry and/or transport of α-HV particles [8,12,174]. In this first
phase, neuronal cell bodies are possibly not engaged to reduce the risk of any unnecessary
dangerous reaction. A previous study, using compartmentalized primary superior cervical
neurons (SCGs) in tri-chambers showed that, when axons are exposed to IFN-β, STAT1 is
phosphorylated, retained in axons, and initiates a non-canonical antiviral action [174]. The
presence of phosphorylated STAT1 (pSTAT1) in axons interrupted retrograde HSV-1 and
PRV capsid transport. The mechanism by which pSTAT1 in axons restricts the transport of
herpes viral capsids is not clear. Accumulation of STATs in axons may trigger responses
such as autophagy that would limit the number of capsids reaching the connected cell
body. The number of virus particles reaching the neuronal nuclei significantly affects the
mode of infection, as it was shown that there is a productive infection threshold (in the
number of infecting viral particles), particularly when the infection is acquired through
axons [175,176]. If the infection dose is below this threshold, viral genomes are immediately
silenced in the neuronal nuclei before the lytic gene transcription is initiated, and latency is
established. If the primary intrinsic and innate immune responses against virus infection
are not effective, and the infection further spreads, innate and adaptive immune cells (e.g.,
NK and T cells) are activated. In this case, type II IFN, IFN-γ, produced by these cells
not only affects infected epithelia but also alarms neuronal cell bodies through retrograde



Viruses 2023, 15, 2284 10 of 26

signaling about a potential viral invasion in the periphery. Indeed, in the presence of
IFN-γ, authors showed that pSTAT1 is not retained in the axoplasm, but transported to
the neuronal nucleus where it activates a global neuronal response including the canonical
expression of numerous ISGs to shut down virus infection and in the worst case, to induce
the apoptosis of the infected neuron [174]. This hypothesis was also supported by multiple
other studies that have inferred that axonal pre-exposure to exogenous type I IFNs have an
increased antiviral response against α-HV infection, essentially by priming the neuron for
the upcoming viral invasion [11,174,177].

The potent antiviral role of type III IFNs, particularly in mucosal epithelial cells, has
been expanded in recent years highlighting the tissue-protective potent antiviral action
of these cytokines at the barrier surfaces. Because of these features, type III IFNs have
been investigated for their potential to protect the nervous system against α-HV invasion.
A recent study investigated the neuronal versus non-neuronal cell response to type III
IFNs within the mucosa-NS junction using primary SCG neurons and fibroblasts. Interest-
ingly, while type III IFN treatment led to STAT1 phosphorylation in both cell types, only
fibroblasts showed STAT2 phosphorylation upon treatment [178]. This led to a differential
ISG response in neurons characterized by the induction of a subset of SCGs at a lower
magnitude. Type III IFN pre-treatment reduced PRV virus yield in both SCGs and Rat2s.
However, whether type III IFNs can efficiently restrict HSV-1 latency establishment or reac-
tivation remains to be elucidated. Danastas, et al. have recently shown that pre-treatment
of isolated axons of DRG neurons grown in microfluidic chambers with IFN-λ impairs
HSV-1 egress from axons. Interestingly, type I and type III IFNs were shown to induce only
local STAT1 and STAT3 responses in axons, not in neuronal cell bodies. As expected, HSV-1
infection impaired the IFN signaling in neuronal cell bodies by limiting the translocation
of pSTAT1 and pSTAT3 to the nucleus, further demonstrating viral evasion mechanisms
involved in restricting IFN response [165]. These studies demonstrate the importance of the
mucosal epithelial–neuronal cell junction, as paracrine cytokine signaling can ultimately
affect productive infection and subsequent neuroinvasion.

4.2. The role of PML-NBs in Peripheral Neurons

A defining feature of the α-HV invasion of the PNS is the long-distance retrograde
transport of nucleocapsids in axons separately from the outer tegument proteins. Partly due
to the “shedding” of the outer tegument proteins (e.g., VP16) during axonal transport, in-
coming HSV-1 genomes cannot efficiently initiate the lytic gene transcription in neurons [7].
If the viral lytic gene transcription is not efficiently initiated, viral genomes are circularized
and loaded with histone proteins that are further associated with silencing protein modifi-
cations and retained in the nuclei as heterochromatinized episomes [149,179,180]. During
latency, viral gene expression is extremely limited, and viral DNA replication and progeny
production is shut off. A hallmark of α-HV latency is the active transcription of the Latency
Associated Transcript (LAT) region that not only produces a long non-coding RNA, but
also several miRNAs that are crucial in maintaining the latency and reactivating the viral
genome upon induction of appropriate stimuli ([181], see [182] for extensive review).

The fluorescent in situ hybridization (FISH)-mediated detection of HSV-1 genomes
during latency in the mice trigeminal ganglia (TG) effectively demonstrated the role of
PML-NBs in this process [183]. PML-NBs affected viral genome distribution and reduced
LAT expression: HSV-1 genome localization with PML-NBs or centromeres was negatively
correlated with LAT expression, indicating a role for these nuclear domains influencing
HSV-1 latency and reactivation.

Interestingly, previous studies showed that sensory neurons lack these nuclear protein
complexes in the absence of type I IFN, unlike non-neuronal cells in which HSV-1 replication
was restricted efficiently [184]. However, it has been hypothesized that the presence of IFNs
leads to the accumulation of PML-NBs in the neuronal nucleus. Indeed, this hypothesis
was proven to be correct in a recent study: HSV-1 genomes were shown to colocalize with
PML-NB during a latent infection only in the presence of type I IFN before the start of
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infection in an in vitro latency model [166]. Although PML-NBs may not be required for
latency establishment, this study demonstrated that HSV-1 reactivations were restricted
when PML-NBs were induced through type I and II IFN treatment [166]. Moreover, it
has been suggested that neurons retain the memory of the immune response by retaining
these nuclear domains [166]. The formation of PML-NB in response to cytokine sensing by
neurons is critical for controlling HSV infection long after the acute phase, with significant
effects on reactivation. Likewise, the presence of vDCP-NB-like structures in neurons
of latently infected human TGs suggests that PML-NBs play a crucial role in controlling
HSV-1 latency [140]. The role of PML-NBs within sensory neurons remains a field to further
investigate in vitro and in animal models, particularly how the inflammation is sensed by
the axons and how the signals are transmitted to the neuronal cell bodies to establish a
nuclear state supporting a silenced α-HV infection that reactivates less frequently.

4.3. Autophagy

Autophagy is a highly conserved catabolic pathway that activates the cell death pro-
gram as a survival mechanism. Studies have shown that autophagy plays a larger role
in neurons as opposed to epithelial cells during HSV-1 infection [185–187]. A study per-
formed by Yordy et al. (2012) determined that autophagy in epithelia does not succor local
inflammatory response or antiviral defense during HSV-1 infection. Instead, autophagy
was pertinent toward the sensory neuronal restriction of HSV-1 replication [168]. Further
evidence suggests that autophagy provides a cell-intrinsic antiviral mechanism in the PNS
against HSV-1 infection as shown in mouse DRG neurons [187]. Additionally, HSV infection
and type I IFN (IFN-β) induced selective antiviral autophagy and autophagic clustering
in peripheral neurons [168,188]. HSV-1 neurovirulence protein, ICP34.5, binds to Beclin-1,
and inhibits Beclin-1-dependent autophagy [186]. Because of this viral protein, paracrine
IFN signaling could not limit HSV-1 replication in TG neurons as it did vesicular stomatitis
virus replication. Exogenous IFN-β is important for creating a functional antiviral state in
TG neurons and restricting HSV infections [184,189]. ICP34.5 caused resistance to IFN-β
signaling in neurons, partly due to its ability to bind to Beclin-1, supporting the idea that
autophagy is a critical intrinsic antiviral response, particularly in the nervous system.

5. Latency Establishment in the PNS and Periodic Reactivations Leading to Pathologies

The intrinsic immunity, together with the extremely polarized and terminally differ-
entiated state of peripheral neurons, plays an important role in the latency establishment
of α-HVs. In addition to axonal infection leading to a repressive heterochromatin state
and gene silencing, a lack of viral tegument proteins such as VP16 and ICP0 when viral
genomes are ejected into the neuronal nuclei further challenges the initiation of the produc-
tive mode of infection [74,148,150]. As mentioned before, these outer tegument proteins
are separated from the incoming capsids upon axonal entry, and it is still unclear whether
they are retrogradely transported to the neuronal cell bodies or retained in axons [73,190].

In compartmented neuronal cultures, it was shown that if the tegument proteins
are present in the neuronal cell bodies during axonal infections with PRV at a latency-
establishing dose, viral genomes were able to escape from genome silencing [175]. If viral
tegument proteins were not present at the time of axonal infection, activation of protein
kinase A (PKA) in cell bodies enabled viral genomes to initiate productive infection via
a cJun N-terminal kinase (JNK) dependent pathway [175]. Interestingly, this pathway
took longer than the tegument-mediated escape from genome silencing. Moreover, in the
presence of viral tegument proteins in the cell bodies, the activation of cellular kinases (PKA
and JNK) was dispensable for the observed escape from the silencing phenomenon [164].
Although this study highlights the immediate action of tegument proteins on the activation
of viral lytic gene promoters, it did not identify which tegument proteins are responsible
for the rapid escape from genome silencing. As we know, ICP0 is responsible for the
efficient onset of productive infection and may also trigger reactivation of latent viral
genomes [30,130,191]. It is important to note that the absence of ICP0 leads to a repressive
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chromatin state driven by intrinsic and innate responses that are not counteracted [148,150,192].
Since VP16, together with the host cell factors HCF-1 and Oct-1, activate the transcription
of IE genes (e.g., ICP0), it appears that the presence of this protein in the neuronal cell
bodies (perhaps together with other tegument proteins) is one of the key determinants of
the α-HV infection mode (productive versus latent).

A reactivation event differs from escape from silencing at least in two major aspects:
the amount of silencing histone modifications on the viral genome and the lack of any
tegument or structural viral proteins during latency [164,193]. Reactivation of latent α-HV
genomes is usually triggered by stress such as physical trauma, sunburn, or fever (please
see reviews [7,9,193,194]). When stress signaling pathways are activated, silencing histone
modifications on viral genomes are altered and transcription of viral genes initiates follow-
ing a biphasic program to yield infectious progeny [179,193]. A small portion of the newly
made viral progeny in the neuronal soma can be sorted into the bifurcating axons of sensory
neurons and are transported in the anterograde direction (the opposite direction relative
to that during initial infection) toward the mucosal epithelia or to the brain [5,84,195]
(Figure 1). Surprisingly, the threshold for reactivation of latently infected PNS neurons is
high, such that reactivation does not occur in all the latently infected neurons [183,196,197].
Reactivation may be more likely to occur in neurons that contain more copies of the viral
genome [196]. Even within a single neuronal nucleus, not all silenced genomes reactivate
simultaneously [140,183,196,198]. Regulation of latency establishment, reactivation, and
subsequent spread of infection is affected by cell-intrinsic, tissue-specific, and systemic
factors, as well as viral proteins that are challenging to dissect and require complementary
in vitro and in vivo studies. Currently, host and viral factors that affect the maintenance of
latency and subsequent reactivation are not completely understood.

Reactivations result in typical cold sores, genital lesions, or shingles blisters [16,81,199].
Asymptomatic reactivation and shedding of HSV-1 [200] and VZV [201,202] are also known,
but this phenomenon is more common in the case of HSV-2 reactivations [199,203]. How-
ever, α-HV reactivations may result in oral or genital ulcerations, keratitis or blindness
(depending on the ganglia where latency is established), or post-herpetic neuralgia (PHN),
and can even lead to encephalitis [199,204]. In this review, we will focus on the effect of
α-HV reactivations on the NS.

5.1. Herpes Stromal Keratitis (HSK)

During the initial productive infection of the corneal epithelia, HSV-1 replicates and
travels into the surrounding innervating neuronal axons where it establishes quiescence
within the peripheral ganglia, specifically the trigeminal ganglia (TG) [205,206]. Spo-
radic reactivation of HSV-1 may occur within the host’s lifetime, especially in immune-
deficient individuals, which leads to the re-infection of the primary site of infection. Re-
current infection of the corneal tissue causes scarring and vascularization and may lead
to herpes stromal keratitis (HSK), the leading cause of corneal blindness in the United
States [205]. During a productive infection, HSV-1 is recognized by the cell surface via
PRRs, which initiate the innate immune response once more, leading to an influx of proin-
flammatory cytokines. At the cornea, HSV-1 recognition induces type I and type III IFN
production [29,207]. IFNs provide protection from the viral transport of HSV-1 to the TG
during acute ocular infection by inhibiting viral replication and reactivation [207–209].
Type I IFNs have shown a prominent protective response against viral infection in the
cornea, preventing the systemic spread of HSV-1 to the TG in vitro and in vivo murine
models [206,208]. Conrady et al. demonstrated that the TLR response to HSV-1 in the
cornea was expendable. Instead, the DNA sensor, IFI16-mediated innate immunity was
more significant in controlling the productive HSV-1 infection [210].

Recently, Miner, et al. showed that IFNLR1, which is expressed by the corneal epithelial
cells, was inhibited by the action of antiretroviral drugs, AZT or TBK1 in human corneal
explants resulting in increased HSV replication [211]. Apparently, type III IFNs induce a
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predominant protective antiviral response against HSV-1 infection in the cornea, which has
also been demonstrated in other mucosal epithelial cells [47,52,54,55].

5.2. Post-Herpetic Neuralgia (PHN)

Similar to HSV, the reactivation of VZV leads to a self-limited dermatomal rash that
is accompanied by a painful inflammation in the skin, commonly known as shingles or
herpes zoster [212]. Dermatomal lesions can be treated with antivirals such as acyclovir
and its derivatives [80]. However, in up to 50% of shingles patients, the pain persists even
long after the resolution of the dermatome, resulting in a condition known as post-herpetic
neuralgia (PHN) [213]. PHN is the most common long-term complication associated with
α-HV reactivations and is commonly described as a burning or stabbing pain (in one side
of the body) that can persist for months or even years, severely impacting the quality of
life of patients suffering from this condition [214]. It was suggested that PHN is caused
by VZV-induced neuroinflammation and axonal damage leading to hyperexcitability and
spontaneous firing of PNS neurons [215]. Currently, it is widely accepted that two main
factors significantly increase the risk of PHN: older age and immunosuppression [213].
Importantly, the available antiviral therapies that can be effective in the resolution of the
dermatomal rash neither eliminate the risk of PHN nor show any effect on the established
PHN [216]. Unfortunately, the commonly used clinical first-line treatments, including
tricyclic antidepressants (TCA), lidocaine patches, non-TCA antidepressants, NMDA an-
tagonists, ketamine, and Botox injections, rarely result in symptom resolution and do not
offer long-lasting relief [213].

The molecular virus–host interactions and the neuro-immune response leading to PHN
are far from understood. Recently, a mice model of PRV infection was proposed to study
the mechanism of VZV-induced PHN, since PRV infection in mice induces a self-mutilating
neuropathic itch that shows similarities to VZV-induced PHN [217]. In 1955, PRV infection
of rats (non-natural animal host) was shown to induce spontaneous, intermittent discharge
of nerve impulses over the preganglionic and postganglionic nerves of superior cervical
ganglia (SCG) following ocular inoculation, leading to pruritus in the infected rats [218].
Interestingly, PRV infection of the natural host, adult pigs, does not lead to pruritus, instead
results in the establishment of latency in the PNS ganglia, which typically is followed by
sporadic reactivations similar to VZV or HSV infections in humans [219]. In contrast, PRV
productively replicates in the PNS neurons of non-natural hosts following primary infection,
latency is not established, and the infections almost always spread further to the CNS [220].
Importantly, the productive infection of PNS neurons triggers a specific inflammatory
response initiating pruritus in non-natural hosts [220]. This difference in the pathogenesis
of PRV between natural and non-natural hosts might give a hint as to why PHN is more
likely to be a complication in VZV reactivations in the elderly and immunosuppressed:
because well-controlled infections with VZV leading to latency in the PNS are established
when the intrinsic responses of PNS neurons and the innate and adaptive immunity of
the host strongly keep the infection in the NS in check. When these checkpoint responses
weaken or are altered due to age or immunomodulatory conditions (similar to a non-natural
host infection), VZV reactivations are more likely to lead to neuropathologies. Following
these pioneering works, many in vitro and in vivo studies investigating PRV infections in
different model systems helped identify several molecular aspects of the α-HV replication
and spread in the nervous system [221–225]. Unraveling the molecular details of α-HV-
induced pain and itch may lead to the development of innovative therapeutic strategies
by determining viral-induced damage to the PNS, and understanding how this affects the
communication with the CNS resulting in neurodegenerative processes.

6. Intrinsic and Innate Immune Response of the CNS to α-HV Infections

Although the pathologies associated with α-HV infections in the CNS are rare, the
spread of an infectious virus to the CNS, either due to primary infection or upon reactiva-
tion, can occur through the synaptic connections of peripheral neurons or through olfactory
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receptor neurons (ORNs) [226,227]. Remarkably, α-HV particles can bidirectionally spread
between synaptically connected neurons: from a pre-synaptic to a post-synaptic neuron
(anterograde), or from a post-synaptic neuron to a pre-synaptic neuron (retrograde) [1,2].
Upon reactivation of latent α-HV genomes in the trigeminal ganglia, newly made progeny
particles can be sorted anterogradely in the bifurcating axons of these pseudo unipolar
neurons either arriving at the mucosa junction or at the CNS tissue that is one synapse
away (Figure 1). It is not well documented whether virus particles travel to the CNS upon
each reactivation cycle seeding the CNS neurons. Recent research supports the idea that
viral particles spread to the CNS tissue more frequently than we used to think. Moreover,
there is no specific barrier identified in these bifurcated axons that could prevent viral
particle sorting into the CNS branch.

If viral particles find their way to the CNS neurons, they can initiate a productive
infection in the brain resulting in encephalitis [228]. Herpes simplex encephalitis (HSE) is
the most common cause of life-threatening sporadic encephalitis with most cases being due
to reactivation of latent HSV infections [44]. There is also evidence from animal models
that HSV can establish latency in the brain tissue. In a mouse model, HSV can reactivate
from the brainstem immediately after tissue harvest, indicating that the brainstem can be
a latency site for HSV in the CNS and potentially lead to a higher frequency of recurrent
disease [229].

If the spread of α-HV particles into the CNS tissue is more frequent than previously
anticipated, and if the brain can be a target for latency establishment and reactivations, why
is HSE a dangerous but rare pathology? One explanation may be the attenuation of viral
replication in neurons through virus–host co-evolution: the intrinsic immune responses
of the terminally differentiated neurons limit transcriptional activation, translation, and
replication of virus particles. From the viral side, this is strategically favorable since their
life cycle has evolved to establish a lifelong persistence in the NS. Particularly in the CNS,
the intrinsic immune response against α-HVs is more pronounced because of the immune-
privileged state of this tissue. But immune surveillance does occur in the CNS: microglia
and astrocytes are important resident immune cells responsible for immune surveillance in
the CNS, and they express a wide range of toll-like receptors (TLRs) that help recognize
pathogen-associated motifs (PAMPs) [230–232].

6.1. Toll-like Receptor Signaling Pathway (TLR2, TLR9, and TLR3)

TLR2 is an extracellular membrane TLR that senses HSV entry glycoproteins such as
gB, gD, gH, and gL and induces antiviral innate immune response [91]. Upon activation,
TLR2 dimerizes with TLR1, TLR2, or TLR6, which then activates NF-κB and IRF3, and
upregulates IFN and cytokines. Differential activation of TLR2 occurs in different cell types:
TLR2 homodimer induces IFN-β in neurons and IFN-α in astrocytes. These IFNs subse-
quently activate ISGs including viperin, Ch25H, OAS2, latent RNase (RNase L), protein
kinase R (PKR), and IFIT1 [233]. TLR2 and TLR9 have been shown to act synergistically
to upregulate an early cytokine and cellular response to restrict HSV-2 viral load in the
brain [102]. Mice with TLR2−/− and TLR9−/− have higher viral loads and show no in-
duction of the ISG CXCL9 in the brain. In another report, TLR2-mediated inflammatory
cytokine response was associated with lethal encephalitis upon HSV-1 infection in mouse
neonates. In this study, wild-type mice demonstrated elevated levels of IL-6 and monocyte
chemoattractant protein-1 (MCP-1) in the brain as compared to TLR2−/− mice, leading to
brain hemorrhage and death [91].

TLR3 is an endosomal TLR that recognizes dsRNA and is an important intracellular
sensor of HSV that signals the intrinsic immune response [97]. TLR3 deficiency can impair
the production of Type I and Type III IFNs, leading to higher susceptibility to HSE. Interest-
ingly, TLR3 defects in the CNS affect IFN production differently from those in the PNS [234].
A TLR3 defect is partial as it does not entirely abolish the induction of IFN-β and -λ in
dermal fibroblasts, demonstrating a redundant mechanism—and therefore importance—of
IFN induction for antiviral response outside the CNS [97,234]. The effect of TLR3 deficiency
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in the CNS is similar to that found in the periphery during HSV-2 infection: Astrocytes are
known to express a high level of TLR3. Astrocytes with TLR3−/− have impaired type I
IFN production and exhibit elevated permissiveness to HSV-2 infection both in vivo and
in vitro [235]. Reinert et al. suggest that astrocytes play an important role in sensing HSV
entry into the CNS and induce a type I IFN response to restrict the virus (2012). Stud-
ies using CNS-resident cells derived from human induced pluripotent stem cells (hiPSC)
showed that TLR3 expression in neurons and oligodendrocytes is essential in controlling
HSV infection in the CNS [236]. Cells deficient in TLR3 can be rescued by exogenous IFN-
α/β, but not by IFN-λ [237]. Furthermore, hiPSC-derived cortical neurons possess both
a TLR3-dependent, constitutive immunity to HSV that antagonizes HSV-1 infection—in
the absence of Type I IFN preconditioning—and an inducible resistance to HSV-1 infection
that is different from hiPSC-derived TG, which lacks constitutive resistance but possesses
an inducible resistance to HSV-1 infection [237,238]. The constitutive resistance of cortical
neurons via TLR3-dependent IFN production may contribute to the prevention of HSV
spread in the CNS and reduce HSE susceptibility in those with wild-type TLR3. Recently,
Lafaille et al. discovered that mutation of human SNORA31 renders hPSC-derived cortical
neurons susceptible to HSV-1 and exogenous IFN-β renders SNORA31- and TLR3- but
not STAT1-mutated neurons resistant to HSV-1 [239]. This also hints that STAT-1 from the
JAK/STAT pathway is crucial in relaying Type I IFN signaling in the CNS.

6.2. cGAS/STING Pathway

The role of the cGAS/STING pathway in sensing HSV infection in the CNS has
only recently been investigated. The cGAS/STING pathway is another important sensor
of microbial infection that initiates intrinsic immune responses against the invader by
detecting dsDNA in the cytoplasm [92]. This pathway activates the production of Type I
IFN to elicit the antiviral response [113]. Whereas astrocytes and neurons are dependent
on TLR3 for the initiation of IFN production, microglia can sense HSV-1 infection through
the cGAS/STING pathway [240]. The mechanism of response to HSV appears to depend
on the infectious viral dose: At a high viral dose (multiplicity of infection -MOI of 15),
infected hiPSC-derived microglia induced cGAS-dependent apoptosis, which consequently
downmodulates local immune response, whereas at a lower viral dose (MOI of 5), cGAS
activation induced Type I IFN production and antiviral activity [241].

This dose-dependent phenotype can partly be explained by synchronous versus
asynchronous infection during 15 and 5 MOI infections, respectively. In the latter dose,
paracrine signaling from the primarily infected neurons might initiate an antiviral state
in the surrounding cells to further limit viral replication. Alternatively, the number of
viral proteins present at the time of infection detected by the host cell determines the
subsequent response: α-HVs encode and (pack) viral proteins that help evade the intrinsic
immune effectors of the host cell. The cGAS/STING pathway is tightly regulated by a
post-translational modification that also includes ubiquitination [242,243]. Specifically, the
K27- and K63-linked polyubiquitination of STING has been shown to promote downstream
recruitment of TBK1 and activation of IRF3 [92]. The deconjugation of polyubiquitin chains
from STING prevents TBK1 recruitment and thereby negatively regulates the cellular
antiviral response [244]. Bodda et al. discovered that HSV-1 viral protein VP1/2 can
de-ubiquitinate STING through the digestion of the K63-linked ubiquitin chains, which
thereby inhibits downstream signaling and type I IFN expression in response to HSV-1
infection [245]. VP1/2 (i.e., UL36) is the largest tegument protein of HSV. It is one of the
few tegument proteins that stay bound to the incoming nucleocapsids upon viral entry
into a neuron. The outer tegument proteins dissociate into the cytoplasm, but the inner
tegument proteins (e.g., VP1/2, UL36, and Us3) travel together with the nucleocapsids on
their way to the nucleus [190]. The main function of VP1/2 (together with UL37) during
viral neuroinvasion is the recruitment of the motor protein, dynein, onto the nucleocapsids
to ensure the transport of the nucleocapsids on microtubule tracks until the viral genome
is delivered into the neuronal nucleus [72]. It is tempting to speculate that the VP1/2
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associated with the incoming nucleocapsids target STING even before the viral gene
expression is initiated in the nucleus. The interaction partner of VP1/2, UL37, has been
shown to be essential in the nervous system invasion of both PRV and HSV-1 in animal
models. Interestingly, mutations in the R2 region of UL37 did not affect viral replication in
epithelial cells but blocked nervous system infection [246].

Type I and III IFNs are important cytokines that control HSV infections in the brain,
but little is known about the ISGs, the effectors of the IFN pathway that combat viral
infection in the CNS, and whether their expression is similar to or different from the
epithelial cells. [109,235]. Comparative analyses of tissue-specific responses to infection
and cytokines will help better understand the regulation of α-HV replication and viral
pathogenesis in the NS.

7. Concluding Remarks

Intrinsic responses in non-neuronal tissues and the nervous system are often conserved,
yet the “default” α-HV infection mode is dramatically different in epithelia versus the
nervous system. The latent mode of infection almost seems to be tailored to the highly
polarized morphology and the terminally differentiated biology of the peripheral neurons.
Despite the recent advances in the molecular and systemic dissection of α-HV neuronal
infections, we are far from deciphering how the initial peripheral productive infection
and inflammation are sensed by the nervous system, influencing the establishment and
control of viral persistence for the life of the host. Importantly, the nervous system mainly
relies on intrinsic and innate immune responses to avoid extensive inflammation and
tissue damage. The molecular sensors that are present in the nerve fibers provide a
first-line defense against viral invaders and summon the ganglia and immune cells that
confer further resistance. These initial virus–host–immune system interactions and long-
distance inter-tissue communications are pivotal in asymptomatic reactivations turning
into life-threatening pathologies. Intriguingly, even in subclinical cases, there are host-to-
host variations in the extent and the frequency of α-HV reactivations and shedding, which
almost always occurs in a seropositive state. As we learned from non-natural host infections
with PRV, when the initial host response is inadequate (or tailored to the species-specific
pathogen), α-HV proteins alter neurophysiology leading to synchronous continuous firing
of neurons, eventually spreading the infection to the brain, and killing the host. It is
fascinating that in the natural hosts, virus–host–immune system interactions are so finely
equilibrated that infections lead to latency establishment in the nervous system with no
apparent pathologies even when viral particles reach the CNS neurons during reactivations.

Many molecular details of virus–host interactions are missing, particularly regarding
the communication of peripheral tissues with the nervous system, as well as local and
global intrinsic responses of neurons to viral infection and inflammation. Does the exposure
of nerves to infected epithelial cytokines induce a canonical signaling pathway leading
to gene expression in the neuronal nuclei similar to when the neuronal cell bodies are
exposed to cytokines in the ganglia, or does it induce differential signaling leading to
alternative antiviral mechanisms? Does it stay local in the axons, or is it always conveyed
to the neuronal nuclei? Another important question is whether human α-HVs can establish
authentic latency (with occasional reactivations) in the CNS neurons. If so, are the silencing
or reactivation dynamics different from the PNS neurons? More importantly, what prevents
the viral genomes from lytic replication in the brain, causing HSE upon reactivations? An-
swering these questions requires further molecular investigations of virus–host interactions
complementing the animal models of α-HV latency and reactivation.
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