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A.7 Classification and discrimination of the macrophage subtypes using
motility parameters alone. (A) Speed, (B) Persistence, where dotted lines
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are the Gaussian Process Regressor model (GPR) predictions, and the color
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Abstract
Data-Driven Modeling and Analysis of Biological Systems’ Response over

Time

Manasa Kesapragada

Understanding the dynamic responses of cellular processes to stimuli is crucial for

uncovering the regulatory mechanisms underlying complex biological phenomena.

This work primarily focuses on modeling and analyzing biological system responses

over time. In some cases, there is no stimulus, while in others, stimuli such as electric

fields (EF), nutrient exposure, or initial wounding are present. This study underscores

the significance of considering dynamics in biological systems and the need to develop

methods for analyzing and modeling temporal dynamics.

In the first part of our research, we focus on macrophages, a type of immune

cell, and their subtypes (M0, M1, and M2). We develop robust image processing

methods for single-cell segmentation and tracking using single-cell time-lapse mi-

croscopy and label-free live-cell imaging. By mapping the morphological features to

cell migratory behavior, we train a deep-learning model to classify macrophage sub-

types. Our findings reveal distinct migratory behaviors for M1 and M2 macrophages,

demonstrating that cell motility and morphology can effectively identify function-

ally diverse macrophage phenotypes. This has significant implications for developing

cost-efficient, high-throughput screening methods targeting macrophage polarization.

Building on this foundation, the second part of our work explores cell subtype clas-

sification in the context of galvanotaxis, where cells migrate in response to electric

fields (EF). We extend our image processing and machine learning framework to con-

trol and analyze cell migration under EF, providing new insights into the mechanisms

driving cellular responses to electrical stimuli. In the final segment of this thesis, we
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apply our single-cell microscopy image processing techniques to study bacterial spore

germination, developing a predictive model for spore germination with various ger-

minants administered at different intervals. This interdisciplinary approach enhances

our understanding of spore biology and demonstrates the versatility and applicability

of our image-processing methods across different biological systems.

This study presents a comprehensive approach that combines advanced image pro-

cessing techniques, machine learning algorithms, and experimental methodologies to

model and analyze biological system responses over time. Additionally, we highlight

the importance of non-computationally expensive methods for processing images and

quantifying behavior, enabling real-time control and analysis.
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1 | Introduction

1.1 Background

Image processing techniques can be applied to quantify various aspects of cellular

behavior, including morphology, motility, and migratory patterns, which are crucial

for understanding the dynamic responses of biological systems. These quantified be-

haviors can then be integrated into machine-learning models to predict cell pheno-

types and interactions in a variety of contexts. This work is centered on modeling and

analyzing how biological systems respond over time, with an emphasis on dynamic

changes that occur in response to different stimuli, whether intrinsic or extrinsic, such

as electric fields, nutrient availability, or physical perturbations.

This research was initiated to address the broader challenge of classifying and pre-

dicting cellular behaviors in complex environments. The ability to precisely charac-

terize and model cellular responses provides valuable insights into fundamental pro-

cesses such as immune responses, tissue regeneration, and disease progression. For

instance, understanding how cells, including but not limited to macrophages, dynam-

ically alter their behavior in response to environmental cues can inform strategies for

therapeutic intervention.

This study seeks to develop methodologies that can generalize across different

cell types and conditions by utilizing a combination of image processing and ma-

chine learning. Whether tracking the migration of immune cells, the proliferation

of stem cells, or the differentiation of neurons, the goal is to uncover patterns in cel-

lular responses that are predictive of broader biological outcomes. These insights can

contribute to developing more effective treatments and interventions by providing a

deeper understanding of the temporal and spatial dynamics that govern cellular be-
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Introduction/Motivation 1.3

havior.

1.2 Motivation

Cellular morphological changes [2] and motility behaviors are central to a wide range

of biological processes, from immune responses to tissue development and disease

progression. While cell shape and size have been utilized in characterizing various

cell types, the role of motility properties in such characterizations still needs to be

explored across different cell systems. Understanding how distinct migratory behav-

iors correlate with specific phenotypic states can provide deeper insights into cellular

function and response to environmental cues.

Quantifying dynamic features such as lamellipodial protrusions and other motility-

related attributes using image processing techniques can significantly enhance our

ability to identify and classify cell behaviors. By leveraging these techniques in com-

bination with machine learning algorithms, we can detect and predict cellular be-

havior and migratory patterns in various contexts, from immune cell recruitment to

responses in other cellular systems.

Importantly, this analysis is an important step towards real-time control of biolog-

ical systems, a goal that requires methods to be computationally efficient and based

on information that can be measured in real time. This is why focusing on phase

contrast images is crucial, as they allow for non-invasive, real-time analysis of cell

dynamics. An example of such an application is detailed in Chapter 5, where the de-

veloped methods are applied to immune cells to control and guide the cells along a

desired trajectory in response to varying electric fields.
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Introduction/Outline 1.3

1.3 Outline

The proposed contributions of this work is to lay a framework of methods that can

be applied towards understanding cellular morphology, motility and migratory pat-

terns. This work spans from the study of immune cells to bacterial spore dynamics,

showcasing the adaptability of the developed methods. The outline of this work can

be summarized as follows:

• Image Processing and Cell Segmentation - Tracking

Computer vision analysis of non-fluorescent microscopy images, representa-

tively phase-contrast microscopy images, promises to realize long-term moni-

toring of live cell behavior with minimal perturbation and human intervention.

In this section, we propose a computer vision-based system that detects and

tracks individual cells in order to realize automated long-term monitoring of

cell behavior. This section detects cells to measure their shape and tracks cells

to quantify cell migration.

• Data-Driven Approach to Establishing Cell Motility Patterns as Predic-

tors of Cell Subtypes and Their Relation to Cell Morphology

Using the image analysis section’s cell segmentation and tracking results, we

create a training data set without any pre-assigned labels or scores. We first

self-discover any naturally occurring patterns in this training data set using un-

supervised learning algorithms like clustering on the cell morphological param-

eters. We then find the behavioral parameters of the identified patterns. We also

identify the trajectories of these patterns and analyze if this could help to dis-

tinguish the macrophage subtypes.
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• Deep Learning Classification for Macrophage Subtypes through Cell Mi-

gratory Pattern Analysis

To understand the pattern of cell migratory behavior, we propose a deep learn-

ing model to learn the representations from the cell trajectories and identify the

cell patterns. This model helps classify the cell trajectories of the macrophage

subtypes. We use the results from the clustering analysis as labeled data and

train the model. The predictions from the model show that each macrophage

subtype has a distinct migratory pattern. These conclusions can inform deci-

sions when external cues like electric fields (EF) are applied to the cells to inform

future wound intervention and management.

• Controlling Cell Migratory Patterns and Classifying Cell Subtypes Un-

der Electric Field

Feedback control can be used to direct cell migratory patterns by automatically

regulating an external electric field, with potential medical applications such as

in wound healing. In this chapter, we implement a machine learning-based con-

troller to regulate cell migration in real-time. An image analyzer was developed

to identify cells and measure their speed, directedness, and recruitment index

within a closed-loop system. The controller was used in vitro to guide naive

macrophage cells along a desired trajectory. One open area for future research is

the consideration of changes in macrophage phenotype due to prolonged expo-

sure to EF during control efforts. Preliminary work is presented towards classi-

fying macrophages during galvanotaxis to identify changes in macrophage sub-

types in real time.

• Machine Learning based model to Predict Germination Status in Bacte-

rial Spores
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Understanding bacterial spore germination can lead to a wide range of appli-

cations where spore reduction or encouragement of activity can be exploited,

including medical, food safety, and agricultural applications. This chapter stud-

ies spore germination mechanisms through microscopy imaging to extract key

physiological features and develop a model for predicting germination. This

application highlights the versatility of our techniques, demonstrating their ef-

fectiveness across different cell types and with both phase contrast and fluo-

rescence microscopy images. The results underscore the generalizability of our

approach while focusing on the primary objective of controlling spore germi-

nation. Achieving effective real-time control depends on integrating real-time

analysis, modeling, and prediction. Notably, this work introduces a predictive

model for the first time, marking a significant advancement beyond previous

efforts that were limited to classification.

• Conclusion

Finally, this chapter summarizes the results and discussed potential directions

for future research.

We intentionally made each chapter in this dissertation independent by including

all relevant background information and method descriptions within each chapter.

Readers are welcome to approach the chapters out of order.
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2 | Image Processing and Cell
Segmentation - Tracking

2.1 Types of Image Datasets

Cell images can vary significantly depending on the type of microscopy, staining

methods, cell type, and cell density. One of the primary challenges in analyzing these

images is extracting meaningful cell information. The data generated from imaging

experiments are diverse, reflecting the variations in microscopy techniques, staining

methods, and the inherent differences in cell types and densities [3]. For example,

brightfield microscopy images show cells against a bright background, making the

cells appear darker. Contrast microscopy images, on the other hand, present cells

with boundaries that differ in contrast from the background, which may be similar

in tone to the cells. Fluorescent microscopy images typically display cells as bright

objects against a dark background, making them easier to segment. Additionally, as

cell density increases across different images, the variety in cell shapes becomes more

apparent, further complicating the process of identifying and segmenting cells. Each

set of images poses unique challenges for segmentation.

Accurate cell segmentation is crucial because cell morphology is a critical pheno-

typic feature that reflects the physiological state of the cell. Moreover, defining the

cell contour is often necessary for analyzing intracellular processes. Therefore, devel-

oping effective segmentation techniques is essential for extracting valuable insights

from these varied cell images.
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2.2 Image Analysis

In this study, most images were obtained using phase contrast microscopy [4] and

fluorescence microscopy, as illustrated in Fig. 2.1 and Fig. 2.2.

(a) M0 image (b) M1 image (c) M2 image

Figure 2.1: Input phase contrast macrophage images for analysis

(a) Phase Contrast microscopy image (b) Fluoroscence microscopy image

Figure 2.2: Bacterial Spores

However, in phase contrast microscopy, a favorable high contrast at the cell bound-

ary leads to problems, such as halo patterns, which can complicate cell segmenta-

tion [5]. Detection of the cell boundaries from the current images to quantify the

protrusions of the cells, especially the cells like macrophages (Fig. 2.1), without any

given annotated data, is a significant challenge. The existing cell segmentation meth-

ods for phase-contrast images [6, 7] are pre-trained on different cell types and would
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need annotated data to re-train their models. In order to identify the most prominent

cells in the given images, manual segmentation and tracking would not be a con-

siderate option. So, here I develop methods using existing scientific computing and

image-processing libraries [8–12] in python, for cell counting (numbers), the identi-

fication of cell types or cell phases (shapes), and the quantification of cell migration

(morphodynamics).

In the following sections, I demonstrate the pre-processing, segmentation, track-

ing, and post-processing steps using the example image M1, shown in Fig. 2.1 (b).

2.3 Image Pre processing

Pre-processing is the name given for operations on images at the lowest level of ab-

straction —both input and output are intensity images. Such images are usually of the

same kind as the original data captured by the sensor, with an intensity image usually

represented by a matrix or matrices of brightness values. The aim of pre-processing is

an improvement of the image data that suppresses undesired distortions or enhances

some image features important for further processing [13]. The following methods are

performed on the input images consecutively for pre-processing in the current work:

1. Grayscale image conversion

As a first step, we convert the images to grayscale. A grayscale image, or gray-

level image, consists only of shades of gray, which simplifies the data by reduc-

ing it to a single intensity value per pixel. In contrast to full-color images, where

each pixel requires three values (red, green, and blue) to represent its color, a

grayscale image only requires one intensity value. This grayscale intensity is

stored as an 8-bit integer, allowing for 256 possible shades of gray, ranging from

black to white. The result is a two-dimensional array where the number of rows
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and columns corresponds to the pixel dimensions of the image. The grayscale

conversion is done using the weighted average algorithm from OpenCV [9] as

RGB to Gray: Y ← 0.299 ∗R + 0.587 ∗G + 0.114 ∗B

Although phase contrast images do not necessarily need to be converted to

grayscale, this process is commonly applied to both fluorescence and phase con-

trast images to standardize formats for analysis. Phase contrast microscopy im-

ages may include color to enhance contrast and highlight different cellular com-

ponents, but converting them to grayscale can facilitate uniform processing and

analysis.

2. Background Subtraction

We leverage the fact that images from similar environments often have compa-

rable backgrounds, allowing us to isolate cells by subtracting the background.

For this purpose, we used the rolling ball algorithm [14], a widely used method

for background subtraction. This algorithm calculates a local background value

for each pixel by averaging over a large spherical region around it. This back-

ground value is then subtracted from the original image, aiming to remove sig-

nificant spatial variations in background intensity. The radius of the sphere is

set to be at least as large as the size of the largest object that should not be

considered part of the background.

3. CLAHE - Contrast Limited Adaptive Histogram Equalization

Contrast enhancement is an important pre-processing step for the analysis of

microscopy images. The main aim of this process is to increase the visibility

of objects of interest. In the literature, most of the contrast enhancement tech-

niques are based on modifying the image histogram to improve the contrast [15].
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(a) Background Sub. (b) CLAHE (c) Erosion

(d) Dilation (e) Morph. Gradient

Figure 2.3: Results: Pre-processing methods applied in an order on M1 image (Fig. 2.1
(b)), with Fig. 2.2 (e) as the output

Early global Histogram Equalization (HE) techniques directly modify the his-

togram without considering the artifacts which may occur on the enhanced im-

age. Moreover, these techniques fail to enhance the local details in the image.

An efficient implementation, called contrast limited adaptive HE (CLAHE) [16],

was proposed to overcome the limitations of HE approaches. The CLAHE tech-

nique limits the contrast and eliminates the artifacts caused by the mapping of

two close gray-scale values to significantly different values.

4. Morphological Gradient

Morphology in images is known as the broad set of image processing operations

that process images based on the shapes [17]. It is also known as a tool used for

extracting image components that are useful in the representation and descrip-

tion of region shape. The basic morphological operators are erosion, dilation,
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opening, and closing. In grayscale morphology, images are functions mapping a

Euclidean space or grid E into R ∪ {∞,−∞}, where R is the set of reals,∞ is an

element greater than any real number, and −∞ is an element less than any real

number. Grayscale structuring elements are also functions of the same format,

called "structuring functions".

Let f ∶ E ↦ R be a grayscale image, mapping points from a Euclidean space or

discrete grid E (such as R2 or Z2) into the real line. Let b(x) be a grayscale

structuring element. Usually, b is symmetric and has short-support, e.g.,

b(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, ∣x∣ ≤ 1,

−∞, otherwise
.

Then, the morphological gradient of f is given by:

G(f) = f ⊕ b − f ⊖ b,

where ⊕ and ⊖ denote the dilation and the erosion, respectively. Dilation gives

the original set plus an extra boundary, the size, and shape of the boundary

depend on the shape and size of the structuring element. Erosion gives the

points for which the structuring element is contained in the original set. The

outer boundary of the original shape is removed by erosion. The morphological

gradient is generated by subtracting an eroded image from its dilated version.

The morphological gradient highlights sharp gray-level transitions in the input

image.

In Fig. 2.3, we can see the results of the pre-processing methods applied in an order

on the M1 image.
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2.4 Segmentation

With the pre-processed images in hand, the next step is to individually identify the

cells and segment them in every frame. This step helps to capture biologically rele-

vant morphological information. The following methods are performed on the pre-

processed images consecutively for the cell segmentation:

1. Intensity Thresholding

Thresholding is a method that replaces each pixel in an image with a black pixel

if the image intensity Ii,j is less than some fixed constant T (that is, Ii,j < T ),

or a white pixel if the image intensity is greater than that constant (see Fig.2.4).

To automatically detect this T value, Otsu’s method is used which returns a sin-

gle intensity threshold that separates pixels into two classes, foreground, and

background. This threshold is determined by minimizing intra-class intensity

variance, or equivalently, by maximizing inter-class variance [18]. This method

is equivalent to a globally optimal k-means [19] performed on the intensity his-

togram.

2. Binary Fill Holes

To fill the holes within a cell in a binary image, the algorithm used consists in

invading the complementary of the shapes in input from the outer boundary of

the image, using binary dilations [17]. Holes are not connected to the boundary

and are therefore not invaded. The result is the complementary subset of the

invaded region.
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Figure 2.4: Intensity thresholding

3. Euclidean distance transform and finding peaks

The Euclidean distance transform gives values of the Euclidean distance:

yi =
¿
ÁÁÀ n

∑
i

(x[i] − b[i])2

where b[i] is the background point (value 0) with the smallest Euclidean distance

to input points x[i], and n is the number of dimensions. We use this transform

function to compute the exact Euclidean distance from every binary pixel to the

nearest zero pixels. This converts a binary digital image, consisting of feature

and non-feature pixels, into an image where all non-feature pixels have a value

corresponding to the distance to the nearest feature pixel [20]. Now, we use

this distance map and find the coordinates of local peaks (maxima) in an image.

Peaks are the local maxima in a region of 2 ∗ min-distance + 1 (i.e. peaks are

separated by at least minimum distance). If peaks are flat (i.e. multiple adjacent
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(a) Thresholding (b) Fill Holes

(c) Labels after Watershed (d) Segmented Image

Figure 2.5: Results: Segmentation methods applied in an order on the pre-processed
M1 image (Fig. 2.2 (e)), with Fig. 2.5 (d) as the output

pixels have identical intensities), the coordinates of all such pixels are returned.

4. Connected component analysis and Watersheds

Now we perform the connected component analysis on the local peaks using

8-connectivity to detect connected regions. The connected component analysis

is an algorithmic application of graph theory [21], where subsets of connected

components are uniquely labeled based on a given heuristic. Once all the con-

nected components are uniquely labeled, we use the watershed transformation

that apportions pixels into marked basins. This transformation treats the im-

age it operates upon like a topographic map, with the brightness of each point
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representing its height, and finds the lines that run along the tops of ridges [22].

The results of the segmentation methods on the M1 image are shown in Fig. 2.5

2.5 Tracking

Figure 2.6: The first frame of M1 time-series image-set with trajectories that each cell
passed in previous frames

To gain biological insights from time-lapse microscopy recordings of cell behavior,

it is often necessary to identify individual cells and follow them over time. Extracting

such quantitative information by tracking the cell movements over time, is crucial in

understanding the dynamics of cell motion. Having the segmented images and their

labels generated through the methods in previous sections, I have used the global

linking of cell tracks using the Viterbi algorithm [23] for cell tracking. This algorithm

adds tracks to the image sequence one at a time, in a way that uses information from

the complete image sequence in every linking decision. This is achieved by finding the
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tracks which give the largest possible increases to a probabilistically motivated scoring

function, using the Viterbi algorithm [24]. The trajectories of the tracked image with

one cell highlighted to show in detail can be seen in Fig. 2.6

2.6 Post processing

This is an important step to consider only the cells of interest for analysis after seg-

mentation. The M1 image after applying the post-processing methods is shown in

Fig. 2.7, where the tiny particles as in the extreme right of the image, the cells on the

boundaries are removed from the analysis.

Figure 2.7: Post-processed Image

The post-processing filters to remove the cells which are not used for the analysis

are:

• Cells partially present

The cells which are partially present on the boundary of the images across the

time-series are ignored for the analysis.

• Cells not present across all the time-frames
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The cells which undergo mitosis and cell death in their time series are not con-

sidered for the analysis.

• Cell morphology filter

As our goal is to classify the cells based on morphology and motility, focusing on

cells that maintain consistent shape and size is essential. Therefore, we exclude

cells that exhibit significant changes in morphology, specifically those where

the change in size from the first frame to the last exceeds the average cell size.

• Cell size filter

In some instances, small particles may be segmented that do not contribute

meaningfully to the analysis. To ensure accuracy, such particles significantly

smaller than the average cell size are removed from consideration.
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3 | Data-Driven Approach to
Establishing Cell Motility Patterns
as Predictors of Cell Subtypes and

Their Relation to Cell Morphology
The dissertation author was a co-first author of the paper [25], that makes up this

chapter. The motility of macrophages in response to microenvironment stimuli is

a hallmark of innate immunity, where macrophages play pro-inflammatory or pro-

reparatory roles depending on their activation status during wound healing. Cell size

and shape have been informative in defining macrophage subtypes. Studies show pro

and anti-inflammatory macrophages exhibit distinct migratory behaviors, in vitro, in

3D and in vivo but this link has not been rigorously studied. We apply both mor-

phology and motility-based image processing approaches to analyze live cell images

consisting of macrophage phenotypes. Macrophage subtypes are differentiated from

primary murine bone marrow derived macrophages using a potent lipopolysaccharide

(LPS) or cytokine interleukin-4 (IL-4). We show that morphology is tightly linked to

motility, which leads to our hypothesis that motility analysis could be used alone or

in conjunction with morphological features for improved prediction of macrophage

subtypes. We train a support vector machine (SVM) classifier to predict macrophage

subtypes based on morphology alone, motility alone, and both morphology and motil-

ity combined. We show that motility has comparable predictive capabilities as mor-

phology. However, using both measures can enhance predictive capabilities. While

motility and morphological features can be individually ambiguous identifiers, to-

gether they provide significantly improved prediction accuracies (75%) from a train-

ing dataset of 1000 cells tracked over time using only phase contrast time-lapse mi-

croscopy. Thus, the approach combining cell motility and cell morphology informa-
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tion can lead to methods that accurately assess functionally diverse macrophage phe-

notypes quickly and efficiently. This can support the development of cost efficient

and high through-put methods for screening biochemicals targeting macrophage po-

larization.

3.1 Introduction

Macrophages reside in or are recruited to all tissues in the body. They play an impor-

tant role in tissue hemostasis and are an essential part of the human defense system. In

wound healing, they are among the first cell types to traffic to the wound. They form

an immune defense line, promote, and resolve inflammation, remove dead cells, and

cell debris, and support cell proliferation and tissue restructure [26,27]. There exists a

continuum of macrophage functions [28,29], which have been historically binned into

two categories with primarily pro-inflammatory and anti-inflammatory functions, re-

spectively. The two major groups of macrophages that display different functional

phenotypes present in the wound bed are referred to as classically activated (pro-

inflammatory) and alternatively activated (anti-inflammatory) macrophages. During

the inflammation phase, several mediators such as bacterial products like lipopolysac-

charide (LPS) and inflammatory cytokines like interferon (IFN)-γ can stimulate macrop-

hages to differentiate into pro-inflammatory status [30,31]. Pro-inflammatory macroph-

ages exhibit antimicrobial properties through the release of inflammatory mediators

inducing tumor necrosis factor (TNF)-α, IL-1β, nitric oxide (NO) and interleukin (IL)-

6 [32]. Prolonged persistence of pro-inflammatory macrophages without transition-

ing to anti-inflammatory phenotypes, however, is rather detrimental to wound tis-

sues, which will likely stall, or delay wound healing [33, 34]. On the other hand,

macrophages activated by IL-4 and IL-13 develop into so-called alternatively activated
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macrophages (anti-inflammatory) that suppress inflammatory reactions and adaptive

immune responses and play a reparative role during the proliferation and matura-

tion phases [35]. However, like pro-inflammatory macrophages, if anti-inflammatory

macrophages persist for too long hypertrophic scars and keloids develop due to ex-

cessive collagen production [36, 37].

The involvement of macrophage phenotypes in the wound healing process indi-

cates that detecting macrophage status could be diagnostically useful. However, ad-

vances in the field have been hampered, largely due to lack of definitive and opti-

mal biomarkers for macrophage phenotypes. Traditionally, characterization of pro

and anti-inflammatory subtypes is carried out by quantification of multiple cell sur-

face markers, transcription factors and cytokine profiles. These approaches are time-

consuming, require large numbers of cells/tissues and are resource intensive. Dif-

ficulty detecting pro and anti-inflammatory macrophage phenotypes in vivo is com-

pounded by similar problems in in vitro-derived macrophages. For example, Arginase-

1, which is considered a classic marker for anti-inflammatory macrophages, is also up-

regulated in pro-inflammatory macrophages [38,39] and protein expression of Arginase-

1 or CD206 is too low for reliable flow cytometry detection [29, 30, 36, 40]. In conclu-

sion, a more robust discriminating system is critically needed to improve the detection

and understanding of macrophage phenotypes and their relation to their function.

Because of these distinct roles, macrophages undergo a precisely regulated dy-

namic transition in their functionalities in time and space. The ability to precisely

regulate macrophage distribution, migration, and function polarization (i.e., pro vs.

anti-inflammatory macrophages) that spatial-temporally corresponds to wound status

offers a powerful approach to regulate wound healing. The immune response involves

temporal tracking of the migration of different immune cell types in the wound. When

tracking wound healing, we can use morphology and motility to track different cell
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types and train an algorithm to look for patterns in cellular responses characterized

by identifiers, such as location (e.g., near blood vessels) or nearest cell type neighbors.

Macrophages undergo morphological changes when undergoing a change in phe-

notype [27]. Studies have shown that cell shape can help control macrophages — for

instance, elongating them promotes behavior that enhances healing [26]. While cell

size and shape have been used to characterize macrophage subtypes, how motility

properties are contributing to such quantifications are not well studied, despite pro

and anti-inflammatory macrophages exhibiting distinct migratory behaviors.

Machine learning methods have been successfully applied to automate the clas-

sification of different cell types from microscopy images [41, 42] and are viewed as a

promising approach to high-through put screening. However, these methods are sen-

sitive to the size of the data set, quality of the images, and sometimes facilitated by flu-

orescent dyes or reporters [43]. Previous work towards classifying macrophage sub-

type using machine learning leverages fluorescent dyes [44,45]. Being able to identify

cell types from phase contrast microscopy would simplify and accelerate macrophage

classification. Furthermore, being able to identify cells based on their motility param-

eters can eliminate the need for high-quality imaging and result in methods robust to

blurred images. We suspect that cell motility like cell morphology is linked to func-

tion. Cell tracking can be achieved with image processing techniques in real-time [46].

Motility patterns can be extracted from cell trajectories and machine learning used to

classify cells based on their dynamic behavior. Finally, combining cell motility and

morphological features can help elucidate the link between cell migratory behavior,

morphology, and cellular phenotype.

Here we apply machine learning methods to classify macrophage subtypes and

show a tight relationship between cell morphology and its motile behavior. We begin

by first validating that our derived macrophage subtypes do present distinct morpho-
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logical characteristics as has been shown in previous work. Morphological analysis

of the label-free collective dataset suggests macrophage shapes are described by three

principal shape modes. Clustering analysis is applied to identify the cells belong-

ing to each of these three morphological groupings. Comparison with the labeled

data confirms a correlation between macrophage subtype and morphology. Next, we

show that independent of cell labels, there is a strong relationship between morphol-

ogy and motile behavior. Motility features are computed within each cluster showing

that distinct morphological features map to distinct cell motility parameters. We then

apply discriminant analysis to confirm that this implies a relationship between the

labeled cells with respective phenotypes and motility parameters, thereby, support-

ing the hypothesis that we can predict macrophage subtypes from motility behavior

alone. Finally, to predict macrophage subtypes with machine learning, we propose a

SVM classification model. We build multiple predictive models using morphological

and motility parameters alone and in combination to predict the macrophage sub-

types. A high-level schematic of the analysis carried out in this work is shown in

Fig 3.1. We demonstrate predictions using motility are comparable to those using

morphology and are equally good for the same subtype. This suggests that while they

are tightly linked, they may in fact provide complementary information. We show

that a combined use of motility and morphology shows an increased prediction ac-

curacy in identifying macrophage subtypes. Hence, by combining both cell motility

and morphological information we show that we can reliably detect non-activated

naïve macrophages, or macrophages activated by either lipopolysaccharide (LPS) or

interleukin 4 (IL-4) exposure at single-cell level.
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Figure 3.1: Analysis Workflow. A high-level schematic of the analysis carried out
in this paper. The first step of the workflow consists of image processing methods to
perform cell segmentation and cell tracking. Cell segmentation allows for parame-
terization of the cell morphology and cell tracking allows for parameterization of cell
motility over time. Unsupervised clustering analysis on morphological features alone
results in cell groupings consistent with parent image labels. Next, it is confirmed that
cell motility characteristics are shared within each morphological-based cell grouping
and distinct across clusters. Finally, various SVM models are presented using mor-
phology and motility features independently and together to classify macrophage sub-
types. The ground truth to the model is provided by the parent image labels.

3.2 Materials and methods

3.2.1 Isolation & culture of bone marrow-derived macrophages

The mouse strains used in this study were of the C57BL/6 background, and both male

and female mice were included in the experiments. Mice were procured from Jackson

Labs and housed under a strict 12-hour light cycle with a regular chow diet in a specific

pathogen-free facility at the University of California (UC), Davis. All animal exper-

iments adhered to regulatory guidelines and standards set by the Institutional Ani-

mal Care and Use Committee of UC Davis (Protocol # 21531). Bone marrow-derived
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macrophages (BMDMs) were generated using standard procedures as previously de-

scribed [47]. Mice were euthanized using a CO2 chamber and then subjected to cervi-

cal dislocation to ensure minimal suffering. The femurs were aseptically dissected, and

the bone marrow was flushed with cold Dulbecco’s phosphate-buffered saline without

calcium and magnesium (DPBS). Given the endpoint nature of these experiments, no

anesthesia or analgesia was applied. Bone marrow from 3-6 mice was pooled per batch

to account for biological variability. The harvested bone marrow cells were cultured

in DMEM (Invitrogen) supplemented with 10% Fetal Bovine Serum (Invitrogen), 1×

Antibiotic-Antimycotic solution (Invitrogen), and 20% L-929 conditioned medium for

six days, with an additional feeding on day 3, followed by a one-day culture without

the conditioned medium. Adherent macrophages were harvested by gently scraping

with a "policeman" cell scraper and used in subsequent experiments as needed. Cell

viability was determined using trypan blue staining and counting. This study uti-

lized at least four batches of BMDMs, derived from a total of 20 mice of mixed gender,

generated at different times.

3.2.2 Activation of bone marrow-derived macrophages

In each experiment, bone marrow-derived macrophages (BMDMs) were seeded into

six tissue culture-treated well plates at varying densities and cultured in RPMI-1640

medium (Invitrogen) supplemented with 10% Fetal Bovine Serum (FBS) (Invitrogen)

and 1× Antibiotic-Antimycotic solution (Invitrogen) overnight. For M1 activation, 100

ng/ml lipopolysaccharide (LPS) (Sigma, Cat number: L6143) was added to the culture

medium, while for M2 activation, 20 ng/ml recombinant mouse interleukin-4 (IL-4)

(R&D Systems, Cat number: 404-ML) was used [48]. Two days post-stimulation, acti-

vated M1 and M2 macrophages were employed for morphological and motility char-
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acterizations as well as functional studies. Macrophages that did not receive any stim-

ulation served as M0 controls.

3.2.3 Time-lapse recording

In each experiment, freshly differentiated macrophages were seeded in 24-well tis-

sue culture-treated plates, cultured, and activated following the procedures described

above. Forty-eight hours after stimulation, cells were monitored using a Carl Zeiss

Observer Z1 inverted microscope outfitted with a motorized stage and an incubation

chamber (37○C and 5% CO2). Time-lapse contrast images were captured using the

MetaMorph program (Molecular Devices) with a Retiga R6 (QImaging) scientific CCD

camera (6 million, 4.54 µm pixels). Typically, in each experiment, four fields of each

condition were selected from different wells under a long-distance 20× objective lens.

Images were taken at 5-minute intervals for up to 3 hours unless stated otherwise.

We note that in some experiments, certain wells were designated for control purposes

or other specific experimental requirements, and thus, they were excluded from the

imaging process. In practice, to ensure the quality of our data, we exclude out-of-focus

images, retaining only the most suitable ones for subsequent morphological analysis.

3.2.4 Cell segmentation and tracking

The input images are segmented and tracked in a semi-autonomous fashion using the

Baxter Algorithms software package [49, 50] written in Matlab. This program seg-

ments the cells and tracks them throughout each frame. It computes the 2D coordi-

nates of a cell in each frame along with its region properties.
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3.2.5 Computing speed and persistence

The speed and persistence are computed at each frame using the following formula:

The speed of a cell from trajectory points (x1, y1) to (xn, yn) where n is the total length

of time frames, could be any point from 2 to last time frame point, d is the total distance

travelled, t is the time travelled given by:

speed = d

t
=

n−1
∑
i=1

(xi+1 − xi)2 + (yi+1 − yi)2
ti

(3.1)

Persistence is a measure to quantify the length of a cell’s path along its entire time

to know if a cell has remained closer to its initial time frame trajectory point or if it

has moved farther away. It is defined as the ratio of the shortest distance traveled p

between the initial point (x1, y1) and the nth time frame point (xn, yn) to the total

distance traveled by the cell d given by:

persistence =
n−1
∑
i=1

(xn − xi)2 + (yn − yi)2
(xi+1 − xi)2 + (yi+1 − yi)2

(3.2)

3.3 Results

3.3.1 Generation of primary murine macrophages

Bone marrow-derived macrophages (BMDMs) are primary macrophages that are dif-

ferentiated from bone marrow cells [51, 52]. Murine BMDMs present an excellent

model and are widely used as prototypical macrophages for investigation of mam-

malian macrophage functions in vitro. We isolate bone marrow from freshly cut fe-

mur bones of C57/BL6 mice. Four batches of bone marrow-derived macrophages were

generated, each batch consisting of a mixture of bone marrow from 3-6 mice. In to-
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tal, bone marrow from 20 mice was used for these experiments. In each experiment

we grow bone marrow cells in the presence of murine macrophage colony-stimulating

factor (M-CSF), as provided by supplementary L929-conditioned medium [53]. Within

6 days, the bone marrow monocyte progenitors proliferate and differentiate into a ho-

mogenous population of mature macrophages (M0). Subsequently, naïve M0 macropha-

ges are further polarized into pro-inflammatory or anti-inflammatory macrophages by

addition of bacterial lipopolysaccharide (LPS) or murine interleukin 4 (IL-4), respec-

tively [48] (Appendix Fig. A.2). To simplify notation in the manuscript, we refer to

pro-inflammatory macrophages as M1 and anti-inflammatory macrophages as M2. See

the methods for details on the protocols used to differentiate macrophages into their

respective phenotypes and the supplementary information for results of validation as-

says confirming three distinct phenotypes based on the literature. Validation assays

include phagocytic capacity and quantitative PCR to determine the relative mRNA

expression of a panel of selected target genes and transcription factors.

3.3.2 Generation of time-series data capturing spontaneous cell

migratory patterns

Using time-lapse microscopy, we generate multiple sets of M0, M1, and M2 images,

named after their most representative macrophage subtypes, taken at 5-minute inter-

vals for up to 3 hours (Appendix Fig. A.5). These are the phase contrast images without

ground truths or cell labels except the image names based on culturing conditions. Al-

though the macrophages are traditionally binned into three subtypes, they exist on a

continuous spectrum, i.e., some cells may be "in-between" identified subtypes, hence

we note that the parent images may contain cells of the other morphological subtypes

with respect to their labels. In the current analysis, we look mainly for the dominant
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representations. Cell segmentation and tracking details can be found in the methods

section. After cell segmentation and tracking, we select the cells that remain in the

image dataset’s time-lapse for at least 1 hour. This action allows us to eliminate cells

that exit the image area within less than 1 hour of their lifespan along the time series.

For the characterization of cell subtypes, we compute cell morphology parameters us-

ing the first-time step and determine motility parameters based on time-lapse data.

Following this, our time-lapse image datasets resulted in the identification of a total

of 1018 distinct cells. These cells comprised 251 cells from M0 images, 369 cells from

M1 images, and 398 cells from M2 images.

3.3.3 Three principal shape modes characterize observed macro-

phage morphologies

We extracted and aligned [54] label-free phase contrast images of a mixed population

of live macrophages. To identify the existing principal shape modes, we consider each

cell in every frame of the time-lapse datasets as individual data points (n = 2329 cells).

We obtain the shape information for M0 (n = 965 cells), M1 (n = 698 cells) and M2

(n = 666 cells) (Appendix Fig. A.3). These shape modes provide a meaningful and

concise quantitative description of macrophage morphology, providing significant in-

sights that may underly macrophage phenotypes and functionalities depending on

their activation status.

3.3.4 Morphological characterization of macrophage phenotypes

Macrophages are multifaceted, which is determined by the surrounding microenviron-

ment, as well as multifunctional depending on their activation status, which assumes

a variety of cell shapes. BMDMs when cultured in vitro and stimulated with cytokines
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to induce M1 or M2 polarization, displayed markedly different cell morphologies [55].

While unstimulated M0 macrophages show a round or slightly stretching appearance,

addition of LPS, which stimulate M1 polarization, cause cell spreading with multiple

protrusions within just 24 h of stimulation. In contrast, addition of IL-4, which stimu-

late M2 polarization, led to cell elongation (Appendix Fig. A.4(A)). Quantitative anal-

ysis using Celltool [56] confirmed these three orthogonal modes of shape variability,

which account for 86% of the total variation in shapes observed. The existence of only

a few meaningful modes in combined macrophage populations implies that the phase

space which macrophages reside is in a relatively limited subregion of the space of all

possible shapes. In the literature, researchers have used various metrics to describe

cell shape [56, 57]. There are several cell shape metrics like the cell area, perimeter

length, convex area, major/minor- axis length, and many other. The best choice of

metrics depends on the class of cell shapes that are found in the dataset. Here we aim

to characterize and quantify the three primary shape modes identified above —circular

(mode 1), “with protrusions” shape (mode 2), and elongated (mode 3) through clearly

defined morphological parameters. Different combinations and number of parame-

ters were explored. We utilized the following three parameters to characterize the

morphological features of macrophage phenotypes, particularly given their uneven

boundaries: compactness - to identify the complex and irregular boundaries of the

cells; eccentricity - to quantify cell elongation; and solidity - to determine cell density.

The combination of compactness, eccentricity, and solidity provided valuable and in-

dependent information to describe and differentiate the three primary shape modes

identified within the combined macrophage populations.

In Appendix Fig. A.4, we present examples of shape parameter values for the

three major cell shapes, showcasing low, medium, and high parameter values for each

shape. These parameter values effectively differentiate between the three primary
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Figure 3.2: Defining the morphological and motility parameters. Morphology is
defined by metrics related to the (A) area and perimeter of a cell and its convex hull,
in addition to the (B) major and minor axis, while motility patterns are defined by
(C) displacement metrics, (D) the corresponding formulas are used for morphologi-
cal/motility parameters and (E) convex hull area of the cell trajectory points.

shape modes and demonstrate the sufficiency of their combination for shape identifi-

cation. Fig. 3.2 describes and defines these parameters calculated based on the number

of pixels in a cell, its boundaries, the distances between them, and the cell trajectories.

For the morphological characterization of macrophage subtypes, we take the unsuper-

vised learning approach where the cells are not labeled as M0, M1, and M2 from their

image names. We perform k-means clustering [58] with an optimal k value of 4 de-

rived using silhouette score [59] on the three morphological parameters compactness,

eccentricity, and solidity to understand the shape of the macrophages. The silhou-

ette coefficient score plot and the silhouette plots for various k-values are shown in

(Appendix Fig. A.6). Fig. 3.3A shows the cluster assignment for the cells within the
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three-dimensional space of their morphological parameters’ compactness, eccentric-

ity, and solidity. The identified 1018 cells from parent images M0, M1 and M2 are

distributed into four clusters. The following observations are made about each cluster

where the data points are represented as swarm plots [60, 61] (Fig. 3.3B-D):

Cluster 0: The cluster of cells with the lowest eccentricity values, highest compact-

ness values, and highest solidity values indicates that the cells in this group are mostly

circular, have smooth boundaries with little or no irregular boundaries, and are dense

(regular boundaries without any visible holes within the cell structure). Appendix

Fig. A.4(C) shows an example cell from this cluster, along with their corresponding

eccentricity, solidity, and compactness values.

Cluster 1: The cluster of cells with the lowest eccentricity values, lowest compact-

ness values, and lowest solidity values suggests that the cells in this group are closer to

being circular in shape, have highly irregular boundaries, and lack density, potentially

due to their irregular boundaries or the presence of holes within the cell. Appendix

Fig. A.4(B) shows an example cell from this cluster, along with their corresponding

eccentricity, solidity, and compactness values.

Cluster 2: The cluster of cells with higher eccentricity values, above-average com-

pactness values, and higher solidity values suggests that the cells in this group are

closer to being elliptical in shape, have relatively smoother boundaries, and are dense

(regular boundaries without any visible holes within the cell structure). Appendix

Fig. A.4(A) shows an example cell from this cluster, along with their corresponding

eccentricity, solidity, and compactness values.

Cluster 3: The cluster of cells with higher eccentricity values, lowest compactness

values, and solidity values ranging from least to average suggests that the cells in this

group are elliptical in shape, have highly irregular boundaries, and are not densely

packed. In Appendix Fig. A.1, we present examples of cells from each cluster. Cluster
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Figure 3.3: Clustering macrophages based on morphological parameters. (A) 3D
plot of morphological parameters eccentricity, solidity and compactness of the cells
showing four distinct clusters. Box plots with overlayed scatter points of eccentricity
(B), solidity (C), and compactness (D).

3 contains 333 cells, with 28% from M0, 41% from M1, and 31% from M2 images. Our

analysis revealed that this cluster includes indifferent groupings, cell overlapping, or

transitional cells. The shape of these cells does not align with any of the primary

modes identified in the principal component analysis.

From the above observations, we can describe cells in Cluster 0 as circular cells,

cells in Cluster 1 as the cells with protrusions, and cells in Cluster 2 as the elongated

cells.

32



Figure 3.4: Classification and discrimination of morphological groups using
motility parameters. (A) Speed and (B) Persistence, with dotted lines indicating the
mean values of the clusters, solid lines representing the Gaussian Process Regres-
sor (GPR) predictions, and color bands showing the 95% confidence intervals. (C)
Quadratic classification of cells using Speed vs Persistence between Cluster 1 and
the combined Clusters 0 and 2, achieving a 76% mean accuracy from 5-fold cross-
validation. (D) Quadratic classification between Cluster 0 and Cluster 1, with a 77%
mean accuracy. (E) Quadratic classification between Cluster 0 and Cluster 2, with
a 61% mean accuracy. (F) Quadratic classification between Cluster 1 and Cluster 2,
with a 75% mean accuracy. The black lines in C-F denote the decision boundaries be-
tween classes. Additionally, the mean classification accuracies are 55% for Clusters
1+2 vs Cluster 0 and 53% for Clusters 0+1 vs Cluster 2.
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3.3.5 Motility patterns can be used to differentiate cell morphology-

based groups

We would like to show that the chosen displacement metrics of speed and persistence

can be used to differentiate cell groups based on morphology. To do this we apply

discriminant analysis, a multivariate technique, to separate two morphology-based

groups based on measured speed and persistence. This helps to identify the contribu-

tion of each variable in separating the groups. Here, we show that a cell’s morpholog-

ical features are in fact linked closely to its motile behavior. This relationship exists

independent of the macrophage subtype. For this we leverage each of the unique cells

identified above in clusters and quantify their corresponding motility patterns. To

investigate this relationship, we identify a minimum set of motility parameters that

capture the set of observed migratory behavioral patterns. We compute speed and

persistence (a measure to find how far a cell has moved from its initial time step) for

all the cells in clusters 0-2 (Fig. 3.4A).

We use the Gaussian process regressor (GPR) model [57, 62] to plot the speed and

persistence of the cells. The GPR model utilizes a Gaussian process to model the distri-

bution of the data and predict outcomes based on the observed data points. In Fig. 3.4,

each cluster’s results are depicted using a distinct color. The GPR model’s mean is rep-

resented by a solid line, while the average value computed from the data at each time

point is indicated by dashed lines. Additionally, the band in the plot represents a 95%

confidence interval. Fig. 3.4A indicates that the speed of cells in Cluster 1 (protruded

cells) is the highest, followed by the speed of cells in Cluster 2 (elongated cells), and

the lowest speed is observed for cells in Cluster 0 (circular cells). Fig. 3.4B displays that

the cells in Cluster 2 exhibit the highest persistence, followed by Cluster 0, with the

lowest persistence observed for the cells in Cluster 1. Combining the motility param-
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eters analysis with morphological clustering analysis, we observe that circular cells

move slower and stay close to their initial time frame position; protruded cells move

faster but still stay close to their initial time frame position; whereas elongated cells

move slower but reach farther away from their initial time frame position. For Cluster

3 cells, which exhibited indifferent cell groupings or overlapping cells, we can observe

that their speed falls between Cluster 1 and the remaining clusters. Also, these cells

display a high persistence level, as observed in Cluster 2 cells.

To better visualize and quantify the relationship between cell morphology and

motility we perform quadratic discriminant analysis on the motility parameters speed

and persistence for the clusters from the morphological clustering analysis. This anal-

ysis provides a binary classification based on two input features (i.e., speed and per-

sistence). With this method we can determine to what extent we can predict the cells

cluster of origin (e.g., predict morphological characteristics) based on its computed

speed and persistence (Fig. 3.4, showing the results for various pairs of classification

labels). We perform 5-fold cross-validation and calculate the mean accuracy. Classifi-

cation accuracy percentages confirm that the Cluster 1(protruded cells) can be distin-

guished from the Cluster 0 (circular cells) and Cluster 2 (elongated cells) combined or

independently using the speed and persistence motility parameters (Fig. 3.4C, D, F).

However, the classification accuracy percentage between Cluster 0 (circular cells) and

Cluster 2 (elongated cells) is comparatively lower around 61% (Fig. 3.4E). The ability

to predict morphological features based on cell motility imply a strong relationship

between the two.
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3.3.6 Motility characterization can be used to predict macrophage

subtypes

We have shown that macrophage subtypes can be predominantly characterized by

specific combinations of morphological features. Additionally, we have shown evi-

dence to suggest that there is a relationship between motile behavior and morphology.

Thus, we expect that macrophage subtypes should exhibit distinct motile behavior. To

demonstrate that motility can be used as a substitute for morphological features, we

quantify motile behavior for each cell from the cell tracking results by computing

speed and persistence for each macrophage subtype given by the parent image label

and taking a supervised learning approach. Based on this motility parameter analysis

given in (Appendix Fig. A.7(A, B)), we find that M0 cells move slower and stay close to

their initial time frame position; M1 cells move faster and but still stay close to their

initial time frame position; whereas M2 cells move slower and reach farther away from

their initial time frame position. These motility observations can act as an indepen-

dent model in the identification of the macrophage subtypes without analyzing the

morphology of the cells. Quadratic discriminant analysis is also performed (Appendix

Fig. A.7(C-F)) to quantify the motility of the cells in M0, M1 and M2 images. We note

that the mean accuracies are the same or worse when compared to those using cluster

labels due to the heterogeneity observed for each parent label based on cell cultur-

ing protocols. Recall that the three orthogonal modes of shape variability account for

86% of the total variation in shapes observed. Furthermore, approximately 30% of the

cells were placed into Cluster 3, which included cells with mixed or ambiguous fea-

tures. Thus, a classification accuracy of around 70% should be considered formidable

when using only morphology. Below we investigate accuracies achieved with motility

information alone and combined information, respectively.
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3.3.7 Increased prediction accuracy of macrophage subtype is

obtained using both morphological and motility features

We note that in the previous analysis some macrophage subtypes are more easily dis-

tinguished by motility parameters and others by morphological features. Thus, we ex-

pect that combining both morphological and motile behavior can improve our ability

to classify macrophage subtypes. The advantage of this would be an ability to clas-

sify macrophage subtypes using only phase contrast images. Additionally, we present

a generalizable machine learning model to properly compare predictive capabilities

based on both motility and morphology independently and combined. We compute

eccentricity, compactness, and cell size to observe morphological features, and con-

vex hull area of cell trajectory, speed, and persistence to extract motility features for

all cells in M0, M1, and M2 images (Fig. 3.5). For our machine learning classifier, we

consider a support vector machine (SVM) [63] model, which can deliver high preci-

sion and accuracy regardless of the number of attributes and data instances [60]. We

have 1018 cells from all the image sets where 251 are from M0 images, 369 from M1

images and 398 from M2 images. We shuffle the data and use stratified 5-fold cross-

validation. During each iteration, the dataset was divided into approximately [200,

296, 318] cells for M0, M1, and M2 classes in training and [73, 80, 51] cells for M0, M1,

and M2 classes in testing sets. We now use Synthetic Minority Oversampling Tech-

nique (SMOTE) (35) to balance the minority classes M0 and M1. The final training

dataset has 954 datapoints, with 318 datapoints from each of the M0, M1, and M2 im-

age classes. We fit the training data using SVM classifier -radial basis function (RBF)

kernel and predict the output on the test data where the output of the model is the

macrophage subtype given by the parent image label. Fig. 3.5A shows the schematic of

the machine learning model with the features, input labels and the expected output. To
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Figure 3.5: Classification of macrophage subtypes using SVM on morphological
and motility parameters - Stratified 5-fold cross-validation plots for the SVM
model. (A) Schematics of the input and output of the machine learning model. SVM
classification results showing the percentage distribution of the cells in a confusion
matrix with columns being the predicted labels and rows being the actual labels. (B)
Input features with morphological parameters (Eccentricity, Compactness, Cell Size).
(C) Input features with motility parameters (Convex Hull Area of the trajectory, Speed,
Persistence). (D) Input features with both morphological and motility parameters.
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demonstrate that the combination of morphology and motility enhances the classifier

prediction, we develop three models. The first model is trained using only morpho-

logical features (eccentricity, compactness, cell size) as inputs. The second model is

trained using only motility features (convex hull area of cell trajectory, speed, persis-

tence) as inputs. The third model is trained using both morphological and motility

features as inputs. The results are shown in Fig. 3.5B-D, where the prediction accu-

racy of the model on test data is plotted in a confusion matrix, where rows represent

the actual labels and columns represent the predicted labels. The morphology trained

model showed that the prediction accuracies for M0, M1 and M2 labelled cells are 52%,

69% and 70% respectively (Fig. 3.5B). While the motility trained model had the predic-

tion accuracies for M0 (48%) and M1 (68%), M2 cells (71%) (Fig. 3.5C). Strikingly, the

combined morphology and motility trained model significantly improved prediction

accuracies for all the M0, M1 and M2 cells to 60%, 72% and 74% respectively (Fig. 3.5D).

Hence, by using the combined morphological and motility parameters we can predict

the macrophage subtypes with an improved accuracy compared to the models which

use either morphology or motility alone (Appendix Table B.1). For reference, when

analyzing individual biomarkers in flow cytometry, we note that achieving a predic-

tion accuracy of 74% is considered high, owing to variability in biomarker expression

influenced by experimental context [64]. Thus, the prediction accuracies obtained are

meaningful within a biological context and support the claim that there exists a rela-

tionship between cell motility, cell morphology, and macrophage subtypes.

3.4 Discussion

It is well known that macrophages cannot be cleanly grouped into their subtypes,

and in fact, various intermediate subtypes exist, yet their artificial classification is im-
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portant to understanding gene regulatory pathways involved in the various functions

carried out by the full spectrum of macrophage phenotypes [65]. Such understandings

can help establish ways to target and control their activity to improve health outcomes

in applications such as wound healing.

Image-based methods provide a fast and efficient way to classify macrophage sub-

types. Previous work has focused on machine learning methods for predicting macrophage

subtypes based on morphology [55, 66]. Machine learning effectively substitutes the

manual classification of cell phenotype by researchers and clinical practitioners and

offloads the decision-making to an algorithm. The reasons automated image process-

ing, segmentation, and analysis have found such interest are that they offer huge

possibilities to free up researchers’ time and to ensure consistent interpretation of

results free from any human bias. Prediction methods that rely on cell morphology

require high-quality images to be able to accurately segment cells and characterize

their morphology. In this work, we show that spontaneous cell motility patterns can

also serve as unique signatures for macrophage subtypes. Furthermore, an impres-

sive amount of cell tracking algorithms [67], benchmark techniques [68, 69] and soft-

ware [38–40,70,71] have been developed and made available to the scientific commu-

nity which are more ubiquitous and robust to blurry images. However, we note that

it can be a complex task to extract the morphology of a cell if it were to be suspended

rather than spontaneously moving on a substrate. We also recognize that the motility

can be affected by the substrate itself [72]. This means that changing the substrate

may require new characterization for predictions. However, this may imply that the

different cell types move differently in different environments. We know the extracel-

lular matrix changes over time in wound healing, which allows different cell types to

carry out their work.

Independently, motility and morphological features can provide ambiguous dis-
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criminant information depending on the macrophage subtype. For example, the pre-

diction accuracies derived from motility-based information closely match those ob-

tained through morphology-based predictions. Thus, combining both cell motility

and morphological information can reliably and independently detect non-activated

naïve macrophages, or macrophages activated by either lipopolysaccharide (LPS) or

interleukin 4 (IL-4) exposure at single-cell level. Furthermore, the numerous metrics

applied to characterize the morphology and migration patterns are simplified rep-

resentations (e.g. information is lost). One may consider exploring ML methods to

extract patterns with nuanced information from the raw data.

We note that the images used for analysis required that cell densities remain low.

We noted that some of the cells in cluster 3 could likely be clusters of cells that are

identified as a single cell due to the segmentation regions formed when the cells are

very close to each other. Further improvement of the segmentation algorithm to cor-

rectly identify the high-density cell regions and post-processing methods to remove

the cells for analysis beyond a particular cell area, might lead some of these cells to get

distributed in the above three clusters. Additionally, Cluster 3 also seemed to include

cells that had combined features from two or more of the remaining clusters. Thus,

Cluster 3 may include macrophages that are in a transient state between subtypes or

may represent an ambiguous state not yet explored. The methods in this paper could

potentially be used to further understand the full spectrum of macrophages and track

potential shifts in macrophage subtypes over time. Furthermore, a future adaptation

of this method can be used in bioengineering applications to characterize and quickly

screen genetic variants such as in engineered CAR-Macrophages [73].
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3.5 Conclusion

In this paper, we present that using image processing techniques, we can character-

ize cell behavior and migratory patterns that can be fed into our machine-learning

model to predict macrophage subtypes. While we recognize that other methods such

as flow-cytometry can offer improved accuracy in macrophage classification [64],our

method has the advantage of being non-invasive. It does not require cell fixation

or labeling, preserving cell viability for further functional assays. Additionally, this

approach allows for real-time analysis. The ability to assess macrophage polarization

through dynamic migration and morphology changes offers insights into the real-time

behavior of cells in response to various stimuli. Our method also has the potential for

high-throughput screening. Once fully optimized, it could facilitate high-throughput

screening of biochemical effects on macrophage polarization, providing a valuable tool

for both basic research and drug discovery. Analysis of these dynamics without any

external cues given like electrical guidance and staining would give us insights that

are critical to quantifying macrophage recruitment and activation in vivo. In future

work, this analysis could also be applied to the images in galvanotaxis to observe the

dynamics of the cell behavior with and without electric fields. Furthermore, a direct

comparison between fixed tissue analysis and flow cytometry, could enhance under-

standing of the potential applications of our approach. While this comparison was not

conducted in the current study due to its exploratory nature and focus on developing

the machine learning model, this is a potential direction for future research. Finally,

this method can be adapted to serve other cell types and applications but may require

identifying more suitable morphological and displacement metrics where applicable.
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4 | Deep Learning Classification for
Cell Subtypes through Cell
Migratory Pattern Analysis

This chapter is from as it appears in Frontiers Cell Biology. The dissertation author

was a first author of this paper [74]. Macrophages can exhibit pro-inflammatory or

pro-reparatory functions, contingent upon their specific activation state. This dy-

namic behavior empowers macrophages to engage in immune reactions and con-

tribute to tissue homeostasis. Understanding the intricate interplay between macrophage

motility and activation status provides valuable insights into the complex mechanisms

that govern their diverse functions. In the chapter 3, we developed a classification

method based on morphology, which demonstrated that movement characteristics,

including speed and persistence, can serve as distinguishing factors for macrophage

subtypes. In this chapter, we develop a deep learning model to explore the poten-

tial of classifying macrophage subtypes based solely on raw trajectory patterns. The

classification model relies on the time series of x-y coordinates, as well as the dis-

tance traveled and net displacement. We begin by investigating the migratory pat-

terns of macrophages to gain a deeper understanding of their behavior. Although this

analysis does not directly inform the deep learning model, it serves to highlight the

intricate and distinct dynamics exhibited by different macrophage subtypes, which

cannot be easily captured by a finite set of motility metrics. Our study uses cell tra-

jectories to classify three macrophage subtypes: M0, M1, and M2. This advancement

holds promising implications for the future, as it suggests the possibility of identify-

ing macrophage subtypes without relying on shape analysis. Consequently, it could

potentially eliminate the necessity for high-quality imaging techniques and provide

more robust methods for analyzing inherently blurry images.
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4.1 Introduction

Macrophages are involved in the body’s immune responses and tissue homeostasis.

They play a critical role in infectious diseases [75], cancer progression [76], autoim-

munity [77], wound healing [78], and many other diseases [79,80]. Two main subsets

of activated macrophages with different functional phenotypes, M1 (classically acti-

vated, pro-inflammatory) and M2 (alternatively activated, anti-inflammatory), have

been identified [80, 81]. In tumor progression, M1 and M2 macrophages assume dis-

tinct roles. Specifically, the M2 subtype, M2d, demonstrates pro-neoplastic charac-

teristics, while M1-like macrophages exert anti-tumor effects [82]. Recent studies

have shown that besides M1 and M2 types, a continuum of macrophage subtypes ex-

ists [81, 83].

The study of macrophage subtypes plays a crucial role in identifying strategies

for disease control [84–87]. Consequently, developing effective methods for detecting

macrophage subtypes in vitro is essential.

The conventional method to identify M1 and M2 subtypes involves analyzing

multiple cell surface markers, transcription factors, and cytokine profiles, which can

be time-consuming and resource-intensive. Furthermore, uncertainty remains about

how to identify macrophage subtypes confidently. This is in part due to the exist-

ing continuum of states. Recent studies of macrophage cultures led researchers to

hypothesize that cell morphology could indicate macrophage activation status [88].

Previous research on the classification of macrophage subtypes using machine

learning has been based on fluorescent dyes and cell shape parameters [88–90]. More

recently, it was suggested that motility parameters like cell speed could be used to

classify macrophage subtypes [91]. These publications show that, although a con-

tinuum of phenotypes exists, there indeed are three primary shape modes associ-

44



ated with three distinct phenotypes, respectively (inclusive of the so-called "naïve"

macrophages). Furthermore, it was shown that these shape modes are closely linked

with predetermined cell motility metrics.

This research aims to gain a deeper understanding of macrophages’ migratory

patterns and explore the potential of classifying macrophage subtypes based on raw

trajectory patterns without relying on cell shape analysis. This could provide more

robust methods to analyze blurry images.

We suggest that a holistic use of cell motility information, i.e. a time series of cell

coordinates, could enhance the differentiation of macrophage subtypes. We develop

a deep learning model that uses cell position over time as input and demonstrate that

our model effectively distinguishes between M1 and M2 macrophage phenotypes. This

classification method could potentially be used to understand the continuum of states

further.

4.2 Macrophages migratory pattern analysis

In this study, we leverage labelled data published in our previous work [91]). In brief,

bone marrow-derived macrophages (BMDMs) were isolated and cultured, resulting in

an M0 macrophage culture. M0 macrophages were further activated into either M1

(with LPS) or M2 (with IL-4) (see Methods) in correspondence with existing proto-

cols [92, 93]. Time-lapse recording of cell images, segmentation, and tracking of cell

trajectories was performed in correspondence with [94]. This global track-linking al-

gorithm links cell outlines generated by a segmentation algorithm into tracks. Tracks

are incrementally added to the image sequence using information from the complete

image sequence in every linking decision.

Overall, we obtained three videos of single cells and three videos of cell cultures.
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Single-cell video sequences were captured for one M0 cell, one M1 cell, and one M2

cell, respectively. Each single-cell video comprises 240 images, with a frame interval

of 1 minute, resulting in a total duration of 240 minutes.

Cell-culture video sequences were obtained from a non-activated M0 cell culture,

an M1-activated cell culture, and an M2-activated cell culture, respectively. Each cell

culture video comprises 37 phase contrast frames, each frame captured at a 5-minute

interval, spanning a total duration of 180 minutes.

4.2.1 Single-Cell Macrophages images

Each of the three videos of a single macrophage consists of time-variant phase-contrast

images. A frame from each video is shown in Fig.4.2a. The M0 macrophage is seen

as a circular cell, the M1 cell contains protrusions, and the M2 is an elongated cell.

Corresponding differences in cell shape were observed in [91]), and cell-shape-based

clustering was created.

Single Macrophages trajectory analysis

We notice distinct trajectory patterns among the three cell types from the M0, M1,

and M2 cell trajectories by plotting the x and y positions of their trajectories in 2D

and by representing the trajectories as 3D objects in (x,y,t) space, see Fig.4.2b. It is

seen that the M0 cell shows a spinning pattern in the 3D plot and stays close to its

initial position in the 2D plot. The M1 cell makes large jumps in each frame in the 3D

plot and wanders around its initial point in the 2D plot. The M2 cell moves a greater

distance directionally farther away from the initial point in both 3D and 2D plots.

These variations in the cell paths are evident, suggesting the possibility of identi-

fying cell types not only by their shape but also by their trajectory.
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(a) Single cell macrophage images of M0, M1 and M2 with an interval of 1 min/frame for 4
hours - one frame from each single-cell video. Scale bar is 10 µm.

(b) Trajectories of M0 (red), M1 (green) and M2 (blue) cells in a single graph with the compara-
tive representation of their respective area spreads in two-dimensional and three-dimensional
plots.

Figure 4.2: The images depict single-cell macrophages images alongside their respec-
tive trajectories, revealing distinct patterns among the three cell types (M0, M1, and
M2). Trajectory analysis involves plotting the x and y positions in 2D and represent-
ing trajectories as 3D objects in (x, y, t) space. In the 3D plot, the M0 cell exhibits a
spinning pattern and remains close to its initial position in the 2D plot. The M1 cell
demonstrates large jumps in each frame in the 3D plot, while meandering around its
initial point in the 2D plot. Conversely, the M2 cell covers a greater directional dis-
tance away from the initial point in both the 3D and 2D plots.

4.2.2 Analysis of Macrophage Culture Images

In practical settings, cell cultures typically consist of multiple cells present in each

frame of recorded videos. The image sets utilized in the present study are labeled

according to their culture of predominant macrophage subtypes, i.e., how cell cul-
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ture was activated (M0, M1, and M2), as shown in Fig.4.3a. Given the macrophages’

high plasticity to transform into various functional phenotypes, it is likely that each

macrophage can transform from one phenotype to another within each image set.

Therefore, the challenge associated with this data set is that the labeled images may

contain cells of different subtypes. For instance, M0 images may include cells of both

M1 and M2 subtypes, and the same principle applies to M1 and M2 images. Therefore,

we utilize the morphological clustering analysis technique described in our previous

work [91] to categorize cells based on their shapes. In this analysis, circular cells are

assigned to Cluster C, protruded cells (cells with uneven edges) are grouped in Cluster

P, and elongated cells are classified in Cluster E. Most macrophages in non-activated

cell culture (M0) belong to Cluster C, M1-activated cell culture is represented mostly

by Cluster P cells, and M2-activated cell culture is mostly of Cluster E, as shown in

Fig.4.3a (see [91] for details of shape-based cell clustering). In the present study, we

examine the trajectory patterns of the cells of these shape clusters.

Trajectory analysis of Macrophages from their Shape Clusters

Consider the trajectory patterns of macrophages from the three shape clusters. The

trajectories of three typical representatives of Cluster C, Cluster P, and Cluster E are

shown within a single plot in Fig.4.3b in order to see spatial differences of cells’ tra-

jectories. It is seen that the main difference between Cluster E cell trajectory from

the trajectories of the cells of two other clusters is in the more elongated shape of the

trajectory. In contrast, trajectories of the Cluster C and P cells are similar in shape but

different in the size of the space occupied by the trajectory. Cluster C cell stays closer

to its initial location than Cluster P cell.

However, the difference in the overall space occupied by the trajectory is not the

only unique characteristic. To gain insight into temporal differences of the trajectories,
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consider Fig.4.3c that shows the trajectory patterns of these representative cells with

time encoded by a color gradient from original light (t=0) to dark color (t=180 min).

Cluster C cell exhibits a spinning pattern that occupies a smaller area, Cluster P cell

demonstrates large jumps and wanders around its initial point, and Cluster E cell tends

to move a greater distance in a directional manner away from the initial point. Despite

variations in experiment lengths and cell densities between single and multiple-cell

videos, we consistently observe similar trajectory patterns among the cells of shape

clusters’ C, P, and E.

In order to quantify this behavior, we further use several mathematical measures

of the trajectory pattern: convex hull perimeter and area of the trajectory, and distance

measure: maximum pairwise distance between trajectory points.

Quantitative measures of the trajectories

Convex Hull Perimeter and Area To understand the spatial differences in Fig.4.3b

between the cell trajectory paths of the three cell clusters, we first find the perimeter

and area of the convex hull. The convex hull of a set of points is the smallest convex

polygon that encloses all the points in the set (Fig.S3). The convex hull area is the total

area enclosed by the convex hull, and the convex hull perimeter is the total length of

the boundary that encloses the points.

From Fig.4.4, we observe that the convex perimeter of Cluster E (elongated cells)

is more significant, followed by Cluster P (protruded cells) and Cluster C (circular

cells). The convex area plot clearly distinguishes that the elongated cells have a larger

area, followed by protruded and circular cells. Although Cluster E cells can be easily

distinguished from the other two clusters of cells using convex hull perimeter and

area, the difference between these metrics of Cluster P and Cluster C cells is small,

and distinguishing their trajectories is challenging. Hence, we need more specific
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(a) Macrophage images of M0, M1 and M2 cell cultures - one frame from each video set. Scale
bar is 100 µm.

(b) Trajectory patterns of the representative cells from shape Cluster C (red), Cluster P (green)
and Cluster E (blue).

(c) Trajectories of the cells shown in Fig.2b with time frame encoded by color: t=0 corresponds
to light color, t=180 corresponds to dark. Starting point is marked as an orange dot and the
ending point is marked as a red dot.

Figure 4.3: The depicted images showcase macrophage culture alongside their cor-
responding trajectories, categorized based on shape-based clusters. Notably, the ob-
served patterns align with those seen in the Fig. 1 images of individual cells repre-
senting M0, M1, and M2, which correspond to clusters labeled as circular, protruded,
and elongated, respectively.
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measures to distinguish the trajectories of the P and C clusters.

Maximum Pairwise Distance As shown in Fig.4.3c, Cluster P cells exhibit larger

jumps between frames and show wandering behavior around the initial point. This

unique characteristic of Cluster P cells can potentially be used as a distinguishing fea-

ture. To identify this characteristic, we use pairwise distance measures. We measure

the pairwise distances between each pair of trajectory points and extract the maxi-

mum pairwise distance for each cell. From Fig.4.4, it is evident that Cluster P cells

exhibit higher maximum pairwise distances than Cluster C cells. We can also observe

here that the maximum pairwise distance of Cluster E cells is similar to that of Cluster

P cells.

Observations

While the quantitative features mentioned above allow us to make observations about

cell migratory patterns, they are not sufficient for reliable detection of macrophage

type. For example, the limitations of the convex hull, such as its sensitivity to outliers

and lack of consideration for temporal ordering in trajectories, weaken its suitability

as a feature of the classification model.

Having observed that macrophage trajectory patterns are specific to each clus-

ter but still are not sufficient for automatic classification, we have developed a deep-

learning model in the hope that it can have better classification performance due to

capturing some trajectory features that we were unable to detect. This model gets

simple characteristics of cell movement as input features and does not require the

preliminary calculation of complex metrics.
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Figure 4.4: Box plots depict measures of convex hull perimeter, convex hull area, and
maximum pairwise distance for trajectories from the shape-based clusters. The analy-
sis reveals that Cluster E (elongated cells) exhibits a more substantial convex perime-
ter, followed by Cluster P (protruded cells) and Cluster C (circular cells). In terms of
convex area, elongated cells have a larger area, followed by protruded and circular
cells. While convex hull perimeter and area effectively differentiate Cluster E cells,
distinguishing between Cluster P and Cluster C cells proves challenging due to the
small differences in these metrics. Further examination shows that Cluster P cells dis-
play higher maximum pairwise distances compared to Cluster C cells. Interestingly,
the maximum pairwise distance of Cluster E cells is similar to that of Cluster P cells.
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4.3 Methods

4.3.1 Activation of bone marrow-derived macrophages

In each experiment, bone marrow-derived macrophages (BMDMs) were seeded into

six tissue culture-treated well plates at varying densities and cultured in RPMI-1640

medium (Invitrogen) supplemented with 10% Fetal Bovine Serum (FBS) (Invitrogen)

and 1× Antibiotic-Antimycotic solution (Invitrogen) overnight. For M1 activation, 100

ng/ml lipopolysaccharide (LPS) (Sigma, Cat number: L6143) was added to the culture

medium, while for M2 activation, 20 ng/ml recombinant mouse interleukin-4 (IL-4)

(R&D Systems, Cat number: 404-ML) was used [92]. Two days post-stimulation, acti-

vated M1 and M2 macrophages were employed for morphological and motility char-

acterizations as well as functional studies. Macrophages that did not receive any stim-

ulation served as M0 controls.

4.3.2 Deep Learning Model for Macrophage classification

We develop a multi-class, single-label classification deep learning model where inputs

are: the position coordinates (x, y) of the trajectories in time frames, the distance

traveled, and the displacement of the cell. The model’s output is the classification of

one of the three labels: M0, M1, or M2, assigned to their respective clusters: Cluster

C (circular), cluster P (protruded), or Cluster E (elongated) (Fig.4.5).

Train/Test/Validation data:

We assign the label ’M0’ to cells from Cluster C, ’M1’ to cells from Cluster P, and ’M2’

to cells from Cluster E in the training data. We only include cells with a trajectory

path from the first frame to the last frame, which is a total of 71 cells. We augment
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Figure 4.5: Illustration of the Deep Learning Model for macrophage subtype classifica-
tion. The diagram depicts the process of extracting single-cell tracking and quantifi-
cation from time-lapse images. The quantified parameters, including (x, y) positions
over time, distance traveled, and cell displacement, are augmented and used as inputs
for the deep learning model. The model outputs the classified macrophage subtype.

the data set to train the deep learning network. As the input to the model is (x, y)

coordinates, we augment the data by inversion (y, x), translation (-x, y), (-x, -y), (x,

-y) and inverse translation (-y, x), (-y, -x), (y, -x). These mathematical transformations

generate a total of 560 cells. We shuffle the data and split 80% for training(448 cells)

and 20% for validation(112 cells).

Architecture:

For the deep learning model, we utilized Keras [95], an open-source neural network

library written in Python. Here, the neural networks work to separate three differ-

ent classes (M0, M1, and M2). Since there are only a few labels to classify, a simple

stack of eight fully connected (Dense) layers with Relu activations [96] is used. The

hidden units that are passed to each Dense layer are 10, 20, 32, 64, 64, 32, 20, and 10,

respectively. The network’s final layer is a Dense layer with a size of 3. The network

produces a 3-dimensional output vector for every input, where each dimension repre-
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sents a distinct output class. The softmax activation function is used in this last layer,

which generates a probability distribution over the three output classes. Categorical

cross-entropy, the recommended loss function for a multi-class classification problem,

is used to minimize the distance between predicted and true probability distributions.

We used the RMSprop optimizer [97] with its default learning rate to minimize the

loss. The evaluation metric used is accuracy, representing the proportion of correctly

classified cells. The model is trained for 100 epochs to convergence (see Fig.4.6a).

4.4 Model Results

Given the complexity of the problem of classifying different trajectory patterns and the

amount of data available, our results (Fig.4.6a) show that the network is not overfitting

and learning effectively. We observe that the training loss decreases over time while

the validation loss remains low. Similarly, the training accuracy increases while the

validation accuracy remains high. This indicates that the model can generalize well

to new data and is likely to perform well on new unseen data. The model’s ability to

accurately classify the macrophage subtypes is supported by its successful predictions

on the validation data. Fig.4.6b represents a confusion matrix visualization where the

percentage cell counts of each class are plotted on a heatmap. In this representation,

the ground truth data labels "Cluster C", "Cluster P", and "Cluster E" are displayed in

the rows, while the model predicted labels "M0", "M1", and "M2" are displayed in the

columns. We can observe that the model has an accuracy of 91% in predicting Cluster

E (elongated) cells as M2, 95% accuracy in predicting Cluster P (protruded) cells as M1,

and 87% accuracy in predicting Cluster C (circular) cells as M0. We can see that the

model has identified 12% of the Cluster C cells as M2 and 2% as M1. It is important to

note that identifying M0 cells can be challenging, as they may exist in a continuum or
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may continuously transform into other subtypes.

4.5 Discussion

Cell trajectory based and cell shape based methods can potentially classify macrophage

subtypes more accurately at the single-cell level. This differs from other methods, such

as q-PCR, that give information about cell population subtypes.

As we observed in the cell morphology analysis [91], each cell culture (M0, M1, or

M2) is dominantly represented by a corresponding morphology cluster: M0 cells are

circular, M1 cells are protruded, M2 cells are elongated, but the shape-based clusters

were nonetheless diluted.

Current analysis of macrophage trajectories revealed typical cell movement pat-

terns corresponding to cell shape clusters: circular cells spin at their initial position,

protruded cells wander, and elongated cells move in a specific direction. However,

trajectory-based clusters do not exactly correspond to shape-based clusters. This im-

plies a variation in the resulting cell phenotype of macrophage culture activated into

M1, M2, or non-activated (M0).

We also note that it is challenging to arrive at a set of metrics that holistically

capture all the shape and movement features of the cell.

Several image-based models for macrophage type identification have been pub-

lished previously. In [89], the authors created a model for noninvasive distinguishing

between cell types employing activated and non-activated macrophages for testing.

The classification model was linear, allowing greater biological interpretation. How-

ever, it required multiple sources of information as input, including phase microscopy

images, Raman spectra, and autofluorescence microscopy. In [88], the authors used

image-based machine learning approach to classify M1, M2, naive macrophages, and
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(a) Training and validation loss and accuracy over 100 epochs.

(b) A heatmap confusion matrix, showing the percentage accu-
racy of the validation data for the M0, M1 and M2 macrophage
subtypes.

Figure 4.6: The Deep Learning model results display the training and validation
loss and accuracy over 100 epochs. The accompanying heatmap confusion matrix
illustrates the percentage accuracy of the validation data for the M0, M1, and M2
macrophage subtypes. In this representation, the ground truth data labels "Cluster
C," "Cluster P," and "Cluster E" are presented in the rows, while the model-predicted
labels "M0," "M1," and "M2" are presented in the columns. Notably, the model demon-
strates 91% accuracy in predicting Cluster E (elongated) cells as M2, 95% accuracy in
predicting Cluster P (protruded) cells as M1, and 87% accuracy in predicting Cluster
C (circular) cells as M0.
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Figure 4.7: The red boundary in each plot represents the convex hull of a set of points,
denoting the smallest convex polygon that encloses all the points in the set. These
plots correspond to cells in Cluster C, P, and E, representing circular, protruded, and
elongated cell types, respectively.

monocytes. Their algorithm relied on various cell metrics, including details related to

the nucleus and cytoskeleton, and requires high-quality images.

Our deep learning model relies on the raw cell trajectory data in the x-y plane,

as well as the cell displacement and traveling distance. It automatically captures the

features of cell motion unseen by the human eye and demonstrates good accuracy.
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4.6 Conclusion

Our study revealed unique migratory patterns and distinct morphology in the three

subtypes of macrophages. M0, M1, and M2. By analyzing their trajectories and com-

puting various quantitative measures, such as perimeter, area of the convex hull, and

pairwise distances, we observed clear differences in the migratory patterns of these

macrophage cell types. However, building a classification model with predetermined

features is challenging in this context.

Therefore, we take a different approach by developing a deep learning model that

incorporates the trajectory path and shape of cells, which proves to be more effective

in accurately classifying macrophage subtypes. The correlation between cell shape

and trajectory patterns can be highly valuable in future scenarios where obtaining

precise cell morphology data is challenging. Additionally, identifying cells based on

their migration patterns through phase-contrast microscopy has the potential to elim-

inate the requirement for high-quality imaging and provide more reliable methods for

analyzing blurry images.
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5 | Application of Image Processing
Methods for Real-Time Feedback

Control of Cell Migration and
Classification of Cell Subtypes

Under an Electric Field
Proper cell migration is vital for the health of multicellular organisms. As biomedical

sciences advance, controlling cell migration may become a part of select medical pro-

cedures, which can be achieved by inducing an electric field with bioelectronic devices.

Maximizing outcomes requires controlling biological systems, which is challenging

due to innate uncertainties, nonlinearities, and stochasticity, making predicting their

response difficult.

In the first section of this chapter, a feedback control algorithm based on mi-

croscopy images is developed to direct cell migration in real-time. This section high-

lights the advantages of efficient computational methods for image analysis in real-

time control of biological systems under electric fields. Here, a version of the con-

troller is demonstrated in vitro, where the recruitment of macrophages is controlled

in an experimental setting by regulating the electric field. This is successfully set up

by coupling the feedback control algorithm with image processing and cell tracking

software using time lapse microscopy. In the second section of this chapter, we ex-

plore the effects of the electric field on the transformation of macrophage subtypes

and present a preliminary study on classifying these subtypes. A deep learning model

was developed for this classification under the influence of the electric field (EF). We

also show evidence of potential changes in macrophage phenotypes when exposed to

EF based on changes in morphological features. Thus, we explore methods to classify

macrophage phenotypes in real-time, similar to Chapter 4, but during galvanotaxis.
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The first section of this chapter is currently being prepared for resubmission for

publication. The dissertation author was a co-author of this paper, contributing to

the design and development of the image analyzer in a closed-loop system and the

quantitative analysis of cell tracking properties. This image analyzer is an integral

part of the experimental setup, where real-time images were read and analyzed, and

the data was provided to the feedback controller.

5.1 Controlling Cell Migratory Patterns under Elec-

tric Field

5.1.1 Introduction

Regulation of cell migration plays a critical role in many biological processes essen-

tial to life. The role of cell migration is most prominent and studied in development,

homeostasis, and disease [98]. Deregulation of cell migration can lead to autoimmune

diseases and cancer [98]. Recent work suggests that such processes, when malfunc-

tioning, can be externally regulated through feedback control facilitated by the inte-

gration of biological sensors and actuators [99,100]. Examples of sensors and actuators

include bioelectronic devices, which have paved the way for humans to control the

responses of biological systems in favorable ways [101,102]. Bioelectronic devices al-

low for monitoring of blood sugar levels, controlling stem cell fate, applying electrical

stimulation and delivering therapeutic drugs [103–106].

An effective signaling cue for cell migration that can be achieved and regulated

automatically with current technology is the electric field (EF). Directed cell migra-

tion through electrical cues occurs naturally during wound healing [107, 108]. Smart

bandages have successfully expedited wound healing in mice [109, 110] by artificially
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enhancing the EF through an additive external cue. In vitro studies further support

the use of EF to control cell migration. The authors in [111] created a device platform

to leverage the use of an EF to direct the movement of keratinocyte cells in a two-

dimensional (2D) space using predetermined EF signals. The results were promising in

controlling the cells’ movement in an open-loop fashion. However, the presence of an

EF can also result in undesired system responses, including phenotypic changes [112].

Thus, it is important to be able to regulate EF carefully to maximize target response

while minimizing off-target effects. This careful regulation can be achieved through

feedback control mechanisms integrated with image processing techniques, allowing

for real-time monitoring and adjustment of cell migration.

5.1.2 Materials and methods

Experimental set up

Figure 5.1 shows the schematic of the experimental set up used in this work. Macrophages

were seeded in a tissue culture dishes (Corning)-based electrotaxis chamber for the

best in-vitro migration performance. The chamber was built with glass strips and

sealed with high vacuum grease as previously described [113] A Direct Current (DC)

electric field (EF) with a voltage of up to 3 V/cm across the chamber was applied

through Ag/AgCl electrodes for inducing electrotactic cell movement. The electric

current was monitored and controlled by the ML controller to achieve efficient elec-

trotaxis at will. The power system consists of a Keithley current source. The cur-

rent source transfers the current through Agar bridges and Steinberg’s solution. This

causes an electric field to be applied to the macrophages in the electric field chamber

where a microscope takes an image of the cells at 5 minute intervals. The images are

stored on a computer where MATLAB script is running that calls on the image ana-
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lyzer to evaluate the cells recruitment index value. This value is feedback into the ML

controller algorithm to decide the next current value to keep the recruitment index at

the desired trajectory. The value is sent to the current source through a serial cable

that connects it to the computer.

Figure 5.1: Schematic depicting the experimental set up.

Preparation of M0 macrophages

Bone marrow-derived macrophages (BMDMs) were generated and purified in vitro

(see Fig.5.2) following standard procedures as previously described [114]. Briefly, bone

marrow cells were isolated from the tibia or femur of C57BL/6 mice and cultured

in (Dulbecco’s Modified Eagle Medium) DMEM (Invitrogen) with 10% Fetal Bovine

Serum (Invitrogen) and 1×Antibiotic-Antimycotic solution (Invitrogen), supplemented

with 20% l-929 conditioned medium containing M-CSF for 6 days, followed by an ex-

tra 24-h culture without the conditioned medium. Adherent macrophages were then

harvested by gentle scraping with a cell scraper and seeded in electrotaxis chambers

for subsequent experiments. Cell viability was determined by trypan blue staining.

C57BL/6 mice were purchased from Jackson labs and maintained under a strict 12-h

light cycle and given a regular chow diet in a specific pathogen-free facility at the

University of California, Davis (UCD). All animal experiments were performed in ac-
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cordance with regulatory guidelines and standards set by the Institutional Animal

Care and Use Committee of UCD.

Figure 5.2: Schematic depicting how macrophages were prepared.

Image processing and cell tracking

The image analyzer (see Fig.5.3) is a Python script to evaluate the cells’ recruitment

index value called from the MATLAB script (as described in Section 5.1.2-5.1.2). The

input to the image analyzer is microscope images acquired at 5-minute intervals. The

cells in the images are identified and tracked over time using Trackpy [12], a particle-

tracking Python package in 2D and higher dimensions. The resulting cell trajectories

are analyzed to compute the recruitment index values. The computed recruitment

index values are saved into a CSV (comma-separated values) file which is then used

to provide feedback to the ML controller algorithm.

Figure 5.3: Schematic depicting the stages of Image Analyzer
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Quantifying cellular response

The cells’ relative x̂ and ŷ position values at every time step t̂ are obtained from the

cell trajectories and calculated based on the input image resolution. The migration

speed of the cells is the ratio of accumulated distance to the time at every 5-minute,

calculated as

Migration speed = ∑
n
i

√
x̂2
i + ŷ2i

i × 5 (5.1)

Cells that exhibit migration speeds below the 25th percentile are filtered out in order to

eliminate immobile cells. The directedness of cell migration, or the angle of migration,

is quantified by calculating the cosine of the angle between the electric field and the

line connecting the centroid of the cell from its initial to its current location. Cell

directedness is calculated for every 30 minutes, i.e., 6 frames ahead as

cosθi =
x̂i+6 − x̂i√

(x̂i+6 − x̂i)2 + (ŷi+6 − ŷi)2
(5.2)

where x̂i and ŷi are the relative position values of a cell at time t̂i.

To quantify the percentage increase of the cells by each different EF, we define

a measure called Recruitment Index (RI). The RI value is fed back to determine the

error closing the loop calculated using the directedness values. The RI is normalized

(subtracted) to the time point 0. If all the cells move to the anode, the index is 100%,

whereas the index is -100% to the cathode. The Recruitment Index is calculated using

RI = Cells to the Anode −Cells to the Cathode
Total cell count

× 100 (5.3)

where

• Cells to the anode are cells with directedness > 0.01

• Cells to the cathode are cells with directedness < −0.01
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• Total cells are the sum of the cells in anode and cathode, including the cells with

−0.01 < directedness < 0.01

5.1.3 Results

Quantifying cellular response in an open loop system

The macrophage (M0) data, collected under electric fields ranging from 0V/cm to

4V/cm in an open-loop setup, reveal that macrophages exhibit high plasticity and un-

predictable behavior, particularly in naive states. In our study, the EF levels were

based on measurements from human and mouse skin wounds, which typically gener-

ate electric fields of several hundred mV/mm [115]. The maximum applied strength

of 3 V/cm corresponds to approximately 6 volts across a 2 cm electrotactic channel,

or up to 300 mV/mm. We ensured accuracy by measuring the voltage drop with a

voltmeter before and after each experiment. In our setup, the relationship between

voltage and current adheres to Ohm’s law.

Figure 5.4: Directedness of the macrophages under varying EF.

The current during our experiments ranges from several hundred microamperes to
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Figure 5.5: Recruitment Index of the macrophages under varying EF.

several milliamperes, depending on the conductivity of the medium and the specific

chamber used. We regularly measure or monitor the current, and while there may

be some variations, particularly during extended experiments, both voltage and cur-

rent generally remain stable. Despite observable biases in the distribution, the cells’

movement varies in both directions, as shown in the directedness plot in Fig. 5.4. Di-

rectedness is not a controllable parameter in this context. However, the recruitment

index appears more controllable, displaying a nearly monotonic response to the ap-

plied electric field (EF) as shown in Fig. 5.5.

Feedback control algorithm in in vitro

Here, we demonstrate an in vitro implementation. We use a qualitative stochastic

model of directedness for the in vitro analysis to demonstrate the advantages of using

the feedback control algorithm with projection [116]. This algorithm is tested in an

experimental setup and compared to a PID controller. The PID controller was chosen

for comparison given that it is an industry standard. Figure 5.6 shows experimental

results of feedback control on the recruitment index of macrophage M0 cells using
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Figure 5.6: The plots in the top row are the results for the proposed ML algorithm
while the bottom plots are results using a PID algorithm. Plots in column (a) show the
experimental results for feedback control on the recruitment index of macrophage M0
cells using the purposed ML algorithm and a PID controller. Once the initial positive
reference value of 60% RI , in blue, is surpassed, the reference changes to -60% RI ,
and the goal is to track the reference value from there on out. The red is the measured
recruitment index value of the M0 cells during the experimental run. Plots in column
(b) show the tracking error in cyan. The plots in column (c) show the saturated control
output applied to the cells, in black, and the control output without the saturation
limits, in magenta.

the purposed ML algorithm (top three figures) and a PID controller (bottom three

figures). The initial goal was to have the recruitment index exceed the reference value

of 60% RI . Once this was achieved, the reference value changed to -60% RI , with the

goal being to track the reference value. In the plot titled output, the blue line is the

reference value, and the red is the measured recruitment index value of the M0 cells

during the experimental run (Figure 5.6-a). The plot titled tracking error shows the

error in cyan (Figure 5.6-b). The plot titled control outputs before and after saturation

shows the saturated control output applied to the cells and the control signal derived

by the controller before the saturation bounds were applied (Figure 5.6-c).

Once the initial goal was met, however, the controller quickly changes signals to

achieve the changed reference value. When saturation values are reached, the control

output starts to get pushed back toward the bounded limits of the experimental setup.

We see that the final three values applied by the saturated control output are the same
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as the values decided on by the controller. Further details of the controller algorithm

can be found in [116].

5.1.4 Discussion

The methods developed in this work have significant implications for wound heal-

ing. M1 macrophages are abundant during the early stages of inflammation, aiding in

wound cleaning, while M2 macrophages are more prevalent during the later stages,

supporting tissue regeneration [117]. By leveraging image processing techniques, it is

possible to monitor and control cell migration in real-time. For instance, an external

electric field could be modulated to recruit M1 or M2 cells at specific stages, potentially

accelerating the wound healing process. This approach makes it possible to monitor

cell migration in vivo and in real-time by tracking biomarkers or chemical compounds

in the wound bed as proxies for M1 and M2 abundance and activity.

These image-processing methods can also be applied across various biological sys-

tems, enabling real-time feedback control of cell migration. Self-regulation is a critical

aspect of system health, as seen in examples like the body’s response during exercise,

where increased oxygen demand triggers vasodilation to enhance blood flow to mus-

cles [118]. Similarly, in wound healing, different cells are deployed in a coordinated

manner to facilitate recovery [119]. Integrating image processing with feedback con-

trol algorithms allows for precise monitoring and adjustment of cell migration, en-

hancing the effectiveness of targeted therapies and wound healing.

5.1.5 Conclusion

We developed an image analyzer within a closed-loop system to control cell migration.

This analyzer measures cell speed, directionality, and the percentage of cell movement
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in response to varying electric fields. The controller uses this data to monitor and ad-

just the electric current, applying an electric field to macrophages in the chamber. The

controller was used in vitro to guide macrophage M0 cells along a desired trajectory.

A microscope captures images of the cells every 5 minutes, which are processed by

the image analyzer, creating a real-time closed-loop system. This application demon-

strates the importance of analyzing phase contrast images, allowing real-time cell dy-

namics analysis and control.

5.2 Deep Learning to Classify Cell Subtypes under

Electric Field

A key question is whether the electric field affects the transformation of macrophage

subtypes. Since the electric field is a simple, non-invasive treatment, understanding

its impact could make it a valuable tool for controlling processes involving specific

macrophage subtypes. Classifying macrophage subtypes under the influence of elec-

tric fields represents an under explored area requiring substantial research. This sec-

tion aims to conduct a preliminary investigation into categorizing macrophages sub-

jected to electric fields.

5.2.1 Introduction

We acquired time-series images of macrophages in their M0, M1, and M2 states ex-

posed to electric fields for durations ranging from 2 to 5 hours. By classifying these

macrophages under electric field exposure, we seek to determine whether electric

fields induce changes in macrophage phenotypes. Understanding these effects could

provide insights into controlling macrophage behavior during wound healing, poten-
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tially leading to strategies that accelerate wound healing.

5.2.2 Materials and methods

The bone marrow-derived macrophages (BMDMs) were obtained similarly to the pre-

vious experiments - M1 (LPS and IFNgamma for 24 hours) and M2 (IL4 for 24 hours),

details provided in chapter 3. The time-lapse movies were recorded in an interval of

5 min per frame for about two to five hours. An electric field strength of 2V/cm is

applied to the macrophages.

(a) M0 (b) M1

(c) M2

Figure 5.7: Relative trajectories of the training dataset of M0, M1 and M2 macrophage
images under an EF strength of 2V/cm. The trajectories shown in black represent the
cells moving along the negative x-axis, while the trajectories in red indicate the cells
moving along the positive x-axis.
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5.2.3 Results

Data

The single cells in the time-series images were segmented and tracked over time using

Trackpy [12], a particle-tracking Python package capable of handling 2D and higher-

dimensional data. The cells’ relative x̂ and ŷ position values at each time step t̂ were

obtained from the cell trajectories and calculated based on the input image resolution.

(a) M0 (b) M1

(c) M2

Figure 5.8: Relative trajectories of the testing dataset of M0, M1 and M2 macrophage
images under an EF strength of 2V/cm. The trajectories shown in black represent the
cells moving along the negative x-axis, while the trajectories in red indicate the cells
moving along the positive x-axis.

For this analysis, we used two batches of datasets derived from separate groups of
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mice—one for training the model and the other for testing. The training data included

two sets of M0, M1, and M2 images: in total, 425 cells were tracked: 58 cells from M0

set 1, 71 cells from M0 set 2, 69 cells from M1 set 1, 83 cells from M1 set 2, 78 cells from

M2 set 1, and 66 cells from M2 set 2. The combined trajectories of training dataset for

M0, M1, and M2 cells are illustrated in Fig.5.7. No additional normalization or data

augmentation was performed. From the testing dataset 33 cells from M0 image, 46

cells from M1 and 36 cells from M2 images were tracked. The trajectories of testing

dataset for M0, M1, and M2 cells are illustrated in Fig.5.8.

Figure 5.9: In each row, the two columns display speed and persistence plots. In these
plots, dotted lines represent the mean values for the corresponding macrophage im-
ages, solid lines denote the predictions made by the Gaussian Process Regressor (GPR)
model, and the color bands illustrate the 95% confidence intervals.
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Figure 5.10: This figure features box plots comparing the mean speed of cells from the
two training sets to M0 cells without EF, as well as M0, M1, and M2 cells subjected to
an electric field of 2V/cm.

Motility analysis of the cells

We quantify the motile behavior of each cell by computing speed and persistence for

each macrophage subtype as indicated by their parent image labels. Speed and persis-

tence (a measure of how far a cell has moved from its initial time step) are calculated

for all M0, M1, and M2 cells from training and testing images. To visualize the data,

we use a Gaussian Process Regressor (GPR) model, which uses a Gaussian process to

model the data distribution and predict outcomes based on observed data points. In

Fig.5.9, the results for each image are depicted with distinct colors. Solid lines rep-

resent the GPR model’s mean, while dashed lines show the average value computed

from the data at each time point. The plot’s band indicates a 95% confidence interval.

Fig.5.9 and Fig.5.10 show that the speed of the cells under an electric field (EF)

is higher than without EF, as expected. There is no significant difference in speed

among the three macrophage types. However, the persistence of M2 cells appears

higher compared to M1 and M0 cells under EF in the training sets. Whereas in Fig.

5.11, no notable difference between M1 and M2 cells is observed in both speed and

persistence parameters.
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Figure 5.11: The first row displays speed and persistence plots. In these plots, the
dotted lines represent the mean values for the corresponding macrophage images,
the solid lines denote the predictions made by the Gaussian Process Regressor (GPR)
model, and the color bands illustrate the 95% confidence intervals. The second row
features a box plot comparing the mean speed of cells in the test set of M1 and M2
cells exposed to an electric field of 2V/cm.

Model

An LSTM (Long Short-Term Memory) model is created to categorize different types

of macrophages using trajectory data in the form of (x, y) coordinates over a specific

period. The model’s architecture consists of:

• Two LSTM layers, each with 64 units.

• One bidirectional LSTM layer with 4 units.

• A flatten layer to prepare the data for the dense layers.

• A dropout layer with a dropout rate of 0.5 to prevent overfitting.
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• A dense layer with 128 units and ReLU activation.

• An output-dense layer with softmax activation for classification.

The model is compiled using categorical cross-entropy as the loss function and the

adam optimizer. Accuracy is used as the performance metric. The model is trained for

20 epochs with a batch size of 32. For training and validation, the training dataset is

split into 70% training and 20% validation using StratifiedShuffleSplit to ensure that

the relative class frequencies are approximately preserved in each fold.

As shown in Fig.5.12, the model successfully predicted the M0, M1, and M2 classes

in the validation set with accuracies of 82%, 90%, and 89%, respectively.

Figure 5.12: Model predictions on the validation data. A heatmap confusion ma-
trix, showing the percentage accuracy of the validation data for the M0, M1 and M2
macrophage subtypes.

When tested on a different batch of mice data, the model showed a 61% misclassifi-

cation rate for M0 cells as M2, a 74% accuracy for M1 cells, and a distributed accuracy

for M2 cells, with 44% classified as M1 and 42% as M2 (Fig. 5.13). Although the study

demonstrated higher accuracy for cells from the same batch, the test set revealed in-

consistencies in the accuracy for M0 and M2 cells.
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Figure 5.13: Model predictions on the test data. A heatmap confusion matrix, showing
the percentage accuracy of the test data for the M0, M1 and M2 macrophage subtypes.

5.2.4 Discussion

Fig.5.8 illustrates that cells in the test set do not consistently follow the same direc-

tional patterns as those in the training set (Fig.5.7). Additionally, the similar trajec-

tories of M0 and M2 cells in the test sets may pose a challenging problem for the

model in identifying the difference between the two, given the amount of training

data. This discrepancy may be attributed to the sticky nature of macrophages, which

varies across different batches and experimental conditions.

Integrating morphological parameters could potentially help distinguish between

M0 and M2 cells, but this requires high-quality images with low cell density to accu-

rately assess cell morphology under electric fields. Given the plasticity of these cells

and their tendency to change shape along the time series, quantifying morphologi-

cal parameters presents significant challenges. Any definitive conclusions using only

the motility parameters and trajectory patterns of the macrophages can only be drawn
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after training and testing the model with multiple batches of data under electric fields.
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6 | Machine Learning based model
to Predict Germination Status in

Bacterial Spores
This chapter is currently under preparation for publication. The dissertation author

is the co-first author of this paper. This work highlights the generalizability of the

methods while emphasizing our primary goal of controlling spore germination. To

ensure effective real-time control, it is essential to leverage real-time analysis, mod-

eling, and prediction. Significantly, this is the first time a predictive model is being

introduced, representing a substantial advancement beyond previous work that was

solely focused on classification. All the data used in this chapter is generated by UC

San Diego Süel Lab.

Understanding spore germination can lead to a wide range of applications where

spore reduction or encouragement of activity can be exploited, including medical,

food safety, and agricultural applications. To survive suboptimal conditions, bacterial

spores (Bacillus Subtilis) develop a protective coat to endure their environment, and

in some cases, they do so for years. Despite lacking metabolic and biological activity,

spores can determine germination if given suitable conditions for survival. It has been

shown that spores respond to changing environment signals through changes in their

electrochemical potential and, thus, don’t require cellular energy to determine optimal

germination. While electrochemical potential plays a role in understanding its extra-

cellular state, how individual spores determine a germination threshold is unknown.

To understand the mechanisms of germination, we use microscopy imaging to extract

physiological spore features and produce a model that can determine germination.
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6.1 Introduction

Determining optimal germination time is critical to the survival of bacterial spores

(Bacillus Subtilis), if they germinate prematurely they risk death due to the loss of

their protective coat present during dormancy, and if they germinate too late they fail

to maximize their time in optimal conditions. Bacterial spores have failed to show any

biological mechanisms involved in determining the state of their environment, but it

has been shown that a passive method utilizing the integration of electrochemical po-

tential may allow the spore to determine whether their conditions are appropriate for

germination [120]. To understand the criteria for germination, we have built a model

to predict germination time of individual spores using measures of physiological fea-

tures over time extracted from phase contrast and fluorescence imaging techniques.

Understanding these criteria can influence industries where bacterial promotion or

eradication is desirable. Such industries may include medical, food safety, or agricul-

tural industries.

In the medical industry, bacterial eradication would be desirable for numerous

treatments, such as infection control, wound healing, and environmental decontam-

ination, which drastically affect an individual’s state of health [121]. Less trivially,

bacterial promotion may be beneficial in treatments such as vaccines where the con-

trolled introduction of spores results in an immune response [122]. In addition to

direct medical applications, understanding bacterial germination would benefit food

safety industries through improved preservation methods and reduce food-borne dis-

eases through bacterial eradication [123]. Agricultural industries would be able to

prevent bacterial diseases affecting crops, increasing soil health through the promo-

tion of beneficial bacteria or reduction of harmful bacteria [124], and development of

bacterial-based pest control [125]. While many other industries and applications exist
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where control of spore germination may lead to substantial advancements, even just

the few mentioned would greatly improve the quality of life for the general public.

6.2 Materials and methods

6.2.1 Isolation and culture of bacterial spores

Microfluidic Protocol

This protocol involves an initial 1-hour exposure at 0.75 psi RM (resuspension

media), followed by ten cycles of the following sequence: 3 minutes at 2.5 psi RM

with 10mM L-alanine, 2 minutes at 2.5 psi RM, and 1 hour and 55 minutes at 0.75 psi

RM. The process concludes with a final exposure at 0.75 psi RM.

RM contains ThT (electrochemical reporter). The frames where L-alanine is added

can vary by one frame between movies. The microscope and the microfluidic system

are independent and started manually, resulting in a consistent shift throughout the

movie. L-alanine addition occurs at high pressure (2.5 psi instead of 0.75). Following

the L-alanine addition, there is a 2-minute high-pressure exposure to clean L-alanine

from the chamber. Pressure changes during media switching can cause focus drifts.

The distance in pixels is 0.065 µm.

ThT levels increase each time the spore encounters the germinant, with a signifi-

cant increase in the ThT signal during germination. Phase contrast remains constant

until germination occurs (white to black), and spores increase in size due to water

uptake during germination.
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6.2.2 Time-lapse recording

Spores are exposed to L-alanine at three minute pulses at one hour then every two

hours afterwards to induce germination. Phase-contrast (PhC) and fluorescence (ThT)

images are taken simultaneously at five minute intervals to observe time of germina-

tion and size metrics respectively.

6.2.3 Generation of time-series data capturing bacterial spores

germination

We use two sets of time-series images, M5871_s1 and M4576_s2, consisting of 289 and

276 frames, respectively, captured at 5-minute intervals per frame. We first preprocess

the images to ensure accurate feature representation in each frame. Next, we use the

TrackMate package [71] with Fiji software to track spore features over time for each

microscopy technique. Fig. 6.2 shows the preprocessing pipeline and tracking results.

Subsequently, we utilize the (x, y) position coordinates within the frame to map the

extracted features from each imaging technique and gather comprehensive data for

each spore.

Preprocessing

To enhance feature extraction, we crop our images to exclude densely populated spore

areas that lead to improper identification. This misidentification occurs due to the high

local volume of spores, where intersecting contrast or fluorescence can be mistaken

for individual spores because of similar pixel color value, size, and circularity. To

address this, we manually inspect the initial image to identify dense areas and then

crop these regions out, consistently applying this selected subsection throughout the

movie.
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We then convert the cropped image from 16-bit to 8-bit, reducing the grayscale

color range from 65,536 to 256 possible values for each pixel. We enhance the movie’s

contrast by adjusting the color range of the existing pixel values using Fiji’s auto-

rescaling function. This algorithm automatically stretches the pixel range histogram

to maximize the range between all possible pixel values within the 8-bit image. Fig.

6.1 shows the adjusted color range histogram of a sample image.

(a) Original histogram (b) Original histogram with ad-
justment bounds

(c) Rescaled histogram

Figure 6.1: Color range histograms after maximization
Figure showing the color histogram prior to and subsequent to the application of auto
adjustment on ThT microscopy images. The pixel values are plotted along the x-axis,
while the y-axis represents the count of pixels for each color value. The resulting
histogram maps the image’s minimum and maximum ranges to 0 and 255, ensuring
optimal contrast without the loss of data.

We use a rolling ball algorithm to correct background intensity variations and iso-

late spore fluorescence. This algorithm calculates a local background value for each

pixel by averaging the values within a specified radius around it. The average value

is then subtracted from the corresponding pixel, reducing background intensity. Ad-

ditionally, we disable smoothing to ensure the algorithm does not further alter the

image data.

Segmentation and tracking

To extract time-series of spore features, we utilize the TrackMate package with the

threshold detector to process the images. This involves implementing segmenting,

83



Figure 6.2: Image processing pipeline for microscopy imaging
Schematic illustrating the image processing pipeline for PhC and ThT images, involv-
ing preprocessing, segmentation, and tracking results. Initially, the original image is
cropped to exclude densely populated areas of spores, selecting only the sparsely pop-
ulated regions suitable for processing. Then, we maximize the color range to achieve
optimal contrast by adjusting the minimum and maximum color values. The final pre-
processing step involves applying the rolling ball background subtraction method to
even out the background intensity variations. Lastly, we display each spore indepen-
dently identified and tracked in the segmentation and tracking results.

filtering, and particle-linking on the images.

First we segment the spores at each timestep by specifying a grey value threshold

to categorize the image into foreground and background pixels. This threshold is

chosen through the auto function built into TrackMate, which detects the optimal

fluorescence to maximize spot quality. Spot quality measures the object area in pixels

in connected regions.

To link spores across frames, we use the overlap tracker provided by TrackMate.

This tracker groups connected regions of pixels by identifying overlapping areas in

consecutive frames. We chose this tracker because the stationary nature of our spores
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ensures their regions consistently overlap across frames. We parameterize the overlap

tracker by specifying the Intersection over Union (IoU):

IoU = Area of Intersection
Area over Union

We measure the area of each region using TrackMate’s precise calculation method

rather than its fast calculation. The precise method calculates the area based on the

actual shape of the spore, while the fast method simply uses the bounding box around

the spore. Because the spores do not move, either method would technically work

for our purposes. We have chosen a minimum Intersection over Union (IoU) thresh-

old of 0.5 to account for potential variability in spore detection across different im-

ages, which might arise from changes in image quality. However, since the spores

remain stationary, we anticipate that the actual IoU value between spores in subse-

quent frames will typically be much higher than 0.5. Furthermore, we apply a scale

factor of 1 in our analysis, indicating that we do not adjust the size of interconnected

regions before calculating their IoU.

6.2.4 Computing quantitative features from the images

We leverage temporal data from each microscopy technique to refine individual spore

data through subsequent processing steps. Phase contrast (PhC) images provide ger-

mination timing, while fluorescence (ThT) images yield physiological metrics for each

frame. By correlating tracks across both techniques, we compile comprehensive datasets

for each spore.

PhC postprocessing

We refine our spore selection by analyzing data at each time point and tracking spore

behavior throughout the movie. Initially, we filter data at each frame by excluding
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regions with low circularity and sizes that are either too small or too large for typical

spores. We also evaluate track qualities, eliminating tracks that indicate germination

before the initial germinant exposure and that lack data for any frame. The time of

germination is determined by the duration of each track, which corresponds to a drop

below a certain predefined intensity threshold.

ThT postprocessing

Similar to the postprocessing for PhC images, we apply filters based on inappropri-

ate circularity and size characteristics to our ThT data. We refined our ThT tracks

by excluding those that lacked data for any frame throughout the experiment. No

additional processing is made to extract physiological metrics.

Extracting time-series data from microscopy images

We analyze each spore’s (x, y) coordinates in every frame of the movie. Since the

spores remain stationary, we compute the average coordinates over each time series

to establish a single set of coordinates for each track. To synchronize spores between

PhC and ThT imaging, we compare their coordinates and consider them a match if

the variance in both x and y values is within a 5-pixel tolerance.

Now, we have obtained comprehensive behavior for each spore over the entirety

of the experiment. The temporal data gathered from each spore includes germination

status, average intensity (representing electrochemical potential), ellipse major, ellipse

minor, ellipse aspect ratio, area (representing size), perimeter, and circularity. Each
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physiological metric is calculated using the following formulas:

Average Intensity = ∑Pixel Grey Values
Number of Pixels

Area = Total Number of Pixels

Ellipse Lengths =
√
(x2 − x1)2 + (y2 − y2)2

Perimeter =
N−1
∑
i−1
∣xi − xi+1∣

Circularity = 4π ∗ Size
Perimeter2

Ellipse Aspect Ratio = Ellipse Major Length
Ellipse Minor Length

6.2.5 Dataset creation

Through segmentation and tracking, we identified 76 spores from time-series images

M5871_s1 and 54 spores from M4576_s2. These sequences consist of 289 and 276

frames, respectively, with each frame captured at 5-minute intervals. We used the

set of 76 spores for training and validation, and the set of 54 spores for testing. These

sets originated from separate batches of experiments, making them suitable for dis-

tinct training and testing phases. The dataset division is detailed in the table below.

The model’s training and testing datasets were constructed using the spores’ time

series features. These features include spore germination status, intensity, size, perime-

ter, and germinant exposure time.

Given that the Long Short-Term Memory (LSTM) network uses a 3-timestep look-

back, each data instance within the dataset consists of the features from the three pre-

ceding timesteps. Specifically, for each instance, the model uses the values of spore

germination, intensity, size, perimeter, and germinant exposure time from these three

previous timesteps. The target variable for each instance is the spore germination

status at the subsequent timestep, which the model aims to predict (Fig. 6.3).
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Figure 6.3: The trained LSTM model takes in spore features such as intensity, size,
perimeter, and germinant exposure time from the past 3 steps and outputs the spore
germination status at the current time step.

Data used for Training, Validation, and Testing
Experiment Set Spores Training Validation Testing
M4576_s2 76 66 10
M4581_s1 54 54

6.2.6 LSTM model architecture

The model used in this study is an LSTM (Long Short-Term Memory) network specif-

ically designed for processing sequential data. The architecture begins with an LSTM

layer comprising 80 units, which processes input sequences by maintaining tempo-

ral dependencies across the 3-timestep lookback period. This LSTM layer is followed

by a Dense layer with a single neuron and a sigmoid activation function, which out-

puts a probability score for binary classification, indicating the likelihood of spore

germination at the next time step. A Dropout layer with a dropout rate of 0.01 to

mitigate overfitting is incorporated after the Dense layer. The model is compiled with

the binary cross-entropy loss function and the Adam optimizer, which is well-suited

for binary classification tasks. The network is trained for a maximum of 50 epochs

with a batch size of 1. It utilizes early stopping to prevent overfitting, with the best

weights restored upon encountering no improvement in validation loss over a speci-

fied patience period. After training, predictions were made on the training, validation,
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and test datasets using the trained model. We note that different lookback sizes were

considered, and a lookback of 3 provided the best performance.

Figure 6.4: The image processing and spore germination pipeline. Phase contrast mi-
croscopy images are used to track the prediction status of the spores, and Fluorescence
microscopy images are used to track features like intensity, size, perimeter, and the
germination interval of the spores. The tracking data is used to create a time series
of the five features, which are used as inputs to our LSTM model to make predictions
about the next germination status of the spores.

6.3 Results

6.3.1 Germination events over time

We track spore germination events of 130 spores using phase-contrast imaging on ex-

periments M4576_s2 and M4581_s1 6.1. Our approach involves visualization and anal-
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ysis of germination events coupled with population dormancy at each time point and

during each germinant exposure, as shown in Fig. 6.5. During sequential germinant

exposures, significant portions of the population germinate, with the second germi-

nant pulse having the most substantial effect. Specifically, 8.46%, 55.38%, 30.00%, and

5.38% of the population germinate immediately following these exposures. After the

second germinant pulse, only 35.15% of the population remains dormant, indicating

that a large portion of spores reach their germination threshold after two exposures.

By the fourth pulse, only 0.77% of spores remain dormant.

Germination
germinant exposures 1 2 3 4 8
germination events 11 72 39 7 1
germination after exposure (%) 8.46 55.38 30.00 5.38 0.77
population dormancy (%) 91.54 36.15 6.15 0.77 0.00
total germination events 130

Table 6.1: Germination metrics of the experiments sets M4576_s2 and M4581_s1

6.3.2 Physiological trends

Throughout the experiment, we measured the electrochemical potential and size of

spores, as well as the time it took for them to germinate. Our findings show that spores

germinated after exposure to one of the first four germinant pulses, as illustrated in

Fig. 1. As spores approached germination, their electrochemical potential and size

slightly increased, with a significant increase after each germinant exposure. The most

considerable electrochemical potential and size increase occurred at the germinant

pulse, which led to germination. We display the four main trends in Fig. 6.6, using

randomly selected spores representative of each trend.

For these four trends, we calculated the average feature values for electrochemical
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Figure 6.5: Dormancy and germination metrics
A) Population dormancy and germination events over time
Here we show germination events by frame, as well as population dormancy per-
centage for combined experiments M458_s1 and M4576_s2 with a total of 130 spores.
Germinant pulses are shown in grey. The optimal bin width is determined using
the Sturges method [1]. This is calculated using the following formula: bin width =
1 + 3.322 log(Number of Spores). As a result, we organize germination events into
nine bins. B) Germination events induced by germinant exposures
GEI denotes population percentage germinated after exposure I .

potential and size based on the germinant exposure group and the change in feature

values between exposures. These metrics are presented in Table 6.2. We observed that

each group experienced a minimal change in electrochemical potential, ranging from

0.02 to 0.05 before germination. However, at each group’s germinant exposure induc-

ing germination, there was a notable difference in average electrochemical potential,

with a minimum change of 0.15, three times greater than the highest change before

germination. Similarly, for size, as shown in Table 6.3, we observed a change in size

ranging from 0.03 to 0.05 between germinant exposures before germination. At the

time of germination, there was a much more significant change in size, ranging from

0.15 to 0.19 across each group - at least three times as large as the changes between

exposures preceding germination.

We quantify the relationship between all size metrics by considering the correla-
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Figure 6.6: Major trends in electrochemical potential and size
We show the four major trends over time shown in the combined experiments. Spore
1 depicts a spore germinating after the first exposure, and similarly, Spores 2, 3, and
4 germinating after the second, third, and fourth exposure. The bold line depicts the
feature trend before germination, and the thin line shows the trend while germinating.
The vertical grey lines show when the collective spores were exposed to the germi-
nant. We see that spores increased in electrochemical potential and size with each
exposure, but the most significant change occurs at germination.

Average electrochemical potential by exposure group
Germinant exposures 0 1 2 3 4
Group 1 0.29 0.48 0.48 0.52 0.57
change between exposures - 0.19 0 0.04 0.04
Group 2 0.26 0.31 0.46 0.49 0.59
change between exposures - 0.05 0.15 0.02 0.02
Group 3 0.25 0.3 0.33 0.49 0.5
change between exposures - 0.05 0.03 0.16 0.01
Group 4 0.21 0.25 0.27 0.32 0.5
change between exposures - 0.05 0.02 0.05 0.18

Table 6.2: Average electrochemical potential by exposure group
We grouped the spores based on the number of germinant exposures required for ger-
mination. Group 1 germinates after one exposure, Group 2 after two exposures, Group
3 after three, and Group 4 after four exposures. We present the average electrochem-
ical potential for each group at various germinant pulses and highlight the changes
in these values. The most significant change, shown in bold, occurs at the germinant
exposure that triggers their germination.

tion of physiological features over time as shown in Fig. 6.7.
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Average size by exposure group
Germinant exposures 0 1 2 3 4
Group 1 0.45 0.58 0.61 0.63 0.66
change between exposures - 0.13 0.03 0.02 0.03
Group 2 0.41 0.44 0.59 0.63 0.65
change between exposures - 0.02 0.15 0.01 0.04
Group 3 0.43 0.47 0.48 0.63 0.66
change between exposures - 0.03 0.01 0.15 0.03
Group 4 0.4 0.43 0.45 0.47 0.62
change between exposures - 0.04 0.01 0.02 0.15

Table 6.3: Average size by exposure group
Similarly to Table 6.2, we group spores that germinate with different quantities of ger-
minant. We compute the average size for each group at sequential germinant pulses,
as well as the change in these values between pulses. We highlight the biggest change
in bold, which occurs at the germinant exposure that induces germination.

6.3.3 Feature correlation

We conduct correlation analysis by considering the strength of the linear relationship

between pairs of physiological features throughout the experiment. We utilize the

Pearson correlation coefficient (rF1, F2) [126] to quantify this relationship:

rF1, F2 =
cov(F1,F2)
σF1σF2

where F1 and F2 are the features considered, cov(F1,F2) measures the covariance be-

tween these features over time, and σF1σF2 measures the standard deviation of each

feature. We consider 0.65 < ∣rF1, F2∣ < 1 to signify a strong relationship, and intermedi-

ate values to show a more moderate relationship.

This correlation analysis was conducted between germination status, intensity, size,

ellipse minor, ellipse major, perimeter, circularity, and ellipse aspect ratio of the data

extracted from our combined experiments. We visualize our results using a heatmap

depiction of the correlation values as shown in Fig. 6.7. Trivially high correlations

exist between size metrics (intensity, size, ellipse minor, ellipse major, perimeter, cir-
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cularity, and ellipse aspect ratio) ranging from ±0.66 to ±0.97 correlation. We also

observe the following size metrics ordered from highest to lowest correlation have

a significant relationship with germination: ellipse aspect ratio (-0.86), ellipse minor

(0.84), size (0.79), intensity (0.76), perimeter (0.75), and ellipse major (0.66). Through

this analysis, we also see that intensity has a significant correlation with the same size

metrics, ellipse minor (0.84), size (0.83), ellipse aspect ratio (-0.78), perimeter (0.77), and

ellipse major (0.76).

Figure 6.7: Feature correlations between physiological features and germina-
tion
For each combination of features, we measured the Pearson correlation coefficient to
measure their relationship over time. In bold we have features that were considered
highly correlated with germination.
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6.3.4 LSTM can predict the germination status of the spores at

single spore level

To predict germination, we consider our model with lookback N, meaning at each

timestep the model considers the values of our parameters at the previous N steps, to

determine whether at the next timestep a spore is germinated. To evaluate the pre-

dictive performance of the LSTM model at the spore level, we calculated the accuracy,

recall, and F1 score for each spore at each timestep. The model’s predictions, which

were initially probabilities, were thresholded at 0.5 to obtain binary outcomes indicat-

ing germination status (1 for germinated, 0 for not germinated). We then compared

these binary predictions with the actual germination statuses to determine the pro-

portion of correct predictions, which constitutes the accuracy. The accuracy, recall,

and F1 scores on the test set are 0.92, 0.91, and 0.95, respectively. These metrics pro-

vided a comprehensive evaluation of the model’s performance on the test dataset.

Figure 6.8: Population level predictions on spore germination
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6.4 Conclusion

We extracted and analyzed spore germination times and associated physiological fea-

tures. For future feature analysis, we plan to investigate varying germinant exposure

intervals and concentrations, as well as explore the spatial dynamics between mod-

ified spores capable of intercellular communication. We developed an LSTM model

that accurately predicts germination time using features such as intensity, area, and

perimeter. Further analysis will focus on refining this model by examining highly cor-

related features and exploring alternative modeling approaches to understand better

the biological mechanisms involved in germination.
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7 | Conclusion
Our research aimed to investigate various cell types using microscopy time series im-

ages, with the primary goal of monitoring and understanding the dynamics of biolog-

ical systems.

7.1 Summary

Chapter 2 explores various types of microscopy imaging and the techniques used to

extract valuable information from these images. While numerous image processing,

machine learning, and deep learning methods exist for analyzing microscopy images,

they are often tailored to specific problems and cannot be universally applied. Our

approach utilized image processing techniques to read, convert, and pre-process the

images. Following this, we identified objects such as cells within the images. For

time-series images, we tracked these objects over time to analyze their movement

characteristics.

Chapter 3 presents a non-invasive method using image processing techniques to

study cell behavior and migratory patterns, with a focus on predicting macrophage

subtypes. Our aim was to extract the cells’ shape and motility patterns and then map

these morphological patterns to their motility behaviors. We developed a machine-

learning model to classify different cell types. Unlike flow cytometry, which requires

cell fixation, this technique preserves cell viability for further analysis and allows

real-time observations. It is particularly useful for assessing macrophage polariza-

tion through migration and morphological changes, providing insights into cellular

responses to stimuli without the need for external cues like electrical guidance or

staining. This approach is valuable for high-throughput screening in biochemical re-
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search and drug discovery.

In Chapter 4, we investigated whether the (x,y) position values of cells could be

used to classify different cell subtypes and created a deep-learning model for this pur-

pose. Our focus was on macrophages, which are important for wound healing. We

discovered distinct migratory patterns and morphologies among the M0, M1, and M2

subtypes. We found clear differences in migratory patterns by analyzing trajectories,

perimeter, convex hull area, and pairwise distances. This method has the potential for

future applications where obtaining precise cell morphology data is difficult, and it

could enhance the reliability of cell identification through phase-contrast microscopy,

even with lower-quality images.

In Chapter 5, we created an image analyzer within a closed-loop system to control

cell migration. This analyzer measures cell speed, directionality, and the percentage

of cell movement in response to different electric fields. The controller uses this data

to monitor and adjust the electric current in the system, applying an electric field

to macrophages in the chamber. A microscope captures images of the cells every 5

minutes, which are then processed by the image analyzer, creating a real-time closed-

loop system.

In the second section of this chapter, we conducted a study to classify macrophage

subtypes based on their response to electric fields. Our goal was to determine if differ-

ent subtypes could be distinguished by their behavior in an electric field. We observed

that the M0 and M2 subtypes moved in the opposite direction compared to the M1

subtypes. In addition to this directional difference, we examined other factors, such

as trajectory patterns, to classify the macrophage subtypes. To achieve this, we devel-

oped an LSTM model that used the (x,y) trajectory values of each subtype. Our results

showed that the model could accurately identify cell subtypes within the same batch

of data. However, it had difficulty distinguishing between M0 and M2 cell types when
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applied to a different batch. By incorporating data from multiple batches of experi-

ments, we aim to improve the model and gain a deeper understanding of macrophage

characteristics.

Finally, in Chapter 6, we applied these methods to time-series images of bacterial

spores to predict their germination time under interval-based germinant exposure.

This demonstrates the versatility of our developed techniques, as they can be effec-

tively used across different cell types and for both phase contrast and fluorescence

microscopy images. This work highlights the generalizability of the methods while

emphasizing our primary goal of controlling spore germination. To ensure effective

real-time control, it is essential to leverage real-time analysis, modeling, and predic-

tion. Significantly, this is the first time a predictive model is being introduced, repre-

senting a substantial advancement beyond previous work that was solely focused on

classification.

7.2 Future Work

For future work, we propose several valuable and exciting extensions of our research,

which are listed below.

• Classification of macrophage subtypes in galvanotaxis

Training the deep learning model with additional data is essential for improving

its accuracy. Analyzing the deep learning results suggests that morphology and

trajectory patterns are interconnected. Incorporating more neural network lay-

ers and fine-tuning hyperparameters could further enhance prediction accuracy.

The model’s ability to classify migratory patterns would improve significantly

with thousands of cell trajectories. To achieve this, we must collect extensive

time-series images of cell migration and perform the necessary pre-processing.

99



This approach will aid in more accurately classifying cells in response to exter-

nal stimuli.

• Building a neuronal segmentation algorithm

We are currently developing a neuronal segmentation algorithm using U-Net, a

type of convolutional neural network. This algorithm can be used to segment

neurons and identify various characteristics, such as length, area, and other rel-

evant features.

• Extending the spore germination model results in identifying the un-

derlying germination mechanism.

We are also working on developing a physics-based model to explore the dy-

namics of spore germination. By integrating results from our existing spore

germination model, we aim to gain deeper insights into how bacterial spores

make decisions to germinate. This model will help us investigate whether there

are any collective decision-making processes or cell-to-cell communications in-

fluencing germination.
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A | Appendix

A.1 Code and Data availability

• The complete dataset used in Chapter 3 is available athttps://datadryad.

org/stash/share/vrQi68_C27sbdkP2uAXUE8kvy_BxlYkRImI5f6_

9WY0 with a metadata file accompanying the dataset. The source code required

to reproduce the findings of this study has been uploaded to the following github

repository: https://github.com/Gomez-Lab/CellAnalysis.

• The code and the datasets to replicate the results in Chapter 4 can be found on

github: https://github.com/Gomez-Lab/Macrophages_TrajectoryPatternAnalysis.

A.2 Additional figures for Chapter 3

Figure A.1: Examples of cell images from each cluster.
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Figure A.2: Generation and characterization of murine bone marrow derived
M0, M1 and M2 macrophages. (A) Scheme for the generation of mouse bone mar-
row derived macrophages (BMDMs, M0) and subsequent polarization of M1 (100 ng/ml
LPS) and M2 (20 ng/ml mIL-4) macrophages. (B) Fluorescent images show M0, M1
and M2 macrophages containing latex beads (red). Actins were stained with FITC-
phalloidin (green). Nuclei were counterstained with Hoechst (blue). Note the signifi-
cantly increased phagocytosis capacity of M1 macrophages. Bar, 20 µm. (C) Quantifi-
cation of phagocytosis. Data was calculated as bead per cell from 5 randomly chosen
fields. ** p < 0.01 by one-way ANOVA with post-hoc Tukey HSD Test. (D) The tar-
get gene expression profiles of naïve and differentially polarized macrophages. Fold
expression is calculated relative to the internal control of GAPDH mRNA expression.
(E) Differential M1 (IL-1β and iNOS) or M2 marker (IL-10 and TGFβ) gene expres-
sions induced by LPS or mIL-4, respectively. Fold change is calculated as M2/M1 ratio
of mRNA expression.
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Figure A.3: Macrophage shapes are described by three principal shape modes.
(A) Phase-contrast images of differentially polarized macrophages illustrate the phe-
notypic shape variation in the combined population. Bar, 10 µm. (B) The alignments
of 2329 live macrophages by their outlines that are equally divided into 200 points.
(C) Top three principal modes of macrophage shape variation as determined by prin-
cipal components analysis. These modes—circular (mode 1), “with protrusions” shape
(mode 2, one example is shown), and elongated (mode 3)—are highly reproducible;
subsequent modes seem to be mixtures or noise. For each mode, the mean cell shape
is shown alongside reconstructions of shapes one and two standard deviations away
from the mean in each direction along the given mode. The variation accounted for
by each mode is indicated. Bar, 50 µm.
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Figure A.4: Examples of elongated/ bipolar, multipolar, and circular
macrophages with their shape parameter values. A) Elongated/Bipolar cell with
compactness = 0.24, eccentricity = 0.99, solidity = 0.75 - highest eccentricity, with low
compactness and higher solidity, (B) Multipolar cell with compactness = 0.42, eccen-
tricity = 0.65, solidity = 0.55 - average eccentricity, with low compactness and solidity,
(C) Circular cell with compactness = 0.96, eccentricity = 0.58, solidity = 0.98 - average
eccentricity, with highest compactness and solidity.

Figure A.5: Representative M0, M1 and M2 macrophage images used in the
analysis.
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Figure A.6: Silhouette coefficient score plot and silhouette plots to determine
the optimal k-value. A) Silhouette score plot with highest values for k = 2 and k =
4, (B) Silhouette plot for k = 2 with irregular cluster thickness showing one cluster is
bigger in size than the other - suboptimal k-value, (C) Silhouette plot for k = 3 with
negative values in two of the clusters indicating cells are assigned to wrong clusters
and below average score- suboptimal k-value, (D) Silhouette plot for k = 4 with Sil-
houette score higher than k = 3 and k =5, without any negative values and somewhat
uniform cluster thickness - optimal k-value, (E) Silhouette plot for k = 5 with negative
values in three of the clusters indicating cells are assigned to wrong clusters and be-
low average score - suboptimal k-value.

105



Figure A.7: Classification and discrimination of the macrophage subtypes
using motility parameters alone. (A) Speed, (B) Persistence, where dotted lines
are the mean values of the corresponding macrophage images, solid lines are the
Gaussian Process Regressor model (GPR) predictions, and the color bands are their
95% confidence intervals. (C) Plot showing the quadratic classification of the cells
using Speed vs Persistence between M1 image and combined (M0+M2) images with
a classification accuracy of around 68%. (D) Plot showing the quadratic classification
of the cells using Speed vs Persistence between M0 image and M1 image with a clas-
sification accuracy of around 69%. (E) Plot showing the quadratic classification of the
cells using Speed vs Persistence between M0 image and M2 image with a classifica-
tion accuracy of around 63%. (F) Plot showing quadratic the classification of the cells
using Speed vs Persistence between M1 image and M2 image with a classification
accuracy of around 70%. The black line in C-F is the decision boundary between the
classes.
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B | Additional Tables

Table B.1: Macrophage subtype classification with accuracy percentages for different
analysis techniques used in the study.

Input parameters Method M0 M1 M2
Morphology K-means Clustering 38% 52% 46%
Morphology SVM 69% 71% 71%

Motility SVM 75% 75% 41%
Morphology + Motility SVM 81% 79% 79%
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