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Abstract

Learning gene expression programs directly from a set of observations is challenging due to the complexity of gene
regulation, high noise of experimental measurements, and insufficient number of experimental measurements. Imposing
additional constraints with strong and biologically motivated regularizations is critical in developing reliable and effective
algorithms for inferring gene expression programs. Here we propose a new form of regulation that constrains the number
of independent connectivity patterns between regulators and targets, motivated by the modular design of gene regulatory
programs and the belief that the total number of independent regulatory modules should be small. We formulate a multi-
target linear regression framework to incorporate this type of regulation, in which the number of independent connectivity
patterns is expressed as the rank of the connectivity matrix between regulators and targets. We then generalize the linear
framework to nonlinear cases, and prove that the generalized low-rank regularization model is still convex. Efficient
algorithms are derived to solve both the linear and nonlinear low-rank regularized problems. Finally, we test the algorithms
on three gene expression datasets, and show that the low-rank regularization improves the accuracy of gene expression
prediction in these three datasets.
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Introduction

Systematically discovering gene expression programs within

cells is a fundamental goal in both basic and applied biomedical

researches, and is crucial for elucidating factors determining cell

types, controlling cellular states, or switching cells from healthy

states to diseased ones. Although the total number of genes within

an organism is usually large (e.g., *20,000 in humans), most of

these genes are believed to be regulated by a much smaller subset

of genes called regulators (e.g., transcription factors, signalling

molecules, growth factors, etc.) A challenge in computational

biology is how to use machine learning methods to automatically

discover the mapping from regulators to target genes, thereby

inferring the underlying regulatory programs, from a given set of

observations [1].

More specifically, suppose we are given a set of observations

z~fxi,yig
m
i~1, where xi[X5Rp denotes the expression of p

regulators and yi[Y5RL denotes the expression of L target genes

in sample i. The goal of learning gene expression programs is to

infer the mapping ~ff ~(f1, . . . ,fL) : X?Y that fits the observation

z, and to provide biological interpretations of the inferred

mapping.

In addition to the purpose of uncovering gene regulatory

mechanisms, the gene expression program learning problem arises

recently also in a practical and applied setting in biotechnology

development. High-throughput gene expression profiling using

Affymetrix arrays typically costs *$300 and $800 for human and

mouse, respectively, which is still too expensive to be used in large-

scale perturbation, drug or small molecule screening, which

typically requires tens of thousands of or even millions of

expression profiles [2]. This constraint has motivated the

development and adoption of the Luminex bead technology,

which is able to measure *1000 genes at a much lower cost (*$5
per profile). Because the gene expression is so highly correlated,

scientists are proposing to use Luminex bead to measure 1000
carefully chosen ‘‘landmark’’ genes and to computationally

extrapolate all remaining ones. This strategy will be able to

significantly cut the cost of expression profiling; however, it also

calls for better and more efficient methods for target gene

expression prediction.

Although the gene expression program learning problem

formulated above fits into standard supervised learning, solving

the problem is difficult for a number of reasons. First, the total

number of parameters determining the mapping from regulators

to target genes is typically much greater than the total number of

observations. Secondly, the gene expression measurements based

on high-throughput techniques are known to be highly noisy.

These factors make the gene expression program inference highly

challenging. A number of methods have been proposed for gene

expression program learning, including methods based on

probabilistic graphical models [3–5], information-theoretic ap-

proaches [6,7], and ordinary differential equations (ODEs) [8,9].
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See [1,10] for reviews of these and other approaches. However,

the performance of these methods tend to be modest.

In this work, we formulate the gene expression program

learning as a multi-target (more specifically L-target) regression

problem, and use Tikhonov regularization to constrain the space

of the L-target mapping. Two main forms of regularization with

biological motivations have been proposed in the literature: a)

sparsity - each target is likely regulated by only a few regulators

instead of all, and b) modularity - the expression program is

organized into modules, each consisting of a certain combination

of regulators, and the total number of independent modules should

be small. The sparsity regularization is well recognized and widely

used in gene expression program inference [9,11,12]. Some of

these previous work are based on graphical models [4,13], while

others are based on regression. Within the regression framework, a

common strategy of imposing sparsity is to use ‘1 norm

regularization on regression coefficients, similar to the framework

of Lasso (least absolute shrinkage and selection operator) [11,14].

The modularity regularization is much more difficult to handle

and is the focus of this work. A popular approach is the

probabilistic graphic model proposed by Segal et al. [15], which

assigns target genes into different modules and constrains the

genes within each module to be identically distributed, and models

the regulatory program associated with each module using a rule-

based decision tree. However, the Segal model is difficult to train,

requiring long running time and only being able to find locally

optimal solutions. In addition, the Segal model only captures the

qualitative relationship between the regulators and targets since its

main purpose is not on predicting the expression of target genes.

Another approach taking the modularity structure into account is

the SIMoNe proposed by Chiquet et al. [16]. SIMoNe models

gene expression data using Gaussian graphical models, and

imposes sparsity constraints on the inverse covariance matrix

and introduces hidden nodes to the Gaussian graph to learn the

network modularity. The primary goal of SIMoNe is to infer the

gene regulatory networks in an unsupervised way without

distinguishing regulator and target genes, which is different from

our main objective.

Here we propose a new approach to incorporating the

modularity constraint. We use the rank of the connectivity matrix

between regulators and targets to represent the number of

independent regulatory modules between them. The modularity

regularization is then formulated as a low-rank constraint within a

multi-target linear regression framework. The resulting model is

convex, and we describe an efficient algorithm to find its globally

optimal solution. We further show that the low-rank regularized

regression problem can also be generalized to nonlinear cases,

where we regularize the dimension of the hypothesis space of the

L-target regression function. We prove that the resulting nonlinear

low-rank model is still convex and derive an efficient algorithm to

solve it. Finally, we benchmark the performance of the low-rank

regulation models on two real biological datasets, and show that

the low-rank regulation technique consistently improve prediction

accuracy in both cases when compared to the Lasso model.

Methods

Learning gene expression programs in linear space
We begin by introducing some notations. Let R be the set of real

numbers and Rz the subset of non-negative ones. Denote S:,:TRL

to be the inner product of RL. We assume that we have L target

genes and define NL~f1,2, . . . ,Lg. We further assume that for

the ‘-th target gene (‘[NL), m samples fxi,y
‘
i g

m
i~1 are available,

where xi[X5Rp denotes the expression of p regulators and

y‘i [Y‘5R denotes the expression of the ‘-th target gene in sample

i. Let yi~(y1
i , . . . ,yL

i )T and Y~Y1| . . . |YL. The goal of

learning gene expression programs is to infer the mapping
~ff ~(f1, . . . ,fL) : X?Y that fits the observation z~(xi,yi)

m
i~1,

and to provide biological interpretations of the inferred mapping.

In this section, we assume that each target gene is linearly

regulated by the regulators. That is, for each ‘[NL, f‘~vT
‘ x,

where v‘ is a fixed vector of coefficients.

Next we describe two types of regularization that can be used

for gene expression program learning: one is the sparsity

regularization, which has already been widely used in the

literature, and the second is the low-rank regularization, which

has not been used in the gene expression program learning,

although having recently become popular in other problem

domains such as matrix completion, covariance matrix estimation,

metric learning, etc [17–20].

Sparsity regularization
Given the observation fxi,y

‘
i g

m
i~1, a natural way to infer v‘ is to

solve a least-square minimization problem:

v̂v‘~arg min
v‘[Rp

1

2m

Xm

i~1

EvT
‘ xi{y‘i E

2, ð1Þ

where the norm is the ‘2 norm by default. However, for the gene

expression program learning problem, the v‘ inferred by least-

square minimization tends to be poor for a number of reasons:

1) the observations as measured by microarrays are usually very

noisy, and 2) p is usually much larger than m, which can lead to

overfitting. Various regularization techniques have been intro-

duced to prevent overfitting including ridge regression [21] and

Lasso [14]. Since each target gene is likely regulated by only a few

regulators instead of all, a commonly used regularization

technique in gene expression program learning is to impose an

‘1-norm based sparsity regularization on v‘ as in Lasso

[9,11,12,14]:

v̂v‘~arg min
v‘[Rp

1

2m

Xm

i~1

EvT
‘ xi{y‘i E

2zl‘Ev‘E1, ð2Þ

where l‘w0 is a regularization parameter. We will call (2) the

Lasso model in the following.

Low-rank regularization
In the Lasso model, we treat each regulation function f‘

separately and learn them independently. However, it is well-

known that the expression values of target genes are often highly

correlated, and biologists believe that this high correlation is

caused by sharing of regulatory programs among different genes.

In addition, although there exist p regulators in an organism, the

number regulatory programs (called modules by biologists) active

in a particular experimental setting is often much lower than p.

These considerations suggest that instead of learning each v‘

separately for each gene, we should learn all v‘’s jointly, and

impose a new regularization on the dimension of the span of the

v‘’s.

Let W~(v1, . . . ,vL) be a p|L matrix with each column

corresponding to one v‘. Constraining the dimension of the span

of the v‘’s is equivalent to regularizing the rank of W , which

motivates us to propose the following model to learn gene

expression programs

Low-Rank for Learning Gene Expression Programs
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ŴW~arg min
W[Rp|L

1

2m
EY{XWE2

F zlEWE�, ð3Þ

where X~(x1, . . . ,xm)T , Y~(y1, . . . ym)T and E:EF denotes the

Frobenius norm for matrix. DWE� is the nuclear norm of matrix

W , defined to be the sum of the singular values of W . The nuclear

norm is a convex function and is often used as a convex relaxation

of the rank of W [22,23]. Since nuclear norm is convex, model (3)

is a convex optimization problem. We will call (3) the linear low-rank

model in the following. The linear low-rank model has not been

proposed for gene expression analysis, although it has appeared in

other problem domains such as matrix completion, covariance

matrix estimation, metric learning, etc [17–20].

Low-rank regularization for learning gene expression
programs in nonlinear space

Next we show that the low rank regularization can also be

extended to learn nonlinear gene expression program. We start by

proposing a low-rank regularization model in the Hilbert space,

then prove that the model is a well-defined convex problem, and

finally provide an algorithm to solve the model in the reproducing

kernel Hilbert space (RKHS).

Low-rank model in Hilbert Space. We assume that each

target gene is nonlinearly regulated by its regulators and the

mapping f‘[H0, which is a Hilbert space. Furthermore, we assume

that the mappings of different target genes are related to each

other in such a way that f‘ lies in a common low-dimensional

subspace of H0. Note that the assumption of ff‘g‘[N‘
sharing a

common subspace in Hilbert space is a natural generalization of

the low-rank constraint in the linear case, where the weighting

vectors fv‘g‘[N‘
share a low-dimensional subspace in Euclidean

space Rd .

Under the above assumption, the space spanff1, . . . ,fLg,
consisting of all linear combinations of functions f‘(‘[NL), is a

low-dimensional subspace in H0. Let ~gg~(g1, . . . ,gL). Denote an

operator D~gg : RL.H0,

D~gg(c)~
XL

‘~1

c‘g‘, ð4Þ

where c~(c1, . . . ,cL)T[RL: Let Ran(D~gg) be the range of D~gg and

D�~gg be the adjoint operator of D~gg. Then,

Ran(D~gg)~spanfg‘ : ‘[NLg. It is easy to see that D~gg is a

compact operator, and the dimension of Ran(D~gg) is finite and

determined by the number of nonzero singular values of the

operator D~gg. In order to enforce spanfg‘ : ‘[NLg lying in a low-

dimensional subspace in H0, we can choose the following

regularization term J0(~gg)~#fs : s is a nonzero singular value
of D~ggg, which equals to the number of nonzero eigenvalues offfiffiffiffiffiffiffiffiffiffiffiffi
D�~ggD~gg

q
, and regularizes the dimension of Ran(D~gg). However,

this regularization term is difficult to calculate as it is both

nonconvex and nonsmooth. Motivated by the theory of com-

pressed sensing and matrix completion [22,23], we use a convex

relaxation of J0(~gg) by taking the ‘1 norm of all eigenvalues offfiffiffiffiffiffiffiffiffiffiffiffi
D�~ggD~gg

q
as the regularization term, that is,

J1(~gg)~ED~ggE�~E
ffiffiffiffiffiffiffiffiffiffiffiffi
D�~ggD~gg

q
E�, ð5Þ

where ED~ggE�~E
ffiffiffiffiffiffiffiffiffiffiffiffi
D�~ggD~gg

q
E�~

P
i si with si being the i-th singular

value of D~gg.

We prove Theorem 1 in Material S1, which shows that the

regularization term J1(~gg) is convex, and can be rewritten as

J1(~gg)~E
ffiffiffiffiffiffiffiffiffiffi
G(~gg)

p
E�, where G(~gg) is an L|L square matrix with the

(i,j) entry being Sgi,gjTH0
, the inner product between gi and gj in

H0.

Theorem 1. Let gi[H0,i~1, . . . ,L and S:,:TH0
be the inner

product in H0. The operator D~gg is defined by (4). Then

1. for any h[H0, we have D�~ggh~(Sg1,hTH0
, . . . ,SgL,hTH0

)T :

2. D�~ggD~gg is a linear operator from RL.RL and D�~ggD~gg~G(~gg) :
~(Sgi,gjTH0

)i,j[NL
:

3. J1(~gg) is convex. That is, for any ~gg1~(g1
1, . . . ,g1

L)T[HL
0 ,~gg2~

(g2
1, . . . ,g2

L)T[HL
0 a n d a[½0,1�, w e h a v e

J1(a~gg1z(1{a)~gg2)ƒaJ1(~gg1)z(1{a)J1(~gg2).

Based on the above formulation and using least square error for

the data fitting term, we therefore propose to learn gene expression

programs in Hilbert space H0 by minimizing the following

objective function

R(~ff )~
1

2m

XL

‘~1

Xm

i~1

(y‘i {f‘(xi))
2zlE

ffiffiffiffiffiffiffiffiffiffi
G(~ff )

q
E� ð6Þ

where lw0 is a regularization parameter. We will refer to this

model as nonlinear low-rank model.

Linear case. Next we will show that model (6) can be viewed

as a generalization of the low-rank model (3) from linear setting to

nonlinear setting. We assume that each target ‘[NL is well

described by a linear function defined, for every x[Rd , as

f‘(x)~vT
‘ x, where v‘ is a fixed vector of coefficients. As these

linear functions are uniquely determined by those coefficients

v‘,‘[NL, we can define the inner product for linear functions as

SwT
i x,wT

j xT~Swi,wjTRd ~wT
i wj : ð7Þ

That is, we have implicitly chosen the Hilbert space H0~Rd .

Denote W~(v1, . . . ,vT ). Using (7), we have

G(~ff )~(Sfi,fjT)ij~(Svi,vjT)ij~W T W . Note that

E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W T W
p

E�~EWE�. Therefore, (6) can be reformulated as

R(~ff )~
1

2m

XL

‘~1

Xm

i~1

(y‘i {vT
‘ xi)

2zlEWE�: ð8Þ

Kernel case. Reproducing kernel Hilbert space HK is widely

used in statistical inference and machine learning [24–26]. It is

associated with a Mercer kernel K which is a continuous,

symmetric and positive semidefinite function [27]. We denote its

inner product as S:,:TK . The reproducing property of HK states

that f (x)~Sf ,KxTK , for all f [HK .

The nonlinear low-rank model (6) can be much simplified when

H0~HK . We prove the following representer theorem in Material

S1.

Theorem 2. Given a data set z : ~fxi,y
‘
i g

m
i~1, then the minimizer

~ff z~arg min
f‘[HK

R1(~ff ) ð9Þ

Low-Rank for Learning Gene Expression Programs
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exists and each component f z
‘ takes the following form

f z
‘ ~

Xm

i~1

c‘,zi K(xi,x),

where c‘,zi [R for i[Nm,‘[NL.

As a consequence, the minimizer of (6) exists, and each

component of ~ff lies in the finite dimensional space spanned by

fKxi
: i[Nmg, where Kxi

(:)~K(xi,:). More specifically, we can

show that the solution to the nonlinear low-rank model (6) is

f‘(x)~
Xm

i~1

c‘i K(xi,x)

for each l~1, � � � ,L, where cl
i ’s are the coefficients. Furthermore,

it can be shown that the coefficients are determined as the optimal

solution that minimizes the following convex function

min
C[Rm|L

W(C)~
1

2m

XL

‘~1

Xm

i~1

(y‘i {cT
‘ ki)

2zlE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CT KC
p

E�, ð10Þ

where c‘~(c‘1, . . . ,c‘m)T is a column vector, C~(c1, . . . ,cL) is an

m|L matrix, and K~(K(xi,xj))
m
i,j~1 is an m|m with the i-th

column denoted by ki. The problem (10) is of finite dimension,

and next we describe an algorithm to solve it.

Algorithms
In this section, we derive computational algorithms to solve low-

rank regularized linear model (3) and nonlinear model (10).

Low-rank regularized linear model. Decompose the ob-

jective function (3), F (W )~
1

2m
EY{XWE2

F zlEWE� into two

parts with f (W )~
1

2m
EY{XWE2

F and g(W )~lEWE�. The first

component f (W ) is both convex and differentiable, and

+f (W )~
1

m
X T (XW{Y ). However, the second component

g(W ) is not differentiable, although it is still convex.

Define QL(W ,D) to be

QL(W ,D)~
1

2m
EY{XDE2

F zSW{D,+f (W )Tz

L

2
EW{DE2

F zlEWE�,
ð11Þ

where D[Rm|L is a given matrix and L is a positive scalar.

QL(W ,D) can be viewed as an approximation of F (W ) around D,

and the approximation is accurate when W is sufficiently close to

D. Although it is still a non-differentiable function of W , there

exists a unique minimizer of QL(W ,D) for a given D, and the

solution can be written down explicitly. Denote the minimizer of

QL(W ,D) for a given D by pL(D). Next we write down an explicit

formula for pL(D).

Given a matrix A[Rn1|n2 of rank r, denote the singular value

decomposition of A by A~USVT , where

U[Rn1|r,V[Rr|n2 ,UT U~I ,VT V~I , and S~diag(s1, . . . ,sr)
with siw0 being singular values. For any tw0, define the

following soft-thresholding operator of matrix A

Dt(A)~UDt(S)VT , ð12Þ

where Dt(S)~diag((s1{t)z,(s2{t)z, . . . ,(sr{t)z) with

(x)z~0 if xv0 and x otherwise. With this definition, it can be

shown that [17]

pL(D)~Dl
L

(Dz
1

L
+f (D)) ð13Þ

Using the above-mentioned notations and definitions, a

Nesterov’s algorithm [28] can be derived to solve the low-rank

regularized linear model (3). The detailed steps are shown in

Algorithm 1.

Algorithm 1. Nesterov’s algorithm for solving (3) with

backtracking Initialize L0,W0[Rm|L. Set D1~W0,t1~1

repeat
Step k, 1) Find the smallest nonnegative integers ik such that

with ~LL~2ik Lk{1

F (p~LL(Dk))ƒQ~LL(p~LL(Dk),Dk):

Step k, 2) Set Lk~2ik Lk{1 and compute

Wk~pLk
(Dk),

tkz1~
1z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z4t2

k

q
2

,

Dkz1~Wkz
tk{1

tkz1

(Wk{Wk{1):

until
Convergence

Low-rank regularized nonlinear model. We first convert

the problem (10) into a more compact form by changing the

optimization variables. Then we derive an algorithm to solve the

problem based on the Nesterov’s method [29,30]. Note that K is

symmetric and positive semidefinite, so is its square root K
1
2.

Denote the i-th column of K
1
2 by k

1
2

i , i.e., K
1
2~(k

1
2

1, . . . ,k
1
2
m). Let

~CC~K
1
2C and write ~CC~(~cc1, . . . ,~ccL): Then W(C) in equation (10)

can be rewritten as a function of ~CC

Y( ~CC)~
1

2m

XL

‘~1

Xm

i~1

y‘i {~ccT
‘ k

1
2
i

� �2

zlE~CCE�

~
1

2m
EY{K

1
2 ~CCE2

F zlE~CCE�,

ð14Þ

where Y~(y1, . . . ,ym)T with yi~(y1
i , . . . ,yL

i )T . Thus finding a

solution Cz of equation (10) is equivalent to identifying,

~CCz~arg min
~CC[Rm|L

Y( ~CC), ð15Þ

Low-Rank for Learning Gene Expression Programs
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followed by setting Cz~K
{1

2 ~CCz where K
{1

2 is the (pseudo) inverse

of K
1
2 when K is (not) invertible.

Similar to the linear case, we first decompose Y( ~CC) into two

parts with f ( ~CC)~
1

2m
EY{K

1
2 ~CCE2

F and g( ~CC)~lE~CCE�. f ( ~CC) is

differentiable and +f ( ~CC)~
1

m
(K

1
2)T (K

1
2 ~CC{Y ).

Define QL( ~CC,D) as the following form,

QL( ~CC,D)~
1

2m
EY{K

1
2DE2

F zS~CC{D,+f ( ~CC)T

z
L

2
E~CC{DE2

F zlE~CCE�,

where D[Rm|L is a given matrix and Lw0.

The unique minimizer of QL( ~CC,D) is denoted by pL(D), and we

apply soft-thresholding operator (12) to give the explicit form of

pL(D),

pL(D)~Dl
L

(Dz
1

L
+f (D)): ð16Þ

With the above-mentioned notations and definitions, we derive

Algorithm 3(9)@ to solve problem (10).

Algorithm 2. Nesterov’s algorithm for solving (10) with

backtracking Initialize L0, ~CC0[Rm|L. Set D1~~CC0,t1~1

repeat
Step k, 1) Find the smallest nonnegative integers ik such that

with ~LL~2ik Lk{1

Y(p~LL(Dk))ƒQ~LL(p~LL(Dk),Dk):

Step k, 2) Set Lk~2ik Lk{1 and compute

~CCk~pLk
(Dk),

tkz1~
1z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z4t2

k

q
2

,

Dkz1~~CCkz
tk{1

tkz1
( ~CCk{~CCk{1):

until
Convergence

Return Cz~K{1
2 ~CCk

Results

Next we test the performance of the low-rank regularization

models (both linear and nonlinear) described above on three real

biological datasets. We will compare the performance of our

models to the Lasso model (2), which imposes a sparsity constraint

within a linear regression framework, and the SiMoNe model [16],

which models the modularity structure with a Gaussian graphical

model framework. In each of the three experiments, we divide the

data into training and test datasets. The models are trained based

on training data, and the performance of the resulting models are

then evaluated based on test data. We use root-mean-square error

(RMSE) to measure the differences between values predicted by

each model and the the values actually observed. The average

RMSE over all target genes measured on the training and test data

will be called training and testing error, respectively. The

regularization parameter l of our models is automatically tuned

through ten-fold cross-validation based only on the training data,

and is set to be the value that gives rise to the best cross-validation

performance.

Yeast gene expression data
We tested our models on a yeast gene expression dataset [31],

which contains mRNA measurements of 2,355 genes of Saccharo-

myces cerevisiae responding to diverse environmental transitions

including temperature shocks, amino acid starvation, hydrogen

peroxide, etc. Overall the dataset contains microarray measure-

ments of yeast genes in 173 environmental transitions (will be

referred to as samples). The dataset was rescaled to make the

expression values of each gene to be mean 0 and variance 1 across

the 173 samples. We used a list of 321 candidate regulators

manually compiled in [15] based on biological annotations

(including transcription factors and signaling molecules) as our

regulator genes. We used this dataset to learn the regulatory

relationship between these 321 regulators and the other 2,034

genes, which will be called targets. We benchmarked the

performance of our and control models using ten-fold cross-

validation. More specially, we randomly partitioned the 173

samples into 10 nonoverlapping subsets. Each model was trained

using nine of the ten subsets, the regularization parameter l in

each model was tuned via cross validation on 10 dimensional

logarithmically spaced vector ranging between 10{3 and 102.

After choosing the lambda, the test performance of the learned

model was then measured using the remaining subset. We used

root-mean-square error (RMSE) to measure the differences

between values predicted by each model and the the values

actually observed. The average RMSE over all target genes

measured on the training and test data will be called training and

testing error, respectively.

The training and test performance of four models - SiMoNe

[16], linear low-rank (3), nonlinear low-rank (10), and Lasso (2), on

the yeast gene expression dataset is summarized in Table 1. The

linear low-rank model (3) reduces training error by 10:5% and

testing error by 6:1% when compared to the Lasso model (2). The

regression-based models, including ours and Lasso, significantly

outperform SiMoNe in both training and test performance. If we

look specifically at the prediction accuracy of each target gene, we

note that 84% of the targets are predicted more accurately by the

linear low-rank model than by Lasso (Figure 1). We used an

ANOVA kernel to train the nonlinear low-rank model [32].

Although the training error of the nonlinear model is 6:9% smaller

than that of the linear low-rank model, the testing performance of

the two models is similar. The optimal rank returned by the linear

model is 78 and the one returned by the nonlinear model is 88,

suggesting the existence of approximately 78–88 regulatory

modules that are active in this dataset.

Human hematopoietic gene expression data
We also tested our models on a human hematopoietic gene

expression dataset [33], which measures mRNA expression values

of human genes during hematopoietic differentiation. The dataset

contains expression profiles of 8,968 genes in 38 hematopoietic
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states with a total of 211 experiment conditions (will also be

referred to as samples). We used a list of 523 candidate regulators

manually complied in [33] based on biological annotations

(including important transcriptional regulators or signalling

molecules previously implicated in hematopoietic differentiation)

as our regulator genes. Among the remaining non-regulator genes,

we removed genes with low variance across the samples, and kept

only the top 1000 genes with highest variance. These 1000 genes

will be called target genes, and our goal is to learn the regulatory

relationship between the 523 regulators and the 1000 target genes.

We rescaled the expression of each gene (both regulators and

targets) to be mean 0 and variance 1 across the samples. Similar to

the yeast dataset, we benchmarked the performance of our and

control models on this dataset using ten-fold cross-validation, and

RMSE was used to measure both training and testing errors.

The training and test performance of four models - SiMoNe

[16], linear low-rank (3), nonlinear low-rank (10), and Lasso (2), on

the human hematopoietic gene expression dataset is summarized

in Table 2. The linear low-rank model (3) reduces training error by

20:0% and testing error by 3:2% when compared to the Lasso

model. Similar to the yeast dataset, the regression-based models

outperform SiMoNe by a large margin. If we look specifically at

the prediction accuracy of each target gene, we find that 70% of

the targets are predicted more accurately by the linear low-rank

model than by Lasso (Figure 2). Similar to the yeast dataset, we

used an ANOVA kernel to train the nonlinear low-rank model.

The training error of the nonlinear model is 5:0% smaller than

that of the linear low-rank model, but their testing performance is

similar. The optimal rank returned by the linear model is 112 and

the one returned by the nonlinear model is 109, suggesting that

approximately 109–112 regulatory modules are active in this

hematopoietic gene expression dataset.

Connectivity map data
The third dataset we have experimented with is the connectivity

map data provided by Lamb et al. [2], which contains gene

expression measurements of human cells responding to diverse

treatments with chemical compounds and genetic reagents. The

connectivity map data contains microarray measurements of

human genes in thousands of profiles (will be referred to as

samples). For regulator genes, we used 978 ‘‘landmark’’ genes

determined by the connectivity map project as the set of genes that

are most predictive of the expression of the other genes (Aravind

Subramanian, personal communication). Among the remaining

non-regulator genes, we used the top 10,000 genes with highest

variances across samples as our target genes. We randomly

selected 1000 samples from this dataset to benchmark the

performance of our and other models (we were unable to use all

samples due to computational constraints.) Our goal is to learn the

regulatory relationship between the 10,000 target genes and the

978 landmark genes based on these 1000 samples.

Figure 1. Comparison of the testing performance of the linear low-rank regularization model vs. Lasso on the yeast gene
expression dataset. Each * indicates one target gene. X-axis represents the test RMSE of the Lasso model, whereas Y-axis represents the test RMSE
of the linear low-rank model. The figure shows that the low-rank model yields lower testing error than Lasso for most target genes.
doi:10.1371/journal.pone.0082146.g001

Table 1. Root-mean-squared error (RMSE) comparison
among different models on the yeast gene expression data.

Model Training error Testing error

SiMoNe — 1.007460.0650

Lasso 0.389760.0045 0.612460.0583

Linear low-rank 0.348860.0014 0.575060.0053

Nonlinear low-rank 0.324960.0063 0.575260.0054

‘‘Lasso’’ represents model (2), ‘‘Linear low-rank’’ represents model (3), and
‘‘Nonlinear low-rank’’ represents model (6) with ANOVA kernel. SiMoNe is the
model described by Chiquet et al. [16]. Both training and testing errors are
measured in terms of RMSE averaged over all target genes. Shown here are
mean 6 standard deviation values of RMSEs in ten different runs.
doi:10.1371/journal.pone.0082146.t001
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We benchmarked the performance of our and control models

using ten-fold cross-validation. More specifically, we randomly

partitioned the samples into ten nonoverlapping subsets. Each

model was trained using nine of the ten subsets, and the test

performance of the learned model was then measured using the

remaining subset. We used root-mean-square error (RMSE) to

measure the differences between values predicted by each model

and the the values actually observed. The average RMSE over all

target genes measured on the training and test data will be called

training and testing error, respectively.

We were unable to obtain SiMoNe results after hours of

running the program, which might be due to the large number of

genes contained in this dataset, and the fact that the inverse

covariance matrix between these genes is too large to be handled

by SiMoNe. So next we will focus on comparing the performance

of our models to Lasso. The performance of the linear low-rank

(3), nonlinear low-rank (10), and Lasso (2), on the connectivity map

data is summarized in Table 3. The nonlinear low-rank model

achieves the lowest testing error in this dataset. The testing

performances of linear low-rank model and Lasso are similar, with

the testing errors of both models 4:31% higher than the nonlinear

low-rank model. If we compare the prediction performance of

each target gene, 88% of the target genes are predicted more

accurately by the nonlinear low-rank model than by Lasso.

Our algorithms were implemented in Matlab and run on the

platform of Intel Xeon E5-4617 - 2.9 GHz 1-Core CPU with

128 GB memory. The CPU times of running our algorithms on

the three datasets are shown in Table 4. The time complexity of

Algorithm 1 and 2 is mainly determined by the singular value

decomposition step. Exact singular value decomposition of a m|n

Figure 2. Comparison of the testing performance of the linear low-rank regularization model vs. Lasso on the human
hematopoietic gene expression dataset. Each * indicates one target gene. X-axis represents the test RMSE of the Lasso model, whereas Y-axis
represents the test RMSE of the linear low-rank model. The figure shows that the low-rank model yields lower testing error than Lasso for most target
genes.
doi:10.1371/journal.pone.0082146.g002

Table 2. Root-mean-squared error (RMSE) comparison
among different models on the human hematopoietic gene
expression data.

Model Training error Testing error

SiMoNe — 0.998760.0400

Lasso 0.234560.0024 0.388160.0265

Linear low-rank 0.187760.0030 0.375860.0265

Nonlinear low-rank 0.178360.0005 0.376760.0265

‘‘Lasso’’ represents model (2), ‘‘Linear low-rank’’ represents model (3), and
‘‘Nonlinear low-rank’’ represents model (6) with ANOVA kernel. SiMoNe is the
model described by Chiquet et al. [16]. Both training and testing errors are
measured in terms of RMSE averaged over all target genes. Shown here are
mean 6 standard deviation values of RMSEs in ten different runs.
doi:10.1371/journal.pone.0082146.t002

Table 3. Root-mean-squared error (RMSE) comparison
among different models on the connectivity map gene
expression data.

Model Training error Testing error

Lasso 0.494360.0008 0.707760.0134

Linear low-rank 0.515760.0004 0.700060.0123

Nonlinear low-rank 0.402560.0005 0.677260.0125

‘‘Lasso’’ represents model (2), ‘‘Linear low-rank’’ represents model (3), and
‘‘Nonlinear low-rank’’ represents model (6) with ANOVA kernel. Both training
and testing errors are measured in terms of RMSE averaged over all target
genes. Shown here are mean 6 standard deviation values of RMSEs in ten
different runs.
doi:10.1371/journal.pone.0082146.t003
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matrix has the time complexity of O(min(m2n,mn2)). In our

algorithms, n corresponds to the number of targets. However, m
corresponds to the number of regulators in the linear model, and

the number of samples in the nonlinear model. So when the

number of samples is smaller than the number of regulators, the

nonlinear model actually runs fasters than the linear model (See

Table 4).

Discussion

Gene expression program learning is an important problem in

both basic research as well as practical and applied settings of

biotechnology development. In this paper, we formulate the gene

expression program learning as a multi-target (more specifically L-

target) regression problem and use Tikhonov regularization to

constrain the space of the L-target mapping. We propose a new

form of regularization that constrains the number of independent

connectivity patterns between regulator genes and target genes.

We use the rank of the connectivity matrix from regulators to

targets to represent the number of independent connectivity

patterns, and approximate the rank of the matrix using its nuclear

norm. The resulting low-rank regularization problem is convex,

and we provide an efficient algorithm to find its globally optimal

solution.

Previously, in gene expression program learning each target

gene is usually treated separately. Because the expression of many

genes are highly correlated, it would be beneficial to learn their

expression regulation jointly instead of separately. However, it was

unclear before on how to model the regulatory relationship from

regulators to target genes jointly such that the resulting model is

both computationally efficient and able to take the constraints

between targets into account. The low-rank regularization

provides an effective and yet computationally efficient framework

for considering all target genes simultaneously. Experiments on

two real gene expression datasets demonstrate that the low-rank

model outperforms the Lasso model, one of the most widely used

regularization method in gene expression program learning, in

terms of prediction accuracy in both datasets.

We showed that the low-rank model can also be generalized to

nonlinear settings, where we constrain the dimension of the

hypothesis space of the L-target regression function. We proved

that the resulting problem is still convex and derived an efficient

algorithm to find its globally optimal solution. We tested the

nonlinear low-rank model on the gene expression datasets. The

nonlinear low-rank model produces better testing performance

than the linear low-rank model in some datasets, but is

comparable to the linear model in other datasets. The lack of

improvement comparing to the linear one in some datasets might

be due to a) the fact that the number of samples used in these two

datasets might be too small to fit a more complex model, and b)

the kernel we have tried (ANOVA, Gaussian, and polynomial)

might not be a good fit for the gene expression program learning.

We expect that the nonlinear model will improve when a larger

number of samples become available. So finding or designing the

right kernel specifically for gene expression program learning will

be the key to improving the nonlinear model.

The two forms of regularization, low-rank and sparsity,

described in this paper are complementary to each other,

considering two different aspects of gene regulation. A future

direction is to combine these two regularizations into a single

framework to constrain the connectivity matrix to be simulta-

neously sparse and low rank.

Supporting Information

Material S1 For proving Theorems 1 and 2.

(PDF)
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