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Abstract 

Understanding, predicting, and learning from other people’s 
actions are fundamental human social-cognitive skills. Little 
is known about how and when we consider other’s actions 
and outcomes when making our own decisions. We developed 
a novel task to study social influence in decision-making: the 
social multi-armed bandit task. This task assesses how people 
learn policies for optimal choices based on their own 
outcomes and another player's (observed) outcomes. The 
majority of participants integrated information gained through 
observation of their partner similarly as information gained 
through their own actions. This lead to a suboptimal decision-
making strategy. Interestingly, event-related potentials time-
locked to stimulus onset qualitatively similar but the 
amplitudes are attenuated in the solo compared to the dyadic 
version. This might indicate that arousal and attention after 
receiving a reward are sustained when a second agent is 
present but not when playing alone. 

Keywords: Decision-Making; Uncertainty; Multi-Armed 
Bandit; Social Interaction; Dyadic EEG 

Introduction 
For successful social interaction it is useful to represent and 
predict other people’s actions and the consequences of those 
actions. Joint action is defined as the ability to coordinate 
one’s actions with others to achieve a goal (Vesper et al., 
2016). Although it occurs in many sorts of human activities, 
it can be conveniently studied using the social or two-player 
versions of standardized cognitive tasks. Such tasks 
modified for social interactions can reveal complex dynamic 
in people's use of social information for judgments and 
action-planning. 

For example, the joint Simon task (Sebanz, Knoblich, & 
Prinz, 2003) is a modified, two-player version of the 
standard Simon task that measures stimulus-response 
compatibility. Participants learn to respond with left or right 
button press for visual or auditory cues and show a longer 
reaction times are shorter when the cue location is 
compatible with the response hand, than when the cue 
occurs contralaterally. This Simon effect (Simon, 1990), 
interestingly, remains in the two-player version in which 
each participant is only responsible for one stimulus-
response pair (Sebanz et al., 2003). This can be interpreted 
as evidence that human action planning is automatic and is 
elicited by processing another person's actions as well as 
planning and executing our own actions. The propensity to 
develop this ability might have evolved to enable efficient  

social learning (Kilner, Friston, & Frith, 2007; Liao, Acar, 
Makeig, & Deák, 2015). Particularly under conditions of 
uncertainty, the capacity to observe, encode, and imitate 
others' actions can be beneficial (Laland, 2004), permitting a 
sort of vicarious embodied modeling. 

However, it is not always adaptive to generalize from 
other’s actions and outcomes to one’s own. The findings 
from joint Simon and other tasks have shown that 
representation of other’s internal states occurs even when it 
is unnecessary, or disadvantageous, for optimal task 
completion. To study the extent to which people use 
observation of other’s actions and outcomes to influence 
their own choices, even when it is unfavorable, we 
developed a novel task: the social multi-armed bandit task. 
The standard multi-armed bandit is a single-player paradigm 
to study decision-making under uncertainty. Named after 
the ‘one-armed bandit’ slot machines of casinos that have a 
fixed reward probability, multi-armed bandit tasks present 
several different options (‘arms’) of different, unknown 
reward probabilities. They manifest a classic exploitation/ 
exploration problem (Cohen, McClure, & Yu; Gittins, 
Glazebrook, & Weber, 2011). Commonly, after an initial 
phase of exploration players employ one of two strategies: 
maximizing or matching. Maximizing, or consistently 
choosing the most-rewarding arm (based on prior 
observations), is the optimal strategy for problems with 
static reward probabilities. By contrast, matching, or 
choosing each arm in proportion to its relative reward 
probability, is suboptimal but nevertheless seen in humans 
and other animals (Sugrue, Corrado, & Newsome, 2004).  

Notably, although a great deal of problem solving and 
prediction updating occurs in social or joint tasks, only a 
few studies have included multiple decision-makers in 
social versions of prediction tasks such as multi-armed 
bandit, and even these have not investigated effects of social 
interaction or observation on decisions (Liu & Zhao, 2010). 

In addition to studying behavior, we recorded participants' 
electroencephalogram (EEG) and pupil size as physiological 
metrics of cortical and neuromodulatory concomitants of 
social decision-making. These bio-sensing methods may 
provide insights into the underlying neural dynamics of 
decision-making with high temporal resolution. Both of 
these physiological measures are common in affective 
computing (Partala, 2003) to measure valence and arousal, 
and cortical changes (Fink, 2009). 



The present study 
The present study aims to address a “key question of today's 
cognitive science: how and to what extent do individuals 
mentally represent their own and others' actions, and how 
do these representations influence, shape, and constrain an 
individual's own behavior when interacting with others?” 
(Dolk et al., 2014).  

To do so, we converted a classic three-armed bandit 
paradigm into a turn taking game. Reward probabilities for 
the three arms were different for each of two participants, 
allowing us to estimate the distinct effects of their own and 
their partner's action and outcome history on their ongoing 
decision-making. We studied three outcome measures:  
(1) decision-making behavior, (2) event-related EEG 
potentials, and (3) pupil dilation. Details are described 
below.  

In the multi-player version, the probabilities remain 
constant for each player, however, they differ between the 
two players (see Table 1). This allows us to examine to what 
extent each participant takes into account their own and 
their partner's choices and outcomes. We expected to 
observe two different core strategies:  

Egocentric strategy: Participants might make their 
decisions only based on their own outcome history and 
ignore information from their partner's outcomes. Players 
using this strategy should converge on choosing their own 
highest gaining arm (90% reward probability) most of the 
time.  

Joint strategy: Participants might take into account 
information from their partner's outcomes to the same extent 
as information from their own outcomes. Players using this 
strategy should not converge on choosing one arm, because 
all arms average the same reward probability if both 
participants' outcomes are encoded equally. Alternately, in 
an intermediate strategy, participants might take into 
account their partner's outcomes but weigh them less than 
their own outcomes, and then more slowly converge on their 
own optimal choice. 
 
Table 1: Reward probabilities for the different arms of the 
social multi-armed bandit 
 

 Arm 1 Arm 2 Arm 3 
Player 1 30% 60% 90% 
Player 2 90% 60% 30% 

 
 

Experiment 1 

Participants 
Participants were 28 female undergraduate students (14 
dyads) recruited through the university’s SONA system. 
They received course credit for participation in addition to a 
small monetary reward based on performance in the social 
multi-armed bandit (0.05 USD per reward).  

One pair was excluded from EEG and eye-tracking 
analysis due to recording failure; another pair was excluded 
because one player chose the same arm on every trial. This 
left behavioral data from 26 participants, EEG data from 12 
participants, and pupillometry data from 12 participants. 

Experimental Design 
The (social) multi-armed bandit was described to 
participants as ‘the ice-fishing game’ and presented on a 
touchscreen. They were shown three ‘ice holes’ (arms) 
distinguished by shape, at approximately equal distances 
from each other (see Figure 2). The arms were associated 
with discrete and constant reward probabilities (30%, 60%, 
and 90%) unknown to the players. Upon choosing and 
touching a hole, participants heard and saw differential 
reward feedback. Participants had 100 trials each (200 total) 
to catch as many fish as possible, choosing one ice hole per 
trial. Each participant played the game once on their own 
(solo version) and once as a turn-taking game (dyadic 
version). For each dyad of participants, EEG and 
pupillometry data were collected from one player, and 
behavioral data were recorded from both. 
 

 

 
Figure 1: The game screen when a player has won a reward 
(green fish). The display shows the two players' 
accumulated rewards as well as which player's turn it is. 

 

 
Figure 2: Two participants playing the social multi-armed 
bandit. The player on the left is wearing an Emotiv EEG 
headset and PupilLabs eye-tracker. 



Data Acquisition 
The game was presented on a table-mounted capacitive 
touch screen monitor (diagonal: 66cm). During the dyadic 
turn-taking game the participants sat facing each other 
(figure 2). An Emotiv headset (www.emotiv.com) recorded 
14-channel EEG data, and a PupilLabs headset (pupil-
labs.com/pupil/) captured pupillometry data. These sensors 
were chosen for participants' comfort and natural movement 
during a social interaction. EEG was sampled at 128 Hz, 
and the eye-facing camera sampled at 120 Hz. PupilLabs 
Software was used to detect the pupil in each frame and 
calculate its diameter. Lab Streaming Layer (LSL) (Kothe, 
2015) was used to synchronize all of the data streams (i.e. 
EEG, eye-gaze video, and game events) by time stamping 
each event and each sample.  

Synchronized EEG and pupillometry data were locked to 
participants' game choices in LSL-created XDF files so that 
behavioral and physiological data were epoched to trials. On 
each turn the 2 sec of data following the outcome stimulus 
presentation (win/loss) was used for further analysis. 

Data Analysis 
The first 20 trials of each game for each player were 
considered training trials, to teach the participant the game. 
These trials were not considered in the current analyses.  

 
Decision-Making Behavior Participants' ice hole choice 
patterns were analyzed via Kullback-Leibler divergence 
(KLD), a measure of relative entropy.  
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This quantifies the divergence of one probability 
distribution to another one. In our experiment we use the 
KLD to measure the difference between a participant's 
observed choices, and expected choices according to 
potential strategies. We hypothesize the employment of four 
different strategies with the expected choice probabilities as 
summarized in Table 2. For the egocentric-maximizing 
strategy, the player chooses the highest gaining arm (arm 3) 
at every trial. In the egocentric-matching strategy, each arm 
is chosen in proportion to their reward probability. The 
joint-equal strategy assumes that the outcomes of both 
players are weighted equally, resulting in an apparent 
reward probability of 60% for each arm. In that case each 
arm is chosen ⅓ of the trials. The joint-social strategy 
assumes a social value of the arm that has an equal, 
relatively high reward probability for both of the players 
(arm 2) and is thus chosen most often.  

KLD of observed vs. expected probability distribution for 
each of the hypothesized strategies was calculated and 
compared to classify each participant's preferred strategy. 
As the joint strategy is not applicable in the single-player 
version, only the two egocentric strategies were compared. 
 
 

 
Table 2: Expected choice probabilities for player 1 for each 
of the four hypothesized strategies. Reward probabilities for  
 

Strategy of player 1 Arm 1 Arm 2 Arm 3 

Ego- 
centric 

maximizing 0% 0% 100% 

matching 16.7% 33.3% 50% 

Joint 

equal 33.3% 33.3% 33.3% 

social 0% 100% 0% 

 
 
 

Game Data The game data was an 8 x 200 matrix which 
included the turn number, player number, reward state, 
choice, time taken, player 1 reward and player 2 reward. In 
the single player case the last value was set as -1 and 
disregarded. 
 
EEG Data The EEG data was cleaned using EEGLAB’s 
Artifact Subspace Reconstruction (ASR) noise removal 
pipeline (Delorme, 2004; Mullen, 2013). Region of interest 
was the occipital cortex (channel O1). 

 
Eye-Tracking Data The current analyses only consider a 
single channel containing pupil diameter information. 
Samples with abnormally high or zero pupil diameter values 
(due to detection errors or eye blinks) were ignored and data 
was interpolated by adjacent values. 

After interpolating, the data was normalized to range 
between 0 and 1 to account for discrepancies in pupil 
diameter across subjects. 
 
Further Analysis Epochs for each trial containing the 
response and 2 seconds of subsequent data (including the 
reward outcome). Our goal was to illustrate the pupil 
dilation (indicating autonomic response) and cortical 
dynamics (focusing on updating responses) upon perceiving 
a reward stimulus after choosing a specific action. 

 Pupil and EEG data for each type of choice and reward 
combination were then averaged across all subjects. For 
EEG data, each channel was averaged independently, to 
facilitate Event Related Potential (ERP) analyses. The 0.2 
sec of data before the event were used as baseline for the 
normed succeeding EEG data, to control variance in EEG 
amplitude across subjects. 
 
 
 
 



Results 
Decision-Making Behavior Over the course of the game, 
participants received information through trial and error and 
could learn that different arms were associated with 
different probabilities of receiving a reward. In the solo 
version, participants chose the highest gaining arm more 
often than the other two. Table 3 summarizes the decision-
making behavior via mean total scores and mean number of 
choices for each arm. Participants distributed their choices 
more equally and scored lower during the dyadic game.  

 
Table 3: Means (SD) of each decision type in the single- and 
multi-player games. All measures differ significantly 
between single and multi-player version (p<0.001). 
 

 
Reward 

probability 
30% 60% 90% 

No. of 
choices 
by game 
version 

single 7 
(5.0) 

17 
(10.3) 

56 
(13.4) 

multi 
18 

(9.1) 
32 

(15.1) 
30 

(19.5) 

 
Mean total score in the single-player game was 76 (SD: 7.0) 
compared to 63 (SD: 10.1) in the multi-player game 
(p<0.001).  

For each version, participants were categorized based on 
the strategy employed. For each strategy, KLD was 
calculated between the observed and the expected choices. 
70% (18/26) of participants employed a maximizing 
strategy in the solo version. In the dyadic version, strategies 
were more varied (see Figure 3). Most common was the 
joint-social strategy, used by 32% (9/28). There was no 
correlation between individuals' strategies in the solo and 
dyadic versions. 

Strategy use affected overall scores in the dyadic version 
(F=6.083, p=0.004) and had a marginally significant effect 
in the solo version (p=0.073). 

 
Brain Dynamics ERP locked to outcome stimuli for each of 
the differentially rewarding arms were compared between 
three conditions: (1) solo: a player’s responses in the solo 
version of the game, (2) dyad (self): a player’s responses to 
an outcome of their own action, and (3) dyad (other): a 
player’s responses to an outcome of the partner’s action. 

Figure 4 illustrates the findings. The ERP displayed a 
prominent positive potential around 300ms (P3) after dyadic 
self-reward events in the dyadic version, but not for 
partner’s reward or for reward in the solo game. We also 
note that the ERP response for partner’s rewards as well as 
for own-reward in the solo game is attenuated but follows 
the same profile as that of the self-reward condition. 
 
 

 
Figure 3: Distribution of strategies being employed by the 
participants in the single- and multi-player game, as 
determined via KLD. 
 

 
Figure 4: ERP after reward at arm 3 (90%/30%) averaged 
across participants from channel. Dyad (Self): player 
receives reward in dyadic version, Dyad (Other): player 
observes partner receive a reward in dyadic version, Solo: 
player receives a reward in solo version. 
 

 
Figure 5: Pupillometry data after reward at arm 3 
(90%/30%) averaged across participants from channel. 
Dyad (Self): player receives reward in dyadic version, Dyad 
(Other): player observes partner receive a reward in dyadic 
version, Solo: player receives a reward in solo version. 



Pupillometry Pupil dilation significantly increases initially 
(Figure 5) when a reward is obtained for the player 
themselves when playing the social multi-armed bandit, but 
not in the single-player version and not when observing the 
partner receive a reward. After this initial response, we see 
that after 0.8 seconds of the reward onset, pupil diameter 
increases for the Dyad (Other) condition whereas it 
decreases for the self-reward one. 
 
Discussion 
The Social Multi-Armed Bandit revealed that adults take 
into account information from others’ when making 
decisions. In consistency with previous studies, the majority 
of participants employed maximizing strategy in the solo 
version of the task. With this novel paradigm we found that 
this is not the case when there is a second player present, 
and when the reward probabilities for the arms are not the 
same for the two players. Instead, more than half of the 
participants employed a ‘joint’-strategy, in which the 
actions and outcomes from the other player are integrated 
with their own when making decisions. One explanation for 
this phenomenon is a high prior belief of the same 
underlying probability structure for both players. This is 
likely the case because the visual representation remains 
constant throughout the game aside from updating the score 
count and the display whose turn it currently is. This issue is 
addressed in Experiment 2. 

The ERP time-locked to stimulus onset showed a 
qualitatively similar pattern after receiving a reward at arm 
3 (90%/30% reward probability) for the three conditions 
analyzed. However, the amplitude is highest when receiving 
a reward in the dyadic version, and attenuated when 
observing the partner receive a reward. When receiving a 
reward in the solo version of the game, the amplitude is also 
attenuated in comparison to receive a reward in the presence 
of a second player. We believe that this is due to the higher 
stakes and reward scenario attached with the dyadic version 
of the game. 

Interestingly, pupil dilation increases drastically at about 
0.6 seconds after stimulus onset when receiving a reward in 
the dyadic version of the game. In contrast, pupil dilation 
after observing the partner receive a reward has a longer 
latency of about 0.8 second. This likely reflects differential 
activation of the parasympathetic nervous system (PNS) for 
self/other reward scenarios. 
 

Experiment 2 
Participants 
Participants were 32 undergraduate students (16 dyads, 10 
female-female, 4female-male, 2 male-male) recruited 
through the university’s SONA system. They received 
course credit for participation in addition to a small 
monetary reward based on performance in the social multi-
armed bandit (0.05 USD per reward). 
  
 

Experimental Design 
The experimental design of Experiment 2, is very similar to 
experiment 1. The modifications of the experiment are: 

(1) Whereas in experiment 1, one person in each dyad 
played the solo version of the game before the dyadic 
version and the other person played in the reverse order, in 
experiment 2 both played the solo version either before or 
after the dyadic version. In other words, game order was 
randomly assigned by dyad. This ensured that the game 
process was not driven by prior knowledge of only one of 
the players.  

(2) To reduce the prior belief of a constant underlying 
reward structure of the game, we changed the background 
color of the game after each turn, such that there was a 
distinct visual cue to signal each player's turns.  

(3) EEG data was recorded from both participants in 
Experiment 2 (vs. only one participant per dyad in Exp. 1). 
Pupillometry data was not recorded. 
 
Data Acquisition 
See Experiment 1. 
 
Data Analysis 
As in Experiment 1, the first 20 trials were excluded from 
analysis. 
 
Decision-making behavior  
The analysis performed in Experiment 1 is based upon the 
assumption that participants make use of particular 
strategies. In this experiment, a different type of analysis 
was performed, considering choice behavior ‘bottom-up’ 
without assumptions of specific strategies. 
Participants’ choices were analyzed via the Jensen-Shannon 
Divergence (JSD). The JSD is a distance metric between 
two probability distributions and based on the KLD: 
 

𝐷!" 𝑝, 𝑞 =    !
!
𝐷!" 𝑝, 𝑥 +   !

!
𝐷!" 𝑞, 𝑥  

 
with    𝑥 = (𝑝 + 𝑞)/2 
 
The JSD between the relative choice distribution of the last 
80 trials of the participants’ empirical behavior and the 
relative choice distribution if all choices were made towards 
the highest gaining arms (=(0,0,1), maximizing strategy) 
was used to analyze the data. Hence, the decision-making 
behavior for each participant could be characterized by their 
JS divergence in the solo and the dyadic version. As 
reference, the JS divergence of relative choice distribution 
between matching behavior (0.17, 0.33, 0.5) and 
maximizing (0,0,1) is 0.31. This value was used to further 
cluster participants into ‘learners’ (JSD < 0.31) and ‘non-
learners’ (JSD ≥ 0.31).  
 
 
 
 



Results 
Decision-Making Behavior Participants could be 
categorized into four groups, depending on if they learned 
which option was the highest gaining in the solo and/or 
dyadic version of the game. 50% (16/32) of participants 
were grouped into ‘learners’ in the solo version, but into 
‘non-learners’ in the dyadic version. As shown in Figure 6, 
in the solo version, they choose the 90% reward arm 
significantly more often than the other two arms (F = 179.1, 
p < 0.0005) and significantly more often than in the dyadic 
version (F = 59.7, p < 0.0005). 22% (7/32) of participants 
were clustered into ‘learners’ in both versions of the game, 
and 19% (6/32) were clustered into ‘non-learners’ in both 
versions of the game. 9% (3/32) were clustered into 
‘learners’ in the dyadic version of the game, but not in the 
solo version. 
 

 
 
Figure 6: Choice behavior of 50% of participants who 
learned which arm has the highest reward probability in the 
solo but not the dyadic version of the multi-armed bandit. 
 
 

 
Figure 7: ERP after reward at arm 3 (90%/30%) averaged 
across participants from channel. Dyad (Self): player 
receives reward in dyadic version, Dyad (Other): player 
observes partner receive a reward in dyadic version, Solo: 
player receives a reward in solo version. 
 

Brain Dynamics ERPs were examined at channel O1 of 
participants who chose the highest gaining arm most of the 
time in the solo version, but not in the dyadic version 
(Figure 7). We observed a high increase in amplitude for the 
Dyad (Self) condition. In comparison, there was a negative 
deflection in ERP for the Dyad (Other) and Solo condition.   
 
Discussion 
Even when the prior belief of a common underlying reward 
structure was decreased, half of the participants integrated 
information gained through observation of their partner 
similarly as information gained through their own actions.  
In Experiment 2, our goal was to combine the subjects’ 
decision-making behavior with their physiology. Similarly 
as in Experiment 1, the ERP time locked to stimulus onset 
when receiving a reward at arm 3 showed a high increase in 
amplitude for the Dyad (Self) condition. In comparison, 
there was a negative deflection in ERP for the Dyad (Other) 
and Solo condition.  We consider this a good starting point 
to move towards extracting more high-level features such as 
EEG power spectrum density, mutual information and pupil 
diameter-based fixations and saccades in the future. 
 

General Discussion 
We developed a Social Multi-Armed Bandit task to examine 
the influence of social interaction on decision-making. We 
found that while some individuals do figure out that the 
other player’s information does not apply to them, the 
majority of participants converged to a suboptimal decision-
making strategy. We termed this strategy ‘joint’ as it most 
likely emerges through averaging the reward probabilities 
for both players. Measurement of electrophysiology showed 
a distinct P3 when the player receives a reward in the dyadic 
version of the multi-armed bandit but not the solo version. 
P3 is thought to emerge through stimulus-driven ‘top-down’ 
processes when the participant pays focused attention to a 
task. The distinct presence of the P3 in the dyadic task 
might thus hint towards heightened attention, particularly 
towards own rewards, in the presence of another player. 
Interestingly, the pupillometry data revealed a similar 
pattern as the ERP.  

This task has considerable possibilities for further studies 
of social interaction. Next steps include a similar experiment 
with participants are previously acquainted with each other, 
e.g. friends, and children with their parents. It is likely that 
having a prior relationship with the other partner will alter 
the joint strategy for one or both partners. It would also be 
interesting to test how an asymmetric relationship (e.g., 
parent-child) would influence decision-making strategies, 
compared to a more symmetric relationship.  It is possible 
that less-experienced participants (e.g., children) are more 
likely to follow, or match, the behavior of a ‘reliable’ 
person, as is the case in imitation (Poulin-Dubois, Brooker, 
& Polonia, 2011). Lastly, this task might give interesting 
insights into decision-making processes of neuro-divergent 
people, particularly those with potential differences in social 
behaviors (Montague, 2018). 
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