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Microbiome Engineering: Synthetic Biology of
Plant-Associated Microbiomes in
Sustainable Agriculture
Jing Ke,1,6 Bing Wang,1,6 and Yasuo Yoshikuni1,2,3,4,5,*
Highlights
Mutualistic microbes associated with
plants have enormous potential for eco-
nomical and sustainable agriculture.

There are two approaches to plant
microbiome engineering: the bottom-up
approach that involves isolating, engi-
neering, and reintroducing specific mi-
crobes, and the top-down approach
that involves synthetic ecology, using
horizontal gene transfer to a broad
range of hosts in situ and then phenotyp-
ing the microbiome.

Recent advances in genome engineering
To support an ever-increasing population, modern agriculture faces numerous
challenges that pose major threats to global food and energy security. Plant-
associated microbes, with their many plant growth-promoting (PGP) traits,
have enormous potential in helping to solve these challenges. However, the
results of their use in agriculture have been variable, probably because of poor
colonization. Phytomicrobiome engineering is an emerging field of synthetic
biology that may offer ways to alleviate this limitation. This review highlights re-
cent advances in both bottom-up and top-down approaches to engineering
non-model bacteria andmicrobiomes to promote beneficial plant–microbe inter-
actions, as well as advances in strategies to evaluate these interactions.
Biosafety, biosecurity, and biocontainment strategies to address the environ-
mental concerns associated with field use of synthetic microbes are also
discussed.
tools, meta-omic tools, computational
tools, and genome-wide functional ge-
nomics can improve our ability to engi-
neer microbes for biocontrol,
biofertilization, and biostimulation, as
well as enhanced crop productivity and
yield.

Various devices can facilitate the evalua-
tion of genetically modified microbes be-
fore field studies.

Robust biosafety, biosecurity, and bio-
containment strategies need to be devel-
oped for use of genetically modified
microbes in the environment.
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Phytomicrobiome Engineering for Sustainable Agriculture
The United Nations estimates world population will be 9.8 billion people by 2050 (https://
population.un.org/wpp/). Agricultural productivity must increase by an estimated 70% tomeet in-
creasing demand for food, feed, fiber, and bioenergy (Global Agricultural Productivity Initiative:
https://globalagriculturalproductivity.org/). Because arable acreage is unlikely to grow [1], meet-
ing this demand requires achieving higher yields, currently attempted using artificial fertilizers and
pesticides whose manufacture and use are not sustainable. Synthetic nitrogen (N) fertilizer pro-
duction is energy-intensive [2]. Phosphorous (P) and potassium (K) fertilizers are mainly produced
from finite mined resources likely to be depleted within 100 years. Pesticides with carcinogenic,
developmental, and environmental risks are restricted [3,4]. More sustainable strategies to
achieve ever-higher crop yield are urgently needed.

Plant-associatedmicrobes harbor enormous potential to provide economical and sustainable so-
lutions to current agricultural challenges. Although plants provide diverse ecological niches for mi-
crobes [5,6], microbes provide plant growth-promoting (PGP) traits (see Glossary) for plants
[7]. Many PGP microbes have been isolated, and some are widely accepted as biofertilizers,
biostimulants, and biocontrol agents (www.cropscience.bayer.com/innovations/agriculture-
biologicals/a/hidden-helpers-below-ground). However, applying PGPmicrobes to fields for com-
mercial adoption has had limited success [8–12]. This is likely because the new microbes are ex-
cluded by the more-resilient existing microbial communities [13], whose composition has been
shaped over time through complex multilateral interactions with the environment [14–20]. Finding
new microorganisms that can sustainably support plant development, nutrition, fitness, disease
control, and productivity in dynamic and stressful environments therefore depends on developing
strategies to manage phytomicrobiomes [5,15,21–24].
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Meta-omic studies and computational tools offer researchers many ways to increase our under-
standing of interactions among phytomicrobiomes. Knowledge derived from these studies may
provide strategies for using PGP microbes in fields [25]. However, such strategies will likely
only be effective under limited conditions because phytomicrobiomes are extremely complex,
heterogeneous, and dynamic systems. To address these limitations, microbiome engineering
based on synthetic biology is increasingly recognized as a way to give host plants PGP advan-
tages [26]. This approach allows laboratory selection of microbes according to their ability to
colonize plants, specifically on the basis of how well they can deliver PGP advantages.
Researchers could potentially deliver these microbes to specific plant species and locations
(e.g., roots, leaves) at different growth and developmental stages under various environmental
conditions. In addition, diverse PGP traits could be consolidated in the engineered microbiomes.

The use of genetically modified microorganisms (GMMs) is strictly regulated. However, since the
first field trial for evaluating genetically modified Pseudomonas syringae, which was carried out on
University of California experimental plots in 1987, academia and industry have investigated
GMMs for nearly three decades without notable accidents and/or environmental concerns
[10–12,27,28], suggesting that GMMs might be safely used under current regulations. These
successes are now motivating further exploration of GMM use directly in the environment, and
some US agencies have initiated research programs to develop tools and methodologies to con-
trol, counter, and even reverse GMM effects. Several companies are also investigating the use of
GMMs to improve human health and agricultural sustainability, as well as related biocontainment
strategies, as a core business model (e.g., Synlogic, Pivot Bio, JOYN Bio, NOVOME Biotechnol-
ogies, 64-X). In the near future, these effortsmay provemicrobiome engineering to be a safe strat-
egy to increase sustainability in agriculture. Accordingly, we review here recent advances in
synthetic biology and strain engineering to make microbiome engineering more amenable to ag-
ricultural applications, and discuss ways to mitigate environmental impacts (Figure 1).

Engineering Approaches for Phytomicrobiomes
Phytomicrobiomes can be engineered bottom-up or top-down, as illustrated in Figure 2. In the
bottom-up approach, microbes associated with particular plant species, strains, or organs are
isolated from environmental microbiomes [29,30]. After being genetically engineered to carry
desired traits, these core microbes are reassembled as synthetic microbial communities
(SynComs) [31]. Plants are then inoculated with the engineered strains, which can robustly
recolonize their hosts. In the top-down approach, horizontal gene transfer (HGT) is used to
introduce desired traits into a broad range of hosts in situ. One top-down strategy is to incorpo-
rate mobile genetic elements (MGEs), which transfer and integrate exogenous genes into a
random subpopulation of microbiomes to allow holistic study of PGP traits. Another top-down
strategy is to develop bacteriophage (phage) systems to engineer or eliminate particular species
within populations, which allows their roles to be studied. In this section we discuss both the
bottom-up and top-down approaches (Figure 2).

Bottom-Up Approach
Most synthetic biology efforts focus on established model microbes such as Escherichia coli. To
discover more potentially novel microbial functions, non-model microbes could be directly
engineered, but this is challenging because organism-specific nuances hinder the use of universal
genetic tools. Use of broad host-range (BHR) plasmids is one strategy for engineering non-model
microbes [32]. For example, BHR plasmids were used to study microbe–microbe interactions
mediated by synthetic quorum-sensing circuits [33,34] and to elucidate the function of secondary
metabolite biosynthetic gene clusters (BGCs) providing plant-benefiting traits [35,36].
However, although BHR plasmids are versatile, selective pressure is necessary to maintain them.
Trends in Biotechnology, March 2021, Vol. 39, No. 3 245



Glossary
Biosynthetic gene cluster (BGC): a
set of functionally related genes
clustered near to each other that code
for a specialized metabolite. Typically,
one BGC is involved in production of a
single compound or several similar
compounds.
Clustered regularly interspaced
short palindromic repeats
(CRISPR): a family of DNA sequences
in a prokaryote genome. These
sequences, derived from DNA
fragments of bacteriophages that had
previously infected the prokaryote, are
used to detect DNA from similar
bacteriophages during subsequent
infections.
Conjugation: a type of horizontal gene
transfer between bacterial cells in which
genetic material (such as a mobile
plasmid) in the donor cell is transferred to
the recipient cell by direct cell-to-cell
contact.
Cre recombinase: a tyrosine integrase
derived from P1 bacteriophage that
catalyzes site-specific recombination
between two DNA recognition sites (loxP
sites).
Functional genomics: a field of
molecular biology focused on
understanding the complex relationship
between genotype and phenotype on a
genome-wide scale by investigating a
range of processes such as
transcription, translation, and epigenetic
regulation.
Genetic/genome engineering:
genetic engineering involves the
manipulation of an organism’s genes
using recombinant DNA technologies.
Genome engineering is a type of genetic
engineering in which DNA is inserted,
deleted, modified, or replaced in the
genome of an organism.
Heterologous expression:
recombinant DNA technology-
supported expression of a gene or gene
cluster in a host organism that does not
naturally have that gene or gene cluster.
Horizontal gene transfer (HGT):
delivery of genetic material between
organisms in ways other than 'vertical'
transmission of DNA from parent to
offspring.
Landing pad (LP): a system that uses
synthetic DNA components to facilitate
gene integration.
loxP sites: consist of two 13 bp
palindromic sequences that flank an
8 bp spacer region. The products of
Cre-mediated recombination at loxP
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Figure 1. Overview of Synthetic Biology Enabled Microbiome Engineering in Sustainable Agriculture. Plants are
associated with diverse microbes that have a range of capabilities. Some microbes can provide plant growth-promoting
(PGP) advantages for their host plants; others can robustly colonize them. Both groups are important to collect in the first
step. The first group provides a source of PGP genes and pathways, as well as sensors and switches to control gene
expression. The second group may provide ideal chassis to deliver engineered PGP traits to host plants. Bottom-up and
top-down genetic/genome engineering approaches and tools that facilitate the integration of PGP genes and pathways
into rhizobacteria are discussed in the section on Engineering Approaches for Phytomicrobiomes. Types of PGP traits
(biocontrol, biofertilization, and biostimulation), as well as devices combined with meta-omic strategies to study the
efficacy of genetically modified microorganisms (GMMs) with engineered PGP traits, are discussed in the section on
Applications of Microbiome Engineering for Plant Growth Promotion. Strategies to safeguard GMMs for field studies and
applications are covered in the section on Biosafety, Biosecurity, and Biocontainment.
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Microbiome engineering, conversely, requires genome-level engineering to stably maintain PGP
traits. Fortunately, the ability to engineer non-model microbes has greatly improved. Figure 3
shows BHR genome engineering strategies that are useful for non-model microbes, including
phage integrases, integrative and conjugative elements (ICEs), chassis-independent
recombinase-assisted genome engineering (CRAGE), and others [37]. All these systems allow
single-step integration of large DNA constructs >50 kb in length, and therefore permit stacking
of multiple PGP traits. System selection may depend on the target bacterial phyla. The phage
integrase, ICE, and CRAGE systems are more commonly used to engineer Actinobacteria,
Firmicutes, and Proteobacteria, respectively.

Phage Integrase System
Phage integrases catalyze efficient recombination between phage and host attachment sites
(e.g., attP–attB) [38]. These systems offer versatile and efficient genome engineering tools
246 Trends in Biotechnology, March 2021, Vol. 39, No. 3
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sites depend on the location and relative
orientation of the loxP sites. Two
separate DNA species both containing
loxP sites can undergo fusion as the
result of Cre-mediated recombination.
Microbiome engineering in situ:
allows genetic payloads to be delivered
to different species in a microbiome by
synthetically modified phages and
conjugative donors rather than by stable
integration of a specific microbe.
Mobile genetic element (MGE): a
type of genetic material found in all
organisms that can move around within
a genome or be transferred from one
species or replicon to another.
Phytomicrobiome: microorganisms
(including bacteria, fungi, viruses,
protozoa, and Archaea) that are
associated with a plant host. These
microorganisms live on or inside nearly
every part of the host.
Plant growth-promoting (PGP)
traits: distinctive activities of some
plant-associated microbes that increase
host productivity or induce host
resistance to pathogens or insects. PGP
effects can be categorized as biocontrol,
biofertilization, and biostimulation.
Synthetic biology: a field of biological
engineering that aims to design,
construct, or modify biological parts and
modules (including genes, enzymes,
pathways, and organisms) for new
abilities to solve problems in medicine,
manufacturing, and agriculture.
Synthetic circuit: a modular design of
a combination of DNA components that
can include biosensors, inducible
promoters, operators, and other
elements. Resembling electronic
circuits, synthetic circuits enable tunable
expression of gene cluster pathways,
and gene transcription and translation in
response to environmental stimuli.
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Figure 2. Approaches for Genetic/Genome Engineering of Phytomicrobiomes. There are two approaches fo
genetic/genome engineering of phytomicrobiomes. The bottom-up approach isolates plant-associated microbes and
modifies individual strains for desired traits, then inoculates plants with the modified strains. The top-down approach use
horizontal gene transfer to introduce traits into a broad range of hosts in situ, and then determines their phenotypes b
using supporting devices and omic technologies.
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Figure 3. Broad Host-Range (BHR) Genome Engineering Strategies. (A) Phage integrase system. Phage integrase
catalyzes recombination between a phage attB site on a plasmid and an attP site in the recipient bacteria [38]. (B) The
integrative and conjugative element (ICE) system. ICEs in the donor chromosome flanked by attR and attL sites are
excised to yield a circular plasmid. This plasmid is conjugally transferred to the ICE-free recipient cells and integrated into
the recipient chromosome at an attB site [56]. (C) The chassis-independent recombinase-assisted genome engineering
(CRAGE) system. A transposon containing a landing pad (LP) is first integrated into the recipient cells. The LP contains a
cre recombinase gene flanked by mutually exclusive lox sites. The genes of interest, flanked by the same lox sites, are
subsequently integrated into the LP on the recipient chromosome, mediated by Cre recombinase [60]. (D) Mini-ICEbs1
system. An integrative plasmid with homology to mini-ICEbs1 containing the desired DNA is transformed into the dono
cell, where it integrates via homogenous recombination into mini-ICEbs1 to generate the donor cell with desired DNA [58]
The ICE donor can transfer desired DNA to undomesticated strains in the environment. (E) The metabolomics alteration o

(Figure legend continued at the bottom of the next page.
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(Figure 3A). The Streptomyces phage πC31 system is widely used for functional characterization
of various secondary metabolite BGCs and is compatible with diverse Actinobacteria species
[39–42]. A phage Bxb1 system and intN2 integrases were used as reliable integration tools for
Pseudomonas putida [43] and human commensal Bacteroides species [44–46], respectively.
These systems require a native attachment site specific to each integrase, but these sites can
be introduced into the host chromosome [47]. With these systems, a vector backbone used
for DNA assembly remains as a scar [38]. Mini-Tn7 is another promising phage transposon-
based genome engineering tool in diverse bacterial species [48–50]. However, the mini-Tn7 sys-
tem can only integrate relatively small constructs [51].

ICE System
ICEs are a diverse group of MGEs that can integrate into a host chromosome via an
integrase and propagate through host replication (Figure 3B). They encode functional conju-
gation systems to mediate their intercellular transfer [52] and autonomous replication [53].
Some ICEs integrate into conserved genes (e.g., prfC, tRNA genes) to increase their host
range, but have evolved a seamless mechanism of integration into the 5′ end of the gene
to prevent disruption [54,55]. Other ICEs are less site-specific (e.g., AT-rich regions),
potentially challenging host fitness by disrupting physiologically important genes [56].
Genes encoding integrases, conjugative machinery, and transposases associated with
MGEs can be identified and incorporated into domesticated mating partners, such as
E. coli and Bacillus subtilis [44,57,58]. ICEs have been identified in diverse bacterial species
[59]. However, their recipients are usually limited, and integration efficiency drops exponen-
tially as DNA construct size increases [58].

CRAGE System
Yoshikuni and colleagues recently developed CRAGE, a technology that enables highly accu-
rate and efficient integration of large, complex biological systems into chromosomes of non-
model bacteria (Figure 3C) [60]. The process begins with integration of a landing pad (LP) con-
taining a phage P1 Cre recombinase flanked by mutually exclusive loxP sites. Constructs
with heterologous genes and pathways are then assembled into accessory vectors. As proof
of concept, the group domesticated 25 diverse γ-Proteobacteria from 11 different genera by
integrating a unified LP that enabled efficient integration of large BGCs. CRAGE substantially
increased successful BGC expression by harnessing the native regulatory and physiological di-
versity of each species. CRAGE was then extended to 40 species, including α-, β-, and γ-
Proteobacteria and several Actinobacteria. CRAGE’s versatility makes it useful for directly en-
gineering PGP traits into plant microbe genomes and for characterizing potential PGP gene
and pathway roles in situ.

Overcoming restriction/modification is a common problem among these three genome engi-
neering systems. Unique restriction/modification systems associated with target bacteria pro-
tect them from foreign DNA, potentially limiting DNA transformation. Riley and colleagues
overcame this limitation by helping foreign DNA to evade the immune system of Clostridium
thermocellum [61]. A methylome study identified multiple restriction/modification systems,
and corresponding DNA methyltransferases were cloned into an E. coli strain to mimic the
C. thermocellum methylome. Plasmids propagated in this strain were efficiently transformed
into C. thermocellum.
gut microbiome in situ conjugation (MAGIC) system. MAGIC is used to transfer replicative or integrative pGT vectors from an
engineered donor strain into amenable recipients in a complex microbiome. Replicative vectors feature a BHR origin of rep-
lication (oriR), whereas integrative vectors contain a transposable Himar cassette and transposase (Tnase) [77]. Abbrevia-
tions: BGC, biosythetic gene cluster; IR, inverted repeat.
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Although these three bottom-up genome engineering systems offer versatile and efficient ways to
engineer rhizobacteria, their throughput is limited – only several dozen microbes can be
engineered at once. In addition, because many thousands of bacterial species associate natively
with plants, the engineered SynComsmay be rapidly diluted by resilient pre-existingmicrobiomes
[62,63]. More knowledge of interactions among engineered microbes, pre-existing microbiomes,
and host plants will be necessary for developing a robust strategy to deliver engineered PGP traits
to host plants.

Top-Down Approach
A new frontier in synthetic biology offers an alternative to the bottom-up approach –microbiome
engineering in situ – to recode the metagenome and build desired synthetic communities in-
stead of only modifying specific microbes (Figure 2). In situ approaches enable the introduction
and/or deletion of target functions into and/or out of native microbial communities with minimal
disruption to context [64].

Using MGEs for In Situ Microbiome Engineering
Bacterial community members undergo abundant HGT [65] mediated through various MGEs,
which can be redesigned as in situ genome engineering tools. In several studies, a conjugal
donor strain transiently introduced into microbiomes efficiently transferred target genes to
diverse microbial species across 11 different phyla in those communities [66,67]. Based on
the ICE from B. subtilis, Brophy and coworkers created a system of miniaturized ICEs (mini-
ICEBs1) that allows heterologous DNA delivery into the chromosomes of a wide range of
non-model Firmicutes collected from both humans and soil, with variable efficiency (10−1 to
10−7 conjugations per donor) (Figure 3D) [58]. They also demonstrated that a B. subtilis
donor system (XPORT) could deliver a 10 kb nitrogen fixation BGC to a synthetically defined
soil microbial consortium in situ, and there was successful transfer to four out of six strains
[58]. Other PGP advantages can also be integrated into phytomicrobiomes and delivered to
targeted plant hosts this way.

Using Phages for In Situ Microbiome Engineering
In addition to MGEs, phages are ideal candidates for transducing DNA fragments because they
can inject their own genomes into host chromosomes [68]. Phages can be repurposed to selec-
tively eliminate specific pathogenic strains from the phytomicrobiome population or to transfer
target PGP genes to them [69–72]. Indeed, the discovery of novel plasmids, transposable ele-
ments, and phages with various host ranges will tremendously advance synthetic biology and
therefore advance more complex in situ manipulations of plant microbial communities
[64,73,74]. In addition, tunable regulatory systems (e.g., promoters) with defined host specificities
will be useful for controlling synthetic circuit activities across diverse plant microbial species
[75,76].

New Approaches for In Situ Microbiome Engineering
Wang and colleagues reported a tool called 'metabolomics alteration of gut microbiome in situ
conjugation' (MAGIC) based on the IncPa family RP4 conjugation system (Figure 3E). MAGIC
delivers a programmed function across a microbial population with high specificity and
efficiency [77]. First applied to the mouse gut, MAGIC rapidly modified the genomes of 297 na-
tive gut bacterial species (an estimated 5% of the microbiome). These genetically modified
strains were isolated and reintroduced into their original community. However, because
transconjugants disappeared from the population within 72 h, the stability of the system
needs to be improved. In addition, donor-strain dosage could be tailored to consider
recipient-specific properties and desired functions [64]. In addition, the isolation of genetically
250 Trends in Biotechnology, March 2021, Vol. 39, No. 3



Trends in Biotechnology
OPEN ACCESS
tractable representatives (such as active recipients that are prone to acquire foreign DNA) from
diverse phytomicrobiomes could expand the repertoire of new microbial chassis for applica-
tions in synthetic biology.

In both bottom-up and top-down approaches, engineered traits may burden metabolism and re-
duce the ability of the host to compete with other microbes. Therefore, careful assessment of
PGP advantages versus potential negative impacts on plant colonization is needed. In the next
section we review PGP advantages and methods to evaluate the effects on plant hosts and on
the colonization efficiency of engineered bacteria.

Applications of Microbiome Engineering for Plant Growth Promotion
Phytomicrobiomes have evolved many traits important for their relationships with plants. Dis-
covering and characterizing those traits will expand the available strategies. Recent advances
in meta-omic and computational tools [78,79] have tremendously improved our understanding
of microbiome diversity, niche-specific distribution, the roles of plant hosts, and the genes
responsible. Genome-wide functional genomics is now a prominent strategy for systematic
exploration and discovery of novel gene functions in microbiomes [80–83]. For instance,
several secondary metabolite BGCs have been identified and some have been functionally
characterized [84–87]. Using this knowledge, researchers can now design microbes that can
improve crop productivity and yield through engineered functions such as biocontrol,
biofertilization, and biostimulation. This section also reviews ways to test engineered functions
before field studies.

Genome-Wide Functional Genomics
Near-term applications for microbiome engineering include genome-wide functional genomics.
For this, transposon mutagenesis followed by sequencing (TnSeq) and clustered regularly
interspaced short palindromic repeats (CRISPR)-based technologies are prominent strate-
gies [82,88]. TnSeq simultaneously measures the phenotypes of many thousands of different
transposon-based loss-of-function mutants grown together [89]. In several studies, coupling
TnSeq with a random DNA barcode for each mutant (RB-TnSeq) helped to assess genome-
wide sequence-to-function relationships for multiple microbes under diverse conditions [80,90].
This approach identified 115 genes in a model root-colonizing Pseudomonas simiae that are re-
quired for maximal competitive colonization of plant roots [81]. Another genome-wide genotype–
phenotype mapping strategy is based on CRISPR. CRISPR-enabled trackable genome
engineering (CREATE) was developed to link each guide RNA with homologous repair cassettes
that also serve as barcodes to track genotype–phenotype relationships in E. coli and yeast [82].
More recently, Lian and coworkers established a multifunctional genome-wide CRISPR system
to trifunctionally perturb the expression of genes in yeast by combining activation, interference,
and deletion [91].

Biocontrol
Engineered bacteria might be useful to diagnose plant physiological changes caused by
biotic stresses and to deliver desired traits [92]. Using RNA interference (RNAi), a GMM pro-
duced double-stranded RNA to silence targeted genes of a pathogen [93]. These GMMs are
often used to study traits that affect specific members or a whole community predictably
[94]. Burkholderia ambifaria is a plant pathogen, but also has biocontrolling activity via
cepacin A production. In several studies, deletion of the virulence factor made B. ambifaria
an effective biocontrol agent [95,96]. Thaxtomin, produced by the plant pathogen
Streptomyces scabiei, is the main active ingredient of a commercial herbicide. In one
study, expression of a thaxtomin biosynthesis pathway in S. albus J1074 increased
Trends in Biotechnology, March 2021, Vol. 39, No. 3 251
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thaxtomin A yield 10-fold over wild-type yield [97]. Greunke and coworkers heterologously
expressed an ehp BGC from Serratia fonticola, demonstrating production of a novel
phenazine that might be a fungicide [98]. Many other systems can be repurposed via
microbiome engineering to combat diverse plant pathogens, including bacterial type IV–VI
secretion systems [99,100], Bacillus thuringiensis (Bt) toxins [101], and Photorhabdus/
Xenorhabdus Cry toxins [102,103].

Biofertilization
Plants require macronutrients such as nitrogen (N) and phosphorus (P). In nature, plants source N
from ammonia produced by nitrogen-fixing bacteria. Nitrogen fixation involves nitrogenase, an
enzyme complex coded by nif gene clusters, whose composition varies between species
[104]. Voigt and colleagues refactored and synthesized a nif gene cluster comprising over 20
genes (23.5 kb) and demonstrated functional expression of nitrogenase in E. coli [105,106].
More recently, the group transferred natural nif gene clusters between diverse species of rhizobia,
allowing a cereal crop to fix nitrogen. Regulatory control of nif transcription was replaced by syn-
thetic, genetically encoded sensors responding to natural root exudates, chemicals released by
soil bacteria, and agricultural biocontrol agents [107]. Yang and colleagues explored a 'fuse-
and-cleave' virus-derived polyprotein strategy [108]. Regrouping 14 essential nif genes into five
giant genes, the group showed optimal nitrogenase activity and supported diazotrophic growth
of E. coli.

P exists in the field in the form of inorganic or organic phosphates, but plants do not assimilate
either form readily [109]. Phosphate provided as fertilizer immediately forms salts with divalent
cations and is adsorbed to soil minerals [110,111]. Both plants and phytomicrobiomes excrete
organic acids to solubilize phosphate andmake P available to them. Soil and plants also accumu-
late phosphate as a form of phytate, which can be hydrolyzed to release phosphate, catalyzed by
phytase [110,112]. Eighty-two sequentially diverse phytase genes across three phytase families
have been synthesized [112]. Subsequent heterologous expression of these genes in three
rhizobacteria identified several phytases with high activity for phytate hydrolysis, and this con-
ferred a significant advantage for the growth of Arabidopsis thaliana with phytate as the sole
phosphate source [112]. This study demonstrated that microbiome engineering can generate
phytomicrobes with phosphate-solubilizing capabilities as biological alternatives to costly and en-
vironmentally damaging phosphate fertilizers.

Biostimulation
Many plant-associatedmicrobes can synthesize plant hormones such as auxin, ethylene, and cy-
tokinins that have crucial multifaceted roles in plants [113]. Recent work has shown that path-
ways for these hormones can be engineered for expression in other species. Auxins, primarily
indole acetic acid (IAA), regulate most plant growth and development. Heterologous expression
of the IAA synthesis pathway in Bacillus sp. significantly increased IAA production [114]. By inte-
grating a quorum-sensing (QS) circuit with the IAA synthesis pathway, Zúñiga and coworkers
demonstrated IAA production induced with QS in a rhizobacterium, Cupriavidus pinatubonensis
[115]. The plant hormone ethylene leads to plant growth inhibition. 1-Aminocyclopropane-1-
carboxylate (ACC) deaminase can catalyze degradation of the ethylene precursor ACC and
thereby reduce ethylene production [115]. ACC deaminase expressed in the banana endophytes
Enterobacter sp. E5 and Kosakonia sp. S1 promoted the growth of banana plants and increased
resistance to Fusariumwilt [116]. Cytokinin involvement in fungal tolerance has been reported by
Trdá and coworkers [117], although the complete mechanism is unknown. Moreover, some
bacteria can produce abscisic acid and gibberellins; inoculation with these microbes helps plants
to resist stresses [118,119].
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Methods To Evaluate the Effects of Engineered Microbiomes
Some devices allow evaluation of GMM function before field studies. For instance, lithographic 3D
printing has enabled the creation of microscopic containers for organizing multiple bacterial spe-
cies in essentially any 3D geometry. Their interactions can be studied and compared with those of
native strains at the microscopic level [120]. Other devices provide accurate sampling methods
that are indispensable for monitoring rhizosphere processes. A root exudate collector
(Figure 4A) allows non-destructive sampling from soil-grown plants [121]. Many microfluidic plat-
forms can be used for live imaging or high-throughput phenotyping of engineered root-bacteria
growth and metabolism [122,123] including RootChip (Figure 4B) [124], RootArray (Figure 4C)
[125], PlantChip (Figure 4D) [126,127], and static droplet array (Figure 4E) [128,129]. A
microfluidic device named ‘tracking root interactions system’ (TRIS), that was designed to
track root–bacteria interactions (Figure 4F), is also useful for studying the engineered bacteria
[130]. Kehe and colleagues recently introduced kChip (Figure 4G), a platform that is capable of
Figure 4. Platforms for Phytomicrobiome Applications. (A) Rhizobox with root exudate collector. The rhizobox
contains a plant–soil compartment, a rhizosphere–soil compartment, and a root-only compartment [154]. For in situ
collection of root exudates, a sampling solution is circulated through rhizosphere–soil and root-only compartments. The
microsuction cup sampling strategy is used to collect unaltered root exudates from soil-grown roots while minimizing
solute transfer from the adjacent soil compartment [121]. (B) RootChip can be used for live-cell imaging, exudate
metabolomic sampling, and rapid modulation of environmental conditions. Roots and seedlings grown on solid agar
medium in pipette tips are plugged into access holes and mounted on the RootChip’s observation chambers with liquid
medium. The entire RootChip can be mounted on a microscope stage using the chip carrier and enclosed to maintain
humidity. Once the root tip enters the observation chamber, the setup is connected to a pressure line with a computer-
controlled actuated valve system and transferred to a suitable inverted microscope for wide-field fluorescence or confocal
observation. The device can be mounted vertically or horizontally [124]. (C) RootArray to monitor spatiotemporal gene
expression dynamics in plant cells. RootArray is a higher-throughput model of RootChip, with 64 wells filled with agar. The
seeds are manually planted in the wells, and the chip is sealed by two glass slides at both top and bottom surfaces.
Growth media are then injected and continuously exchanged by a peristaltic pump. The roots can be monitored in both
vertical and horizontal positions by automated imaging systems for reconstructing the 3D shape of each root and live
imaging the gene expression in individual cells [125]. (D) PlantChip for high-throughput phenotyping of plant and microbial
interactions. The PlantChip is made of a series of funnel-shaped microchannels to automatically trap seeds at the narrow
top opening of the funnel by hydrodynamic fluid loading. This avoids damage to the seeds during positioning or
manipulation. The roots elongate from the seeds through the seed-holding site toward the bottom site of the tapered
microchannel. The observation chamber is vertical, enabling continuous monitoring of the whole plant [126]. (E) Static
droplet array for quantifying on-chip polymicrobial interactions and the susceptibility of bacteria to antimicrobials in
polymicrobial cultures. This platform consists of a control layer for actuating the mixing and filling valves, and a fluidic layer
that contains the flow channels and 48 wells (4.8 nl each) filled with dyed aqueous solutions. A close-up 48-well array can
be used to combinatorially screen for various microbial activities such as antibacterials (green solutions) against
polymicrobial bacterial cells (red solutions). These solutions can be mixed (dark-red solution) [129]. (F) The tracking root
interactions system (TRIS) for tracking root–bacteria interactions. The TRIS device allows monitoring of individual plant
roots in nine separate channels. Each channel contains independent inlet and outlet ports to prevent cross-contamination
between channels during bacterial inoculation. A third port, at one end of the channel, is used for the introduction of the
germinated plant root. This setup the dynamic behavior of bacteria at and around the root surface to be captured under
controlled conditions with high spatial and temporal resolution [130]. (G) kChip within a loading apparatus and droplet
loading procedure. This apparatus consists of an acrylic housing and hydrophobic glass substrate. The kChip naturally
forms a seal with the top piece of acrylic. In its unclamped state, a flow space is maintained between 500 and 700 μm by
a repulsive magnetic force such that droplets can flow under the kChip. Tilting the apparatus moves droplets through the
flow space, and random sets of droplets spontaneously group within microwells [131]. (H) EcoFAB as a standardized
fabricated ecosystem. EcoFABs are constructed either through direct fabrication or through printing molds that are used
to cast polydimethylsiloxane or other materials. Plants are germinated on plates and transferred to the sterilized EcoFAB,
to which microbes can be added. The chamber enables control of liquid flow through the chamber, spatially defined
imaging of the root system, and the ability to sample and add microbes and materials to the root system in a spatially
defined manner. Destructive sampling allows analysis of microbe, root, and shoot parameters in detail [131]. (I) An
overview of the EcoPOD concept. These enclosed ‘pilot-scale’ ecosystems can replicate natural ecosystems in a
laboratory setting with regard to temperature, humidity, and other important climatic parameters, with precise, fine-scale
environmental sensors. Prototype EcoPODs can range from 1 to 3 m3 in a closed environment that allows longer-term
control, manipulation, and real-time imaging, sample collection, and data integration of replicated plant–soil–microbe–
atmosphere interactions (https://ecopods.lbl.gov/publications).
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rapid, massively parallel, bottom-up construction and screening of synthetic microbial communi-
ties [131].

A controlled laboratory habitat termed 'EcoFABs' was developed for mechanistic studies in
desired environmental conditions (Figure 4H) [132]. This system enables dynamic and detailed
investigation of plant and plant–microbe interactions, plant growth, root morphology, exudate
composition, and microbial localization. Pilot-scale growth-chamber 'EcoPODs' have also been
developed; these enclosed environments of several cubic meters allow direct and intensive
monitoring and manipulation of replicated plant–microbiome–ecosystem interactions over
the complete plant life cycle under conditions relevant to the real world (https://ecopods.lbl.
gov/publications). EcoPODs can control temperature, humidity, and other important climatic
parameters, and can monitor soil moisture, oxygen, and nutrients; sensor outputs can be
integrated using computer models to gain coherent understanding of the EcoPOD environ-
ment. Multiple EcoPODs allow larger-scale evaluation of plant–microbe interactions
(Figure 4I). Both EcoFABs and EcoPODs help to accelerate the translation of engineered
PGP bacteria to field applications.

Biosafety, Biosecurity, and Biocontainment
Environmental concerns about releasing GMMs must be addressed. Several US agencies have
initiated programs for biosafety, biosecurity, and biocontainment strategies (Obama White
House, 2015; Safe Genes program, Darpa, 2017) to increase understanding of how synthetic
DNAs and GMMs behave under various environmental conditions and across diverse organisms
for multiple generations. Biosafety and biosecurity concerns also include HGT of synthetic DNA
and the emergence of microbes harmful to the environment that are difficult to eliminate. Tracking
strategies are being developed. For instance, several DNA watermarks have been independently
devised for DNA coding regions, regulatory sequences, and noncoding DNA sequences to en-
crypt information by the DNA-Crypt algorithm [133,134].

In addition, systems to effectively contain GMMs (<1 in 108 cells escape) in various environments
must be developed [135–138]. Some systems are designed to control cell viability in a defined en-
vironment via auxotrophy, essential gene regulation including minimal genomes, and toxin ex-
pression [137,139–141]. For instance, to restrict the viability of GMMs to media containing
synthetic small molecules, Gallagher and colleagues have developed riboregulators that tightly
control the expression of essential genes and a nuclease-based addiction module that cleaves
the host genome (Figure 5A) [142]. In addition, reported kill switches of 'essentializer' and
'cryodeath' circuits (type II TA system CcdB–CcdA) employ a bistable cI/Cro memory switch
and a toxin-expressing cold-inducible promoter, respectively (Figure 5B) [143]. Other synthetic
kill switches are 'Deadman' and 'Passcode' (Figure 5C) [144]. The Deadman switch uses unbal-
anced reciprocal transcriptional repression to couple a specific input signal with cell survival. The
Passcode switch uses a similar two-layered transcription design and incorporates hybrid LacI–
GalR family transcription factors for diverse and complex environmental inputs. Related safe-
guard systems can be readily reprogrammed for other environmental inputs, regulatory architec-
ture, and mechanisms of killing [137].

If they escape, these microbes must be detected and effectively countered. Cell-to-cell commu-
nication systems mediated by signaling molecules could be engineered as living sensors to en-
able recipient-specific and population-level control [33,145,146]. GMMs can be effectively
countered through, for example, antimicrobial secondary metabolites and type IV–VI secretion
machinery (discussed in the section on Biocontrol). Notably, phages are another promising sys-
tem that could be engineered to deliver CRISPR [147], anti-CRISPR [148–150], LshC2c2 [151],
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Figure 5. Highlighted Strategies for Biocontainment. (A) Design of multilayered genetic safeguards: riboregulation,
engineered addiction, auxotrophy, and supplemental repressors. Riboregulation system: a pLtetO promoter, that is
repressed by TetR and induced by aTc, drives trans-activating RNA (taRNA); a pLlacO promoter, repressed by LacI and in-
duced by IPTG, drives cis-repressed RNA (crRNA) and an essential gene. crRNA and taRNA fold through a linear loop inter-
mediate to reveal the crRNA ribosome-binding site, which permits expression (green). Supplementary TetR (purple) and LacI
(green) are constitutively expressed from the genome. The carbenicillin resistance gene (bla) replaces bioAB, resulting in biotin
autotrophy (blue). Constitutive EcoRI nuclease (nuc; magenta) enables inducible cell killing in the absence of EcoRI methylase

(Figure legend continued at the bottom of the next page.
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Outstanding Questions
How can we incorporate recent
advances in multi-omic and computa-
tional tools, even artificial intelligence
and machine learning, to expedite
and maximize the discovery of new
genes and gene clusters encoding
PGP traits in plant-associated microor-
ganisms and microbiomes?

How can we develop new and stable
tools and strategies for genetic and
genome engineering of a broader
range of hosts? Can we learn more
about how to use genome and
metagenome dataspaces to explore
useful genetic tools?

Is it possible to standardize and
modularize genetic and genome
engineering tools for more accurate
genetic and genome engineering?
How can we standardize strategies to
evaluate and tailor alternative genetic
tools for defined microbe species?

How can we precisely control the
expression of defined genes and gene
clusters to desired levels in synthetic
microbes?

What is the best way to achieve stable
maintenance of PGP traits in
engineered plant microbes in various
environments? Can we maintain the
survival and reproduction of synthetic
microbes in actual field environments?

How canwe improve in situ exploration
of the functions of microbes on plants?
How can we improve the devices and
strategies used for in situ sampling
and characterization of microbial
functions on plants?

There is a need to expand genome-
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and sOPTiKO/sOPTiKD systems [152] tailored to control functions of synthetic DNAs and viability
of GMMs [147,153]. Future systems may include multiple layers of these technologies to syner-
gistically reduce the rate of GMM escape.

In the US, the Environmental Protection Agency (EPA), Food and Drug Administration (FDA), and
the Department of Agriculture regulate genetically modified organisms. The EPA regulates pesti-
cidal GMMs under the Federal Insecticide Fungicide and Rodenticide Act (FIFRA) and the Federal
Food Drug and Cosmetic Act (FFDCA). The EPA also regulates GMMs with biofertilization
activities under the Toxic Substances Control Act (TSCA) [28]. The aforementioned tracking,
safeguarding, and countering systems are exciting new directions in synthetic biology. In theory,
they may offer safe and effective strategies for environmental use of GMMs. However, these sys-
tems require further GMM modification, which will create more challenges under current regula-
tions. As these systems become more technologically mature and stable, a new regulatory
framework may be needed to assess their risks separately from the risks of engineered PGP
activities.

Concluding Remarks and Future Perspectives
Field application of PGP microbes may be a promising strategy for sustainable agriculture, but
success has been variable, likely because of varying environmental conditions, poor microbial
colonization, and limited persistence in the rhizosphere. Genetic/genome engineering of ro-
bust root colonizers or colonization with large subpopulations of phytomicrobiomes may help
to overcome these limitations. Recent advances in synthetic biology are enabling non-model mi-
crobes to be engineered at even the subpopulation level in situ. The next step is to assess the per-
sistence of GMMs in association with plants and the efficacy of engineered PGP advantages for
disease control and crop yields in greenhouses, pilot plots, and demonstration fields before com-
mercial adoption. In particular, the environmental impacts of field treatments with GMMsmust be
evaluated over lengthy periods (see Outstanding Questions).

Genome-wide functional genomics increasingly allows discovery of new genes that are respon-
sible for PGP activities including biocontrol, biofertilization, and biostimulation. Increased explora-
tion of plant microbiome engineering to exploit these gene functions is expected. Application of
available in situmonitoring and ongoing improvement are important first steps to address the un-
knowns in this complex network. There is a need for global meta-omic approaches for quantifying
all possible changes, as well as integrativemodels to interpret meta-omic datasets, and these ca-
pabilities are continuously improving. Although ethics, regulations, and public perception require
continuing global discussion and consensus, new initiatives that develop strategies for biosafety,
wide genotype–phenotype mapping
and create comprehensive and diversi-
fied genomic libraries of organisms
composing phytomicrobiomes. How
can we improve genome-wide func-
tional genomics to exploit the functions
of mined genes and gene clusters?

How best can we accelerate the
translation of engineered PGP bacterial
traits to applications in the field?

How can genetically modified
microbes be safely used in
sustainable agricultural development?
Can we accelerate the development

(meth; yellow), which is controlled by aTc [142]. (B) (i) Expression of cI represses the expression of cro and lacZ in the memory
element, while simultaneously repressing the expression of ccdB in the essentializer element. ccdA is expressed at a consti-
tutive low level. (ii) Exposure to tetracycline leads to a pulse of expression of cro from the trigger element; expression of Cro
allows expression of lacZ while simultaneously repressing cI and ccdB. (iii) Memory element is absent. Without repression
from cI or Cro, ccdB is expressed at lethal levels [143]. (C) Deadman and passcode kill switch. (i) Additional palindromic
lacI operator sites are included in the toxin gene promoter to minimize leaky toxin expression, and a transcriptional terminator
is introduced upstream of the promoter to insulate the gene from spurious transcription. Removal of the survival signal (ATc)
increases Deadman-induced cell death. (ii) Inclusion of themf-Lon-specific pdt#1 tag on the specified essential gene causes
mf-Lon-mediated degradation of the essential protein upon Deadman circuit activation. (iii) Combined control of toxin expres-
sion and targeted essential protein degradation increases Deadman-induced cell death. (iv) Passcode circuit schematic and
logic gate behavior. Cell survival requires the continued presence of inputs (i) and (ii), and the absence of input (iii). The loss of
inputs (i) or (ii), or the addition of input (iii), causes the passcode circuit to activate toxin expression, leading to cell death [144].
Abbreviations: aTC, anhydrotetracycline; IPTG, isopropyl β-thiogalactopyranoside; ORF, open reading frame; RBS, ribo-
some binding site.
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of tools and strategies for biosafety,
biosecurity, and biocontainment
before applying genetically modified
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biosecurity, and biocontainment may lead to a tipping point, after which GMMs can be safely
used in the development of more sustainable agriculture.
microbes to the environment?

Can public perception of genetically
modified microbes be improved?
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