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A Model for Parsing, Learning and Recognizing Objects
in a Complex Environment

Arnold Trehub
Department of Psychology
University of Massachusetts, Amherst

ABSTRACT

A neuronal model is described that can parse, learn,
and recognize objects in a complex visual environment,
A computer simulation of the model network was tested
with a variety of scenes and exhibits competent per-
formance.

INTRODUCTION

The problem of cognitive adaptation without a prior knowledge base
constitutes a ubiquitous and vexing issue in cognitive science. Imagine a
person in an absolutely unfamiliar environment, one in which all wvisual
patterns are completely novel. Where would the person look? Since any
point of gaze would presumably be no more meaningful than another, how could
one parse the scene into objects? How could the objects be learned and
committed to memory? This paper presents a computer simulation of a
detailed neuronal system that is plausible within biological constraints
and can accomplish these fundamental visual-cognitive tasks. The model is
composed of several putative neuronal mechanisms proposed in earlier papers
(Trehub, 1975, 1977, in press) which have been organized in an integrated
system that can deal competently with novel and complex visual environments.
The neuronal model will be briefly described and then a computer simulation
of the model's behaviour will be presented.

NEURONAL MODEL

Following is an outline of the principal processing elements in the
model.

1. Center-surround mechanisms in the retina and lower-level
visual nuclei extract simple contours from the light-intensity
array.

2. There are cells which integrate contour excitation over small,
discrete regions of the entire visual field. These are called flux
detectors and serve to drive visual saccades to regions of maximum
contour flux,.

3. There is a visual field constriction mechanism that can limit
the effective stimulus input to an area of variable retinal diameter
centered on the foveal axis

4. There is a post-retinal dynamic visual buffer called a
retinoid which can translate patterns of retinal stimulation over an
egocentric coordinate space. This module locates and positions pattern
centroids on a standard reference axis within the visual system.

5. There is an adaptive network called a synaptic matrix which
can learn, recognize and image visual patterns.
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The diagram shown in Fig. 1 gives a rough representation of the pro-
cessing sequence. The major modules are outlined below. Space limitations
preclude a more detailed presentation of their operating principles which
can be found in other publications (Trehub, 1975, 1977, 1985, in press).

Synaptic Matrix. Figure 2 shows a basic version of the neuronal net-
work that has the capability of learning complex retinal input patterns.

If a pattern exemplar has been learned, subsequent stimulation by a similar
pattern results in the discharge of a particular output cell (class cell)
that has been associated with the original exemplar during the learning
process. In effect, this cell represent the biological name of its associ-
ated pattern. Conversely, the discharge of a class cell alone can generate
in an array of mosaic cells the afferent firing pattern (image) initially
evoked only by the learned retinal stimulus. Learning occurs in the detec-
tion-matrix field when mosaic cells carrying an input pattern fire in vir-
tual coincidence with the discharge of a previously unmodified filter cell,
and in the imaging-matrix field when a class cell is fired in coincidence
with discharge in the mosaic-cell array. The physical substrate of learning
is an adaptive long-term change in the distribution of synaptic transfer
weights ( ¢ ) on the dendrites of filter cells and mosaic cells.

Retinoids. The neuronal structure shown in Fig. 3 is a post-retinal
mechanism called a retinoid because it represents visual space and projects
afferents to the mosaic-cell array. This module may be thought of as a
visual scratch-pad with phasic and dynamic content. The medium of storage
is assumed to be a retinotopically organized sheet of excitatory autaptic
neurons. Cells of this type have at least one of their axon collaterals
in recurrent excitatory synapse with their own cell body or dendrite
(Shepherd, 1974).

If there is a pattern of excitation evoked on a retinoid, this captured
pattern can be spatially translated in any direction by appropriate pulses
from the shift command cells. For example, each pulse from the shift-right
line will transfer standing activity from each active autaptic cell to the
adjacent autaptic cell on its right and, at the same time, erase activity
in the previously active cell (the donor cell) unless that cell is also
receiving transfered excitation from an autaptic cell to its immediate left.
The more rapid the pulses, the more rapid will the pattern move; the longer
the pulse train is sustained, the greater will be the distance over which
the pattern is moved. Appropriate sequences of shift right/left, shift
up/down, can move the pattern of cell activity to any position on the
retinoid surface.

Imagine the retinoid as a quadrantally organized surface, with each
quadrant receiving retinotopic afferents from its respective retinal quad-
rant. If the excitation of a standing pattern is summed independently over
each quadrant, and if the relative magnitudes of the summed discharges are
used to drive either the position of the eye or the shift control cells in
the retinoid, then we have a neuronal mechanism which can align the centroid
of any retinal stimulus with the central axis of retinoid space (Trehub,
1985)., We define the normal foveal axis as that axis corresponding to the
line of sight of the fovea when the eyes are straight ahead, the head
unturned, and the shoulders square with the body. It is assumed that the
central axis in retinoid space corresponds with the normal foveal axis.

The quandrantal summation fields for retinoid output are abbreviated
as follows:
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FIGURE 3. Translation retinoid. Large squares represent autaptic cells
serving short-term memory. Small filled triangles represent interneurons.
Shift-control cells designated by direction of effect.

LF = output from left retinoid field.
RF = output from right retinoid field.
TF = output from top retinoid field.
BF = output from bottom retinoid field.

If the difference between total output in RF-LF and TF-BF respectively were
to drive an eyeball in the direction of the greater excitation in the hemi
fields defined by the two orthogonal axes, the fovea would hunt until it
targeted the contour centroid of any stimulus pattern presented to the
retina. Alternatively, if the point of eye fixation does not change, then
a pattern with a parafoveal centroid can be translated over the retinoid
surface so that its centroid falls on the normal foveal axis of the
retinoid. This is done by using the hemifield mismatches to drive the
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FIGURE 4. Controls for constricting effective visual field. Discharge of
constrictor neuron 1 blocks input from ring 4 (outer ring); discharge of
constrictor 3 blocks input from rings 4, 3, 2, restricting input to ring
1, the innermost ring of afferents.

shift-control cells so that excitation is balanced over retinoid quadrants.

Field Constrictor. It is possible to devise a number of different
coordinate representations for retinotopic indexing, but I have found a
ring-ray representation to be particularly useful and efficient. In this
scheme, receptor cells in the retina and their associated afferent projec-
tions are indexed with respect to the central foveal axis in terms of their
locations on imaginary concentric rings (i) centering on the axis, and
imaginary rays (j) projecting from the axis and intersecting all rings.
This retinal organization easily lends itself to CNS control of the afferent
field aperture. Figure 4 shows how inhibitory neurons can impinge success-
ively on entire rings of mosaic cells to constrict the diameter of the
effective visual field.

COMPUTER SIMULATION

A 22x22 cell retina and the neuronal mechanisms outlined above were
simulated in a digital computer. Indoor (mear) and outdoor (far) environ-
ments were created in sketch-to-pixel conversions, and these environments
were presented to the simulated visual system for parsing, learning, and
object recognition.

At the start of each scene-parsing operation, the model first fixated
on the retinotopic locus of the flux detector with maximum output, then
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the afferent field aperture closed to the fully constricted state which
was arbitrarily set at six retinal units in width and height. The fully
expanded afferent aperture was limited to 22x22 retinal units. Whenever
the visual aperture reached the state of full expansion, the excitation
pattern on the retinoid was gated to the synaptic matrix for recognition
(and learning if the pattern was incorrectly identified). Starting error
tolerance was set at three units for quadrantal disparity over either the
horizontal or vertical axes. At any fixed aperture, if error tolerance
was exceeded on a given axis, the retinoid pattern was shifted in the
appropriate direction to reduce hemifield disparity on that axis. When
pattern position satisfied error tolerance for one axis, the pattern was
shifted on the other axis, unless it was already within tolerance. 1If,
now, shifting the image on the second axis resulted in an unacceptable error
on the first, error tolerance was relaxed one unit. Whenever the pattern
was brought within axial tolerance for both horizontal and vertical dis-
parities, the afferent aperture expanded one unit and the process was
repeated until full aperture was achieved. This operation was assumed to
involve an expenditure of processing effort, and if a retinoid shift of
nine units on any axis did not bring its disparity within tolerance limits,
the system stopped trying at its current fixation and initiated a saccade
to the next highest flux region.

In its initial state, the neuronal system is presented with a random
visual pattern and taught to call this pattern "RANDOM". This simply means
that one filter cell in the detection matrix and a spatially correlated
array of mosaic cells in the imaging matrix have been synaptically tuned
to the random exemplar.

The first "natural" environment learned was an outdoor scene consisting
of trees, a house, several animals, a building, a car, and the outline of
distant hills. Since the simulation does not incorporate mechanisms of
visual accommodation or stereopsis (see Trehub, 1978), the operator is asked
by the model to provide a rough estimate (in feet) of its viewing distance
from the major elements of the scene. The operator estimates the distance
as 200 feet and provides this information to the network. Parsing then
proceeds according to the principles discussed above. After a pattern has
been fixated and registered on the retinoid, it is passed to the synaptic
matrix where it is identified and named as "RANDOM" because, in its utterly
naive condition, this is its only available response. The model then asks
the operator to inform it if the response is right or wrong. Let us say
that the object it has happened to parse is a house or part of a house;
then it is told that the response is wrong. At this point, the model
changes the synaptic weights on a previously unmodified filter cell in
accordance with the excitation pattern on its mosaic-cell array and the
learning equation. It should be noted here that if there were no operator
to inform the system about the correctness of its response, low frequency
discharge of its filter cells can provide a signal that the current stimu-
lus is novel, triggering the automatic learning of the novel object (Trehub,
1977). After the filter cell has been tuned to the stimulus, the model
asks for a name to be associated with the class cell which is coupled to
the just-modified filter cell. The operator then provides the appropriate
name "HOUSE". This name then becomes part of a neuronal lexicon in which
it is connected with the filter-cell-class-cell couplet which has just
learned the exemplar of a house. The model then parses another object and
if its recognition response is correct, parsing continues; if incorrect,
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FIGURE 5. Examples of the distribution of synaptic transfer weights on
dendrites of filter cells which have learned visual patterns. Each point

on the dendritic line represents a particular synaptic location. Amplitude
of each vertical line represents relative magnitude of transfer weight for
that synapse. The objects learned by the cells shown are as follows: (1) a
random visual pattern; (2) a car; (3) a different car; (4) an animal; (5) a
different animal; (6) a building; (7) a house; (8) a different building.

the new object is learned (synaptic modification of another available filter
cell, etc) and scene processing continues until a preset number of saccades
are made, during which objects are fixated, translated to the normal foveal
axis, recognized, and learned if necessary.

The second environment learned was a desktop with a book, telephone,
ashtray, pencil, and bookmark. The viewing distance, in this case, was
estimated to be five feet. Parsing and learning the objects in this scene
then proceeded as in the outdoor environment. Variations of both kinds of
environments were created and exposed to the model until a total of 25
exemplars of objects in these scenes were learned together with their
appropriate names. Examples of synaptic transfer-weight ( ¢ ) distributions
on filter-cell dendrites for the first eight patterns learned are shown in
Fig. 5. The selectivity of recognition response is determined by the dif-
ferences among such  ¢-distributions over the population of filter cells
in the detection matrix. As the repertoire of exemplar-tuned filter cells
increased, the frequency of recognition errors decreased.

Shown in Fig. 6 is a run of the simulation printed directly from the
computer’s CRT. In this case, the model was "looking at" an unfamiliar
outdoor scene, in that all the patterns in the environment were new exemp
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FIGURE 6. Passive recognition. Model's responses to outdoor scene. Top
left frame is the scene presented. Bottom left shows objects parsed and
recognized. All objects were correctly identified. Middle left is the
visual reconstruction of the scene on a retinoid surface on the basis of
the disparate fixations and parsings.

lars of previously learned objects and their locations were different.
Figure 7 is a similar printout of a situation in which the model is "asked"
to find named objects on a cluttered desktop. Here parsing and recognition
is made even more difficult by the fact that a bookmark has been placed on
the book and a substantial part of the book is covered with a sheet of
paper. It has been conjectured that occlusions of this kind as well as

the conjunction of nearby objects would make it impossible for
template/filter models to operate properly (Pinker, 1984). The successful
performance of the model described here suggests that the conjecture is
incorrect.

In summary, computer simulation of an explicit and biologically plaus-
ible neuronal model demonstrates that a visual system that integrates (a)
contour flux detection, (b) flux-driven saccades, (c) control of afferent-
field aperture, (d) a retinoid for pattern centroid alignment, and (e) a
synaptic matrix for pattern learning can start without an initial store of
world knowledge, be exposed to novel and complex scenes, and build an
appropriate knowledge base. Confronted with a rich, new visual environment,
it isolates objects, learns them, and recognizes similar objects in other
environments.
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FIGURE 7. Active search and recognition. Model'’s responses to desktop
scene. Small rectangular frame around parsed objects on the scene assembly
retinoid indicates that a searched-for object has been found.
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