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Abstract

Valence modulates the phase behavior and viscoelasticity of transient DNA nanostar

networks

by

Nathaniel C. Conrad

A gel is a soft material that is made when a three-dimensional polymer or colloidal net-

work is hydrated in water or suspended in some other solvent. Gels can be found in

nature (e.g., inside cells, lining the stomach, etc.) and are synthesized for many different

consumer and medical applications. Their versatility and utility stem from a large array

of accessible phase behaviors (e.g., sol-gel, liquid-liquid, etc.) and viscoelastic proper-

ties, both of which can be controlled at the polymer/colloidal level. Recent theoretical

works predict that the phase behavior and viscoelasticity of a colloidal/molecular gel net-

work is strongly modulated by the connectivity of the colloid in solution (e.g., valence).

However, in practice, engineering particles of well-defined valence is difficult, making ex-

perimental insight hard to come by. Here, I take advantage of DNA programmability

to self-assemble, via base-pairing, transiently bonded DNA particles of designed valence,

called DNA nanostars (NSs). I measure NS phase diagrams and network viscoelasticity

as a function of NS valence, z. My measurements show that increasing z results in a

larger coexistence regime for phase separation and a stiffer, more brittle NS network. In

particular, I find that: (i) the valence effect on phase behavior is largely in line with

theoretical expectations and (ii) NS viscoelasticity is controlled by an interplay between

entropic elasticity of network chains and NS valence imposing junction constraints (e.g.,

approaching an isostatic threshold). I also make a NS with two types of bonds on it,

where one bond is short-lived and the other is much longer-lived. I find that such NSs
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make networks with reproducible power-law stress-relaxation between the two bond life-

times and the power-law exponent depends on the valence of the stronger-bond. I further

show that the power-law exponent during stress-relaxation is explained by a model that

considers how the strong-bonded network relaxes in an effective medium with a viscosity

defined by the weak-bonds. Overall, the work here provides insight into how valence

modulates the phase behavior and viscoelasticity of transient gel networks.
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Chapter 1

Introduction

When many chemically or physically interacting particles (polymers or colloids) are sus-

pended in a liquid, they will often associate to form a three-dimensional network. Depend-

ing on particle concentration, the networks will either span the entire solution volume

(e.g., form a gel) or make phase separated condensates/clusters. The mechanical and

dynamic properties of the gel or condensate result from the underlying particle proper-

ties and interactions [1–3]. Changing the particle properties and interactions thus allow

for a wide array of both phase behaviors and gel viscoelasticities that are attractive for

modeling biologically relevant systems [4, 5] and for applications in industry [6–8] and

medicine [9–12].

A property of a network that strongly modulates its resulting phase behavior [2,13,14]

and bulk mechanical properties [15–18] is the connectivity of the network or the average

number of network filaments emanating from a shared junction. Accordingly, the network

connectivity is largely controlled by the number of connections made between colloidal

particles (in a colloidal network) or the number of chains meeting at a junction (in a

polymer network), which we define here as the particle/junction valence, z. In practice,

however, z is hard to control [19–24], making it difficult to gain insights capable of refining

theory and simulation. For instance, in most polymer networks, z is limited to between

2 and 4 [21–24]. This is because z in polymer networks is determined by entanglements
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Introduction Chapter 1

between polymers (z = 4) or the architecture of cross-links bridging polymers (short,

linear cross-links are typical [25, 26] and lead to z = 3), and any loops that form will

reduce z. The valence can change in polymer networks through changing the polymer and

cross-linker concentration, but both the polymers and cross-links must be monodisperse

to achieve precise control of valence between 2 and 4 [21]. In colloidal networks, the

connectivity of the network approaches the designed valence of the colloid, which can be

anywhere 2 < z ≤ 12. Some control has been demonstrated at the particle level using

“patchy” colloids (e.g., distinct “sticky patches“ decorated on colloid surface) [2, 19, 20],

although the distribution of “patchy” colloid valence is still broad [19, 20].1 Thus, there

is a need for model systems with precise valence control in order to better understand

how z affects the bulk solution phase behavior and viscoelasticity.

Here, we take advantage of the programmability of DNA base-pairing to reproducibly

make solutions of cross-linking DNA particles with well-defined valence and binding in-

teractions, called DNA nanostars (NSs) [13, 27]. In particular, a z-armed NS consists of

z freely-hinged double stranded DNA (dsDNA) arms emanating from a common junc-

tion. Each arm terminates at its distal end in a short palindromic/self-complementary

ssDNA sequence (e.g., a sticky-end). The palindromic sticky-end allows NSs to tran-

siently bind to each other and the flexibility of the NS arm at the NS junction permits

easy arm rearrangement in the network state when the bond dissociates and reforms.

The combination of transient, flexible bonds and limited NS valence (2 < z < 12) gives

the resulting NS network enough entropy to stabilize a disordered-liquid state over a

crystalline one [2,28,29]. This property ensures NS networks are not kinetically arrested,

making for hysteresis-free structure formation. NSs are thus model particles to explore

the effects of network valence on phase behavior and viscoelasticity [13,27,29–37].

This brings us to the layout of the thesis. In chapter 2, an emulsion-based imag-

1Colloids that do not have sticky patches have their valence controlled by their surface roughness [18].
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Introduction Chapter 1

ing technique is established to measure the temperature-concentration phase diagram

of macromolecules undergoing liquid-liquid phase separation (LLPS). The imaging tech-

nique is then used to investigate the effect of NS valence and added salt on the resulting

phase diagram. In chapter 3, the viscoelasticity of dense NS solutions are probed using

oscillatory shear rheology in a parallel plate setup. The rheology data reveals that the

effect of NS valence on solution viscoelasticity is consistent with approaching an isostatic

threshold between z = 5 and z = 6. In chapter 4, a valence-six NS is designed to have

two types of bonds, a short-lived and a long-lived one. We find such “heterotypic” NSs

make networks with reproducible power-law stress-relaxation and with the power-law

controlled by the valence of the longer-lived bonds on the NS. We also develop a model

that derives an expression for the power-law exponent and show it is both consistent with

our observations and observations in simulated systems. In chapter 5, we measure the

viscoelastic spectra of many different types of heterotypic NSs and discuss the viscoelas-

tic behavior over all frequencies, not just over the frequencies pertaining to power-law

stress-relaxation.

Funding

1. The project in Chapter 2 was supported by the National Science Foundation, NSF

Award No. CMMI 1935400.

2. The project in Chapter 3 was supported by the National Science Foundation, NSF

Award No. CMMI 1363135.

3. The project in Chapter 4 and 5 was supported by the National Science Foundation,

NSF Award No. CMMI 1935400. The research reported also made use of shared

facilities of the UCSB MRSEC (NSF DMR 1720256).
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Chapter 2

Emulsion Imaging of a DNA
condensate phase diagram reveals
valence and electrostatic effect

2.1 Preamble

The content of chapter 2 and appendix A is the result of a collaboration with Grace

Chang, Deborah K. Fygenson, and Omar A. Saleh. This work is reprinted with per-

mission from J. Chem. Phys. 157, 234203 (2022), Copyright 2022 American Chemical

Society.

2.2 Introduction

LLPS of aqueous solutions of macromolecules involves the equilibrium segregation

of a fluid into regions dense in macromolecule, and regions dilute in macromolecule.

The process has long been studied in mixtures of oppositely charged polymers, where

it is termed complex coacervation [38]. Investigating the variables which control macro-

molecular LLPS is critical to further both our understanding of its role in biological

systems [39–44] and development of tunable materials for pharmaceutical or food-science
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applications [45–49].

The LLPS process is generally controlled by temperature, the concentration of the

macromolecule and of other solutes (e.g. salt), and the nature of the interactions in

the system, including with the solvent [50, 51]. Fundamental to the characterization

of LLPS, and its sensitivity to such parameters, is the equilibrium phase diagram, in

which binodal lines separate the conditions in which an equilibrated solution will form a

single, homogeneous fluid, from those in which the solution will spontaneously separate

into coexisting dense and dilute phases. Experimental measurements of binodal lines

are made challenging by the need to handle and assay each phase. The most common

method involves separating the dilute and dense phases by centrifugation [13, 50, 51],

which typically requires large volumes of solution (≳ 100 µL) that may be inaccessible

and/or prohibitively expensive [52] for some systems. Further, dense macromolecular

phases are typically highly viscous, and prone to adhere to solid surfaces, making handling

difficult.

The difficulties in working with phase-separating systems can be ameliorated by

encapsulating them within the aqueous droplets of water-in-oil emulsions. Indeed, as

demonstrated in prior works [53–55], the emulsion approach has advantages, includ-

ing (i) not involving centrifugation or direct handling of the phase-separated solution,

(ii) requiring small amounts of the solution of interest, and (iii) being agnostic to the

macromolecule under investigation. Here, we exploit these advantages to develop an

emulsion-based fluorescent imaging method for measuring the binodal lines of macro-

molecular LLPS systems in the temperature-concentration plane. We confine the system

of interest in micron-scale, water-in-oil emulsion droplets, and then image the droplets

using a temperature-controlled, wide-field fluorescence microscope equipped with a low

numerical aperture, low magnification lens. The images capture the full fluorescent pro-

file of an emulsion droplet, which we can fit to the expected profile, resulting in precise
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quantification of the volume fraction of the dense phase. We then use the measured

concentration-dependence of the volume fraction, and the lever rule of binary, equilib-

rium phase separation [50, 56], to estimate the binodal concentrations of the respective

phases. Independently, we measure the melting temperature by visualizing the appear-

ance of condensate within the emulsion droplet while scanning temperature. Together,

the measured melting temperatures and binodal concentrations allow us to construct the

full phase diagram.

We use this method to investigate the phase behavior of multi-valent DNA nanostars

(NSs) that exhibit LLPS [13,30]. In particular, we use emulsion imaging to explore how

NS phase diagrams change as z increases from 3 to 6, and we test how z = 3 and 4 NS

phase diagrams are affected by added monovalent salt. We interpret our results with

respect to structures and physical mechanisms that are expected to affect NS density,

and also carry out a quantitative comparison of our data to theoretical models of NS

phase separation [36], notably validating valence-sensitive predictions for the critical

temperature.

Generally, the work presented in this chapter presents a method for quantifying LLPS

phase diagrams that avoids issues in prior approaches, and is thus of potentially broad

utility. Further, our application of the method to the NS system gives insight into the

principles guiding phase separation of multi-valent particles.

2.3 Methods

2.3.1 Preparation of NSs and emulsions

A full description of all methods can be found in the Appendices. Briefly, we prepared

z-armed NSs by mixing together equimolar amounts of z single-stranded DNA oligomers
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designed to self-assemble into a NS upon annealing (Fig. 2.1A; DNA sequences given in

Appendix,, Table A.1). A fraction of the oligos were tagged with a fluorescent molecule

for later visualization (see Appendix A.1). We also separately annealed a non-interacting,

fluorescently-tagged DNA hairpin and added it to the NS solution at 5 µM (Fig. 2.1A).

Figure 2.1: (A) Schematic depicting the preparation of samples for emulsion-imaging
of NS phase diagrams; see also Appendix A.1. NSs and non-interacting hairpins are
annealed separately and mixed together. Then, 2-3 µL of aqueous NS+hairpin solu-
tion is added to ≈ 40 µL of an oil/surfactant mixture and briefly vortexed to create
water-in-oil emulsion droplets. The sample is loaded into a flow cell, and cooled, al-
lowing the NSs to phase separate, forming a dense, spherical DNA liquid drop within
the spherical emulsion droplets. (B) Representative images of emulsion droplets con-
taining phase-separated 4 arm NS solutions (150 mM NaCl, T = 33.1 ± 0.5◦C), at
different total NS concentrations, [NS], as labeled. The red lines depict the positions
of the 1-d intensity profiles shown in panel C. Each image shown was cropped from a
larger field of view; in practice, we typically analyzed 5-10 droplets per field of view
(Appendix A.2; see also Appendix, Fig. A.2). (C) Profile of image intensity along
the pixels indicated in panel B (cyan), along with the best-fit line (red) for the dou-
ble-sphere function (Appendix,, Section A.1). Labels indicate the best-fit radii, which
have a fit uncertainty of ≈ 0.01-0.02 µm.

7
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The hairpin was added to brighten the dilute phase so that it could be visualized alongside

the dense phase, which is typically ≈100-1000x more concentrated. NS phase separation

was unaffected by moderate amounts of hairpin (see Appendix, Fig. A.3). The concen-

trations of both NS and hairpin were measured using UV absorbance.

We made water-in-oil emulsions by adding 2-3 µL of the NS+hairpin solution to 40 µL

of an oil and surfactant mixture, which was kept warm (T ≈ 65◦C) to prevent NS phase

separation, then vortexing for 2-3 seconds (see Appendix A.1). The resulting emulsion

droplets had diameters of ≈ 25− 120 µm, as appropriate for our microscopic approach.

We placed emulsified NS solutions, each prepared with a different concentration of

nanostars, [NS], into separate channels of a custom-built multi-channel flow cell (see

Appendix A.2). The flow cell was then placed on a temperature-controlled microscopic

stage, and allowed to equilibrate. NS phase separation occurred within the emulsion

droplets as they cooled (Fig. 2.1B). The dense NS phase equilibrated into a sphere inside

the aqueous emulsion droplet, as expected given its liquid-like nature [27] and consistent

with previous experiments on NSs undergoing LLPS [30]. The water droplet, being less

dense than the oil, rose (creamed) to the top of the flow cell, while the NS conden-

sate, being heavier than water [30], settled to the bottom of its water droplet container

(Fig. 2.1A).

2.3.2 Measurement of condensate melting temperature

To estimate the melting temperature, Tm, of the dense phase at a given [NS], we

recorded a video of emulsion droplets while slowly raising and lowering the temperature

of the stage (typically 0.5◦C/min; see Appendix, Fig. A.6). Because it was difficult to

identify a single frame at which the condensate appeared or disappeared, we estimated

Tm as the average T over the range of frames – from the first/last frame in which a phase
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boundary was clearly present to the last/first frame in which it was clearly absent – and

used the range of T to estimate the uncertainty in Tm. This procedure was also used in

the few cases in which there was significant hysteresis (typically of 2-6◦C).

2.3.3 Measurement of condensate volume fraction

At a given T and [NS], we measured the volume fraction of the dense phase, ϕden,

by imaging the emulsion droplets using a low numerical aperture (0.1 or 0.13 NA), low

magnification (4x) objective. Typical images and intensity profiles are shown in Fig. 2.1

and Appendix, Fig. A.2. The use of low NA optics imparted on the imaging system a

large depth-of-field, so a single image (properly focused) captured all fluorescent intensity

within a water droplet. The act of imaging thus projected, into the 2-d image, a 3-

d fluorescent ”double-sphere” corresponding to the smaller, bright sphere of dense NS

liquid, and the larger, dimmer dilute NS solution contained in the spherical emulsion.

Correspondingly, we found that the emulsion droplets’ 2-d intensity profiles, I(x, y),

were consistently well fit (R2 ≥ 0.99) by a geometric function for the two-dimensional

projection of two spheres, of differing sizes and intensities (Fig. 2.1C; also see Appendix,,

Section A.2 and Fig. A.1). The fitting parameters were the radii R of the emulsion

droplet and NS condensate; their central positions in (x, y); and the fluorescence intensity

of each phase. We then found the volume fraction through ϕden = (Rden/Rdil)
3, where

the subscripts denote the dense and dilute phases.

The use of low-NA optics degrades the lateral resolution of the microscope, increasing

diffractive blur in the image; this blur is not described by the double-sphere fitting

function. However, we found that blurring only caused very slight deviations between

the data and the fit (see Appendix, Fig. A.1B), likely because the diffraction limit of the

system, ≈ 3 µm, is much smaller than the size of the condensate and emulsion droplet
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(> 10 µm). This indicates the fit values are robust against such blurring.

To test the sensitivity of the fitting procedure to the microscope focus, we acquired

and analyzed images at a variety of focal positions. We found the best-fit radii were

insensitive to focal position over a broad range (120-150 µm; see Appendix, Fig. A.4),

meaning that precise focus was not needed. Further, while our emulsions contained a

range of droplet sizes that accordingly were located at different heights in the flow cell,

the insensitivity to focal position meant that we were able to accurately analyze emulsion

droplets of different diameters from a single image. Particularly, the fitted radii from a

single image of multiple emulsion droplets that ranged from ≈ 25 µm to 120 µm in

diameter, each containing the same NS concentration, all resulted in the same value of

ϕden (Appendix, Fig. A.4).

2.4 Results

2.4.1 The lever rule and measuring binodal concentrations

We measured ϕden vs. [NS] across a range of temperatures, 10◦C ≤ T ≤ 43◦C, for a

variety of NS systems with different z and/or in different concentrations of monovalent

salt, [NaCl] (Fig. 2.2, see also Appendix, Fig. A.5). In all cases, we observed that ϕden

scales linearly with [NS]. This is characteristic of a binary system undergoing equilibrium

phase separation [50,56], as expressed by the lever rule:

ϕden =
[NS]− [NS]dil

[NS]den − [NS]dil
(2.1)

In Eq. 2.1, [NS] is a known quantity, while [NS]den and [NS]dil correspond to the initially-

unknown binodal concentrations of the two phases. Thus, Eq. 2.1 indicates [NS]den/dil

can be measured by finding the x-intercept and slope of the ϕden vs. [NS] line, with the
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Figure 2.2: The volume fraction of the dense phase, ϕden, of z = 4 NSs at 150 mM
NaCl as a function of the total NS concentration, [NS], at various temperatures.
The solid line denotes the (weighted) least squares fit of the lever rule (Eq. 2.1) to
each data set. Lever rule plots for other salts and arm numbers are shown in the
Appendix, (Fig. A.5). Each plotted point corresponds to, typically, 10-30 measured
droplets, with some points having as few as 2 droplets, and some as many as 50.
For each temperature, at least 100 droplets are measured across all concentrations.
Vertical error bars correspond to the standard error of the mean (SEM) of the fits to
various droplets, while horizontal error bars correspond to the SEM of UV absorbance
measurements of the NS stock concentration.

x-intercept giving [NS]dil and the slope being equal to the inverse of the difference in

binodal concentrations, [NS]den − [NS]dil.

Under all conditions, the x-intercept and slope changed most at temperatures within

≈ 10◦C of the onset of phase separation, with further decreases in T leading to no further

significant changes. It is possible that, at low temperatures, the system did not fully reach

equilibrium due to the NS bond relaxation time growing exponentially as the solution is
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cooled, which could potentially freeze the dense NS droplet at a certain size, and cause

the constant behavior of slope and intercept at low temperatures. However, previous

rheology [27] and light scattering [13, 29, 34, 57] experiments show NS networks achieve

equilibrium states down to 10◦C using cooling rates similar to the ones performed here

(≈ 0.1 - 1◦C/min), suggesting that this behavior is indicative of the equilibrium state of

the system.

2.4.2 NS phase diagrams

We combined the binodal concentrations measured from lever rule analysis with the

melting-temperature measurements to generate temperature-concentration coexistence

curves for NSs as a function of arm number, z, and, for z = 3, 4 NSs, at various monova-

lent salt (NaCl) concentrations (Fig. 2.3). Qualitatively, the diagrams all have a similar

shape, demonstrating an upper critical solution temperature, Tc, below which a coexis-

tence regime appears. For (Tc − T ) ≲ 10◦C, the coexistence regime increases in width

as T decreases, but at lower T the width stabilizes. These features qualitatively match

those seen in previous estimates of NS phase diagrams [13].

We sought to quantify Tc so as to facilitate comparison with predictive models. We

observed the maximal melting temperature typically occurred at a NS concentration

roughly midway between the binodals (Fig. 2.3). For each NS condition, we took this

greatest Tm to be an estimate of Tc, and investigated its variation with other experimental

parameters. At constant salt, Tc increased by nearly 10◦C from z = 3 to z = 4, then

continued to increase between z = 4 and 6, but by only ∼ 2◦C (Fig. 2.4). For 4-arm NSs,

and for [NaCl] from 50 mM to 300 mM, Tc increases with salt roughly as Tc ∼ log[NaCl]

(Fig. 2.5).

The dense-phase binodal concentration, [NS]den, generally increases with z and [NaCl].
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Figure 2.3: Temperature-concentration phase diagram of (A) NSs of various z, all at
[NaCl] = 150 mM, and (B) 4-arm and (C) 3-arm NS at different [NaCl]. Smaller
symbols indicate data found from lever-rule fits (as in Fig. 2.2), while larger symbols
indicate data found from direct melting temperature estimate.

However, there are a few expections where certain pairs of conditions had very similar

low-T values of [NS]den: (i) z = 4 vs. z = 5 at 150 mM NaCl (Fig. 2.3A); (ii) z = 4 at

150 mM vs. 300 mM NaCl (Fig. 2.3B); and (iii) z = 3 at 150 mM vs. 300 mM NaCl

(Fig. 2.3C). These are further discussed below.

We found the dilute-phase binodal concentration, [NS]dil, at lower temperatures to

have extremely low values of typically ≤ 0.1 g/L (this is not visible in Fig. 2.3, but can

be seen on a semi-log plot; see Appendix, Fig. A.7). Away from Tc, the binodal roughly

traces a Tm ∼ log([NS]dil) dependence, as also seen in certain models [58]. However,

the very low concentration of the dilute NS phase, along with experimental uncertainties

(discussed below), means this is not perfectly resolved. Indeed, at the lowest T , these

factors sometimes caused a negative x-intercept for the line fitted to lever-rule data (as

in Fig. 2.2), corresponding to a physically-impossible negative value of [NS]dil.
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Figure 2.4: Critical temperature, Tc, versus NS valence, z, at [NaCl] = 150 mM, as
estimated from the experiments (filled black diamonds), the mean-field model (stars),
and the NS-SAFT model (empty blue diamonds).

2.4.3 Modeling of phase behavior

We compared the experimental results for Tc to predictions to gain insight into NS

LLPS behavior, first through a simple mean-field model. In this picture, we ignored the

geometry of the NS, and compared our measurements of Tc to the predicted melting

temperatures, Tm, of a solution of unconnected (free) oligomers at concentrations corre-

sponding to those of the NS sticky ends, [oligomer] = f · [NS]). We estimated Tm using

the DNA thermodynamics approach of Santa Lucia [59], based on the specific sequence,

salt, and oligomer concentration utilized. Particularly, we used the oligomer sequence

5’-ACGATCG-3’, which consists of the sticky-end sequence plus a single unpaired base

that is also present in the NS structure. We accounted for the effect of the free base using
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Figure 2.5: Semi-log plot of critical temperature, Tc, versus [NaCl] for z = 4 NSs, as
estimated from the experiments (blue squares), the mean-field model (stars), and the
NS-SAFT model (lines).

the standard SantaLucia dangle correction [59] and added an empirical “tail” correction

to capture the effect of the flanking NS arms on the sticky-end strength [36, 60]. The

results of this mean-field calculation are plotted in Figs. 2.4 and 2.5, which shows the

model is in the vicinity of the experimental values, and captures the trend with salt, but

fails to account for the large measured variation of Tc with z.

This failure suggests the z-fold connectivity of sticky ends that is enforced by the

NS structure plays an important role in determining the LLPS behavior. To capture

this, we followed the work of Rovigatti and collaborators [36, 58, 61], who developed a

method for predicting NS phase diagrams using the Statistical Associating Fluid Theory

(SAFT) created by Wertheim [62–64] and further developed by Chapman et. al. [65–67].

In SAFT, a first-order perturbation calculation is used to construct the free energy of a
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solution of particles from the free energy of an ideal fluid, with corrections for repulsive

(excluded-volume) interactions, and for z-valent inter-particle binding. Rovigatti et al.

extended this model to NSs by estimating the excluded volume parameter (i.e., the 2nd

virial coefficient), B2, from coarse-grained molecular dynamics simulations of NSs [58]

and by using a temperature-dependent bonding term based on the Santa Lucia model

with a tail correction, as noted above [36,61]. The resulting equations can then be solved

numerically to directly estimate Tc through the stability constraint that, at the critical

point, both the first and second derivatives of the pressure with respect to density are

zero.

We used the NS-SAFT approach (Appendix A.5), adjusted for the specific sticky-end

sequence used here, and, for 3- and 4-armed NSs, using B2 values from Ref. [58]. This

prior work did not investigate B2 values for 5- or 6-armed NSs; since the underlying

simulations are quite involved, we opted to estimate their B2 values by extrapolation

from the numerically simulated values for 4 arm NSs. In particular, we posited that the

excluded volume should scale with the number of NS arms, i.e. B2 ∼ z. Indeed, from the

simulated B2 for 3 and 4 arm NSs [58], we found B2(4 arm)/B2(3 arm) ≈ 1.43-1.48, which

is not too different from 4/3. We accordingly estimated the second virial coefficients for

5 and 6 arm NSs from B2(5 arm) = (5/4)·B2(4 arm) and B2(6 arm) = (6/4)·B2(4 arm).

Using these B2 values, we found the NS-SAFT model provides a good description of

the variation of Tc with both salt and z (Figs. 2.4 and 2.5). Notably, the model is quite

close to experiment at at large z, and (unlike the mean-field picture) captures the large

decrease in Tc as z decreases to 3.
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2.5 Discussion

2.5.1 Benefits and drawbacks of phase diagram measurement

through imaging emulsified phase-separated solutions

We have presented an emulsion-imaging method for quantifying the temperature-

concentration phase diagram of LLPS macromolecular solutions. Our results validate

the method both in that the measured NS phase diagrams are consistent with prior

measurements and predictions [13, 30, 58], and through our direct confirmation of the

applicability of the lever rule (Fig. 2.2), which is expected to hold based on fundamental

thermodynamic and mass-action considerations.

As with other emulsion-based approaches [53–55], the method developed here offers a

variety of benefits: First, centrifugation and/or direct handling are not required to assay

the dense phase. Apart from adding processing time, direct handling can be technically

difficult for biomolecular liquids, which are high-viscosity, condensed phases that tend

to non-specifically adhere to surfaces (e.g., pipette tips, tubes). A further benefit of the

method is that it achieves very low sample use by portioning the sample into micron-

scale water-in-oil droplets. Also, the ability to simultaneously image multiple emulsion

droplets improves measurement precision, since each droplet represents an independent

sample, their proximity ensures consistency of temperature, and their small size allows for

rapid equilibration. Further, we showed that multiplexing is readily achieved by loading

different samples in different channels on a single microscope slide, allowing assay of

different solution conditions with a single temperature sweep.

The method is particularly good for resolving the concentration of the dense phase,

[NS]den, based on measuring slope of the lever-rule data (Fig. 2.2); notably, this is the

phase whose properties are traditionally more difficult to assay. In contrast, a drawback
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was the difficulty in accurate quantification of the dilute binodal. This arose specifically

because of the extraordinarily low dilute-phase density of the NS system. Particularly,

our measurements of total NS concentration, [NS], carried an uncertainty of, at best ≈ 1

µM, which is ≈ 0.06 g/L for z = 4, leading to a similar magnitude of the uncertainty

in the best-fit values of the x-intercept in the lever-rule data. However, the values of

[NS]dil at low T were typically ≲ 0.1 g/L, and thus could not be precisely resolved.

A previous article using UV absorbance reported higher values, [NS]dil ≈ 0.5 g/L for

z = 4, but interpreted those values as being an overestimate due to the presence of

malformed NSs [13]. The low values found here for [NS]dil are consistent with a recent

numerical calculation of the NS phase diagram that found [NS]dil ≲ 0.1 g/L under similar

conditions [36]. Generally, since the issues in quantifying [NS]dil arose from limitations in

our measurements of the total NS concentration, rather than a systematic issue with the

imaging, the technique should be able to quantify the dilute-solution binodal in systems

where it falls at higher concentrations.

We rely on fluorescent labeling to quantify condensate volume fraction, which is

then used to estimate the phase diagram. This differs from other fluorescent phase-

measurement approaches, in which the absolute fluorescent intensity of each phase is

used to estimate concentration [37,68,69]. Using fluorescent intensity requires a separate

calibration to relate intensities to concentrations; further, intensity measurements can be

complicated by photophysical phenomena, such as quenching interactions amongst dyes,

or between dyes and the macromolecule, that affect intensity [70–72]. In contrast, our ϕ-

oriented approach is insensitive to absolute intensity, so long as the two phases are bright

enough to visualize and to be distinguished. Generally, fluorescent approaches have

the drawback that labelling can be difficult, and can potentially perturb the system’s

behavior. Accordingly, label-free approaches have been developed to measure phase

behavior [70, 73], including a recent work that used bright-field images to measure ϕden
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of condensates within emulsion droplets [55]. In comparison to that work, a benefit of

our approach is the relative simplicity of fluorescent imaging, which allows us to use

a mechanistic, quantitative model of the intensity distribution (i.e. the double-sphere

function). Further, in fitting that model to the data, we utilize all pixels in the droplet

image, including both pixels near the sphere boundaries, and those away from boundaries

that carry information on the curvature (and thus radius) of each sphere (see Fig. 2.1B);

this contrasts with the bright-field method that used an edge-detection approach focused

on boundaries [55]. Because of this combination of a well-defined intensity profile, and

efficient use of all available information, we achieve very low uncertainty (typically < 1%)

in our estimate of R, and thus extremely precise estimates of ϕden. Overall, then, there

are benefits and drawbacks to the various methods; we expect the best approach will

generally depend on the nature of the system in question.

2.5.2 Interpreting NS critical temperatures

Apart from development of the emulsion-imaging method, a second salient output

of this work is the phase diagrams themselves, which yield insight into the mechanisms

controlling the valence-limited NS system. As noted above, the phase diagrams uniformly

show an upper critical solution temperature, consistent with the temperature-destabilized

nature of the DNA hybridization bond, and a coexistence regime whose Tc and [NS]den

increased with monovalent salt and nanostar valence, z.

The salt-dependence of Tc (Fig. 2.5) can be understood through the electrostatics

of DNA hybridization: repulsion between negatively-charged DNA strands is reduced

by the screening effect of added salt, causing hybridization strength (and thus Tc) to

increase with [salt]. More quantitatively, we note that the differing charge densities of

double-stranded and single-stranded DNA means that there is a change in the number
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of salt ions localized near the DNA when it hybridizes [74], leading to a free energy cost

of hybridization related to the chemical potential of the salt, µsalt ∼ T log[salt]. This

ultimately gives rise to the log[salt] dependence of the measured Tc (Fig. 2.5). Both the

mean-field and NS-SAFT models capture this log[salt] dependence because it is present

in the Santa Lucia estimates of DNA thermodynamics [59], whose predictions inform

both models.

The mechanisms underlying the dependence of Tc on z are more involved. Our ex-

perimental results show a strong decrease in Tc when z decreases to 3. Simple mean-field

pictures fail to account for this behavior, but it is captured by the NS-SAFT model.

Interestingly, the mean-field predictions are not very far off for higher valences, which

indicates the dominant role in such systems is played by the thermal stability of the DNA

bond itself. Yet the mean-field model, in all conditions, predicts transitions at higher

temperatures than experimentally observed. This is likely because it overestimates the

translational freedom of the bound state (i.e. the model implicitly assumes the bound

state is a freely-translating dimer, rather than a condensed DNA network). The failure of

the mean-field model emphasizes that bond connectivity (rather than just bond strength)

is crucial to the behavior of low-valence NS networks.

In contrast, the NS-SAFT model (adapted here from Rovigatti et al. [36, 58, 61])

includes connectivity, and indeed is generally successful in predicting Tc vs. z, including

the large decrease at z = 3. However, the NS-SAFT predictions are not perfectly aligned

with experiment. At higher valences, it is possible that this is due to the approximation

used for the excluded-volume parameter (B2 ∼ z), meaning the prediction might be

improved by carrying out direct simulations to find B2(z = 6). But it is also possible

that the experiments carry systematic errors that are not accounted for. For example,

the method for estimating Tc from melting temperatures is somewhat inexact. Further,

it is also possible that sample quality was imperfect: misassembled NSs can result from
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issues with stoichiometry of the constituent strands, or from errors in the DNA synthesis

process, and their presence could affect the measured phase behavior, as noted previously

[13].

2.5.3 Low-T behavior of condensate density

Our phase diagram measurements indicate that, in a given condition, the coexistence

concentration of the dense phase, [NS]den, tends to rapidly stabilize as T decreases below

Tc. This feature was also observed by others [13, 36], and has been attributed to the

strong (exponential) increase in DNA hybridization strength as temperature decreases–

essentially, as T decreases below Tc, the binding energy quickly becomes strong enough

to ensure that the number of bonds in the system is maximized; thus further temper-

ature decrease does not lead to more bonds, causing the network density to stabilize.

Interestingly, we observed two conditions (z = 4 and z = 3 at 150 mM NaCl) in which

there is a slow variation of [NS]den below Tc. Because the exponential dependence of

hybridization strength on temperature should still hold, this feature is likely instead due

to conformational behaviors and/or structural transitions of the NSs in these conditions.

To gain further insight into the values of NSden at low T , it is useful to establish a

metric for comparison. Analogous to Biffi et al. [13], we posit that, for the 4- and 6-armed

NSs, relevant metrics are the density when arranged into, respectively, diamond and

simple-cubic lattices, representing a potential structure for particles with, respectively,

4 and 6 nearest neighbors. We estimate the NS-NS center-to-center distance to be 18.4

nm, if the DNA arms are fully stretched (see Appendix,, Section A.7). Then, the density

of an z = 4 NS diamond lattice is 10.4 g/L, and that of an z = 6 simple cubic lattice

is 23.2 g/L. The measured low-T values of NSden, for z = 4 and z = 6, exceed these

values. This occurs partially because the entropic elasticity of the DNA arms pulls the
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particles closer together, and, for z = 4, likely due to a tendency for the NSs to adopt

planar structures [61]. Generally, dense states are electrostatically unfavorable, as they

bring the negatively-charged phosphates along the DNA backbones into close proximity;

accordingly, our data show adding salt favors a denser DNA liquid for both z = 3 and

z = 4 NSs, as has been previously observed [30]. That said, we note that the z = 4

density at the lowest salt approaches the diamond lattice value, perhaps indicating the

high inter-arm electrostatic repulsion in those conditions favors that structure; direct

structural analysis would of course be needed to confirm this.

For both z = 3 and 4, we found little increase in low-T [NS]den when switching

from [NaCl] = 150 mM to 300 mM. This differs from a previous result on z = 4 NSs

that used a centrifugation assay, and observed a strict monotonic increase in density

with salt, though over a slightly different range (250 mM to 1000 mM NaCl) [30]. The

discrepancy could be attributed to the differences in the sequence design between the

two experiments. Alternatively, we speculate that more complex mechanisms might be

relevant, such as the differing effects of electrostatic screening on inter-NS interactions

versus intra-NS interactions, e.g at the junction.

The increase in low-T values of [NS]den with valence is expected, since higher-z NSs

have both more DNA per particle (e.g. an z = 6 particle contains twice as much DNA

as an z = 3 particle), and because NSs with larger z will tend to have more bound

neighbors. Indeed, the z = 6 NSs have more than twice the low-T density of the z = 3

NSs, which underlines the role of the bound neighbors. However, the near-equivalence

of the low-T condensate density between 4 and 5 armed NSs is not consistent with this

picture. Intriguingly, a recent rheology experiment observed a similar trend with valence

of elasticity [27] as observed here for density: namely, the modulus of the rubber plateau

of NS condensates clearly increased when moving from z = 3 to 4 to 6, but the modulus

for z = 5 was similar to z = 4. We speculate that both results are due to the z = 5 NS
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adopting a unique structure in the condensate, relative to the 4- and 6-armed particles,

but more work is needed to clarify this.

2.6 Conclusion

We have established a simple method for obtaining the temperature-concentration

phase diagram of a liquid-liquid phase separating macromolecular system in which water-

in-oil emulsion droplets, at controlled temperature, are imaged with a low-magnification,

low-NA fluorescence microscope. The method offers various advantages, including no

direct handling of the dense state, low sample-volume use, and precise extraction of

condensate volume fraction. The method is readily applied to other macromolecular

systems that can be fluorescently labeled. Here, we applied it to the study of LLPS

exhibited by multivalent DNA NSs, finding strong effects of particle valence and salt

concentration on the phase diagram. The results confirm predictions of the NS-SAFT

numerical model, and generally give insight into limited-valence phase separation.
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Chapter 3

Increasing valence pushes DNA
nanostar networks to the isostatic
point

3.1 Preamble

The content of chapter 3 and appendix B is the result of a collaboration with Tynan

Kennedy, Deborah K. Fygenson, and Omar A. Saleh. The work here is reprinted with

permission from PNAS 116, no. 15, 7238 (2019), Copyright 2019 National Academy of

Sciences.

3.2 Introduction

Transient hydrogels are water-laden, transiently cross-linked polymer or colloidal net-

works that occur naturally in cells and tissues and have been synthesized and developed

for a wide range of applications from hygienic and food products to diagnostic and thera-

peutic technologies. Much of the utility of transient hydrogels derives from their viscoelas-

tic nature, which combines the stress-bearing abilities of a solid with the permeability

and flow characteristics of a liquid [75, 76]. Understanding the microscopic origins of
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these mechanical properties is an important goal for both directing transient hydrogel

engineering and deciphering their biological designs.

In general, transient hydrogel mechanics derive from the elastic properties of their

constituent polymer/colloidal chains, the stability of cross-links, and the connectivity of

the network [1]. Network connectivity can be defined in terms of junction multiplicity

or valence, z, i.e. the average number of network chains that meet at a node. While

connectivity is a potent effector of mechanics in principle [15,16,77], it is relatively difficult

to determine and control in practice [21–24]. This is because cross-links are traditionally

made, either by entanglement, by weak bonds (hydrogen bonds, van der Waals forces,

hydrophobic or electrostatic interactions), or by chemically reactive side-groups, with

junctions whose valence is uncontrolled or relatively small (typically 3 ≤ z ≤ 4), and not

revealed by either scattering or imaging techniques.

The programmability and thermal reversibility of Watson-Crick base-pairing makes

DNA intriguing as a model material in which to study the effect of network connectivity

on hydrogel mechanics. Multi-armed “immobile junctions” were among the first DNA

nanostructures to be rationally designed and self-assembled [78]. Pioneering work by Luo

et al. demonstrated the feasibility of producing macroscopic quantities of fully-synthetic

DNA hydrogels based on 3- and 4-armed junctions [79] that bind via complementary

“sticky-ends”, and explored their potential for various biotechnological applications [80].

More recently, Sciortino and co-workers engineered greater flexibility into the immo-

bile junction design by incorporating unpaired bases at the vertex and sticky-ends to

create “DNA nanostars” (DNAns) (Fig. 3.1A) [13, 31, 34, 35, 61, 81]. They found that

tetra-valent DNAns transition from a fluid to an equilibrium gel upon cooling [31,61,81],

with network dynamics controlled by the sticky-end interaction strength [13,30,34]. Equi-

librium gel formation requires both limited valence (z < 12) [2, 13, 14, 34, 82] and signif-

icant flexibility [81, 83], as conferred by the unpaired bases in the DNAns design (Fig.
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3.1A).

Figure 3.1: (A): 2D cartoon depicting the formation of a five-arm DNAns network
as a function of temperature. Every DNAns has unpaired adenines at the base of
each arm to enhance vertex flexibility. Each arm is a 21 bp double-helix, ≈ 8.5
nm long, that ends in a single-stranded overhang, consisting of an unpaired adenine
and a six-nucleotide palindromic sequence, called the sticky-end (boxed at right).
(B) Frequency-dependent mechanical response of DNAns networks at γ = 5% and
Tref = 20◦C. The storage modulus, G′ (solid), and loss modulus, G′′ (dashed), cross
at a frequency, ωc, that is the inverse of the relaxation time, τc. Inset: Arrhenius
fits to τc(T ) have a common slope corresponding to the activation energy for network
rearrangement. Orange triangles, blue diamonds, green squares, and red circles corre-
spond to z = 3, 4, 5, and 6 at DNAns concentrations of (500±10) µM, (490±10) µM,
(490± 20) µM, and (450± 30) µM, respectively.

Here, we apply bulk oscillatory rheology to solutions of z = 3, 4, 5 and 6-armed DNAns

equilibrium gels over accessible [DNAns] and temperatures to probe the effect of valence

on network mechanics and structure. The equilibrium and liquid-like nature of DNAns

networks ensures that material handling is easy and that the network’s mechanical and
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structural properties are history-independent. We find that the trends with valence of

network stiffness (plateau modulus) and strain-hardening are consistent with a network

whose mechanics are controlled by a combination of entropic elasticity of network chains

and an isostatic critical-point occurring at a DNAns valence of 5 < zc ≤ 6.

3.3 Methods

A brief explanation of the rheological methods are listed here. A more detailed

description of the materials and methods are in Appendix B.

We used oscillatory rheology to measure the frequency-dependent storage, G′, and

loss, G′′, moduli of solutions of DNAns with different arm numbers at various concentra-

tions and temperatures. Then, for each solution, we used time-temperature superposition

(TTS) to shift curves in both frequency and modulus, thus generating master rheologi-

cal curves that spanned six decades of frequency, ω, at a reference temperature of 20◦C

(Fig. 3.1B; Appendix, section S2a). At this temperature, a thermodynamic model of

sticky-end hybridization predicts > 98% binding [84] (Appendix, section S1b).

Frequency sweeps were performed at a constant strain, γ = 5%, well below the onset of

non-linearity (Fig. 3.3). For all z, repeated measurements of G′ and G′′ were independent

of rates of cooling and heating for ≤ 15◦C/min (Appendix, Fig. B.4), confirming that

DNAns form thermoreversible, equilibrium networks [13].

We also assessed the various networks’ linear and nonlinear elasticity by performing

oscillatory stress-strain measurements at a temperature (20◦C) and frequency (ω ≥ 63

rad/s) corresponding to the elastic-plateau regime of all valences.
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3.4 Results

DNAns solutions of every arm number behaved like Maxwellian viscoelastic fluids,

with low-frequency liquid behavior (G′′ > G′, with G′ ∼ ω2 and G′′ ∼ ω) separated by a

crossover frequency ωc from high frequency solid-like behavior (G′ > G′′, with a plateau

modulus G′
p; Fig. 3.1B) [1, 31]. While it is possible for such a crossover to result from

solvent drag effects [17,85,86], we estimate that a drag-induced crossover would occur at

MHz frequencies, well above our measured values of ωc (Appendix, section S2c). Instead,

we note that the characteristic time for network reconfiguration shows an Arrhenius de-

pendence, τc = 2π/ωc ∝ e−Ea/RT (Fig. 3.1B, inset) with an activation energy Ea that is

the same for all z and approximately equal to the enthalpy of hybridization of a single

nanostar overhang sequence (Appendix, Fig. B.7, consistent with previous dynamic mea-

surements [13, 30, 34]. We thus interpret τc as corresponding to bond-breaking events,

meaning that the high-frequency plateau modulus reflects the stiffness of an instanta-

neously bonded network.

To test how DNAns valence, z, affects network stiffness and structure, we measured

the plateau modulus, G′
p, as a function of DNAns concentrations, [DNAns], for z =

{3, 4, 5, 6}. G′
p increased with z more than might be expected based on density alone

(Fig. 3.2). That is, an (f+1)-armed network was always stiffer than an z-armed network

with the same volume fraction, ϕ, of DNAns arms (Fig. 3.2, inset). Further, G′
p increased

with [DNAns] as a power-law, G′
p ∼ [DNAns]t, with a best-fit exponent that decreases

from t = 1.8± 0.1 for z = 3 to t = 1.0± 0.2 for z = 6.

To gain insight on how valence affects the various networks’ strain behavior, we per-

formed oscillatory stress-strain measurements during their elastic-response regime (e.g.,

T = 20◦C and ω ≥ 63 rad/s). For γ ≤ 10%, all networks exhibited linear elasticity (con-

stant G′) (Fig. 3.3). At higher γ, most networks showed signs of strain-hardening, as
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Figure 3.2: Log-log plot of the plateau modulus, G′
p, as a function of DNAns concen-

tration at T = 20◦C and γ = 5% for z = 3 (orange triangles), 4 (blue diamonds), 5
(green squares), and 6 (red circles). Solid lines show fitted power laws, G′

p ∼ [DNAns]t;
labels give best-fit exponents with standard fitting-error estimates. Inset: Log-log
plot of G′

p as a function of DNAns arm volume fraction, ϕ = z · v · [DNAns], where
v = 26.7 nm3 is the solid cylinder volume equivalent of a DNAns arm. Solid lines
connecting the data points are guides for the eye. Need to update plot to have
“z = 3′′, etc.

discussed below. Finally, in all cases, the G′(γ) curve terminated with a sudden decrease,

or yielding of the network, typically associated with bond breaking [1, 87,88].

We define the yield strain γm as that which resulted in the largest measured G′.

The z = 3 and z = 4 networks were extensible, showing relatively large yield strains

of γm ≈ 1.3 and 0.5, respectively. Accordingly, in those networks the strain-hardening

regime was broad and amenable to analysis: for γ < γm, the regime was well-fit by a

relation proposed by Seitz et al. [89–91], G′(γ)/G′(γ → 0) ∼ exp ((γ/γ∗)2), with best-fit

values of γ∗ ≈ 1.8 and 1.2 for z = 3 and z = 4, respectively. γm and γ∗ did not vary

significantly with [DNAns] (Appendix, Fig. B.10A and B).
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Figure 3.3: Normalized plateau modulus, G′
p(γ)/G

′
p(γo), of DNAns networks as a

function of strain, γ, in the elastic-plateau regime (ω = 63 rad/s, T = 20◦C) for
z = 3 (orange triangles) and 4 (blue diamonds) at [DNAns] of (500 ± 10) µM and
(490±10) µM, respectively. Solid lines are fits of exp[(γ/γ∗)2] for (γ ≤ γm), where γm
(vertical dash-dot line) is the strain that maximizes G′

p and γ∗ is the characteristic
strain scale for stiffening. Inset: Same plots for z = 5 at [DNAns] of (300± 10) µM
(light green) and (550±30) µM (dark green) and for z = 6 at [DNAns] of (350±20) µM
(pink) and (550 ± 30) µM (dark red). The solid black line denotes exp((γ/1.1)2),
which captures the non-linear elasticity of the two lower concentration z = 5 and
z = 6 networks.

For z = 5 and z = 6, relatively small yield strains (γm ≈ 0.2) curtailed the strain-

hardening regime, yet all z = 5 curves showed a resolvable strain hardening, as did the

z = 6 curve at the lowest [DNAns] (Fig. 3.3 inset). These strain-hardening behaviors,

while modest, could also be fit to the Seitz expression, with γ∗ ≈ 1.1 for the least

concentrated z = 5 and z = 6 curve (Appendix, Fig. B.10A).
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3.5 Discussion

An isostatic picture explains plateau modulus behavior of DNAns

networks

The trend of DNAns network stiffness, G′
p, with DNAns valence, z, is qualitatively

consistent with the expectation that junctions of greater valence augment network modu-

lus by creating a greater density of stress-bearing chains. The ‘Phantom-network’ elastic

model [1, 21] quantifies this relation by extending classic rubber elasticity models to ac-

count for valence-dependent fixation of the junctions connecting network chains. Specif-

ically, it predicts G′ ∝ ϕ · (z − 2)/z. Our data are not consistent with this picture. G′
p

increases non-linearly with ϕ for z = 3, 4 and 5 (Fig. 3.2). More strikingly, at constant

ϕ, G′
p increases roughly 10-fold from z = 3 to z = 6, far exceeding the phantom-network

model’s prediction of two-fold stiffening for those valences (Fig. 3.2: inset; Appendix,

Fig. B.11).

We instead posit that the variation of DNAns network elasticity with valence is ex-

plained by the presence of a Maxwell isostatic point [15,92] at a critical valence value, zc.

The utility of the isostatic point in explaining biomolecular gel mechanics has recently

been explored [16, 77, 93–98]. The isostatic point occurs when the translational freedom

of a junction is exactly constrained by the connections (network chains) emanating from

that junction [15,16,77,92–96]. If each network chain supplies only central forces between

the two junctions it connects (i.e., it acts only by resisting stretching), then zc = 6 [15,16].

In practice, real network chains also supply tangential forces, due to a combination of

non-zero bending stiffness and rotational constraints imposed at the point of fixation to

the junction. The effect of non-zero bend stiffness is to decrease zc below 6 by an amount

dependent on the relative magnitudes of bend and stretch stiffness [16,96].
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Regardless of the precise value of zc, the presence of an isostatic point alters network

modulus in a manner consistent with our observations. Networks with z < zc have under-

constrained junctions whose positions are easily perturbed without significant stretching

of network chains [16, 92–94, 96]. These networks are thus intrinsically floppy, with a

low modulus dictated by chain bend behavior. In contrast, z > zc networks have fixed

junctions that can only be moved by stretching network chains [16, 92–94, 96], and are

accordingly relatively high-modulus materials. The isostatic model thus predicts a steep

increase in modulus as z increases through zc [16], in qualitative agreement with our data

(Fig. 3.2; Appendix, Fig. B.11).

Other features of our data also agree with isostatic model predictions: Stretch-

dominated, super-isostatic (z > fc) networks are expected to have a linear scaling of

G′
p with ϕ [91, 99–103], as seen at z = 6, but not at smaller valences (Fig. 3.2). This

implies that the critical valence of our DNAns network is between 5 < zc ≤ 6, con-

sistent with the prediction of zc = 6 for network chains that have vanishing bending

stiffness and little rotational constraint at the junction [16, 93, 96]. In the DNAs, we

posit these features are a consequence of the unpaired bases flanking the double helical

arms at the overhang and at the junction, consistent with flexibility seen in simulations

of DNAns [61].

It is intriguing that network stiffness is not perfectly monotonic with valence. The

z = 3 and z = 6 networks show strongly divergent behaviors, demarcating clear end-

points in the exponent t. The z = 4 and 5 networks both lie unambiguously between

those endpoints; however, their trend is not monotonic: t is larger for z = 5 than z = 4.

This disagrees with the monotonicity in valence expected from a purely isostatic expla-

nation. We speculate this is due to a fundamental asymmetry in the z = 5 nanostars.

Electrostatics favor ground states in which the negatively-charged DNA arms are equally

distant from their nearest neighbors. For z = 4 and 6, there are well-defined ground-state
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configurations in which the arms point to the vertices of corresponding platonic solids.

However, there is no such configuration available for z = 5. The resulting frustration

could explain the more under-constrained behavior of z = 5, i.e. with t values closer to

z = 3 than z = 6.

Valence-dependence of strain-hardening is also consistent with

an isostatic picture

As seen in Fig. 3.3, the z = 3 and 4 networks exhibit marked strain-hardening be-

haviors, with modulus increasing by ∼ 60% and ∼ 15%, respectively, before the material

yields. Strain hardening of polymeric materials generally occurs when network chains,

initially in an unstretched, thermally-fluctuating configuration, rigidify under strain as

they are straightened to lengths approaching their contour length [1,89–91,93,94]. Thus,

the strain-hardening of the z = 3 and 4 networks indicates that stress-bearing chains have

significant configurational freedom and, so, are under-constrained and sub-isostatic [93],

consistent with the interpretation from the G′
p vs. [DNAns] behavior [96,102].

This interpretation is also supported by the observation that, as with many poly-

meric and fibrous materials [89–91], DNAns networks strain harden according to G′ ∼

exp (γ/γ∗)2 (Fig. 3.3). As described by Seitz et al. [89], the fitting parameter γ∗ can be

related to the network chain’s maximum uniaxial extension ratio, λmax, which measures

the ratio of chain contour length to initial (unstretched) extension (Appendix, section

S2c, Fig. B.12). Fits to our data give λmax ≈ 2.3 ± 0.1 and 1.7 ± 0.1 for z = 3 and 4,

respectively, indicating the stress-bearing chains in an z = 3 network are initially less

stretched than those in an z = 4 network, presumably due to being more floppy.

The non-linear elastic response of the z = 5 and z = 6 networks is more subtle,

but still consistent with the isostatic viewpoint [93]. For z = 5, at all concentrations
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measured, the material hardens before yielding, but only by ∼ 2%. The curves are again

well-fit by the Seitz equation [89–91] with λmax = 1.9±0.2, indicating the network chains

are initially more stretched than z = 3. This is consistent with the z = 5 network being

sub-isostatic, but closer to the critical point than z = 3.

For z = 6, a similarly small (∼ 2%) strain hardening is seen at the lowest concentra-

tion, but at the other two concentrations strain hardening is not evident. We interpret

the lack of strain hardening as an indication that junctions in those networks lack con-

figurational freedom and, consequently, the networks are isostatic [93,94].

Analysis of yield behavior measures cluster size, confirms en-

tropic origin of elasticity

More insight into network structure is enabled by analysis of yield behavior. Yielding

occurs at a stress σy ∼ Fc/ξ
2, where Fc is the characteristic bond-breaking force and ξ

is the characteristic distance between the first bonds that break [102]. Single-molecule

manipulation experiments have directly quantified Fc for DNA overhangs loaded in shear,

typically finding Fc ≈ 50 pN for overhangs of 20 to 30 bp [104]. Thus, for the shorter 6

bp overhang used here, Fc ≈ 10 pN is a reasonable estimate for a scaling calculation.

Using this estimate, and our measured σy, we find ξ decreases from ξ ≈ 200−300 nm

at the lowest [DNAns] to ξ ≈ 100 nm at the highest [DNAns], for z = 3, 4, 5 (Fig. 3.4A).

For z = 6, on the other hand, ξ is smaller, ≈ 90 ± 30 nm, and independent of [DNAns]

(Fig. 3.4A). In all cases, ξ is much larger than the nanostar size (≈ 15 nm). It is thus

an emergent length scale of the system of roughly 5 to 20 DNA nanostars in width. We

interpret ξ as a measure of cluster size: the characteristic distance between bonds that

carry large forces upon strain. Within a cluster (i.e., between those vulnerable bonds),

the force is dispersed across many DNAns in parallel.
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This interpretation is consistent with simulations that report cluster-like inhomo-

geneities in equilibrium gels [105]. We emphasize that these clusters are different than

those found in (non-equilibrium) colloidal gels [106]. In DNAns gels, the clusters are

transient, enduring only for timescales less than τc. On longer time scales, the network

restructures and behaves as a liquid, with an effectively homogeneous density.

Given ξ, we can interpret network modulus in terms of the spring constant per cluster,

Kξ, which provides a clue to the fundamental origin of elasticity in the system. From

Kξ ≈ G′
p ·ξ we find thatKξ increases with valence and concentration (Fig. 3.4B) [102]. To

interpret these values, we compare them to the spring constant, KFJC , of the fundamental

entropic-elastic unit in the system: a bonded pair of DNAns arms that connects two

junctions. Considering the pair of arms as a two-segment, freely-jointed chain with

segment (Kuhn) length b equal to the DNAns arm length, the expected spring constant

is KFJC = 3kBT/2b
2 ≈ 85 µN/m at T = 20◦C, which lies in the middle of the estimated

Kξ values. This similarity indicates that entropic elasticity arising from DNAns arm

configurational freedom controls network modulus. For z = 3, Kξ < KFJC, as would

occur for DNAns loaded in series; this is consistent with the z = 3 cluster containing

a single, dominant stress-bearing chain of DNAns. For the higher-valence networks,

Kξ > KFJC, likely due to clusters containing more parallelized and interconnected stress-

bearing chains.

The entropic origin of network elasticity explains why G′
p increases only about ten-

fold as z goes from 3 to 6 (Appendix, Fig. B.11). Simulations of networks of non-entropic

(athermal) springs predict enormous, multi-decade increases in modulus as z increases

through the isostatic point [16]. The comparatively modest increase we observe can be

attributed to entropic rigidification, which is predicted to mask the modulus increment

across the isostatic transition [97,98].
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Origin of elastic exponents in sub-isostatic networks

A potential explanation for the non-linear power-law behaviors of the sub-isostatic

networks can be found by comparing our measured exponents with the results of per-

colation theory. We focus on the z = 3 system for which we have the broadest range

of [DNAns], and thus the best estimates. The exponent of ξ vs. DNAns concentration,

−0.8± 0.1, is consistent with the prediction from percolation theory in three dimensions

for the scaling of correlation length with bond concentration, ν ≈ −0.88 [1]. Further, the

z = 3 exponent of G′
p vs. [DNAns], t = 1.8±0.1, which was measured independently of ξ,

is also consistent with 3D percolation theory predictions of t ≈ 1.9 [107]. Experimentally,

similar values of t were measured in gels formed from trivalent gelatin, and attributed to

percolation behavior [108–110].

Within percolation models, the value of t ultimately derives from fractal exponents

describing network structure within clusters. For example, theory predicts that the short-

est path through a 3D percolated cluster has a fractal dimension dmin = 1.25 [111]. If

that shortest path dominates cluster elasticity (consistent with the single-chain interpre-

tation of Kξ for z = 3), and taking the path to consist of N DNAns in series, we expect

Kξ ∼ 1/N ∼ ξ−dmin . This is indeed close to the measured scaling of Kξ ∼ ξ−1.2±0.1 (Fig.

3.4B inset). Since G′
p ∼ Kξ/ξ, we see that the measured estimates of dmin ≈ 1.2 and of

ν ≈ −0.8 gives rise to the value t = −ν(dmin + 1) ≈ 1.8.

Although the correspondence of our concentration-dependent scalings with percola-

tion exponents is intriguing, some caution is warranted. First, our measurements show

power-law behaviors of G′
p and ξ with non-normalized concentration, while theory [1,111]

and prior experiment [108] observe such behavior only after correcting for a critical con-

centration; the reason for this discrepancy is unclear. Second, scattering studies can

measure the cluster size, ξ, directly and such direct structural evidence is needed to give
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a percolation interpretation firm support.

3.6 Conclusion

Our work highlights the key role of valence in controlling the elasticity of a hydrogel.

Notably, for the same density of DNAns arms, a 10-fold gain in stiffness results from

using z = 6 rather than z = 3 DNAns. At the same time, increasing valence dramatically

diminishes network extensibility because junctions become more constrained as network

connectivity increases. Our results are consistent with an isostatic interpretation: there

exists a critical connectivity threshold beyond which stress-bearing elements become

fully constrained and the network loses configurational freedom, leading to dramatically

increased stiffness, reduced yield strain, and a loss of strain-hardening.

In this interpretation, the z = 3, 4, 5 networks are sub-isostatic, with enough configu-

rational freedom at the particle level to exhibit strain-stiffening behavior and a non-linear

dependence of plateau modulus on particle concentration. The rigidity of these floppy

networks is attributed to the entropic elasticity of network chains, with a further role po-

tentially played by a percolation-like network structure. In contrast, the z = 6 network

is at or above the isostatic threshold, with highly constrained junctions and minimal

freedom in the stress-bearing chains. The lack of contortions results in little to no ex-

tensibility or strain stiffening. The location of the critical threshold at z = 6 behavior is

consistent with expectations for a network with flexible junctions [16,97,98], here insured

by the unpaired bases present in the center of the DNAns.

We suggest that the insights gained here, regarding the interplay of valence, entropic

elasticity, and network structure, can be extended to other DNAns-like particles to open

new avenues for tuning material elasticity.
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A

B

Figure 3.4: Log-log plots of (A) cluster size, ξ, and (B) cluster spring constant, Kξ,
as a function of [DNAns] for z = 3 (orange triangles), 4 (blue diamonds), 5 (green
squares), and 6 (red circles) at a temperature of T = 20◦C. In (A), the dashed line
denotes the predicted scaling relation for 3D percolated clusters with c, the particle
concentration from References [1] and [107]. In (B), the dashed line denotes the spring
constant, KFJC, of an entropic spring composed of two freely-jointed (Kuhn) segments
of length b = 8.5 nm (i.e., with length of a DNAns arm) and the solid lines denote
the measured power law relation for Kξ ∼ [DNAns]r. Inset: Log-log plot of Kξ as
function of ξ for z = 3 at T = 20◦C. The solid line denotes the relation Kξ ∼ ξ−1.2±0.1,
with standard error estimated from fitting.
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Chapter 4

Power-law rheology in
heterogeneously bonded DNA
nanostar

4.1 Preamble

The content of chapter 4 and appendix C is the result of a collaboration with Omar

A. Saleh and Deborah K. Fygenson. The study here is a manuscript in preparation for

submission to PRL.

4.2 Introduction

In the last chapter we demonstrated that equilibrium NS gels are model materials

to investigate the effects of connectivity in viscoelastic liquids. Recall, equilibrium gels

are non-hysteretic viscoelastic networks in which junctions are connected by a limited

number (2 < z < 12) of transient, flexible bonds [9, 10, 27, 28, 31, 32, 76]. Such bonds

give the network enough entropy to stabilize a disordered-liquid state over a crystalline

one [28] and make for a material with interesting behaviors, such as self-healing, that are

attractive for industrial and biomedical applications [9–11,27,76].
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To date, what is known about transient/equilibrium gel rheology comes from “homo-

typic” networks, in which all junction-to-junction bonds are of a single type/strength.

Below the percolation threshold and under low strain, homotypic equilibrium gels exhibit

Maxwell-like viscoelasticity: they flow like simple liquids on long time-scales, and deform

elastically on short time-scales. Studies have shown that the characteristic time-scale, τc,

that separates these behaviors is controlled by a combination of bond strength [9,27,76],

junction separation [76], and particle valence (shown in the last chapter).

By contrast, near percolation, near isostaticity, or whenever hydrodynamic inter-

actions become important, non-Maxwell power-law rheology emerges in the frequency-

dependent storage and loss moduli, G′ and G′′ [17, 97, 112]. Non-Maxwell scaling laws

for G′ and G′′ have been observed [31,113,114], simulated [17,97], and computed [17] in

such networks. Many connections between network structure and the observed power-law

exponents have been made [115,116], but are largely for colloidal networks which do not

have transient bonds. An intuitive framework that can explain the scaling exponents in

transient networks in terms of their network structure is lacking.

Here, we build such a framework by studying the rheology of transient “heterotypic”

equilibrium gels, where the underlying colloids have differing bonds whose distinct strengths

lead to dynamic percolation between two valences. Our gels are made of DNA nanostars

(NS), star-like macromolecules whose designability allows for independent alteration of

bond lifetime and junction valence. We made heterotypic equilibrium gels of a single NS

by designing it to make both long-lived (∼ 500 s), “strong”, and short-lived (∼ 0.1 s),

“weak”, NS-NS bonds (Fig. 4.1).

We observed non-Maxwell power-law rheology over time-scales that lie between the

two bond life-times in two different heterotypic NS solutions. The distinct scaling laws

of the two solutions were both consistent with a mean-field model that treats the weak-

bond network as a viscous solvent through which fluctuations of the strong-bond network
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diffuse to relieve stress. This same model accurately predicts the power-laws observed

by others for both critically-percolated and critically-isostatic networks, both experimen-

tally and in simulation. Thus, by relating the accessible relaxation modes to the elastic

correlation length, ξ, our mean-field model provides a framework for understanding non-

Maxwell scaling laws in equilibrium gels. In particular, it predicts a direct relationship

between the power-law exponent of G′ and the fractal dimension, dmin, of the shortest

stress-bearing chain within ξ-sized clusters of an equilibrium gel network.

4.3 Materials and Methods

To change valence and interaction strength with minimal structural perturbation, all

NS used in this study had the same, six-armed structure (Fig. 4.1A). Each arm had

either a weak, six-base-long 5′ overhang (α), a strong, eight-base-long 5′ overhang (γ), or

no overhanging bases at all (x, i.e., a blunt end; see Fig. C.2 for strand sequences). We

refer to a NS that has m α-overhangs and n γ-overhangs or n absent overhangs as αmγn

or αmxn, respectively. Any given NS was made by mixing its corresponding six HPLC-

purified ssDNA oligomers to equal concentrations in pure water, then dehydrating the

mixture and rehydrating it to a final NS concentration between 400 µM and 470 µM in

Tris-buffered saline solution (300 mM NaCl, 40 mM Tris, pH 8.3), and, finally, annealing

from 90◦C to room temperature over ∼ 5 h. Once annealed, such concentrated NS

solutions were too viscous to pipette, so a slant-cut pipette tip was used to scoop and

place ∼ 100 µL on the stationary plate of a strain- and temperature-controlled rheometer

(TA Instruments, Ares-G2). Oscillatory rheology measurements were performed in the

linear viscoelastic regime (∼ 1% strain) over a range of frequencies (0.1-10 Hz) and

temperatures (5◦C ≤ T ≤ 50◦C). All G′ and G′′ master curves were constructed using

time-temperature superposition (TTS) at the reference temperature listed, as detailed
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Figure 4.1: (A) Schematic of NS formation and network assembly as temperature,
T , is lowered. Tα and Tγ denote the melting temperature of α and γ overhangs,
respectively. (B) Frequency dependence of the bulk storage (G′) and loss (G′′) moduli
of concentrated α3x3 (orange), x3γ3 (green), α6 (red) and α3γ3 (purple) NS solutions.
The blue line is the sum of the moduli of α3x3 and x3γ3.

in [27]. Similarly, oscillatory strain sweep measurements of G′ and G′′ were performed

over a range of strains (1 − 300%) at temperatures and frequencies spanning the non-

Newtonian regime of the solution under investigation; TTS shift factors from the G′(f)

and G′′(f) master curves were used to shift the frequencies to Tref = 25◦C.
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4.4 Results

Consistent with past work [27], solutions of homotypic NS (i.e., those with only

one type of NS-NS bond) were Maxwell-like, acting like simple fluids at low shear rates

(G′ < G′′ for f < fc) and elastic solids at high shear rates (G′ ≈ G′
p > G′′ for f > fc),

with a single, characteristic relaxation time, τc ≡ 1/fc [1]. This was true even if some

arms lacked overhangs. Increasing valence from three (α3x3) to six (α6) resulted in a 5-

fold increase in τc and a 20-fold increase in G′
p (Fig. 4.1B, orange and red curves). Similar

increases were previously observed for homotypic NS of different arm numbers (albeit at

half the salt concentration) [27], suggesting that the blunt arms are rheologically inert.

In contrast, solutions of 6 arm heterotypic NSs were generally not Maxwell-like

(Fig. 4.2), with the drastic change in viscoelastic spectra coming solely from a small

sequence change to the NS design. In particular, the weak sticky-end sequence on some

of the α6 NS arms were slightly altered to make stronger sticky-ends (γ-sticky-ends). De-

signing the NS to have some γ-sticky-ends induced reproducible non-Maxwell power-law

rheology at frequencies over which the α-bonds dissociate. In particular, rheology of α4γ2

had a characteristic time scale, slightly longer than f−1
c (α6), beyond which the moduli

scaled as G′ ∼ f 1, G′′ ∼ f 3/4. Rheology of α3γ3 had two characteristic time scales, one

slightly longer than f−1
c (α6) and another near f−1

c (x3γ3), between which both moduli

scaled as G′ ∼ G′′ ∼ f 2/3. We want to emphasize here again that a significant alteration

to the power-law stress-relaxation between the two heterotypic NSs was also achieved

through changing DNA sequences to make two NSs that differ in valence of strong- and

weak-sticky-ends.
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Figure 4.2: Plot of G′ and G′′ versus frequency of concentrated solutions of (A) α3γ3
(purple hues) and (B) α4γ2 (pink hues) NSs measured at 1% strain, added salt of 300
mM NaCl, and at a reference temperature of 25◦C.

4.5 Discussion

Interestingly, G′ and G′′ of the α3γ3 NS solution are everywhere significantly larger

than the sum of the x3γ3 and α3x3 NS (Fig. 4.1A), even in the simple fluid regime

f < fc(x3γ3) where α3x3 has minimal viscosity. This suggests that, by inextricably

linking α and γ networks, the NS design enables the γ-bonded network to catalyze

α-bond formation. If this cooperative behavior between the weak- and strong-bonded

networks did not exist, then the sum of the two underlying network moduli would recover
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the resulting viscoelastic response.

Another clue to the origin of the power-law scaling exponents is that for both het-

erotypic NS solutions the storage modulus plateaus to a value similar to that of the

α6 NS network (Fig. 4.1B), G′ → G′
p ≈ 6500 Pa. This suggests that the power-law

rheology of α3γ3 and α4γ2 NS solutions at intermediate frequencies reflects a changing

network connectivity between the two sticky-end lifetimes: as frequency rises, stress-

bearing chains of strong-bonds are constrained by an increasing number of weak-bonds,

altering the moduli. We thus hypothesize that the increasing constraints, arising from

increased junction valence, reduces the size of the elastic correlation length, ξ(t), of the

strong-bond network.

To build these insights into a model for G′, we first propose that the weakly-bonded

α-network can be modeled as a pervasive, uniform (i.e., mean-field) background vis-

cosity, ηαm , that hinders collective relaxations of the strongly-bonded γ-network. We

further propose that, in this Zimm-like scenario, relaxation can be modeled as a diffusion-

limited process: fluctuating segments of the strong-bond network relieve stress by diffus-

ing through the weak-bond network. A segment of size ξ will have an effective diffusion

coefficient Dξ ∝ kBT/(ηαmξ), where kB is the Boltzmann constant and T is the absolute

temperature [1, 117], and, therefore, a characteristic diffusion time t = ξ2/Dξ. Solving

for ξ yields

ξ ∼
(
kBT

ηαm

t

)1/3

∼ f−1/3 . (4.1)

In other words, the time scale over which stress is dissipated determines the associated

elastic correlation length of the strong-bond network (Fig. 4.3A). We note recent theo-

retical work on non-transiently bonded colloidal networks derived a similar relation for

ξ(f) as the one shown in 4.1; equation 8 in [115].

We sought evidence for this frequency-dependence of ξ from strain sweeps (Fig. 4.3B,
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Figure 4.3: (A) Cartoon depiction of the mean-field model. Weak bonds (orange)
are treated as a viscous solvent that determine the relaxation modes of the short-
est/dominant stress-bearing chain (bold green path) in the strong-bond network
within ξ. (B) Plot of ξ measured via strain sweep experiments versus (shifted) fre-
quency at a reference temperature of Tref = 25◦C for several α4γ2 NSs and an α6

NS. The vertical dashed lines denote the power-law regime for G′ of the α4γ2 NSs.
The solid blue line is a non-linear least squares fit of bf−1/3 + ξo between the vertical
dashed lines. The reported frequencies are those of the raw strain sweeps multiplied
by the corresponding temperature-dependent shift factors used to generate the master
curves at Tref = 25◦C. (B, inset) Example yielding curves from which the yield stress
were estimated. The legends in each inset plot contain the original Temperature and
frequency at which the strain sweep was acquired. The legends also contain the value
of the storage modulus at 1% strain.
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inset & C.4). Specifically, we measured the yield strain, λy, and yield storage modulus,

G′
y, to find the yield stress, σy = G′

yλy. We expect σy ≈ Fc/ξ
2 [102], where Fc is the

force required to break the strong NS-NS bond (estimated to be ≈ 10 pN based on the

length of the γ-overhang sequence [104]). This implies

σy ≈ Fc/ξ
2 =⇒ ξ(f) ≈

√
Fc

G′
y(f)λy(f)

, (4.2)

thus allowing direct estimate of ξ from the measurements of yielding. We note that Fc

is expected to have a log(f)-dependence. However, a strong log(f)-dependence results

in an increase in ξ, which is not consistent with the observed data (Fig. 4.3B and Fig.

C.8). Thus, the log(f)-dependence here is weak and can be ignored.

In α3γ3 NS solutions, interestingly, we found ξ to be constant with frequency (Fig.

C.8). We presume the effective frequency range of power-law rheology was too narrow (70

- 350 mHz) and the measurement precision too low (∼ 20%) to meaningfully constrain

the scaling of ξ(f). In α4γ2 NS solutions, however, the power-law rheology extended

over a decade of frequency and ξ(f) was in good agreement with Eq. 4.1 (Fig. 4.3B),

validating the assumption that modes of relaxation accessible to the strong-bond network

are Zimm-like.

The agreement of ξ(f) with Eq. 4.1 also suggests that it is reasonable to treat the

weak-bonded network as a pervasive, viscous solvent which resists the fluctuations of and,

thus, affects the relaxation modes of the strong-bond network. We note a similar assump-

tion was utilized in a recent theoretical and experimental work on transiently cross-linked

metallo-supramolecular networks (e.g., unentangled polymer chains transiently bridged

together by a small, linear linker) [26]. In particular, Ref. [26] derived a friction coef-

ficient, ζ, for a polymer reptating in the presence of transient x-links, using a dynamic

effective medium approach, and found it was dependent on both the concentration of
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cross-links, c, and rate of cross-links dissociating off the polymer, kd. The derived ζ

was then used to correct their (separately derived) model predictions for the relaxation

rate when the polymer is cross-linked only at its terminal ends, keff , and found that

the correction to keff was in great agreement with experimental measurements as c in-

creased from low to high. Thus, their agreement and ours here demonstrate the validity

in assigning a constant viscosity to the weakly-interacting cross-links in solution when

approximating how they affect the relaxation modes of the stress-bearing network.

To derive an expression for G′(f) that reflects both how clusters smaller than ξ relax

and how clusters larger than ξ deform, recall that the storage modulus of a 3d (percolated)

network goes as G′ ∼ Kξ/ξ, where Kξ is the spring constant of the shortest stress-bearing

chain within ξ [102, 106, 116]. For NS networks, it is expected [111] that Kξ ∼ ξ−dmin ,

where dmin is the fractal dimension of that shortest elastic chain within ξ. Combining

this relationship with Eq. 4.1, yields

G′ ∼ ξ−(1+dmin) ∼ f (1+dmin)/3 (4.3)

for fc(x3γ3) ≪ f ≪ fc(α6).

The observed power-laws are indeed consistent with equation 4.3 based on what is

known of the fractal dimension of stress-bearing chains in their respective strong-bond

networks. In particular, the fractal dimension of a freely-jointed chain structure, the

expected structure of the “valence-two” γ-network of α4γ2, is dmin = 2. Our model thus

predicts G′ ∼ f 1, which is in great agreement with the observed G′
α4γ2

∼ f 1. Similarly,

prior work on homotypic 3-armed NS networks indicate dmin = 1.2 ± 0.1, which would

lead to a rheological exponent of G′ ∼ f 0.73±0.03. This is consistent with G′ ∼ f 2/3 found

in α3γ3 NSs, particularly within two standard errors of G′ ∼ f 0.73±0.03.1 We emphasize

1Note, the exponent 2/3 predicts dmin = 1, also within two standard errors of dmin = 1.2± 0.1
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here once more that a large change to the power-law exponent and, hence, dmin between

α3γ3 and α4γ2 was induced through only a slight change to the heterotypic NS design.2

To test the generality of our model, we consider a recent micro-rheological study of a

critically-percolated equilibrium gel that measured G′ ∼ G′′ ∼ f 0.5 over two decades in

frequency [31]. In this equilibrium gel of homotypic 4-armed NS, the viscosity opposing

relaxations comes entirely from the pervading salt solution, but the value of dmin =

0.5 < 1 inferred from Eq. 4.3 is physically unreasonable, suggesting that hydrodynamic

interactions are fully screened. In the limit of no hydrodynamic interactions (i.e., the

Rouse limit or a freely draining network), stress-relaxation requires all connected NS in a

ξ-sized cluster to move through the solvent. The effective diffusion coefficient in the mean

field model then becomes Dξ ∝ kBT/ηsolξ
dfr , where dfr is the mass fractal dimension of

all connected NS in ξ and changes the denominator of the scaling exponents to:

ξ ∼ f 1/(2+dfr) (4.4)

and

G′ ∼ f 1+dmin/(2+dfr) . (4.5)

Estimates for dfr in a critically percolated 4-arm NS network can be drawn from

other studies. In particular, our own rheological study on a similar homotypic 4-arm NS

network [27] found the concentration dependence of ξ is consistent with 3d percolation,

which implies dfr = 2.5 [1]. Using this estimate dfr = 2.5, equation 4.5 saysG′ ∼ G′′ ∼ f 0.5

implies dmin = 1.25 for a percolated 4-arm NS network. We note independent numerical

simulation of critically-percolated clusters of homotypic 4-arm NS found the average

valence of NS in the cluster to be three [61], suggesting that dmin for 4-arm NS clusters may

2Recall that a structural change in a NS is achieved through a small change to the strand sequences
self-assembling a NS.
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indeed be similar to that of a 3-arm NS network dmin = 1.2 [27]. However, independent

and direct measurements of dmin are needed to confirm our prediction.

To further test the generality of our model on systems with known dfr and dmin, we

adapt it to 2d and compare the predicted exponents to those measured in simulations of

2d, critically isostatic networks [17, 97]. We first briefly discuss the model derivation in

2d. The scaling of ξ with frequency in the Zimm (Eq. 4.1) and Rouse limits (Eq. 4.4)

are the same in 2d as in 3d. However, the storage modulus of a two-dimensional network

is G′ ∼ Kξ. Because each stress-bearing chain consists of Nξ ∼ ξdmin elastic elements in

series, the spring constant Kξ ∼ 1/Nξ ∼ ξ−dmin . Therefore, in 2d:

G′
2d,Z ∼ ξ−dmin ∼ fdmin/3 (4.6)

in the limit of full hydrodynamic coupling (i.e., the Zimm limit) and

G′
2d,R ∼ fdmin/(2+dfr) (4.7)

in the limit of full hydrodynamic screening (i.e., the Rouse limit).

One set of simulations of a 2d triangular lattice at the isostatic threshold [118] found

dmin = 1.80 ± 0.03 and dfr = 1.86 ± 0.02. Plugging these values into Eqns. 4.6 and 4.7,

yields G′ ∼ f 0.60±0.02 and G′ ∼ f 0.47±0.01 in the Zimm- and Rouse-limits, respectively.

These values are in excellent agreement with other simulations on the same lattice, which

measured G′ ∼ f 0.61 in the Zimm limit and G′ ∼ f 0.41 in the Rouse limit [17,97].

More sophisticated theories, that invoke a dynamic effective medium [17] or perform a

Lagrangian density of states analysis [86], predict these exponents with similar accuracy.

Those theories, and simulations that test them [97], further provide the key insight that

G′ ∼ fF/ϕ, where F is the critical rigidity exponent and ϕ is the critical relaxation
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exponent of the isostatic transition. Therefore, based on our mean-field model, we can

relate the ratio of those critical exponents to the structure of the isostatic network:

F/ϕ = dmin/3 in the Zimm-limit and F/ϕ = dmin/(2 + dfr) in the Rouse-limit.

4.6 Conclusion

In summary, we have leveraged the designability of DNA nanostars to study non-

Maxwell power-law rheology in equilibrium gels. We demonstrated that small changes to

the sticky-end sequences on a NS can lead to reproducible and large changes to the power-

law exponents. We also presented a simple, mean-field model that predicts the observed

scaling exponents and identifies two parameters that control the observed exponents:

the fractal dimension of the dominant stress-bearing chain within an elastic correlation

length, ξ, and the effective viscosity of non-stress-bearing interactions permeating the

network. The model is further validated by strong agreement with observed power-law

rheology in (2d) isostatic networks of well-defined fractal dimensions, dfr and dmin. We

therefore posit that the model here generally applies to all types of equilibrium gels when

hydrodynamic interactions are important.
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Chapter 5

Rheology of transient, heterotypic
DNA nanostar networks

5.1 Preamble

The content of chapter 5 and appendix C is the result of a collaboration with Omar

A. Saleh and Deborah K. Fygenson. The study here is a manuscript in preparation for

submission to PRE.

5.2 Introduction

In the last chapter, we performed oscillatory rheology on NS networks that have both

strong, long-lived NS-NS bonds and weak, short-lived ones (Fig. 4.1A). The resulting

networks exhibited reproducible power-law rheology between the two sticky-end life-times

(Fig. 4.1B). To explain the power-law exponents observed, a corresponding mean-field

model was derived. The model relates the viscosity of the weak-bonded network to

Zimm-like relaxation modes of the dominant strong-bonded stress-bearing path in the

network. By relating the two, we found the following power-law relationships for the
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elastic correlation length

ξ ∼
(
kBT

ηαm

t

)1/3

∼ f−1/3 . (5.1)

and the storage modulus

G′ ∼ ξ−(1+dmin) ∼ f (1+dmin)/3 (5.2)

where dmin is the fractal dimension of the dominant, strong-bonded stress-bearing path.

To expand on the work described in chapter 4, we now investigate the microscopic

parameters controlling power-law rheology in heterotypic NS solutions. In particular,

in this chapter, we explore how salt affects the viscoelastic spectra of α3γ3 NSs and we

will investigate the rheology of several other types of heterotypic NSs (Fig. 5.1B). The

other heterotypic NS designs will test how power-law rheology is affected by: (i) slightly

decreasing the binding strength of the strong sticky-end (e.g., α3β3 NSs) (ii) using a NS

that has 2 weak sticky-ends and 4 strong ones (e.g., α2γ4 NSs), and (iii) changing the

overall valence of the NS from six to five, with a weak to strong sticky-end ratio of 3

to 2 (e.g., α3γ2 NSs). All NS-types, except α2γ4 NSs, make networks with reproducible

power-law rheology between the two sticky-end lifetimes. We use the mean-field model

derived in Chapter 4 to explain the observed power-law exponents and we will also show

that a two-mode Maxwell model reproduces the viscoelastic spectra of α2γ4 NSs. In

addition to discussion of how power-law rheology changes in the various heterotypic

NS solutions, we relate the viscoelastic properties observed in both their terminal fluid

and elastic regimes to the underlying NS sticky-end lifetimes and connectivity. We will

generally show here that the sticky-end lifetime and valence are important dials in tuning

the overall viscoelastic spectra of equilibrium gels.
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Figure 5.1: (A) Schematic of NS formation and network assembly as temperature,
T , is lowered. Tα and Tγ denote the melting temperature of the α and γ sticky-ends,
respectively. (B) Different NS types used in this study (see Table S1 for sequences).
The binding strength hierarchy is the following: Tα < Tβ < Tγ , where Ti is the melting
temperature of sticky-end i. (C) Plot of G′ and G′′ versus frequency of concentrated
solutions of α3x3 (orange), x3γ3 (green), α6 (red) and α3γ3 (purple) NSs at an added
salt of 300 mM NaCl. The sum of the storage and loss moduli of α3x3 and x3γ3
networks are shown in blue.

54



Rheology of transient, heterotypic DNA nanostar networks Chapter 5

5.3 NS preparation and rheology protocol

A brief description of the materials and methods is listed here. A more detailed

description of each material and method is found in the appendix of this thesis (Appendix

C).

To make the heterotypic NS with z = n+m arms, e.g., “anbm” NS, we designed z self-

complementary ssDNA oligos where n and m of the oligos have a- or b-type sticky-ends,

respectively (see Appendix C1). The same sequences for the z-armed anbm heterotypic

NS were used for the z-arm homotypic NSs xnbm and anxm, with some slight design

changes. In particular, the n or m oligos on the xnbm or anxm NS have their respective

a- or b-type sticky-end removed.

Solutions of either homotypic or heterotypic z-arm NSs were prepared by mixing

together the corresponding z complementary ssDNA oligos in stoichiometric amounts

(Fig. 5.1A). For all NS types, the newly mixed solution of oligos required dehydration

and subsequent rehydration in 100 µL of a Tris buffer (40 mM Tris, 11.5 mM HCl, 1 mM

EDTA) at various salt concentrations. The re-suspended NS solution was then slowly

annealed from T = 90◦C to T ≈ 20◦C over ≈5 hours to ensure proper NS formation.

The concentration of the annealed NS solution was estimated from UV-Vis absorbance

measurements at a 260 nm wavelength on 100-fold diluted aliquots of solution. The

resulting concentrations of NSs made were between 400 and 470 µM.

After concentration measurements, annealed NS solutions were carefully shoveled out

of their tubes using a slant cut pipette tip onto a strain- and temperature-controlled bulk

rheometer for viscoelasticity measurements. We first performed oscillatory rheology mea-

surements in the linear viscoelastic regime of the solution (≈ 1% strain) to measure the

storage G′ and loss G′′ moduli over a range of frequencies at many different temperatures.

All G′(f) and G′′(f) data shown are master curves constructed using time-temperature
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superposition, as detailed in Appendix B.6.2, at the reference temperatures listed in the

respective plots. We then measured G′ and G′′ over a range over strains, 1%≤ λ ≤300%

at many different temperatures and applied frequencies to investigate yielding behavior.

5.4 Results

5.4.1 Frequency sweeps

The linear frequency-dependent storage, G′, and loss, G′′, moduli of concentrated

solutions of all homotypic NSs exhibited a Maxwell-like response (Fig. 5.1B). Namely,

these solutions flowed like a viscous fluid at low shearing frequencies until a characteristic

frequency fc ≡ 1/τc occurring at G′ = G′′; e.g., G′(f) ∼ f 2 < G′′(f) ∼ f 1 for f < fc.

They then transitioned to a high-frequency elastic solid at f > fc with G′(f) ≈ G′
p >

G′′(f). We note that for α3x3 and x3γ3 NSs, we measured τc(x3γ3) ≈ 103τc(α3x3) and

G′
p(x3γ3) ≈ G′

p(α3x3) across all added salt concentrations.

When increasing the valence of alpha bonds from 3 to 6 on the homotypic NSs here, we

found τc(α6) ≈ 5τc(α3x3) and observed a 20-fold increase in the elastic plateau modulus,

G′
p. Similar differences were observed in chapter 3 between a 6 arm NS and a purely 3

arm NS. This indicates the blunted arms on the homotypic NSs here are rheologically

inert.

For all homotypic NSs, we observed the temperature dependence of τc to be Arrhenius-

like (Fig. 5.7). In the α3x3 and α6 NS solutions, we find the fitted Arrhenius activation

energy, Ea, to be ≈ 90% the estimated enthalpy, ∆H, of the α sticky-end sequence (Table

C.1). Similarly, in the x3γ3 NS solutions, we find Ea ≈ 0.8∆H (Table C.1). Lastly, across

all salt concentrations used in the α3x3 and x3γ3 NS solutions, the Arrhenius temperature-

dependence of the relaxation time persisted (Fig. C.3) and Ea remained approximately
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Figure 5.2: Terminal liquid relaxation time vs temperature for α3x3 (orange ▽), α6

(dark red ⃝), β3 (aqua ▷), α3β3 (blue ⃝), γ3 (light green ◁), x3γ3 (dark green ▽),
and α3γ3 (dark purple ⃝). The NS concentration and activation energy measured
from Arrhenius fitting, Ea, are listed in the legend of the plot. Inset, Qualitative
sketch of the free energy vs reaction progress for NS network relaxation. Ea is the
activation energy required to get to the transition state (e.g., fluid flow). ∆G is the
free energy of the sticky-end interaction.

the same (Table C.1).

Next, we measured the linear G′(f) and G′′(f) of concentrated α3γ3 NS solutions at

added salt concentrations of 50, 150, and 300 mM NaCl (Fig. 5.3). The α3γ3 NS solution

exhibited the same viscoelastic response across all salt concentrations, which can be

seen after normalizing G′(f) and G′′(f) curves (Fig. 5.3B). The generic shape of the

viscoelastic spectra was as follows: (i) simple fluid flow at f < fliq(α3γ3) ≡ 1/τliq(α3γ3),

with roughly G′ ∼ f 2 and G′′ ∼ f 1 (ii) between fliq(α3γ3) < f < fc(α6), solutions had a

small period of elastic plateau near fliq(α3γ3) and then a larger period of G′ ≈ G′′ ∼ f 2/3

until fc(α6) (iii) at f > fc(α6), there was an elastic-like response with G′ → G′
p ≈ 6000-

7000 Pa and G′′ ∼ f−3/5. Increasing salt only shifted the spectra to lower frequencies
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Figure 5.3: (A) Plot of the linear storage, G′, and loss, G′′, moduli versus frequency
of α3γ3 NS solutions at an added salt of 50, 150 and 300 mM NaCl and reference
temperature of 25◦C. (B) Normalized plots of G′ and G′′ vs frequency, where the
moduli are normalized by the plateau modulus, G′

p, and the frequency is normalized
by the liquid-like crossover frequency at 25◦C, fliq(25

◦C).

(Fig. 5.3A).

We note we define τliq(α3γ3) as the “liquid-like” time-scale in the α3γ3 NS solutions,

which demarcates the frequency below which the material flows like a simple liquid and

occurs at the first instance of G′ = G′′ in the spectra. For all salt conditions, we found

τliq(α3γ3) to be Arrhenius-like with temperature (Fig. C.3) and found the fitted Ea to

be roughly equal to the x3γ3 NS solution (Table C.1).

Next, we tested the effect of changing the strong sticky-end lifetime on heterotypic

NS rheology (e.g., γ to β, Fig. 5.4). At low frequencies, α3β3 solutions flow like a viscous

liquid, with roughly G′ ∼ f 2 and G′′ ∼ f 1 until approximately τc(β3) (Fig. 5.2). Then,

for fc(β3) < f < fc(α6), power-law rheology occurred immediately with G′ ∼ f 3/4 and

G′′ ∼ f 2/3 (Fig. 5.4). At f > fc(α6), the α3β3 NS solution behaved elastically, with

G′′ ∼ f−3/5 and G′(f) → G′
p nearly equal to the α6 solutions.

We also investigated how the rheology of a 6 arm NS solution is affected by changing

the valence ratio between strong and weak bonds; e.g., α4γ2 and α2γ4 NSs (Fig. 5.5).
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Figure 5.4: Plot of the linear storage, G′, and loss, G′′, moduli versus frequency of
concentrated solutions of α6 (dark red), α3β3 (blue), and α3γ3 (purple) at an added
salt of 300 mM NaCl and reference temperature of 25◦C.

Similar to other heterotypic NSs, the α4γ2 and α2γ4 networks were fluid-like at low

frequencies. Interestingly, we found the characteristic frequency of liquid response, fliq =

1/τliq, increased when the γ valence ratio increased. This can be quantitatively seen in

the terminal crossover of G′ = G′′ in α2γ4 occurring at a frequency well into the liquid-

like regime of α4γ2 NS solutions (Fig. 5.5). At frequencies above 1/τliq, (i) the α2γ4 NS

transitioned between two clear elastic plateaus, with the first elastic plateau and τliq being

equal to those of a γ4 NS solution (Fig. C.2) and (ii) the α4γ2 showed power-law rheology

with G′ ∼ f 1 and G′′ ∼ f 3/4 persisting over almost 2 decades of frequencies. Lastly, the

high-frequency rheology of both α2γ4 and α4γ2 NSs exhibited similar properties. In

particular, they both had G′
p ≈ 6500 Pa and G′′ ∼ f−3/5 at f > fc(α6), which is also

seen in the α3β3, α3γ3, and α6 NS solutions.

Finally, we tested how G′ and G′′ of heterotypic NS solutions are affected by changing
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Figure 5.5: Plot of the storage, G′, versus frequency of concentrated solutions of α2γ4
(dark purple), α3γ3 (magenta), and α4γ2 (pink) NSs at an added salt of 300 mM NaCl.
The solid and dotted light grey lines are non-linear least square fits of a two-mode
Maxwell material to α2γ4 G′ and G′′, respectively. The minimization process took
into account both G′ and G′′ when finding the parameters for the fitted function (e.g.,
the 4-parameters of the fit were found by minimizing both model functions and data
sets simultaneously). The light blue arrow is a guide for the eye showing the decrease
in fliq as the valence in the γ-bond network increases.

the total valence from 6 to 5; e.g., α4γ2 to α3γ2 NSs (Fig. 5.6A). Upon going from

α4γ2 NSs to α3γ2 NSs, the moduli lowered in magnitude (G′
p(α3γ2) ≈ 3000 Pa), the

power-law region compressed in frequency space, and the two characteristic frequencies

demarcating fluid and elastic regimes shifted to higher frequencies. The liquid- and

solid-like characteristic frequencies increased ≈ 6x and 1.3x, respectively (see Fig. C.3

for 6-fold change in liquid-like relaxation time). The incommensurate increases in the

two frequencies (likely) resulted in changing the G′ power-law rheology from G′ ∼ f 1 to

G′ ∼ f 11/10 and limiting G′′ ∼ f 3/4 to a very small frequency regime. Despite the power-
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Figure 5.6: Plot of (A) G′ and G′′, (B) tan(δ), and (C) the elastic correlation length
ξ versus frequency of concentrated solutions of α3γ2 (brown hues) and α4γ2 (pink
hues) NSs at an added salt of 300 mM NaCl. In B, there is a plateau in tan(δ) that
roughly corresponds to the region of non-Maxwell power-law scalings observed in A.
In C, the frequencies of the data points reported were multiplied by the TTS shift
factors used to make the G′(f) and G′′(f) master curves at Tref = 25◦C . The dashed
line in C denotes the rough location of G′ = G′′ in A. The blue line in C is a non-linear
fit of ξ = bf−1/3 + ξo to the respective data set.

law exponents behaving slightly differently in the intermediate regime, we still observed

G′′ ∼ f−3/5 in the elastic regime of α3γ2.

61



Rheology of transient, heterotypic DNA nanostar networks Chapter 5

5.4.2 Strain sweeps

We measured the strain behavior of the storage modulus, G′, of concentrated solutions

of homotypic NSs in their elastic response regime (Fig. 5.7 and Fig. C.4). For all

solutions, the homotypic NSs were linear up to roughly 10-20% strain. After the linear

regime, α3x3, α4x2, and x3γ3 entered a period of strain hardening until yielding at≈ 200%

and 80% strain for valence 3 and valence 4 networks, respectively. Whereas, for the α6

NSs, the solution immediately yielded after 10-20% strain.

Next, we measured the strain behavior of G′ in concentrated solutions of heterotypic

NSs during conditions when they exhibited non-Maxwell power-law rheology and were

elastic-like (Fig. 5.7B-D and Fig. C.4). For all conditions (e.g. temperatures and

frequencies), the linear regime of heterotypic NSs lasted until roughly 10-20% strain,

similar to the homotypic ones. After the linear regime, heterotypic NS solutions either

exhibited strain hardening or immediately yielded. In particular, when doing strain

sweeps at temperatures and frequencies when most of the α bonds have relaxed, strain

stiffening occurred and mimicked that of homotypic ones with valence similar to the

strong-bond network valence. On the other hand, at temperatures and frequencies when

both the α- and γ-bonds are stable, the 6 arm heterotypic NS solutions broke immediately

after its linear regime, much like homotypic α6 NSs.

5.5 Discussion

5.5.1 Single NS-NS bond dissociation determines simple liquid

flow

Our oscillatory rheology experiments here measure characteristic time-scales of liquid

response for both homotypic, τc, and heterotypic NSs, τliq (see caption of Fig. C.3 for
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Figure 5.7: Normalized storage modulus versus strain for (A) α3x3 (orange), x3γ3
(green), α6 (red), (B) α3γ3 (light purple), (C) α4γ2 (pink), α4x2, and (D) α2γ4
(dark purple), and α4x2 (blue). The NS concentration, temperature, frequency, and
storage modulus at 1% strain, G′(1%), are listed in the legends of each plot.

τliq(α3β3) and τliq(α4γ2) estimate). We generally find τliq of a heterotypic NS, with a

strong-bond valence of zγ, to be similar in magnitude to τc of a strong-bond homotypic

NS of valence zγ; e.g., τliq(α3γ3) ≈ τc(x3γ3) ≈ τc(γ3) (Fig. 5.1 & C.2). This suggests

that (i) the dissociation of strong NS-NS bonds (e.g., β or γ-bonds) in the heterotypic
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NSs, and not the weak one, determines the liquid-like time-scale and (ii) blunted or

dissociated NS arms are rheologically inert.

To find more evidence supporting the interpretation that the strong NS-NS bonds sets

τliq in heterotypic NS solutions, we compare plots of τliq and τc of the corresponding con-

trol, homotypic NS versus temperature (Fig. 5.2 & C.3). We find both τliq of heterotypic

and τc of the associated control homotypic NS to be Arrhenius-like with temperature, T ,

with similar activation energies for fluid flow, Ea, roughly equal to the estimated enthalpy

of a single strong NS-NS bond (see Fig. 5.2 & Table C.1). This lends strong support to

the notion that the thermal stability of a single strong NS-NS bond in heterotypic NS

networks set the energy barrier for simple fluid flow.

It is interesting, though, that the energy barrier for fluid flow is similar to that of

a single NS-NS bond. This means a NS does not need to fully dissociate from the

network in order for the solution to flow. Instead, fluid flow is likely explained though

bond rearrangements in the network [35]. In this picture, a transient network, in its

initial instantaneously bonded network state, relaxes to a transitional flowing state when

two bound NS arms dissociate their sticky-ends and, then, those two unbound NS arms

eventually find new binding partners (Fig. 5.2, inset).

The aforementioned picture of a single NS-NS bonds controlling network relaxation

means the entropy difference between initial and final states also determines the stability

of the bound state. Indeed, the predicted |∆SNS−NS| increases monotonically over α →

β → γ (Table C.1), consistent with the increase in magnitude of τ over those sticky-end

types. We specifically find that τ increases about 10-fold between α → β and β → γ,

despite only slight sequence changes and, hence, small increases between |∆S| of each

sticky-end (e.g., |∆Sβ| ≈ 1.11|∆Sα| and |∆Sγ| ≈ 1.07|∆Sβ|). We note that even though

∆Sβ ≈ 1.1∆Sα < 0, because τ ∼ exp(−∆SNS−NS/R) where R ≡ molar gas constant,

the change in τ is predicted to be roughly of order (exp(1.1∆Sα/R)/ exp(∆α/R)) ≈ 104.
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Although an overestimate in the increase we observe, the exponential dependence of τ

on ∆SNS−NS illustrates how large increases in τ can occur through slight perturbations

to the sticky-end sequence.

Further evidence supporting the notion that the entropic barrier to forming a single

NS-NS bond sets τ can be seen in τliq increasing with γ-bond valence, despite Ea being

roughly constant (Fig. C.5). In particular, τliq has a linear dependence on the valence of

the gamma-bond, zγ, on a heterotypic NS (Fig. C.5). We note τc also increased linearly

with zα on the homotypic α-bond NSs of Chapter 3 (Fig. C.5, inset). The observed

linear relationship between τ and z can be qualitatively understood within the entropy

framework mentioned in the previous paragraph. In particular, since the entropic barrier

for relaxation is related to NS arm rearrangement, then a free/unbound arm will have

its number of configurations limited by the number of other bound arms emanating from

the same NS.1 The number of configurations for the free arm is then related to the solid

angle over which it can subtend, ≈ 4π/z. This leads to ∆Sz ∼ ln(4π/z) ∼ − ln(z)

implying τ ∼ exp(−∆Sz) ∼ z, consistent with the observations seen in Figure C.5. This

also further demonstrates that the strong sticky-end valence on a heterotypic NS largely

determines the magnitude of τliq.

The last piece of evidence supporting single sticky-end control over τ is that we also

found a linear relationship between added salt and τc(α3x3), τc(x3γ3), and τliq(α3γ3) (Fig.

C.6). This is in fact quite consistent with experiments done by SantaLucia showing the

salt effect on DNA binding entropy is ∆Sb ∼ − ln([salt]) [59]. Arrhenius dependence of

the NS-NS binding time-scale again tells us τ ∼ exp(∆GNS−NS/(RT )) ∼[salt].

Putting together all of the relations we’ve found for the relaxation time, we find the

following for NS networks: τ ∼ z·[salt]· exp(∆GNS−NS/(RT )).

1Recall the similarity in τliq(α3γ3) ≈ τc(x3γ3) and τliq(α3β3) ≈ τc(β3) suggests the blunted/non-
sticky arms are rheologically inert. This means the blunted/non-sticky arms do not significantly add to
the entropic barrier for network flow.
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5.5.2 Intermediate power-law rheology determined by strong-

bond valence

The solutions made from heterotypic NSs exhibit viscoelastic responses quite different

from that of homotypic NSs. The homotypic NS solutions only have one mode of relax-

ation, which results in a direct transition from low-frequency fluid into a high-frequency

elastic solid (e.g., a Maxwell material). Whereas, the heterotypic NSs transition through

many modes of relaxation between simple fluid and elastic solid. Over those time-scales,

the solution then displays power-law rheology.

Four of the heterotypic NS types showed power-law rheology indicative of multi-modal

stress-relaxation between the weak- and strong-bond lifetimes [1,3,25,86,119–121]. Here,

we interpret the many modes result from the weak-bonds continuously constraining the

strong-bond network and, thus, reducing the elastic correlation length, ξ, in the strong-

bond network. In Chapter 4, we showed that the available relaxation modes of the strong-

bond network within ξ are directly related to the viscosity supplied by the weak-bonds.

In particular, we make the assumption that the weak-bonded network is a uniform,

background viscous fluid resisting the diffusion-limited relaxations of the strong-bonded

network. Given the intrinsically coupled nature of the weak- and strong-bonds on a single

NS, we also make the assumption that the (weak-bonded) viscous solvent is coupled to

the volume set by ξ (e.g., the Zimm-limit). In this Zimm-limit, we find the power-law

relation for ξ(f) (equation 4.1).

We sought evidence for the frequency-dependence of the elastic correlation length,

ξ, from strain sweep measurements (Fig. 5.7 & C.4). Specifically, we measured the

yield strain, λy, and yield storage modulus, G′
y, across all accessible temperatures and

frequencies to calculate the yield stress (σy = G′
yλy) and, from σy, across all accessible
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temperatures and frequencies we get

σy = Fc/ξ
2 =⇒ ξ(f) =

√
Fc

G′
y(f)λy(f)

, (5.3)

where Fc is the “critical force” required to break the strong NS-NS bond (estimated to

be ≈ 10 pN based on the γ-overhang sequence [104]).2 In α3γ3 and α3β3 NS solutions,

the effective frequency range of power-law rheology was too narrow (70 - 350 mHz) and

the measurement precision too low (∼ 20%) to meaningfully constrain the scaling of ξ(f)

(Fig. C.8). In α3γ2 and α4γ2 NS solutions, however, the power-law rheology extended over

a decade of frequency and was in good agreement with Eq. 4.1 (Fig. 5.6C), validating

the assumption that the accessible relaxation modes of the strong-bond network are

Zimm-like.

From the scaling of ξ in the Zimm-limit, the scaling exponent scaling G′ with f is

found to be directly related to dmin (see Chapter 4 for derivation). We use the relation

to make predictions for dmin in the networks displaying power-law rheology between the

weak- and strong-bond lifetimes using equation 4.3. We observe that the strong-bond

valence of the network is the dominant modulator of the power-law exponent and, thus,

of dmin. For instance, the expected structure of a valence-two NS is a freely-jointed

chain with dmin = 2, leading to G′ ∼ f 1. This is in great agreement with the observed

G′
α3γ2

∼ f 11/10 and G′
α4γ2

∼ f 1 where the strong-bonded network is of valence-two.

Similarly, prior work on homotypic 3-armed NS networks indicate dmin = 1.2± 0.1. Our

model thus predicts such networks have G′ ∼ f 0.73±0.03, consistent with both G′
α3β3

∼ f 3/4

and G′(α3γ3) ∼ f 2/3 where the strong-bonded network valence is three. Further, we

2It is worth pointing out that the assumption of yielding occurring after breaking one NS-NS bond
is predicated from our previous discussion regarding how dissociation of a single NS-NS bond results in
fluid flow. Further, recall in chapter 4 we mentioned that Fc is expected to have a log(f)-dependence.
However, a strong log(f)-dependence results in an increase in ξ, which is not consistent with the observed
data. Thus, the log(f)-dependence here is weak and can be ignored.
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emphasize once more that a significant change to the power-law exponent and, hence,

dmin between heterotypic NS networks was induced through only a slight change to the

strong-bond valence of the NS.

In α3γ3 NSs, it is interesting that the power-law scaling G′ ∼ G′′ ∼ f 2/3 persists

as salt changes in solution (Fig. 5.3) This robustness in the observed 2/3 power-law

against salt changes suggests that the exponent is real and reflects an underlying multi-

modal stress-relaxation of a dominant elastic chain. The multi-mode relaxation is indeed

further supported by finding that α3γ3 NSs are not well described by a two-mode Maxwell

viscoelastic spectra (Fig. C.6).

We note there is another way to measure the power-law exponent q scaling G′ and

G′′ with frequency for α3γ3 NS through the tangent of the phase shift between G′ and

G′′, tan(δ). In particular, in the case when both G′ ∼ G′′ ∼ f q, with 0 < q < 1, over

the same frequency region, then the Kramers-Kronig relation says tan(δ) = tan(qπ/2)

over the power-law regime [113]. However, in all α3γ3 NSs solutions and for all salt

conditions, tan(δ) never approached tan(π/3) ≈ 1.7 (Fig. C.6), presumably due to the

small overlapping region of power-law scaling. We find that a generalized numerical

Kramers-Kronig approximation for tan(δ) [122] does agree well with the α3γ3 data across

all frequencies (Fig. C.7).

5.5.3 Two-mode Maxwell rheology recovery

In contrast to the other heterotypic NS networks, we find the α2γ4 goes through only

two modes of relaxation when transitioning from low-frequency liquid to high-frequency

solid (Fig. 5.5). In particular, we observe that the first and second elastic plateau are

consistent with measurements of the underlying valence 4 and 6 networks (Fig. C.2). We

indeed further find that G′(f) and G′′(f) is fit quite well by a sum of two Maxwell modes
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(Fig. 5.5), with the fitted τc,i and G′
p,i consistent with the homotypic valence 4 and 6

networks. Thus, here, we interpret the α-bonds do not impart a large enough viscosity

capable of affecting the relaxation modes in the valence 4 γ-bond network. Thus, power-

law rheology in heterotypic NS solutions can be turned off when the strong-bond network

is sufficiently more stable and rigid compared to the weak-bonded one.

5.5.4 High-frequency G′ and strain sweeps of 5 and 6 arm NSs

consistent with isostaticity

The high-frequency storage modulus of all homotypic and heterotypic NSs plateau

to a constant value, indicative of an elastic solid at those frequencies. In particular, we

observed that all valence 6 NS networks, each with roughly the same NS concentration,

plateau to roughly the same value, G′
p ≈ 6500 Pa (Fig. C.2). Further, for similarly

concentrated valence 3 homotypic and valence 5 heterotypic NS, we respectively found

G′
p(α3x3) ≈ G′

p(x3γ3) ≈ 200-300 Pa and G′
p(α3γ2) ≈ 3000 Pa (Fig. C.2). Thus, we

find the plateau modulus grows in magnitude roughly 10-fold or 20-fold when changing

valence from 3 to 5 or 6, respectively. In chapter 3, we observed similar magnitude changes

between similarly concentrated valence 3, 5, and 6 homotypic NS networks, which was

attributed to approaching an isostatic threshold [27]. Therefore, the isostatic point in

heterotypic networks also occurs somewhere between a valence of 5 and 6.

The strain sweep behavior of the valence 5 and 6 networks measured here also further

supports the isostatic interpretation (Fig. C.4). In particular, we found that at shearing

frequencies in the elastic regime, the strain sweeps on 5 and 6 arm heterotypic NSs are

essentially identical to the α6 NSs, which exhibit no strain hardening and immediately

yield after their linear regime. Recall that, in Chapter 3, we attributed this diminished

strain behavior indicated a reduction in available configurations of the un-stretched net-
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work state due to the onset of isostaticity. Thus, here, we also interpret that all valence

6 NS networks are above or at the isostatic point, whereas the valence 5 network is just

below the threshold.

5.5.5 High-frequency stress-relaxation in G′′ is independent of

valence and sticky-end strength

Interestingly, regardless of salt or binding motif, all NSs displayed G′′ ∼ f−3/5 for

roughly one or more decades of frequency during the plateau response before reaching

a minimum (Fig. 5.2−5.5 and C.2). The similarity of the loss modulus with frequency

showing G′′ ∼ f−3/5 in all NS solutions is intriguing given that the NSs have different

valences and binding sequences. The scaling relation, however, does suggest there are

multiple, similar relaxation modes at high frequencies available in all NS networks, as a

simple Maxwell material shows G′′ ∼ f−1 during the plateau regime [1]. For instance,

similar departures from G′′ ∼ f−1 have been observed in entangled polymer networks

during the plateau regime [123–126], which arises from uncorrelated, subdiffusive Rouse-

like monomer displacements on a reptating chain [127].

In NS networks, the high-frequency elastic response results from an instantaneously

bonded stress-bearing network [27] and not entanglements of long NS chains. Indeed,

when performing dynamic light scattering experiments on 3 and 4 arm NS networks at

time scales similar to the elastic plateau regime (≲ 0.1-1s, or f > 1-10 Hz), slow topologi-

cal relaxation modes from bond rearrangement have been observed [13,32]. Interestingly,

the scaling exponent for the slow relaxation modes with wave-vector, 0 < q < 0.3, suggest

the rearrangement motion is sub-diffusive. It is not clear how the exponent q observed in

DLS measurements relates to the observed G′′ ∼ f−3/5. That said, all NS networks hav-

ing G′′ ∼ f−3/5 suggest: (i) there are uncorrelated, sub-diffusive monomer displacements
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due to topological rearrangements leading to this power-law exponent (ii) this uncorre-

lated relaxation event is independent of NS valence and binding strength. Further, our

data does show, that valence and binding strength largely determines the viscosity of the

network and, thus, the pre-factor for the scaling G′′ ∼ f−3/5.

5.6 Conclusion

In this chapter, we continued leveraging the programmability of DNA nanostars to

investigate the microscopic parameters controlling equilibrium gel viscoelasticity. In par-

ticular, we observed that:

(1) the time-scale for simple liquid-flow is determined by the free energy of a single NS-

NS bond formation, valence of the NS bond (determining the terminal response),

and added salt in solution

(2) for all salt conditions, G′ ∼ G′′ ∼ f 2/3 persisted during the non-Maxwell power-law

regime in α3γ3 NSs networks

(3) changing the strong γ-bond on α3γ3 to one slightly weaker (i.e., β) slightly changed

stress-relaxation from G′
α3γ3

∼ f 2/3 to G′
α3β3

∼ f 3/4

(4) changing overall NS valence from 6 to 5, but retaining a strong-bond valence of

two, only marginally affected stress-relaxation from G′
α4γ2

∼ f 1 to G′
α3γ2

∼ f 11/10

(5) two-mode Maxwell rheology in a 6 arm heterotypic NSs can be recovered when

the weak bonds do impart enough viscosity to appreciably affect relaxation of the

strong-bonded network

(6) G′′ ∼ f−3/5 in the rubbery plateau regime holds for all NS types and salt conditions

and indicates a sub-diffusive origin of stress-relaxation at high-frequencies.
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We found that the power-law exponent scaling G′ with frequency of observations (2)-(4)

are all consistent with predictions from the model derived in Chapter 4, giving further

validation to its predictive power. We also want to emphasize that points (1) and (3)-(5)

further demonstrate how small sequence changes in the NS oligos can lead to drastically

different bulk viscoelastic responses. We conclude that the insights gained here in how to

modulate the stress-relaxation properties in equilibrium NS gels can be applied to other

equilibrium gels made from NS-like particles.

72



Chapter 6

Summary and Future Outlook

6.1 Summary

The core work of this thesis demonstrated the effect of particle valence on the phase

behavior and viscoelasticity of equilibrium gels. We achieved this by making equilibrium

gels self-assembled from DNA nanostars, cross-linking nano-structures with well-defined

binding interactions and valence. The precise control over NS valence allowed us to probe

the changes to the resulting rheology and phase behavior. To gain insight into how those

properties were affected by valence, we compared the responses of the various gels to each

other and, also, to general mechanistic models (both existing and a new one established

in Chapter 4).

In chapter 2 of this thesis, we tested the effects of NS valence on their resulting

temperature-concentration phase diagram using a new emulsion-based imaging technique

we developed. In particular, we took advantage of the spherical geometry of the NS

condensates and emulsion droplets to accurately measure the volume fraction of the con-

densate, ϕden, using precision fluorescent microscopy. By using a microscope lens with

a large depth of field, W , we demonstrated that, for emulsion droplets smaller than W ,

the entire volume is captured in the image. This, in turn, implied the intensity profiles

of each phase inside the emulsified droplet were projected entirely into the 2d image.

73



Summary and Future Outlook Chapter 6

We accordingly fit the projected intensity at every pixel in the image to make highly

precise measurements of the condensate and emulsion droplet radii. The intensity was

found to be well-fit by a piece-wise function describing the sum of two uniformly bright,

nested spheres A.3. Thus, the resulting condensate volume fraction ϕden = (rden/rdil)
3

was precisely measured from the two fitted radii.1 The error on ϕden, for a particular NS

concentration, was further reduced by measuring the volume fraction of many emulsified

NS condensates found in the same single wide-field image and who were all procured

from the same mother stock solution. For all NSs, after measuring the ϕden of many con-

densates, we found that ϕden grows linearly with NS concentration, [NS], characteristic

of the underlying equilibrium, binary phase separation process. By applying the lever

rule (Eq. 2.1) to ϕden versus [NS], we then extracted the dense and dilute phase concen-

trations. We did this lever rule measurement routine for many different temperatures,

in combination with videos measuring the condensate melting temperature, to map out

the resulting temperature-concentration phase diagram of NS solutions. We propose this

method can be generally used to measure the phase diagrams of many other types of

systems undergoing liquid-liquid phase separation.

For all NS valences, the phase diagrams of homotypic NS solutions had a similar

shape, namely there existed an upper critical solution temperature, Tc, below which a

coexistence regime emerged. In particular, for all solutions, the width of the regime

increased rapidly for |T − Tc| ≲ 10◦C and then stabilized at temperatures below that.

However, between solutions of different valences, the area of coexistence did change as

the NS valence increased, particularly with an increased ϕden and a larger Tc. The

increased condensate density and Tc is qualitatively consistent with the increase in bonds

required to make a fully bonded condensate as NS valence increases. We were able to

1Recall the dilute phase pervaded the remaining volume in the emulsion droplet. We therefore labeled
the emulsion droplet radii as rdil.

74



Summary and Future Outlook Chapter 6

further quantitatively understand the valence behavior of Tc by comparing it to mean-

field model estimates for the melting temperature of a single NS-NS bond [59] and critical

temperature calculations found using a 1st order thermodynamic perturbation theory

incorporating particle valence (i.e., SAFT/Wertheim theory) [36,62–64]. Comparison of

data to those theories demonstrated that, when NS valence is below four, the connectivity

of the NS largely determines Tc. But, beyond a valence of four, the thermal stability of the

NS-NS bond limits Tc. We propose that the insight learned here, namely the valence and

binding strength effects on Tc, can be extended to other systems undergoing equilibrium

liquid-liquid phase separation facilitated by weak, limited-valence interactions.

In chapter 3, we used oscillatory shear rheology to probe how NS valence changes

the rheological properties of concentrated homotypic NS equilibrium gels. We generally

found all homotypic NS equilibrium gels, independent of valence, to have a Maxwell-

like frequency-dependent viscoelastic spectra. That is, the solution flowed like a liquid

below a characteristic relaxation frequency, fc, and elastically beyond fc. However, the

relaxation time, τc = 1/fc, and network elasticity, G′
p, did increase as a function of

valence. In particular, at the same NS concentration, τc and G′
p respectively increased

10-fold and 25-fold when the valence increased from 3 to 6. We also found that the same

valence increase removed the strain hardening behavior from the network and caused the

network to immediately yield after its linear regime, indicative of increased constraints

on network chains. The observed increase in network constraints and large increase

in τc and G′
p between 3 and 6 arm NSs demonstrated that the NS network junctions

approached an isostatic point. At the isostatic point, the number of connections made at

a network junction matches the number of degrees of freedom of the junction, locking the

junctions into place [15, 16,92,128]. The locking of junctions, in turn, increases network

rigidity much more than the contribution from the entropic elasticity connecting junctions

[15,16,92,128] and, also, suppresses the configurational entropy of the network [128]. The
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rheology data presented in Chapter 3 suggests the isostatic point in equilibrium NS gels

occurs somewhere between a valence of 5 and 6. We note, however, that in equilibrium

NS gels, the thermal fluctuations between the junctions induce strain on the network

that masks the increases due to isostaticity [128]. The thermal fluctuations of the NS

junctions result in an entropic elasticity between the NS-NS connections, which was seen

in the similarity of the measured chain spring constant to the spring constant calculated

for a freely jointed chain with segment length equal to a NS arm. We therefore conclude

that, in equilibrium NS gels, the viscoelastic response is controlled by a combination of

entropic elasticity between NS-NS connections and NS valence.

In Chapter 4 and 5, we saw that a heterotypic NS, a NS with both a strong and

weak sticky-end, resulted in equilibrium gels that display non-Maxwell power-law rheol-

ogy rheology between its two bond lifetimes. Using the principles we learned in Chapter

3, we posited that the non-Maxwell rheology in such networks resulted from a dynamic

decrease in network valence as the weak-bonds dissociate, thus driving constraint releases

in the stress-bearing network. The constraint releases, in turn, allowed the size of strain

fluctuations, ξ, in the network to grow, which relax at a characteristic frequency set by

the current state of network valence and viscosity resisting fluctuations. For heterotypic

NS solutions, we found ξ scaled with frequency of shearing according to ∼ f−1/3, con-

sistent with our mean-field model predictions for Zimm-like stress-relaxation (developed

in Chapter 4). Using the relation for ξ(f), our model then derived an expression for the

scaling exponent relating G′ to f (Eq. 4.3), showing that dmin in the strong-bonded net-

work determines the power-law exponent. We demonstrated that values of dmin consistent

with previous NS measurements and expected NS design predicted scaling relations for

G′ with f in great agreement with our measurements and found that scaling relations for

G′ with f are largely altered by the valence of the strong-bonded network. The agree-

ment between our measurements and our model predictions gives strong support to the
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predictive power of equation 4.1 and 4.3. We accordingly demonstrated the generality

of our model by showing it successfully recovered the non-Maxwell power-law rheology

observed in critically isostatic 2d triangular-lattice networks [17,97]. The broad applica-

bility of our model strongly suggests the mean-field model presented in Chapter 4 can

be generally applied to equilibrium gels when the hydrodynamic interactions in solution

dominate the viscoelastic response. We conclude that, during such stress-relaxation in

equilibrium gels, the structural exponents dmin and dfr of the stress-bearing clusters can

be deduced from the power-law exponents scaling ξ and G′ with frequency.

6.2 Future outlook

6.2.1 Open questions

In addition to the many insights gained regarding how DNA nanostar (NS) valence

and binding strength affects phase behavior and viscoelasticity, there are still open ques-

tions. Some of them can be likely be answered with future experimentation. Other

questions might be more challenging to answer with current experimental techniques and

theoretical understanding. This section will address some of these questions.

Lever rule measurements

Constant ϕden in lever rule - For all temperatures over which we measured condensate

volume fraction ϕden versus NS concentration [NS], we found there was a characteristic

NS concentration [NS]lp at which the volume fraction stayed constant, ϕden,lp ≈ 5% (Fig.

A.5). The physical process leading a temperature-independent ϕden,lp is not quite clear.

The origin of [NS]lp can be partially understood if we compare the value to other

relevant concentrations in the phase separation process. First, [NS]lp ≈ 5-25 µM is much
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lower than the critical concentration of phase separation. In particular, based off the

value of Tc, the critical concentration is somewhere between [NS]c = 80-150 µM, which

is greater than [NS]lp.

The phase diagrams do suggest that there is a temperature, Tlp, at which [NS]lp

becomes the gas phase concentration and, therefore, ϕden,lp(T, [NS]lp) → 0. In particular,

tracking ϕden,lp(T ) → 0 as a function of |T−Tlp| may elucidate if there is a critical scaling

process controlling ϕden,lp and may help understand the origin of the limiting value at

low-T . For viscoelastic fluids, like NSs, the order parameter is particle density and,

by relation, volume fraction [14, 129]. In general, during temperature-dependent phase

separation, the order parameter(s) of the system, and their related values, will scale with

|T − Tlp| according to a critical exponent [129]. A very small, fractional exponent, p, for

ϕden,lp(T ) ∼ |T − Tlp|p can give rise to a limiting value of ϕden,lp(T ) at temperatures far

below Tc. For instance, an exponent of p = 1/20 leads to a change in density undetectable

by our volume fraction measurements when |T −Tlp| > 5◦C. In fact, the lowest resolvable

volume fraction with the emulsion-imaging method is roughly 2%, leaving only a very

small dynamic range (2-5%) accessible for exploration. A method that can resolve volume

fractions lower than 2% is thus needed to accurately track ϕden,lp(T ) → 0.

If a method to measure lower volume fractions is established, it would be straightfor-

ward to prep several NS solutions between [NS]lp and [NS]c for lever-rule measurements

to find ϕden,lp(T ) ∼ |T − Tlp|p. It would indeed be interesting to see if the value for p is

universal for all NS valences and salt concentrations.

Alter strand stoichiometry - Malformed NSs/weakly-interacting strands are expected

to change the relation of ϕden with total [DNA]. In particular, it ϕden versus [DNA] will

become quadratic [130]. This would be relatively straightforward and worthwhile to test,

namely by preparing a NS solution where one strand of the NS is added at a significantly

lower amount than the other strands (e.g., purposefully making malformed NSs). Verify-
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ing this will determine how accurately ϕden versus [DNA] can identify the percentage of

malformed DNA structures in solution. Such percentages are typically currently found

after performing gel electrophoresis, HPLC, or some other separation/chromatography

method on annealed DNA solutions.

Viscoelasticity

A large portion of this dissertation involved discussion of NS equilibrium gel rheology.

There are still, however, a vast number of open questions uncovered from our rheology.

Valence > 6 NS - A question that is often asked about NS equilibrium gels is whether

the plateau modulus G′
p is expected to keep exponentially increasing beyond a NS valence

of 6. Simulations demonstrate that beyond the isostatic threshold, there is no longer an

exponential increase in network stiffness and that G′
p of hyperstatic networks are similar

in magnitude [16, 128]. This is expected to be the case in NS networks, too; that is, a

valence 7 NS network is expected to have a similar G′
p as a valence 6 NS. Only two new

oligo strands are needed to make a valence 7 NS based off the valence 6 NS sequences,

which can be done relatively easily.

G′
p and ξ scaling with [NS] - In the valence 3 homotypic NS networks of chapter 3,

we observed power-law behaviors of G′
p and ξ on [NS]. This is in contrast to theory

[1,111,129] and prior experiment [108] which observe such behavior only after correcting

for a critical particle concentration, ccr, e.g., |c− ccr|, and also generally find that scaling

relations hold when |c − ccr| ≲ ccr (c is the particle concentration). However, recent

simulation work by Pyo et. al [131] recently demonstrated that critical scaling relations

for surface tension of phase separated condensates can extend far from the critical point

provided the ratio of interface width to a critical length scale was optimally set. There

may be a similar ratio for NS solutions that ensures critical scaling relations for the

cluster-size ξ and, thus, G′
p can extend far from the critical point (e.g., c ≫ ccr =⇒
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|c − ccr| ≈ c). Determining the functional form of this ratio, using a method similar to

Pyo et. al [131], is worth investigation.

Related to the power-law behavior of G′
p and ξ with non-normalized NS concentration

are the structural exponents we deduce from the relations. In particular, for 3 arm NS

networks, we found ξ ∼ [NS]0.8±0.1 and G′
p · ξ ≡ Kξ ∼ ξ1.2±0.1, implying a 3d percolated

structure with mass fractal dimension df = 2.5 and cluster elasticity dominated by a

shortest/minimum-length stress bearing-path with fractal dimension dmin = 1.2. Direct

structural measurements of df and dmin for the 3 arm NS solutions are needed to confirm

these predictions. Static light scattering measurements are attractive methods that can

directly measure the structural exponents of the NS clusters [1]. It is worth noting that

our rheology measurements estimate NS clusters to be roughly 100-300 nm in size, making

for q-values between 0.002-0.006 Å−1. There are small-angle x-ray scattering setups that

can get to such q-values [132]. Thus, provided the NS cluster doesn’t restructure (e.g.,

flow) over the time-scale required to get a decent scattering signal, the mass fractal

dimension of NS clusters can likely be measured. Scattering measurements are, however,

agnostic to the stress-bearing chains formed in solution and, thus, cannot identify the

dominant one in solution. oxDNA simulations of 3 arm NS clusters can likely identify

the shortest connected path of bonds within the cluster and, thus, provide estimates for

their dmin.

Salt behavior - An interesting observation we saw in chapter 6 was that the viscoelastic

behavior of a NS equilibrium gel, of either valence 3 or 6, did not appreciably change

with salt (Fig. 5.2, Fig. C.2, & C.4 top row). This is intriguing given that increasing

salt in DNA solutions further screens the negative charges coming from the phosphates

on the DNA backbone [74]. The estimated charge screening length at 25◦C, the Debye

length λD, goes from 1.4 nm down to 0.6 nm over the range of added salt concentrations

used (50-300 mM NaCl). These estimates for λD are a slight overestimate as there
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are also ions that come with dsDNA which contribute to the overall ionic strength in

solution [133]. In particular, assuming every phosphate on the DNA bases dissociates

exactly one cation [13,133], then the smallest achievable salt concentration will be limited

by the phosphate concentration. For instance, for a 400 µM solution of six arm NS,

with six 49 nt-long strands composing the NS, there is ≈ 118 mM worth of phosphates

and, thus, ≈ 118 mM cations added to solution. The cations thus increase the ionic

strength in solution by 59 mM. Adding this amount to the ionic strength of the added

salt concentration (50-300 mM NaCl), we arrive at λD(109 mM monovalent) = 0.9 nm

and λD(359 mM monovalent) = 0.5 nm.2 These lengths are a bit smaller than the length

of the two ssDNA nucleotides separating the arms at the junction, roughly 1.1-1.4 nm in

length [134, 135]. This suggests that the arms are not strongly repelled from each other

near the junction. A more detailed salt concentration study, particularly at extremely

low-salts, should be done to determine if there is a salt condition at which NS arms

become strongly repelled and, thus, change the overall gel viscoelasticity.

General

Why are 5 arm NSs so weird? - In both our phase diagram and viscoelasticity

measurements, we found that the 5 arm NS took on properties similar to a 4 arm NS. In

particular, we found that they both had similar condensate densities, values for plateau

modulus, and exponents scaling G′
p with [NS]. The only difference between the 4 and

5 arm NS was found in their strain stiffening behavior, which indicated the 5 arm NSs

were more constrained.

At this moment, the physical reasoning for the similarities between 4 and 5 arm NSs

is still unknown. A possible hypothesis is that a 5 arm NS is geometrically “frustrated”,

as there is no an equivalent platonic crystal structure where particles have 5 connections

2Valence in this context references to the number of electronic charges on the ion.
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in the lattice.3 This frustration could force some structural change unique to 5 arm

NSs bound in the condensed state (e.g., a ‘magic number’ effect). oxDNA simulations

on clusters of 5 arm NSs could help identify is such a structural change exists and if

that affects the density of bonds within the condensate. Further, from simulations, the

exponent scaling G′
p with [NS] can be estimated from the exponents scaling: (1) the

cluster size, ξ, with [NS] (e.g., measure ξ ∼ [NS]r), and (2) the number of NSs in the

shortest path in the cluster, Nmin, with ξ (e.g., measure Nmin ∼ ξdmin). In particular,

since Kξ ∼ 1/Nmin ∼ ξ−dmin and G′
p ∼ Kξ/ξ, then G′

p ∼ [NS]rdmin .

6.2.2 Emerging trends

Composite soft materials - A rather difficult next step emerging in the field is en-

gineering a composite soft material (i.e., mixtures of different types of squishy and/or

hard colloids) with well-defined bulk properties that can be controlled through the un-

derlying particle interactions [7, 58, 136–138]. In this case, how does the rheology and

phase diagram change when there are more than two types of particles in solution?

What about the other properties, like optical? Answering these questions are crucial to

better engineering designer materials for industrially- and biologically-relevant applica-

tions [6, 7, 136,139–142].

Photo-switchable NS gel using azobenzene modified sticky-ends - Switching between

two mechanical states via light is attractive for many biomedical and bioengineering

applications [137,143,144], particularly because light offers non-invasive and precise spa-

tiotemporal control of material states. In this spirit, work has been done trying to

reproducibly switch DNA between being bound and un-bound by shining light on it.

Recent work has shown that azobenzene-modified dsDNA sequences can be destabilized

3There is an equivalent platonic crystal lattice for particles of valence 4 and 6, the tetrahedral and
FCC lattice. Further, four valence 3 NSs can be assembled into a tetrahedral arrangement [13].

82



Summary and Future Outlook Chapter 6

by shining UV-light on them [145]. In particular, shining UV-light on azobenzene makes

it transition to its cis-state, which causes the dsDNA to dissociate. After a period of time

or after shining blue light, the azobenzene will revert back to a trans-state and allow the

DNA bonds to reform. Modifying the NS sticky-end sequences will enable the NSs to

switch between a fully dissociated state (after shining light) to a fully bound state.

Tracking the viscoelastic spectra of the network as it percolates into a fully-bonded

network is a very interesting project worth pursuing. In particular, at the critical percola-

tion point, the hydrodynamic interactions affect the stress-relaxation of the NS network

over intermediate to high frequencies [31]. As we saw in Chapter 4, the relevant hy-

drodynamic interaction limit in a percolating homotypic NS network is the Rouse-limit

(e.g., the percolating network is freely-draining). Thus, a photo-switchable NS gel will

likely have rouse-like stress-relaxation when it is percolating, giving more experimental

evidence capable of testing the scaling model developed in Chapter 4.
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Appendix for Chapter 2

A.1 NS, Hairpin, and emulsion preparation

HPLC purified DNA oligomers were purchased in a dehydrated state from IDT, and

hydrated with MilliQ water to form stocks with concentrations of 500 − 800 µM. All

DNA sequences used in this experiment are listed in Table A.1. The sequences used for

NS-forming oligomers in chapter 2 and 3 were templates for the designs in Table A.1.

The sequence of the hairpin-forming oligomer was designed to lack any hybridization

with NS sticky ends, and to have a folding (melting) temperature similar to that of the

NS arms (≈ 80◦C).

To assemble an z-armed NS, z constituent oligomers were mixed in a buffer of 40

mM Tris, 11 mM HCl, 1mM EDTA containing either 50, 150, or 300 mM NaCl. In this

mixture, 5% of one of the strands was labeled with Cy3 (see Table A.1). For z = 6 assem-

blies, achieving the desired stock concentration required complete dehydration, followed

by re-hydration in buffer with 150 mM NaCl. These NS mixtures were then thermally

annealed following the protocol detailed in Ref. [27]. Separately, the hairpin oligomer was

diluted with the relevant buffer and salt, and annealed it using the same procedure. Fi-

nal measurement solutions were then made by mixing annealed NS and annealed hairpin,

with a hairpin concentration of typically 5 µM; notably, controls indicated that varying

84



Appendix for Chapter 2 Chapter A

[hairpin] from 0.5 µM to 20 µM had no effect on the volume fraction of the dense NS phase

(see Appendix, Fig. A.3). NS concentration was found from these NS+hairpin mixtures

by diluting to a 1% solution with added water, melting, measuring the UV absorbance

(A260), subtracting the A260 of the hairpin (as measured separately from the hairpin

stock), and then estimating the NS oligomer concentration using sequence-dependent

estimates of the extinction coefficients [146].

Water-in-oil emulsions were made at T = 65◦C by delivering 2-3 µL of the NS+hairpin

solutions into 40 µL of a mixture of 5% wt/wt fluorinated-surfactant dissolved in a fluori-

nated oil (008 FluoroSurfactant in HFE7500 oil, RAN Biotechnologies). The solution was

held at 60-65◦C for 1-2 minutes to disallow phase separation, then emulsified by vortexing

for 2-3 seconds at an intensity of roughly an eighth of the maximum on a Benchmark

Benchmixer vortexer. This resulted in droplets of the desired diameter (25− 120 µm).

A.2 Imaging protocol

Multi-channel flow cells were created by cutting two vinyl sheets (Cricut Window

Cling) with a personal die cutting machine (Cricut Joy). One sheet contained an array

of small holes for catching air bubbles, and the second contained an array of channels.

The bubble-catching sheet was placed on an ethanol-cleaned glass slide, and pressed

and heated to create adhesion. The channel sheet was aligned to the first sheet, ad-

hered through heat and pressure, and finally a cleaned 22x50 mm coverslip was similarly

adhered to complete the flow cell.

Images were acquired using a 4x 0.13 NA objective (Olympus UPlan FL) on an

inverted, wide-field, fluorescent microscope (Olympus IX70), illuminated with a mercury

arc lamp that was attenuated with a 1.0 ND filter. A subset of images were taken with two

different 4x 0.1 NA objectives (Olympus Plan N or Nikon Plan Achromat). Fluorescence
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imaging was achieved using a 540 ± 30 nm bandpass excitation filter (540AF30 Omega),

a 570 nm long-pass dichroic (570DRLP Omega) and a 585 ± 40 nm bandpass filter

(HQ585/40 Chroma). Images were captured with a CCD camera (Hamamatsu Orca-R2

C10600) and saved to a computer using the camera’s imaging software (HCImage Live).

Temperature was controlled by placing on top of the flow cell a brass heat block

through which water was circulated using an external water bath (Neslab refrigerated

circulating bath RTE-8). The flow-cell slide and heat block were insulated by a home-

made styrofoam casing when imaging. Temperature was recorded using a type-K digital

thermometer (Supco SL500TC) outfitted with a thermocouple probe (1.6 mm bead di-

ameter) that was taped between the heat block and flow-cell slide.

Emulsified NS solutions of different [NS] were loaded into distinct channels of the flow

cell, heated to dissolve any condensate, then allowed to equilibrate and settle over hours.1

We note that if NS condensates are melted and quickly quenched below Tc, we found that

bubbles of dilute phase are trapped within the NS condensates (Fig. A.8). We accordingly

slowly cooled the emulsions below Tc and waited at least 3 hours at room temperature

before imaging. The flow cell was then placed on the stage, in contact with the brass

block, which was set to the high end of the desired temperature range. The system was

allowed to equilibrate for 5-10 minutes, then imaged. Data at subsequent temperatures

was acquired by repeating the sequence of temperature change/equilibrate/image.

A.3 Use of ND filter

When using our microscope without an ND filter, I found that condensates melted

after illuminating light on them for roughly 5 minutes. This “photo-induced melting”

occurred at most temperatures below phase separation and it was accelerated when the

1I sealed the flow cell using UV nail polish.
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temperature was closer to the critical temperature. The photo-induced melting was also

reproducible and, after one melting cycle, did not significantly change the condensate

volume fraction.

A.4 Imaging analysis

Images of the emulsified NS+hairpin solutions were first manually processed using

FIJI to remove any artifacts (e.g. droplet clusters or visible contaminants), then im-

ported into a custom analysis code written in Mathematica. In that code, the func-

tion ComponentMeasurements was used to automatically find droplets of the desired size

(25−120 µm diameter) that were sufficiently separated from other droplets. The relevant

droplet images were then cropped and fit to the double-sphere function (see Appendix,,

Appendix A.6 Eq. A.1-3) using the NonlinearModelFit function. The fitting parameters

were used to calculate ϕden.

A.5 NS-SAFT calculations

The free energy of each NS system were calculated as defined by the NS-SAFT theory

detailed in Reference [36] (equations (1-2) and (6-9) in their paper). From the calculated

free energy, the critical temperature was found by numerically solving equation 10 in

Reference [36] using the FindRoot function in Mathematica.

A.6 The Double-Sphere Intensity Function

Consider a sphere of radius R that has its center located at (xc, yc, 0), and contains

a uniform concentration of fluorophores. Imaging such a sphere vertically projects all
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the fluorescent intensity into the (x, y) plane; thus, the intensity profile will follow the

thickness profile of the sphere. Particularly, the intensity at point (x, y) will be Io(x, y) =

2b
√
R2 − (x− xc)2 − (y − yc)2, where b is the constant intensity per unit height of the

droplet.

When fitting the projected intensity of nested spheres (Fig. A.1A), we utilized a

piece-wise fit consisting of two separate Io(x, y) that are dependent on the respective

sphere radii, one for the (brighter) condensate and another for the (dimmer) emulsion

droplet. We also include an additive offset term accounting for the background intensity

of the image. In particular, we fit the double sphere projection with the following set of

equations. For positions outside the emulsion droplet:

I(x, y) = a (A.1)

where a is the background intensity.

For (x, y) positions within the dilute sphere (but outside the dense sphere):

I(x, y) = a+ 2b
√

R2
dil − (x− xc,dil)2 − (y − yc,dil)2 (A.2)

where b is the dilute-phase labeling intensity.

And for (x, y) positions laterally within both spheres:

I(x, y) = a+2b
√
R2

dil − (x− xc,dil)2 − (y − yc,dil)2+2c
√
R2

den − (x− xc,den)2 − (y − yc,den)2

(A.3)

where c is the difference between the dense- and dilute-phase labeling intensities

To extract condensate volume fractions from emulsion images, we fit a piecewise

function containing these equations to the 2-d intensity profiles from the measured image.
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A.7 Center-to-center NS distance

Generating estimates of the DNA density of z = 4 and z = 6 NSs in specific (hypo-

thetical) crystal geometries requires an estimate of the maximal center-to-center distance

of neighboring NSs in the crystal. We estimate this using the structure of the DNA arms

that connect those neighbors. A bound pair of NS arms contains 46 basepairs, bp, of

duplex DNA (corresponding to the two 20 bp DNA arms, along with 6 bp from binding of

the sticky ends), along with 4 bases of single-stranded DNA (corresponding to the single-

base gaps on either side of the sticky end, and attributing 1 unpaired base from each

junction). The crystallographic rise per basepair of duplex DNA is 0.34 nm [147]. The

maximal inter-phosphate distance for single-stranded DNA is larger, with some disagree-

ment in the literature regarding the exact value; a commonly quoted value is around

0.7 nm [134, 135]. Accordingly, we estimate the maximal center to center distance as

46× 0.34 + 4× 0.7 = 18.44 nm. We note this estimate is imperfect; the actual maximal

center-to-center distance will be sensitive to structural issues that are unknown (notably,

the arrangement of unpaired bases at the junction, and the tendency of any unpaired

base to stack onto an adjacent duplex). Further, we note our estimate is larger than a

previous estimate of the same value [13], since that prior estimate attributed the duplex

DNA rise-per-base to both paired and unpaired bases.

A.8 Bubble rising upwards in viscous media

The time it takes for a spherical bubble to rise upwards a height, h, in a viscous

media, of viscosity η, can be found through solving the following equation of motion:

ρbubVbubg + (6πrbubη) · dh/dt = ρliqVbubg (A.4)
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where ρliq is the buoyant density of the viscous media and rbub, Vbub, and ρbub denote

the bubble radius, volume, and buoyant density, respectively. The first and second term

on the LHS is the force due to gravity pulling down the bubble and the Stoke’s drag

resisting upward motion, respectively. The term on the RHS is the buoyant force making

the droplet rise upward. Solving for h in terms of t in Eq. A.4 yields:

=⇒ t(z) =
(6πrbubηliq) · z

gVbub(ρliq − ρbub)
(A.5)

z Strand Sequence (5’→3’)
All 1 CTACTATGGCGGGTGATAAAAACGGGAAGAGCATGCCCATCCACGATCG

All 1 Cy3-tag CTACTATGGCGGGTGATAAAA/Cy3/ACGGGAAGAGCATGCCCATCCACGATCG

All 2 GGATGGGCATGCTCTTCCCGAACTCAACTGCCTGGTGATACGACGATCG

3 3 CGTATCACCAGGCAGTTGAGAATTTATCACCCGCCATAGTAGACGATCG

4 3 CGTATCACCAGGCAGTTGAGAACATGCGAGGGTCCAATACCGACGATCG

4 4 CGGTATTGGACCCTCGCATGAATTTATCACCCGCCATAGTAGACGATCG

5 4 CGGTATTGGACCCTCGCATGAACCATGCTGGACTCAACTGACACGATCG

5 5 GTCAGTTGAGTCCAGCATGGAATTTATCACCCGCCATAGTAGACGATCG

6 5 GTCAGTTGAGTCCAGCATGGAACGCATCAGTTGCGGCGCCGCACGATCG

6 6 GCGGCGCCGCAACTGATGCGAATTTATCACCCGCCATAGTAGACGATCG

N/A Hairpin CTACTATGGCGGGTGATAAATT/Cy3/TTTTTATCACCCGCCATAGTAG

Table A.1: Sequences of ssDNA strands used to self-assemble the z-arm NSs and
fluorescent hairpin.
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Figure A.1: (A) Images of emulsified 4 arm NS solutions that have undergone LLPS
at an added salt of 150 mM NaCl and at T = 33.1± 0.5◦C. The total concentration
of NS, [NS], inside the emulsion droplet is labeled on each image. Each image shown
is cropped from a larger field of view. In practice, we analyze many droplets (10-100
droplets) in a single field of view taken using a lens with a 4x magnification and 0.13
numerical aperture (and a subset with 0.1 numerical aperture) (See Fig. A.2). Images
shown are identical to those in main text Fig 2.1B. (B) 3-d plots of the image intensity
profile (cyan) of the respective droplets in row A and the corresponding surface fits to
the intensity profiles (red). The intensities of droplets are normalized by the brightest
pixel intensity in their associated photo. In all images shown, there is a notable blue
ring at the boundaries between the two droplets, and between the larger droplet and
the background; this ring corresponds to diffraction-blurring of the image that is not
included in the fit.
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Figure A.2: A representative full-field-of-view image taken with a 4x, 0.13 NA lens
containing ∼ 100 droplets. The sample is an emulsified 3 arm NS solution at
[NS] = 37.3 ± 1.2 µM, [NaCl]= 150 mM, and T = 22.0 ± 0.1◦C. Of all droplets
observed, only a handful met the stringent criteria used to select droplets for further
analysis; those droplets are circled in purple-pink. As discussed in the main text,
those criteria were based on droplet size and isolation from other droplets.
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Figure A.3: Measured volume fractions of 4 arm NS condensates with five different
added hairpin concentrations (0.5 to 20 µM) and Cy3-tagged NS percentages (0.5%
to 20%; varied to maintain similar contrast between dense and dilute phases across
all hairpin concentrations). All samples had [NS]= 50 µM, 150 mM NaCl, and room
temperature (≈ 21-22◦C). For all added hairpin concentrations, we found that there
was no discernible difference between the measured volume fractions; experiments
reported in the main text used an added [hairpin] = 5 µM and had 5% of NSs tagged
with Cy3.
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Figure A.4: (A) Plot of fitted radii output of several NS emulsion droplets as a
function of the z-height position (i.e. focal position) of a 4x, 0.1 NA lens. The data
points connected by dashed and solid lines denote the best-fit dense and dilute phase
radii, respectively. Solid and dashed line data with the same color indicate fitted radii
output from a single emulsion droplet. (B) Plot of the corresponding condensate
volume fractions from the data shown in panel (A). Notably, there is a ≈ 150 µm
distance over which the volume fraction is constant, indicating the insensitivity of the
measurement to focal position over that range. Further, the collapse of all data to the
same volume fraction demonstrates the insensitivity of the method to the absolute
radius of the emulsion droplet.
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Figure A.5: Plots of condensate volume fraction, ϕden, vs. total NS concentration,
[NS], over a variety of temperatures (as labeled), for all salt and valence conditions
explored (as labeled). There are typically 10-30 droplets for a single volume fraction
point, with some points having as little as two and some up to 50. Each solid line
denotes a weighted linear least squares fit to data of the corresponding temperature.
The weights of the fit were given by the errors in both the [NS] and ϕden axes; the
errors are calculated as noted in the caption of main-text Fig. 2.2. The reduced chi
square values of each fit are in the legends of each plot.
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Figure A.6: Demonstration of protocol for measuring melting temperature. (A) Im-
age sequence of (top row) condensate dissolution as temperature was increased and
(bottom row) formation as temperature was decreased. The sample was a z = 5 NS at
[NS] = 128 ± 3 µM with [NaCl] = 150 mM NaCl. The arrows in the bottom row point
out droplets with significant intensity fluctuations (likely corresponding to spinodal
decomposition); the range of images over which this is observed is taken to correspond
to the temperature range of condensate formation. (B) Kymograph of intensity vs
time for the droplet boxed in panel A, and generated using the “Multi Kymograph”
analysis tool in Fiji [148]. Each vertical column of pixels here is an average of the
intensity along the horizontal axis of the yellow bar shown in (A); successive vertical
columns show successive time points. (C) Plot of condensate intensity as a function
of time from the image in (B). The intensity plotted was found by spatially averaging
the intensity along the vertical axis of the magenta box in (B) (e.g. along droplet
center). In general, we estimate that condensate dissolution occurs during the time
(red data markers) when the intensity magnitude is half-way between its value at
t = 0 s and its minimum (when melted). We note that when the condensate reformed
and reached equilibrium, the intensity (at long times) was similar in magnitude to
that at t = 0 s. (D) A plot of the recorded sample temperature as a function of time.
The temperatures taken to be the condensate dissolution temperature, Tdiss, and for-
mation temperature, Tform, are highlighted in red and blue, respectively. We used
those ranges to calculate a weighted average and uncertainty (or unweighted when
hysteresis) in a melting temperature estimate.
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Figure A.7: Temperature vs. log ([DNA]) phase diagram of (Left) NSs of various z,
all at [NaCl] = 150 mM, and (Middle) 4-arm and (Right) 3-arm NS at different
added NaCl conditions; data shown is identical to that in main text Fig. 2.3 Smaller
symbols are data found from lever-rule fits (as in Fig. A.5), while larger symbols
denote melting temperature estimates found from kymographs (as described in Fig.
A.6). At low temperatures for most NS conditions, we occasionally measure negative
values of [NS]dil; such values are not indicated on the semi-log plot here.

97



Appendix for Chapter 2 Chapter A

Figure A.8: Temperature vs. time profile when quickly quenching a 4 arm NS below
its critical temperature. Inset: We found that a quick quench would trap “bubbles”
of dilute phase and/or buffer inside the viscous condensate phase. In the inset photos,
we track a bubble of dilute phase of ≈ 30 µm in diameter that took roughly 2 hrs
≈ 7200 s to equilibrate out of the condensate of ≈ 90 µm in diameter. We note this
time is consistent with the estimated time for a 30 µm diameter water droplet to rise
up 90 µm inside a viscous DNA solution with viscosity equal to that of the condensate
(η ≈ 40 Pa s at T ≈ 30◦C for 4 arm NS condensates and ρliq =1.7 kg/L is the buoyant
density of DNA). See Section A.8, Eq. A.5 for the exact equation used to estimate the
equilibration time for this bubble rising process. After we confirmed the condensates
were free of bubbles, we began acquiring images for lever rule volume fraction analysis.
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Appendix for Chapter 3

B.1 DNAns design and oligos

Each z-armed DNAns in chapter 3 is formed from z oligos, 49 nucleotides (nt) in

length (see Table A.1 and B.1). Each arm consists of a 20 bp dsDNA segment terminat-

ing in a 7 nt ssDNA segment with sequence 5’-ACGATCG-3’. The self-complementary

sub-sequence 5’-CGATCG-3’, commonly referred to as a sticky-end, mediates binding

between any two DNAns arms. Unpaired adenines at the vertex and preceding the sticky-

end increase the internal conformational freedom of the DNAns and the conformational

freedom of the DNAns-DNAns bond, respectively [31,81,83].

All oligos were purchased purified with standard desalting from Integrated DNA Tech-

nologies (www.idtdna.com). Nucleotide sequences for the z = 3 and z = 4 DNAns designs

were taken from Biffi, et. al [13]. Additional sequences for z = 5 and z = 6 DNAns were

designed using NUPACK [84] with the goal of having DNAns formation be stable at

T = 65◦C and bind one another around T = 35◦C.
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B.2 DNAns solution preparation

DNAns solutions were prepared from ssDNA oligo stocks by mixing equal amounts

of each of the z oligos. After mixing, the solutions were completely dehydrated in a

vaccuum concentrator (Savant, Speedvac) with a filter over the sample tube opening to

prevent dust from entering the sample. The sample was then re-hydrated to the desired

DNAns concentration in a buffer solution of 150 mM NaCl, 40 mM Tris, 40 mM Acetate,

and 1 mM EDTA (pH 8.0). To dissolve the DNA completely, samples were placed

in an aluminum heat block at 60◦C and mixed vigorously for 15-30 seconds every 15

minutes until no visible dehydrated DNA remained. Finally, the solutions were annealed

by heating to 90◦C for 20 min in the heat block, turning off the power, and allowing

the sample to cool to room temperature in the block over ≈5 hours. During the entire

annealing procedure, a Styrofoam box covered the heat block to insulate the samples

from the surrounding environment. Once annealed, DNAns solutions were stored in a

refrigerator (4-6◦C) and used within 10 days.

B.3 DNAns concentration

Concentration was determined from A260 of solutions that were diluted 100-fold and

10,000-fold in deionized water. Concentration measurements were made one day after

annealing and again immediately after recovery from the rheometer.

The range of DNAns concentrations explored was limited at the high-end to < 800

µM by solubility, and at the low-end to > X µM by phase separation [13, 34, 61, 81, 83].

Phase separation was inferred from the onset of erratic variations in rheological data

observed at X < {190, 280, 280, 350}µM for z = {3, 4, 5, 6}, respectively.
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B.4 Rheology measurements

Oscillatory shear measurements were performed in a parallel plate geometry using a

stress-controlled, direct-strain rheometer (AR-G2 Rheometer; TA Instruments). Parallel

plates were chosen to minimize sample volume (80 µL). The bottom plate was a station-

ary, temperature-controlled stage (±0.020◦C). The top plate was a circular, steel plate

of radius r = 10 mm, that rotated freely via a magnetic bearing.

To load the rheometer, solutions were heated to 60◦C - a temperature at which DNAns

are stable but do not bind one another, making the solution easy to manipulate. Solution

was delivered onto the bottom plate of the rheometer, which was at room temperature,

and sandwiched between both plates until the desired gap size, g = 200 µm, was achieved.

Before any rheological measurements were performed, the solution was quickly an-

nealed a final time while loaded in between the rheometer plates: it was quickly heated

at |dT/dt| ≤ 15◦C/min to 60◦C, held there for 5 minutes, and then quickly cooled

(|dT/dt| ≤ 15◦C/min) to the first measurement temperature. A layer of low viscosity

mineral oil (Fisher Scientific CAS 8012-95-1; Saybolt Viscosity = 162) was placed over

the exposed sample to prevent solvent evaporation during the experiment.

Two types of oscillatory shear-flow measurements were performed: frequency sweeps

and strain sweeps. During the frequency sweep, the storage modulus (G′) and loss mod-

ulus (G′′) were measured as a function of oscillation frequency (0.63 rad/s < ω < 63

rad/s) at a single strain (γ = 5%). During the strain sweep, torsional stress, σ, was

measured as a function of strain γ = (r∆θ/g), where ∆θ is the angular displacement of

the steel plate, at a single frequency. We measured σ over the range 1% < γ < 200% at

ω ≥ 63 rad/s and T = 20◦C (Appendix, section S2 & S3).
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B.5 DNAns-specific information

This section includes information regarding the DNA sequences used for each DNA

Nanostars (DNAns) design, DNA concentration measurements, binding probability cal-

culations, and hysteresis of structure formation:

B.5.1 DNA sequences

Each of the z single-stranded (ss) DNA segments required to make z = 3, 4, 5, and 6

DNAns are 49 nucleotides long. In each sequence, 40 of the nucleotides are designed to

form portions of an arm, 6 constitute the sticky-end, and 3 are unbound (Table B.1).

B.5.2 Binding probability and mean valence calculations

We can get a sense of the magntiude of the change in connectivity from calculating

the binding probability, pb, between two DNAns arms. pb was calculated in a mean-

field approximation that ignores connectivity using the DNA thermodynamics package

NUPACK [84]. For our overhang sequence 5′-ACGTACG-3′, and an oligo concentration

of z·[DNAns], we find that pb > 0.84 at T = 35◦C, the highest temperature explored, and

grows slowly to pb ≈ 1 at T = 5◦C (see Fig. B.1). This leads to a predicted mean-valence,

⟨z⟩ ≈ pbz ≈ 0.98z at Tref = 20◦C. The use of such a model to calculate pb for the DNA

nanostar system was quantitatively validated by Rovigatti et. al. [61] in comparison to

DNAns simulations that incorporate connectivity.

B.5.3 Concentration measurements

We used a droplet spectrophotometer (Nanodrop 2000c; Fisher Scientific) to measure

the absorption at 260 nm (A260) and derive the DNAns concentration, [DNAns], of z-
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armed DNAns solutions (Fig. B.2 and Fig. B.3). The A260 of an z-armed DNAns

solution is related to its [DNAns] by

[DNAns] = A260/(Σiϵi) (B.1)

where ϵi is the extinction coefficient of the ith ss DNA segment composing the z-armed

DNAns (see B.1 for the extinction coefficients). Note that equation B.1 assumes all

DNAns in solution have completely denatured into their single stranded components.

The DNAns concentrations of solutions prepared for the rheometer were so large

that their A260 could not be measured directly. The A260 of solutions diluted 100-fold,

A2601%, in pure water was measurable, but we questioned whether this dilution was

sufficient to completely denature the DNAns and permit the use of equation B.1. To

check, we compared the A260 of a 100-fold dilution of the most concentrated sample of

a given valence, A260∗1%, to the A260 of a 10,000-fold dilution made in pure water from

that same 100-fold dilution, A260∗0.01%. In all cases, 100·A260∗0.01% ≥A260∗1%, consistent

with incomplete denaturation at 100-fold dilution (Table B.2).

The proportion of single-stranded DNA present in the 100-fold diluted solutions, α,

can be calculated based on the extinction coefficients of single-stranded (ss) and double-

stranded (ds) DNA [149]

ϵss = [37µg/(mL · cm)]−1 and ϵds = [50µg/(mL · cm)]−1

given that the absorbance of the 1% solution is due to both ss and ds DNA

A260∗1% = α
c

37
+ (1− α)

c

50
(B.2)
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and assuming the absorbance of the 0.01% solution is due to only ss DNA

A260∗0.01% = 0.01
c

37
, (B.3)

where c is the total mass concentration of DNA present in the 1% solution. Dividing

equation B.2 by B.3, we can derive an expression for α:

α =

(
A260∗1%
A260∗0.01%

− 74

)
/26 (B.4)

We found α ranged from ≈ 30% for the most concentrated 3-arm nanostar solutions,

to ≈ 96% for the most concentrated 6-arm nanostar solutions (Table B.2). We note

that we assumed α was concentration independent and only measured the α of the

most concentrated solution at a given z in order to interpret the A2601% of all (less

concentrated) solutions of a given z-armed nanostar and, thus, avoid an excessive amount

of multi-step dilutions.

Since α tracks the correct portion of ss and ds DNA present at the 1% dilutions,

we used it to correct the measured [DNAns] from the respective A2601% measurement

because using equation B.1 assumes the 1% solution contains only ss DNA (i.e., equation

B.1 assumes A2601% = c/37). The correction is found by dividing the ideal A260 for ss

DNA solutions, A260ss = c/37, by equation B.1:

correction = A260ss/A260
∗
1% = 1/(0.24 · α + 0.76) (B.5)

For the lowest and highest measured α, the correction to the concentration was ≈ 23%

and ≈ 1%, respectively (Table B.2). We note that the error introduced to the [DNAns]

by assuming a concentration-independent α has little to no effect (<< 1% error) on the

scaling exponents measured from the G′
p([DNAns]) data because the relative ratio of

104



Appendix for Chapter 3 Chapter B

concentrations are kept the same when using a concentration-independent correction.

B.6 Frequency sweep technical information

This section includes information regarding time-temperature superposition (i.e., mas-

ter curve construction) and network relaxation time:

B.6.1 Hysteresis measurements

We tested for hysteresis of structure formation by repeatedly measuring the storage,

G′, and loss, G′′, modulus as a function of temperature at γ = 5%, ω = 10 rad/s, and at

two different rates of temperature change, |dT/dt| = 1.5 and 15◦C/min. G′ and G′′ were

independent of the rate of cooling and heating for rates |dT/dt| ≤ 15◦C/min for all z

and [DNAns] (Fig. B.4). The rate at which temperature changed between the different

temperature measurements of G′(ω, T ) and G′′(ω, T ) contributing to the master curve

was |dT/dt| ≤ 15◦C/min. Thus, all DNAns networks studied here form reversibly and

are always in equilibrium.

B.6.2 Time-temperature superposition

Time-temperature superposition (TTS) constructs a material’s viscoelastic response

over a wide range of frequencies by superimposing frequency sweeps made at different

temperatures onto one another. The resulting superimposed curve is known as the “mas-

ter curve”. We used the TTS protocol provided in the rheometer’s proprietary software

(TRIOS v.4.0.1, TA Instruments) to construct master curves at a reference temperature

of Tref = 20◦C, allowing for both vertical and horizontal shifts of the raw frequency

sweeps. An example of the TTS process is illustrated in Figure B.5. Figures B.6A and
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B.6B show all vertical and horizontal shift factors from the TTS procedure vs. temper-

ature for all valences.

The vertical shift factor accounts for slight changes in connectivity (Fig. B.1) that

result in an ≈ 40−80% increase in G′ (Fig. B.6B). The horizontal shift factor accounts for

changes in DNAns binding dynamics and exhibits an Arrhenius temperature-dependence

(see section B.6.2, Fig. B.7).

B.6.3 Relaxation times and Arrhenius dependence of relaxation

times

The horizontal shift factor is the ratio between the DNAns network relaxation times

at two different temperatures. For all z and [DNAns], the relaxation times show an

Arrhenius temperature behavior, τc ∝ exp(EA/RT ) (Fig. B.7), with an activation energy,

Ea, that is independent of [DNAns] and z. Averaged over all [DNAns] and valences,

⟨Ea⟩ = 210± 10 kJ/mol.

This value is consistent with the enthalpy of binding of the overhang, |∆H| = 239

kJ/mol, which was calculated using the two-state melting application on the DINAmelt

web server for overhang concentrations between 600µM and 3600µM at T = 20◦C and

150mM NaCl [150, 151]. Thus, for all z and [DNAns], the relaxation time τc of the

network is determined by the kinetics of a single DNAns-DNAns bond.

B.6.4 Numerical estimate of solvent-drag-induced crossover fre-

quency (‘non-affine-to-affine model’)

It has been shown that a Maxwellian crossover in G′ and G′′ can arise from solvent

drag inducing a non-affine to affine transition in networks [17,85,98]. Following ref. [17],

a crossover induced by solvent drag should occur at a frequency fc ≈ Kc/α, where Kc is
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the network chain’s spring constant, and α is the drag coefficient of a node. We showed

in the main text that Kc ≈ 10−4 N/m for a simple FJC model of DNAns arms; this was

validated by the similarity of this value to estimated cluster spring constants. We then

estimate the drag from a Stoke’s picture: the drag of a sphere is α = 6πηa ≈ 1.5× 10−10

N s/m, where η ≈ 1 mPa s is the water viscosity, and the sphere radius a ≈ 8 nm is set to

the DNAns arm length. Note that this overestimates the drag, since the DNAns does not

occupy all volume within the sphere, and leads to an underestimate of fc. Regardless,

the crossover frequency is then fc ≈ 7× 105 Hz, which, while an underestimate, exceeds

the measured crossover frequencies by five orders of magnitude. This indicates that the

measured crossover is not caused by solvent drag, and supports the contention that it is

instead caused by the kinetics of bond breakage (Section B.6.3).

B.7 Strain sweep specific information

This section includes information regarding the strain sweep measurement, charac-

teristic and yield strain measurements, and the uniaxial extension ratio calculation:

B.7.1 Linear and non-linear elasticity of DNAns networks

To investigate the linear and non-linear response of DNAns networks, we measured

the storage, G′, and loss, G′′, modulus over a range of strains 1% ≤ γ ≤ 200% at a

single frequency, ω > 62 rad/s, and temperature, T = 20◦C, using a discrete logarithmic

sampling distribution of 10 points per decade. For all DNAns networks, G′ and G′′ were

strain-independent for γ ≤ 10%, consistent with measuring a linear elastic response to

applied deformation (Fig. B.8). After the strain-independent regime, all networks, except

for the two highest concentrated z = 6 networks, displayed resolvable strain hardening

until yielding (Fig. B.8). The hardening response of such networks are well fit by
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G′ ∼ exp ((γ/γ∗)2), where γ∗ is the characteristic strain at which stiffening occurs [89–91]

(see section B.7.2).

We observed that both the torque amplitude and radial displacement (i.e., strain)

amplitude time-trace were continuous at yielding (Fig. B.9), consistent with rheometer

plates maintaining contact to an elastic material. If the plate lost contact with the

material at yielding, both traces would appear highly discontinuous and noisy. Further,

when separating the plates after strain sweep measurements, both plates had NS solutions

adhered to them. All of this evidence confirms there was no plate slippage during strain

sweep measurements.

B.7.2 Characteristic and yield strain

The non-linear elastic response of nearly all DNAns networks followed the relation

G′(γ) ∼ exp ((γ/γ∗)2), where γ∗ is the characteristic strain at which strain hardening

occurs. At a given z, γ∗ remained either independent of or slightly increased with [DNAns]

(Fig. B.10A). On the other hand, as a function of z, γ∗ decreased from ≈ 200% at z = 3

to ≈ 110% at z = 6 (Fig. B.10A).

Given the digital nature of the non-linearity measurement, we defined the maximum

strain, γm, as the strain at which G′(γ) maximized. Moreover, we defined the error in

maximum strain, γm, as the resolution of the data sampling. Note that a logarithmic

sampling decreases in resolution as strain increases. Accordingly, we report larger errors

for strains of greater values. Despite the large uncertainty in our measurement of γm, we

observed that γm remained roughly independent of or slightly decreased with [DNAns]

(Fig. B.10B). As a function of z, γm decreased from ≈ 170% at z = 3 to ≈ 20% at z = 6

(Fig. B.10B).
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B.7.3 Uniaxial extension ratio calculation

The uniaxial extension ratio, λmax, of a polymer chain in a network is related to the

characteristic strain of the network by [89]:

γ∗ = λmax − λ−1
max (B.6)

At a given z, λmax remained roughly independent of or slightly increased with [DNAns]

(Fig. B.12). As a function of z, λmax decreased as valence grew: for z = 3, 4, and

5, λmax = 2.3 ± 0.1, 1.7 ± 0.1, and 1.9 ± 0.2, respectively (Fig. B.12). For the lowest

concentrated z = 6 DNAns network, λmax = 1.7± 0.2.
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z Strand Sequence (5’→3’)
All 1 CTACTATGGCGGGTGATAAAAACGGGAAGAGCATGCCCATCCACGATCG

All 2 GGATGGGCATGCTCTTCCCGAACTCAACTGCCTGGTGATACGACGATCG

3 3 CGTATCACCAGGCAGTTGAGAATTTATCACCCGCCATAGTAGACGATCG

4 3 CGTATCACCAGGCAGTTGAGAACATGCGAGGGTCCAATACCGACGATCG

4 4 CGGTATTGGACCCTCGCATGAATTTATCACCCGCCATAGTAGACGATCG

5 4 CGGTATTGGACCCTCGCATGAACCATGCTGGACTCAACTGACACGATCG

5 5 GTCAGTTGAGTCCAGCATGGAATTTATCACCCGCCATAGTAGACGATCG

6 5 GTCAGTTGAGTCCAGCATGGAACGCATCAGTTGCGGCGCCGCACGATCG

6 6 GCGGCGCCGCAACTGATGCGAATTTATCACCCGCCATAGTAGACGATCG

Table B.1: Table of sequences used for each DNAns design. The sticky-end is high-
lighted in blue and unbound nucleotides are highlighted in red. The sequences here
are the same as those used in Chapter 2.

z A260∗1% 100·A260∗0.01% α Correction to [DNAns]

3 9.4± 0.1 11.5± 0.3 30± 6% 1.23± 0.02
4 13.0± 0.2 14.0± 0.4 72± 7% 1.09± 0.02
5 7.1± 0.2 8.5± 0.5 39± 10% 1.19± 0.04
×5 12.6± 0.1 13.0± 0.1 89± 20% 1.03± 0.05
6 15.6± 0.6 15.8± 0.3 96± 10% 1.01± 0.03

Table B.2: Table of A260∗1% and 100·A260∗0.01% values as a function of z, along with
the calculated percentage of ssDNA present at 1%, α, and the subsequent correction
to [DNAns] at 1%. ×This batch of z = 5 samples was made several months after the
first batch of z = 5 samples in order to reproduce mechanical measurements.
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Figure B.1: Binding probability, pb, of overhang sequence (5’-ACGATCG-3’) duplex
formation versus temperature at 150 mM NaCl. The light and dark purple line denote
[DNAns] = 600 µM/z and [DNAns] = 3600 µM/z, respectively. We note that the pb
reported is normalized to account for the two unbound A’s in the DNAns-DNAns
overhand bond, which were incorporated in the NUPACK calculation to account for
their steric effects on duplex formation.
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Figure B.2: Plot of measured [DNAns], with applied correction factors shown in Table
B.2, as a function of the measured A260 in the 1% dilutions, A2601%. The orange,
blue, green, and red denote z = 3, 4, 5, and 6, respectively. The lines are not fits, but
an interpolated line connecting the data points meant as a guide for the eye. The
dashed line denotes the second batch of z = 5 samples that was made several months
after the first batch of z = 5 samples.
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Figure B.3: Plot of measured [DNAns], with applied correction factors shown in Table
B.2, as a function of expected [DNAns]. The orange, blue, green, and red denote
z = 3, 4, 5, and 6, respectively. The z = 5 samples colored in the lighter shade of
green were made several months after the first batch of z = 5 samples (dark green) in
order to reproduce mechanical measurements. The dashed lines denote linear fits to
the data. The solid, black line denotes the relationship Measured [DNAns] = Expected
[DNAns] (i.e., f(x) = x).
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Figure B.4: Log-lin plot of G′ and G′′ vs. temperature at ω = 10 rad/s and γ = 5%
for different rates of cooling and heating (labeled in plot) of a (190± 10) µM 3-arm,
(290 ± 10) µM 4-arm, (290 ± 10) µM 5-arm, and (360 ± 10) µM 6-arm DNAns solu-
tion. The overlap of the curves at different heating and cooling rates show that the
viscoelastic response of the DNAns solution is independent of the rate of cooling and
heating.
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TTS

15°C

20°C

γ = 5 %

γ = 5 %

Figure B.5: The top and bottom panels are a log-log plot of G′(ω) and G′′(ω) pre- and
post-TTS, respectively. In this example, the reference temperature is Tref = 15◦C. As
a note, the data shown is a subset of the z = 3 DNAns G′(ω) and G′′(ω) data.
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A

B

Figure B.6: Log-lin plot of the Tref = 5◦C (A) horizontal shift factors, aT , and (B)
vertical shift factors, bT , as a function of temperature. z = 3, 4, 5 and 6 are denoted
by yellow triangles, blue diamonds, green squares, and red circles, respectively. The
lines are guides for the eyes. The darker colored lines signify a higher [DNAns]. The
dashed lines denote z = 5 samples that were not cooled to T = 5◦C.
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Figure B.7: Log-lin plot of the relaxation time, τc, as a function of temperature at
γ = 5% for z = 3 (yellow triangles), 4 (blue diamonds), 5 (green squares), and 6 (red
circles). Darker colors signify a higher [DNAns]. The dashed lines are the Arrhenius
fits, τc ∝ exp(EA/RT ).
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Figure B.8: Log-log plot of the storage modulus, G′, as a function of strain, γ, at a
temperature of T = 20◦C for z = 3 (top left panel), 4 (top right panel), 5 (bottom
left panel), and 6 (bottom right panel). The curves with darker colors signify a higher
[DNAns]. The solid and dash-dot lines denote data taken at a frequency of ω = 62.8
rad/s and ω = 125.6 rad/s, respectively. The inset of the z = 5 panel is the lowest
concentrated z = 5 DNAns network, with G′ ≈ 950 Pa in the linear regime (scale on
right of inset).
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Figure B.9: Log-log plot of the normalized storage, G′(γ)/G′(γo), and loss modulus,
G′′(γ)/G′′(γo) as a function of strain, γ, at a temperature of T = 20◦C of z = 3 at
[DNAns] ≈ 500 µM (top left panel), z = 4 at [DNAns] ≈ 500 µM (top right panel),
the z = 5 gel at [DNAns] ≈ 450 µM (bottom left panel), and z = 6 gel [DNAns]
≈ 450 µM (bottom right panel). The insets of each panel show the measured relative
amplitude of the torque (red) and radial displacement (blue) wave-forms as a function
of time at the point of yielding.
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A

B

Figure B.10: (A) Log-log plot of γ∗, as a function of [DNAns] for z =3 (yellow
triangles), 4 (blue diamonds), 5 (green squares), and 6 (red circles) at T = 20◦C and
ω ≥ 62.8 rad/s. (B) Log-log plot of γm, as a function of [DNAns] for z = 3 (yellow
triangles), 4 (blue diamonds), 5 (green squares), and 6 (red circles) at T = 20◦C and
ω ≥ 62.8 rad/s. In (A) and (B), the dashed and dotted lines are guides for the eye.
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Figure B.11: Log-lin plot of the plateau modulus, G′
p, as a function of designed valence,

z, at T = 20◦C and γ = 5%. The DNAns concentration of each data set is given in
the legend.
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Figure B.12: Plot of λmax, as a function of [DNAns] for z = 3 (yellow triangles), 4
(blue diamonds), 5 (green squares), and 6 (red circles) at T = 20◦C. The dashed lines
are guides for the eye.
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z [DNAns] (µM) ϕrods ϕsphere G′
p (Pa)

3 195 0.009 0.30 39.5
305 0.015 0.47 85.6
390 0.019 0.61 127
500 0.024 0.77 215
590 0.029 0.92 301
705 0.034 1.09 388
810 0.039 1.25 492

4 295 0.019 0.46 590
400 0.026 0.62 915
495 0.032 0.77 1240
630 0.041 0.98 1460
740 0.048 1.14 1980

5 290 0.023 0.45 996
330 0.027 0.51 1370
355 0.029 0.55 1380
355 0.029 0.55 1400
445 0.036 0.69 1940
450 0.036 0.70 2140
465 0.037 0.72 2185
485 0.039 0.75 2140
550 0.044 0.85 2630
550 0.044 0.85 2800
590 0.048 0.91 2820
600 0.048 0.92 2870

6 350 0.034 0.55 4620
450 0.044 0.70 5810
560 0.054 0.87 7450

Table B.3: Correspondence between [DNAns], DNAns volume fraction ϕ, and G′
p. ϕ

is calculated in two ways: (i) ϕrods assumes the DNAns is composed of z rods, with
each rod having a length given by the dsDNA arm length (8.5 nm, which includes
half the sticky end) and radius (1 nm); and (ii) ϕsphere gives the volume fraction of a
monodisperse system of spheres of concentration [DNAns], with the sphere radius set
to the DNAns arm length (8.5 nm). ϕsphere is useful in gaining intuition on system
structure through comparision to volume fractions of, e.g., FCC or random-sphere
packings [152,153].
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Appendix for Chapter 4 and 5

C.1 NS Design

All z-arm NSs used in chapter 4 and 5 (shown in Figure 5.1B) self-assemble from z

complementary ssDNA oligos (see Fig. C.1). NSs self-assemble into z-armed star-like

structures, with neighboring arms connected at the core by two unpaired Adenosines

(A). Here, we design the tips of the NS arms to be either blunted or have a self-

complementary ssDNA “sticky-end” sequence mediating NS-NS bonds (Fig. 5.1B). The

three sticky-end sequences used here are: α sticky-end 5’-ACGATCG-3’, β sticky-end

5’-ATGCATGCA-3’, and γ sticky-end 5’-ATGCGCGCA-3’. The unpaired A preceding

the core self-complementary portions of the sticky-end promote flexibility [13,27].

Lastly, for all sticky-end types, we design the sequences assembling NSs to ensure

that two bound NS arms are separated junction-to-junction by 50 nucleotides in length.

In particular, we made: (i) an “α” NS arm to be a 20 base-pair (bp) dsDNA segment

ending in a 7 nt-long sticky-end 5’-ACGATCG-3’ (ii) a “β” (or “γ”) NS arm to be

a 19 bp dsDNA segment ending in a 9 nt-long sticky-end 5’-ATGCATGCA-3’ (or 5’-

ATGCGCGCA-3’ for γ). A NS arm without a α or β/γ sticky-end was designed to be

just a 19 or 20 bp dsDNA segment, respectively.
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C.2 NS preparation

HPLC purified ssDNA oligos were purchased from IDTDNA in a dehydrated state.

Upon receiving, oligos were hydrated to ≈ 500 µM of MilliQ water. Constituent oligos

forming the various z-arm NSs, as shown in Figure 5.1A, were then mixed together in

stoichiometric amounts to make ≈ 400 to 470 µM worth of NSs. To achieve such NS

concentrations, the mixed oligos required completely dehydration and then re-hydration

in 100 µL of a buffer-saline solution (40 mM Tris, 10.5 mM HCl, 1 mM EDTA and

monovalent salt concentration of choice). The newly rehydrated NS solution was then

thermally annealed by heating them to 95◦C for 20 mins in an insulated, dry heat block

(Make, Model) and then cooling to room temperature over ≈ 5 hours. After annealing,

the samples were immediately used for concentration measurements and then stored in

the fridge (4-6◦C) for a few days before rheology measurements.

C.3 Concentration measurement procedure and es-

timates

Aliquots of constituent ssDNA oligo stocks or NS solutions were diluted 100-fold in

MilliQ water for concentration measurements. To ensure NSs fully disassemble after the

dilution step, we heat them to 90◦C for ≈ 60 s and vortex the heated solution vigorously

for ≈ 10 s. The heated NS dilutions are then placed on an empty pipette rack to

cool to room temperature. All dilutions are vortexed once more prior to concentration

measurements.

The concentration, c, of ssDNA stock or NS solutions were then estimated from UV

spectroscopy measurements (Fisher Scientific, Nanodrop 2000c) of the corresponding

diluted solution. In particular, c was calculated from the absorbance at 260 nm, A260,
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using Beer-Lambert’s Law c = 100A260/(ϵl), where the factor of 100 accounts for the

dilution step, l (= 1 cm) is the optical path length, and ϵ is the extinction coefficient of

the strand or NS (see Table C.1 for ϵ values). For NSs, we estimate their ϵ as the sum of

its constituent ssDNA sequences.

C.4 Oscillatory Rheology

We performed oscillatory shear rheology on NS solutions in a parallel, flat-plate geom-

etry using a strain- and temperature-controlled rheometer (TA Instruments, Ares-G2).

The bottom plate was a temperature-controlled plate that applied strain, λ, to solu-

tions. The top plate was a steel plate of radius r = 10 mm through which the resulting

transmitted stress, σ, was monitored.

NS solutions were placed onto the bottom plate of the rheometer at room temperature

by shoveling ≈ 80 to 90 µL of solution out of their respective tubes using a slant cut 1000

µL pipette tip. A few NS solutions (e.g., valence 3, 4, and 5 solutions) were pipetted

directly onto the bottom plate after heating them to 65◦C for ≈ 5 minutes. After the

solution was loaded onto the bottom plated, it was then sandwiched until the top and

bottom plates were separated by a gap size of g ≈ 0.18 − 0.22 mm. A low-viscosity

mineral oil (Fisher Scientific, 162 Saybolt Viscosity ≈ 0.034 Pa s) was placed over the

exposed sample to prevent evaporation during measurements.

Before the NS solutions were sheared, they were quickly annealed between the two

plates. Solutions were heated to a temperature above the sticky-end melting temperature

(65◦C for solutions with α- or β-bonds and 70◦C for γ-bond solutions) for ≈ 5 minutes.

The temperature was lowered at a rate of |dT/dt| ∼ 1◦C between set temperatures.

First, the linear response regime and yield behavior of NS solutions were investigated.

In particular, the storage, G′, and loss, G′′, moduli were measured over a range over
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strains, 1%≤ λ ≤300%, at many different temperatures and applied frequencies. The

homotypic NSs with weak or strong sticky-ends typically had a set temperature of 20

or 40-50◦C, respectively. The heterotypic NSs, on the other hand, had set temperatures

between 20◦C≤ T ≤ 45◦C. For all NS types, the applied frequency of deformation during

the strain sweep was 2.5, 5, 7.5 or 10 Hz. A few samples were measured at 0.3 and 1 Hz.

Next, oscillatory shear flow measurements of G′ and G′′ were performed on NS solu-

tions in their linear response regime (λ = 1, 5%) between shearing frequencies of 0.1 Hz

≤ f ≤10 Hz (over 30 logarithmically spaced points). G′(f) and G′′(f) were measured

over a range of temperatures (5◦C≤ T ≤ 55◦C) in 5◦C increments. Each G′(f, T ) and

G′′(f, T ) were then used to construct the “master curves” of the frequency-dependent

stress-response at a reference temperature of T = 25◦C (Fig. 4.1-4.2 & 5.1-5.5). The

time-temperature superposition protocol followed is detailed in Appendix BB.6.2.

When separating the plates after rheology measurements, we found the NS samples

were stuck to both the top and bottom plates. This indicated to us that NS solutions

strongly adhered to both plates and, thus, there was no plate slippage during measure-

ments.

C.5 Two-mode Maxwell viscoelastic spectra

The storage modulus and loss modulus are:

G′ = G′
p,1

(f/τ1)
2

1 + (f/τ1)2
+G′

p,2

(f/τ2)
2

1 + (f/τ2)2
(C.1)

G′′ = G′
p,1

(f/τ1)

1 + (f/τ1)2
+G′

p,2

(f/τ2)

1 + (f/τ2)2
(C.2)
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NS [NS] (µM) [NaCl] (mM) Ea (kJ/mol) ∆HSL (kJ/mol) ∆SSL (J/(mol K))
α3x3 460± 9 50 213± 6 -235 -704
x3γ3 423± 9 50 251± 11 -306 -842
α3γ

∗
3 439± 11 50 239± 5 -306 -842

α3x3 440± 10 150 207± 1 -235 -686
x3γ3 460± 20 150 254± 8 -306 -820
α3γ

∗
3 440± 9 150 249± 6 -306 -820

α3x3 432± 10 300 204± 4 -235 -674
α4x2 406± 9 300 210± 6 -235 -674
α∗
6 430± 7 300 225± 2 -235 -674

β3 474± 11 300 237± 5 -277 -753
α3β

∗
3 412± 6 300 247± 5 -277 -753

α3γ
∗
2 422± 11 300 247± 4 -306 -807

α4γ
∗
2 411± 6 300 249± 5 -306 -807

γ3 534± 17 300 254± 8 -306 -807
x3γ3 452± 10 300 245± 7 -306 -807
α3γ

∗
3 447± 7 300 241± 5 -306 -807

γ4 468± 10 300 263± 7 -306 -807
α2γ

∗
4 450± 7 300 250± 8 -306 -807

Table C.1: Measured activation energies, Ea, and estimated enthalpy, ∆H, for the
sticky-ends used in this study. The various NS and salt concentration used for each
sample are listed in the second and third columns, respectively. The columns with
an ‘∗’ means the reported [NS] and Ea are averages of several NS samples. We note
Ea was measured from Arrhenius fits to τc vs temperature (Fig. C.3). Further, the
estimate for the sticky-end ∆SSL and ∆HSL was calculated using the nearest-neighbor
DNA thermodynamic model detailed in SantaLucia [59], with two added corrections.
In particular, we added a dangle correction from the unpaired “A” preceding the core
binding sequences and an empirical “tail” correction [60] estimating the repulsion from
the DNA arms flanking the sticky-end.
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Figure C.1: Sequences for the ssDNA strands used to self-assemble the “az” homotypic
and “apbq” heterotypic NSs. The α sticky-end sequence used here is the same sequence
shown in Table A.1. Text file of sequences available upon request.
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Figure C.2: Master curve plots of G′ and G′′ versus frequency of various NS solutions
at a reference temperature of 25◦C. All heterotypic NSs were measured at 1% strain,
whereas the valence 3 and 4 homotypic NSs were measured at 5% strain. The con-
centrations of NSs used in each sample are listed in the legends of the plots.
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Figure C.3: Plots of relaxation time versus temperature of various NS solutions. For all
master curves with a clear crossover in G′ and G′′ following the terminal fluid regime,
we estimate the liquid-like relaxation time for those solutions from the inverse of the
crossover frequency and plot those here. A few heterogeneous NS solutions, however,
transitioned from a liquid-like regime to a power-law regime without a crossover in
G′ and G′′ (e.g., α3β3, α3γ2, and α4γ2 NSs), preventing a direct measurement of the
relaxation time for simple fluid-flow, τliq. We estimated 1/τliq in those networks by
finding the frequency at which the terminal fits of G′ = A1f

2 and G′′ = A2f become
equal (i.e., fc = A2/A1 = 1/τliq). We are reporting those estimates of τliq here.
Lastly, note that solid lines denote Arrhenius fits to the relaxation time and that the
concentrations of NSs and added salt used in each sample are listed in the legends of
the plots.
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Figure C.4: Plots of normalized storage modulus versus strain of various NSs. The top
row are α3γ3, α3x3, x3γ3, and α6 NSs, all made at roughly the same NS concentrations,
hydrated in different salt concentrations (left - 50 mM NaCl, middle - 150 mM NaCl,
right - 300 mM NaCl). The second row are the α2γ4, α3γ3, and α2γ4 NSs done at
shearing rates slightly above the γ-network relaxation rate, in between the relaxation
rates of both networks, and far into the elastic regime. The third row and first plot
of row four show changes to the strain response of the α3γ2, α2γ4, and α3γ3 NSs as
temperature and shearing frequency are changed. The last plots of row four are the
α3β3 NS (middle) and β3, γ3, γ4 NSs (right) at conditions far into the elastic regime.
All NSs solutions of rows two to four had [NaCl] = 300 mM.
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Figure C.5: Simple fluid-flow relaxation time, at Tref = 25◦C, versus designed
γ-valence in the heterotypic NSs studied in Chapter 5 (e.g., α4γ2, α3γ3, and α2γ4).
The concentration of heterotypic NS in each sample are all roughly between 420-470
µM. The solid blue line is a least squares linear fit to the data. We note that it is
reasonable for the intercept at t = 0 to be between 1 < z ≲ 2. For instance, z = 1.5
corresponds to a situation where there are equal amounts of z = 1 and z = 2 NSs,
meaning every valence-two NS can have its ends capped by a valence-one arm/hairpin.
Such a situation would lead to chains likely four NS arms in length and, thus, not long
enough to entangle. On the other hand, a solution of z = 2 NS is free to make chains
of arms arbitrarily long and, thus, capable of entangling to make elastic networks.
Inset: Simple fluid-flow relaxation time, at Tref = 25◦C, versus designed α-valence of
the homotypic NSs measured in chapter 4. The concentration of the homotypic NSs
here were all roughly 450-500 µM. The solid black line in is a least squares linear fit
to the data.
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Figure C.6: Simple fluid-flow relaxation time, at Tref = 25◦C, versus added salt con-
centration (NaCl). The black line in the main plot is a weighted least squares linear fit
to both x3γ3 and α3γ3 data sets. The concentration of x3γ3 and α3γ3 in the samples
plotted are all roughly between 420-470 µM. Inset Simple fluid-flow relaxation time,
at Tref = 25◦C, versus added salt for the α3x3 solution, which did not have enough
data to warrant a linear fit.
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Figure C.7: Plot ofG′ andG′′ versus frequency for an α3γ3 NS at Tref = 25◦C. The red
curve is a two-mode Maxwell viscoelastic spectra with manually chosen parameters,
shown in the legend of the plot. The functional form for G′ and G′′ of a two-mode
Maxwell spectra is shown in equation C.1 and C.2, respectively. The relaxation time
parameters used are based off τliq(α3γ3) and τc(α6). The storage modulus parameters
used are roughly equal to G′

p(γ3) and G′
p(α6).
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Figure C.8: Plots of tan(δ) vs frequency for α3γ3 NS solutions at an added
salt of (A) 50 mM, (B) 150 mM, and (C) 300 mM NaCl. The solid lines de-
note raw data. The circles are the generalized Kramers-Kronig approximation for
tan(δ) ≈ tan((π/2)d ln(G∗)/d ln(f)), where (G∗)2 = (G′)2+(G′′)2. G∗ was calculated
using the raw G′ and G′′ data and fit using a linear interpolation. The linear interpo-
lation of G∗ was then used to numerically calculate the derivative d ln(G∗)/d ln(f).
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Figure C.9: Plots of ξ vs frequency for (A) β3, γ3, α3x3, x3γ3, α3β3, and α3γ3 (B)
γ4, α3γ2, α4γ2, and α2γ4 at a reference temperature of Tref = 25◦C. Measurements
of ξ vs frequency for α6 are in both plots. The concentrations of NSs and added salt
are listed in the legends of the plots. The dashed lines in both panels mark the high
frequency crossover in α3γ3, α4γ2, and α3γ2 NSs, respectively The solid line and large
squares in B denotes a fit to the respective data set and an average of both α3γ2 data
sets, respectively.
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