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Multi‑group analysis using 
generalized additive kernel 
canonical correlation analysis
eunseong Bae1, Ji‑Won Hur2, Jinyoung Kim3, Jun Soo Kwon3,4, Jongho Lee5, Sang‑Hun Lee3 & 
chae Young Lim6*

Multivariate analysis has been widely used and one of the popular multivariate analysis methods is 
canonical correlation analysis (CCA). CCA finds the linear combination in each group that maximizes 
the Pearson correlation. CCA has been extended to a kernel CCA for nonlinear relationships and 
generalized CCA that can consider more than two groups. We propose an extension of CCA that allows 
multi‑group and nonlinear relationships in an additive fashion for a better interpretation, which 
we termed as Generalized Additive Kernel canonical correlation Analysis (GAKccA). in addition to 
exploring multi-group relationship with nonlinear extension, GAKCCA can reveal contribution of 
variables in each group; which enables in‑depth structural analysis. A simulation study shows that 
GAKccA can distinguish a relationship between groups and whether they are correlated or not. We 
applied GAKccA to real data on neurodevelopmental status, psychosocial factors, clinical problems as 
well as neurophysiological measures of individuals. As a result, it is shown that the neurophysiological 
domain has a statistically significant relationship with the neurodevelopmental domain and clinical 
domain, respectively, which was not revealed in the ordinary ccA.

Multivariate analysis is a statistical method that considers several variables simultaneously. Compared with uni-
variate analysis, which focus on the influence of one variable only, multivariate analysis takes into account not 
only the effect of each variable but also interaction between variables. Thus, multivariate analysis gets popular as 
researchers face to more complex data. A number of statistical methods concerning multivariate analysis have 
been developed and widely used. For instance, principle component analysis (PCA), first proposed by  Pearson1 is 
a method that compresses the data in the high dimensional space into the low dimensional space by identifying 
dimensions in which the variability of the data are explained the most. Factor analysis extracts underlying, but 
unobservable random quantities by assuming variables are expressed with those random  quantities2.

One of the popular multivariate analysis is canonical correlation analysis (CCA). CCA, proposed by 
 Hotelling3, explores association between two multivariate groups. CCA finds linear combinations of each group 
that maximize a Pearson correlation coefficient between them. In this way, CCA can also serve as a dimension 
reduction method as each multi-dimensional variable is reduced to a linear combination. This advantage makes 
CCA widely used in many scientific fields that mostly deal with high dimensional data such as psychology, 
neuroscience, medical science and image  recognition4–7, etc.

Despite of its strength, CCA has some limitations. CCA is restricted to linear relationship only so that the 
result of CCA can be misleading if two variables are linked with a non-linear relation. This limitation is inherited 
from the characteristics of the Pearson correlation. For example, if two random variables X and Y are related 
with the equation X2 + Y2 = 1 , then the Pearson correlation of X and Y results in Corr(X, Y) = 0 , although 
two random variables are related. To overcome the linearity constraint of the classical CCA, Bach and  Jordan8 
proposed Kernel canonical correlation analysis (KCCA), which applies a kernel method to the CCA problem. 
Unlike CCA, KCCA is a method of finding nonlinear relationship between two groups. Kernelization allows 
practical nonlinear extension of the CCA method. KCCA has been successful in some scientific fields that need 
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to find nonlinear relationship beyond linear one such as speech communication science, genetics and pattern 
 recognition9–11, etc.

Another limitation of the classical CCA is that it is only applicable to two groups. Often, scientific experiments 
yield results that can be divided into more than two groups. Pair-wise application of CCA into the groups more 
than two could ignore the connection and non-connection within the groups. Multi-group version of CCA to 
overcome such limitation was introduced by  Kettenring12, named generalized canonical correlation analysis 
(GCCA or MCCA). GCCA finds linear combinations of each group that optimize certain criterion, such as 
the sum of covariances. Tenenhaus et al.13 proposed kernelized version of GCCA termed as kernel generalized 
canonical correlation analysis (KGCCA). This method is an extension of CCA by combining nonlinearity and 
multi-group analysis. In spite of fully flexible extension, kernelization of all variables together in each group is 
not helpful to provide structural analysis of variables. For instance, it is difficult to see the contribution of one 
variable, say, X11 in a group X1 = (X11, . . . ,X1p1)

T in relation to the another group X2 = (X21, . . . ,X2p2)
T using 

KGCCA. Balakrishnan et al.14 considered an additive model by restricting possible non-linear functions to the 
class of additive models. This modification enables to analyze the contribution of each variable. However, it is 
still restricted to two groups.

In this paper, we consider an additivity idea with more than two groups. We call our proposed approach as 
generalized additive kernel canonical correlation analysis (GAKCCA). We expect the proposed approach has a 
better interpretability than KCCA or KGCCA and it can be applied to multi-group data. The proposed approach 
was motivated by a research problem on investigating the relationships among individual measures such as 
divergent psychological aspects mainly measured psychometric questionnaires and neurophysiological aspects 
such as brain morphologies. In this study, we analyze four domains of individual variables: neurodevelopmental, 
psychosocial, clinical characteristics, and structural MRI (Magnetic Resonance Image) measures. The present 
study was not only to define the link between the above four domains but also to reveal phase of variables of each 
domain under the hypothesis that a series of associations between domains are assumed to exist. We expect that 
the proposed method would facilitate identifying the link of neurophysiological basis represented by structural 
MRI related variables with the psychological variables.

The organization of the paper is as follows. In Materials and Methods section, we review CCA and its variants, 
then specify the population and empirical versions of the proposed GAKCCA method and introduce how to 
define the contribution of a variable in a group. As the proposed approach requires a regularization parameter, we 
discuss selection of a regularization parameter as well. Hypothesis test based on permutation is also performed. 
In Results section, we show the results of simulation study to confirm that our method is valid and it explains 
the relationship of groups well. The results of real data analysis are also presented here. Finally, the discussion 
is given in the “Discussion” section.

Materials and methods
We first briefly review CCA and its variants. Then, we present our GAKCCA method and describe the algorithm 
for implementation.

canonical correlation analysis and its variants. For two multi-variate groups, canonical correlation 
analysis finds linear combination of each group that maximizes correlation between two linear combinations. 
That is, CCA finds b1 = (b11, . . . , b1p1)

T and b2 = (b21, . . . , b2p2)
T that satisfy the following: 

maxb1,b2 Cov
(
b
T
1X1, b

T
2X2

)
 subject to Var

(
b
T
1X1

)
= Var

(
b
T
2X2

)
= 1 , where X1 = (X11, . . . ,X1p1)

T has p1 var-

iables and X2 = (X21, . . . ,X2p2)
T has p2 variables. Here, (· )T denotes the transpose of a matrix. Variance con-

straints are to reduce the freedom of scaling for b1 and b2.
Instead of linear combination of variables in each group in CCA, Kernel canonical correlation analysis utilizes 

nonlinear functions to extract the relationship between two groups. KCCA can be formulated as follow: 
maxf1,f2 Cov

(
f1(X1), f2(X2)

)
 subject to Var

(
f1(X1)

)
= Var

(
f2(X2)

)
= 1 , where fj : Rpj → R for j = 1, 2 is an 

unknown function in the reproducing kernel Hilbert space (RKHS)8.
Note that both CCA and KCCA assume two groups of variables. To expand beyond two groups,  Kettenring12 

introduced multi-group generalization of CCA (GCCA or MCCA). GCCA finds linear combinations of each 
group that optimize certain criterion to reveal multi-group structure. Given J multi-variate groups X1, . . . ,XJ , 
GCCA f inds b1, . . . , bJ  by considering maxb1,...,bJ

∑J
j,k=1;j �=k cjkg

[
Cov

(
b
T
j Xj, b

T
kXk

)]
 subject to 

Var
(
b
T
j Xj

)
= 1 for j = 1, . . . , J. A function g, which is called a scheme function, is related to a criterion for 

selecting canonical  variates12. The examples of g are g(x) = x (Horst  scheme15), g(x) = |x| (Centroid  scheme16) 
or g(x) = x2 (Factorial  scheme17). cjk is an element of J × J design matrix C, where cjk = 1 if j and k groups are 
related and cjk = 0 , otherwise.

Tenenhaus and  Tenenhaus18 extended GCCA to a regularization version by imposing a constraint on the 
norm of a coefficient vector in a linear combination as well as the variance of the linear combination (RGCCA). 
Specifically, the constraint is given by τj||bj||2 + (1− τj)Var

(
b
T
j Xj

)
= 1 for j = 1, . . . , J , where τ = (τ1, . . . , τJ )

T 
is a regularization parameter vector (or shrinkage parameter). Regularization parameters enable an inversion 
operation by avoiding ill-conditioned variance  matrices13,18. All τj ’s are between 0 and 1.
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Also, Tenenhaus et al.13 developed a nonlinear version of GCCA (KGCCA) by considering a function for 
each group. That is, KGCCA finds f1, . . . , fJ that satisfy maxf1,...,fJ

∑J
j,k=1;j �=k cjkg

[
Cov

(
fj(Xj), fk(Xk)

)]
 subject 

to Var
(
fj(Xj)

)
= 1 for j = 1, . . . , J, where each fj : Rpj → R is an unknown function in the RKHS. g and cjk are 

same as those in RGCCA.

Generalized additive Kernel canonical correlation analysis. In this subsection, we introduce our 
approach that considers an additive structure in the multi-group setting. As in the previous subsection, we con-
sider J multi-variate random variable groups Xj =

(
Xj1, . . . ,Xjpj

)T
∈ Rpj for j = 1, . . . , J . KCCA considers a 

function on the j-th group variable, fj(Xj) , where fj is a nonlinear function in the RKHS. In our approach, 
GAKCCA, we assume that fj is an additive function in RKHS as in Balakrishnan et al.14. That is,

where each Hjl is an RKHS with a kernel φjl(·, ·) . Then, GAKCCA finds fj ∈ Hj that satisfies0

where g and cjk are a scheme function and an element of the design matrix C, respectively. Since we assume 
fj ∈ Hj , we can write fj(Xj) =

∑pj
l=1 fjl(Xjl) so that (1) becomes

subject to 
∑pj

l=1

∑pj
l′=1 Cov

(
fjl(Xjl), fjl′(Xjl′)

)
= 1 for j = 1, . . . , J . We denote the expression in the Eq. (2) as 

ρX1,...,XJ.
When we introduce a covariance operator on the RKHS, mathematical treatment can be  simpler13,19,20. The 

mean operator mHjl
 with respect to Xjl is defined by

where �·, ·�Hjl
 is an inner product on Hjl . The covariance operator �jl,km with respect to Xjl and Xkm can be also 

defined as

Then, the Eq. (2) can be expressed as

subject to 
∑pj

l=1

∑pj
l′=1�fjl ,�jl,jl′ fjl′ �Hjl

= 1 for j = 1, . . . , J .

Note that the Eq. (3) is a theoretical expression. We now explain how to derive an empirical version using 

samples. Suppose that we have n samples of {X1, . . . ,XJ } . The i-th sample of Xj is denoted by x(i)j =
(
x
(i)
j1 , . . . , x

(i)
jpj

)
 . 

Fukumizu et al.21 suggested an estimated mean operator m̂jl and an estimated covariance operator �̂jl,km which 
satisfy the following properties:

and

where f̂jl(x
(i)
jl ) = �fjl , φ̂

(i)
jl �Hjl

 , φ̂(i)
jl = φ

(i)
jl − 1

n

∑n
ξ=1 φ

(ξ)
jl  and φ(i)

jl = φjl(·, x
(i)
jl ).

fj ∈ Hj =



hj

��� hj(x1, . . . , xpj ) =
pj�

l=1

hjl(xl) and hjl ∈ Hjl



,

(1)max
f1,...,fJ

J∑

j,k=1;j �=k

cjkg
[
Cov

(
fj(Xj), fk(Xk)

)]
subject toVar

(
fj(Xj)

)
= 1 for j = 1, . . . , J,

(2)max
f11,...,f1p1 ,...,fJ1,...,fJpJ

J�

j,k=1;j �=k

cjkg




pj�

l=1

pk�

m=1

Cov
�
fjl(Xjl), fkm(Xkm)

�



�fjl ,mHjl
�Hjl

= E
(
fjl(Xjl)

)
= E

(
�fjl ,φjl(·,Xjl)�Hjl

)
,

�fjl ,�jl,kmfkm�Hjl
=Cov

(
fjl(Xjl), fkm(Xkm)

)

=E
(
�fjl ,φjl(·,Xjl)−mHjl

�Hjl
�fkm,φkm(·,Xkm)−mHkm

�Hkm

)
.

(3)ρX1,...,XJ = max
f11,...,f1p1 ...fJ1...fJpJ

J�

j,k=1;j �=k

cjkg




pj�

l=1

pk�

m=1

�fjl ,�jl,kmfkm�Hjl




�fjl , m̂Hjl
�Hjl

= Ê
(
fjl(Xjl)

)
=

1

n

n∑

i=1

�fjl ,φjl( dot, x
(i)
jl )�Hjl

=

〈
fjl ,

1

n

n∑

i=1

φjl(·, x
(i)
jl )

〉

Hjl

(4)�fjl , �̂jl,kmfkm�Hjl
=Ĉov

(
fjl(Xjl), fkm(Xkm)

)
=

1

n

n∑

i=1

f̂jl(x
(i)
jl )f̂km(x

(i)
km),
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Bach and  Jordan8 utilized the linear space spanned by φ̂(1)
jl , . . . , φ̂

(n)
jl  denoted by Sjl to write 

fjl =
∑n

i=1 a
(i)
jl φ̂

(i)
jl + f

perp
jl  , where a(i)jl  is a coefficient corresponding to φ̂(i)

jl  which needs to be estimated and 

f
perp
jl  is orthogonal to Sjl . With these facts, we can further simplify the Eq. (4) by introducing an n× n symmetric 

Gram matrix Kjl
22 whose (i, i′)-component is (Kjl)(i,i′) = φjl(X

(i)
jl ,X

(i′)
jl ) = �φ

(i)
jl ,φ

(i′)
jl �Hjl

 . The centered Kjl can be 

represented as K̂jl =
(
In −

1
n Jn

)T
Kjl

(
In −

1
n Jn

)
 , where In is the n× n identity matrix and Jn is the n× n matrix 

whose components are all ones, and its (i, i′)-component is (K̂jl)(i,i′) = �φ̂
(i)
jl , φ̂

(i′)
jl �Hjl

. Then, using

the Eq. (4) becomes

where ajl =
(
a
(1)
jl , . . . , a

(n)
jl

)T
 . The third equality in the Eq. (5) is due to the fact that f perpjl  is orthogonal to Sjl . 

Sjl is the inner-product linear space generated by 
{
φ̂
(1)
jl , . . . , φ̂

(n)
jl

}
 with inner product �·, ·�Hjl

 . This leads to 

�f
perp
jl , φ̂

(i)
jl �Hjl

= 0 for all i = 1, . . . , n.
Note that the centered Gram matrix K̂jl is singular since the sum of rows or columns is zero. Thus, the con-

straint 
∑pj

l=1

∑pj
l′=1�fjl , �̂jl,jl′ fjl′ � =

∑pj
l=1

∑pj
l′=1

1
na

T
jl K̂

T
jl K̂jl′ajl′ = 1 does not provide a unique solution to our 

method. So, similar to the regularization approach for the KCCA  method8,13, we use 
∑n

i=1 a
(i)
jl φ̂

(i)
jl  instead of fjl 

and introduce regularization parameters τj > 0 in the constraint conditions such as

where Ijl,jl′ is an identity operator if l = l′ and a zero operator, otherwise. With the K̂jl , the Eq. (6) can be rewrit-
ten as

In summary, the empirical version of the Eq. (3) with regularization parameters is expressed as

subject to (1− τj)
∑pj

l=1

∑pj
l′=1

1
na

T
jl K̂

T
jl K̂jl′ajl′ + τj

∑pj
l=1 a

T
jl K̂jlajl = 1, for j = 1, . . . , J .

To find the solution, 
{
â11, . . . , â1p1 , . . . , âJ1, . . . , âJpJ

}
 to the equation (7), an algorithm similar to the one con-

sidered in Tenenhaus et al.13 is developed. The detailed algorithm is described in the Supplementary Appendix A.
In the classical CCA method, the contribution of a variable in a group in relation between the group and the 

other group is measured by  correlation23. To be specific, the contribution of X1l in X1 for the relation between 
X1 and X2 is measured by Corr(b̂1lX1l, b̂

T
2X2) , where b̂1 and b̂2 are canonical weights in CCA. A high absolute 

value of Corr(b̂1lX1l, b̂
T
2X2) implies that X1l plays a significant role in the relation between X1 and X2 . Similarly, 

we can measure the contribution of a variable in a group in relation between the group and the other group in 
our approach, GAKCCA. We define the contribution coefficient of Xjl , the lth variable in the jth group, in rela-
tion between Xj and Xk as

We also define the measure for the relation between Xj and Xk as

The empirical version of rXjl ,Xk
 and rXj ,Xk

 can be formulated as

(5)

f̂jl(x
(i)
jl ) =

〈
fjl , φ̂

(i)
jl

〉
Hjl

=

〈
n∑

i′=1

a
(i′)
jl φ̂

(i′)
jl + f

perp
jl , φ̂

(i)
jl

〉

Hjl

=

n∑

i′=1

a
(i′)
jl �φ̂

(i′)
jl , φ̂

(i)
jl �Hjl

=

n∑

i′=1

a
(i′)
jl (K̂jl)(i′ ,i),

Ĉov
(
fjl(Xjl), fkm(Xkm)

)
=
1

n

n∑

i=1

n∑

i′=1

n∑

i′′=1

a
(i′)
jl (K̂jl)(i′ ,i)(K̂km)(i,i′′)a

(i′′)
km =

1

n
a
T
jl K̂

T
jl K̂kmakm,

(6)

pj∑

l=1

pj∑

l′=1

〈
n∑

i=1

a
(i)
jl φ̂

(i)
jl ,

{
(1− τj)�̂jl,jl′ + τjIjl,jl′

} n∑

i=1

a
(i)
jl′ φ̂

(i)
jl′

〉

Hjl

= 1, j = 1, . . . , J ,

(1− τj)

pj∑

l=1

pj∑

l′=1

1

n
a
T
jl K̂

T
jl K̂jl′ajl′ + τj

pj∑

l=1

a
T
jl K̂jlajl = 1, j = 1, . . . , J .

(7)�ρX1,...,XJ = max
a11,...,a1p1 ...aJ1...aJpJ

J�

j,k=1;j �=k

cjkg




pj�

l=1

pk�

m=1

1

n
a
T
jl
�KT
jl
�Kkmakm




rXjl ,Xk
=Corr

(
fjl(Xjl), fk(Xk)

)
.

rXj ,Xk
=Corr

(
fj(Xj), fk(Xk)

)
.
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and

Simulation study shows that empirical contribution coefficient and measure for the relation between two groups 
describe structural information of variable groups well.

Regularization parameter selection. There can be several approaches for choosing appropriate regularization 
parameters. We consider a cross validation idea for selecting regularization parameters for GAKCCA. Using the 
whole data, we approximate fj and denote as f̂j . Using the split data, we approximate fj and denote as f̂ −g

j  which 
is obtained by excluding the gth split. Then, we compare these two estimates to select the regularization param-
eters. This approach is similar to that of Ashad Alam and  Fukumizu24.

In detail, we describe the selection procedure as follows. We split the n samples of 
{
X1, . . . ,XJ

}
 into G 

subsets, denoting x[1], . . . , x[G] , where x[g] contains ng samples of 
{
X1, . . . ,XJ

}
 and n1 + . . . nG = n . For each 

j = 1, . . . , J , we estimate fj such that

where â(i),(−g)
jl  and φ(i),(−g)

jl  are calculated from the data excluding x[g] while â(i)jl  and φ(i)
jl  are obtained from the 

entire data. Then, we obtain

and selection of τ is made by minimizing L(τ ) . The main idea of this procedure is that fjl can be expressed as 
fjl =

∑n
i=1 a

(i)
jl φ̂

(i)
jl + f

perp
jl  by reproducing property in RKHS and we consider 

∑n
i=1 a

(i)
jl φ̂

(i)
jl  as an approximation 

of fjl . Then cross validation procedure chooses τ = (τ1, . . . , τJ ) which minimizes the variability of the estimate of 
fj caused by the selection of data. Note that τj ’s may not be equal, but for the purpose of simplicity in computa-
tion, we assume all τj ’s are equal in the simulation study and real data analysis.

Permutation test. In the classical CCA method, Wilks’ lambda statistic is widely used to test the hypothesis 
that there is no relationship between two  groups25. However, it is difficult to apply the Wilks’ lambda test for 
GAKCCA due to multivariate normal distribution assumption of the Wilks’ lambda test. Nonlinear extension of 
GAKCCA makes the model more complex, so formulating test statistics based on the unknown nonlinear func-
tion is not feasible. Thus, we consider a permutation test approach to test ρX1,...,XJ = 0 . That is, we approximate 
the sampling distribution of test statistics, ρ̂X1,...,XJ , by obtaining test statistics from resampling under the null 
hypothesis.

First, from the original data, we calculate ρ̂X1,...,XJ , denoted as ρ̂obs
X1,...,XJ

 . Second, for the j-th group, we sample {
x
(1)∗
j , . . . , x

(n)∗
j

}
 from 

{
x
(1)
j , . . . , x

(n)
j

}
 with replacement. We do the same procedure for all groups. Note that 

the resampled set 
{
x
(k)∗
1 , . . . , x

(k)∗
J

}
 does not necessarily keep the order as it should not matter under the null 

hypothesis. Third, from the resampled data, we calculate ρ̂X1,...,XJ . Fourth, we repeat second and third steps m 
times and obtain ρ̂{1}

X1,...,XJ
. . . , ρ̂

{m}
X1,...,XJ

 . Lastly, we find an empirical distribution F̂ from ρ̂{1}
X1,··· ,XJ

· · · , ρ̂
{m}
X1,··· ,XJ

 . 

We reject the null hypothesis if 1− F̂
(
ρ̂obs
X1,...,XJ

)
 is less than the pre-specified significant level. In this paper, we 

set m = 300.
Analogous hypothesis test methods can be applied to test whether a certain variable is helpful for relationship 

within groups or not via the contribution coefficient.

r̂Xjl ,Xk
=Ĉorr

(
fjl(Xjl), fk(Xk)

)
=

pk∑

m=1

â
T
jl K̂

T
jl K̂kmâkm

√
â
T
jl K̂

T
jl K̂jl âjl

√√√√
pk∑

m=1

pk∑

m′=1

â
T
kmK̂

T
kmK̂km′ âkm′

,

r̂Xj ,Xk
=

pj∑

l=1

pk∑

m=1

â
T
jl K̂

T
jl K̂kmâkm

√√√√
pj∑

l=1

pj∑

l′=1

â
T
jl K̂

T
jl K̂jl′ âjl′

√√√√
pk∑

m=1

pk∑

m′=1

â
T
kmK̂

T
kmK̂km′ âkm′

.

f̂j =

pj∑

l=1

n∑

i=1

â
(i)
jl φ

(i)
jl , f̂

−g
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ethic approval. The data collection was approved by the Seoul National University Research Ethics Com-
mittee and all methods to collect the data were performed in accordance with the relevant guidelines and regula-
tions. Informed written consent was obtained from all participants prior to actual participation. Also, all data 
were anonymized prior to analysis.

Results
Simulation study. To check the effectiveness of our method, we consider two synthesized data; one is an 
inter-independent case (Case I) and the other is an inter-dependent case (Case II).

For Case I, we consider 3 groups of variables ( X1 , X2 , X3 ). The number of members in each group and their 
distribution assumption are as follows:

• X1 = (X11,X12)
T : X11 ∼ N(0, 1) , X12 ∼ N(0, 1)

• X2 = (X21,X22,X23,X24)
T : X21 ∼ N(0, 1) , X22 ∼ N(0, 1) , X23 ∼ N(0, 1) , X24 ∼ N(0, 1)

• X3 = (X31,X32,X33)
T : X31 ∼ N(0, 1) , X32 ∼ N(0, 1) , X33 ∼ N(0, 1)

Here we assume that all N(0, 1)s are independent so that 3 groups X1,X2 and X3 are mutually independent. From 
this setting, we generate 100 data points, that is, the number of samples is 100 ( n = 100).

To apply our method, GAKCCA, we use a Gaussian kernel for each variable. A Gaussian kernel for the lth 

variable in the jth block is given as φjl(x, y) = exp

(
−

||x−y||2

2σ 2
jl

)
 , where σjl can be viewed as a bandwidth. We set 

σjl by median distance between the data points in {x(1)jl , . . . , x
(n)
jl } as in Balakrishnan et al.14 and Tenenhaus et al.13. 

We use a fully-connected design matrix, that is, cjk = 1 if j  = k and cjk = 0 , otherwise. We adopt a Horst scheme 
function, g(x) = x . Without further notice, Gaussian kernel with median-based bandwidth, fully-connected 
design matrix and Horst scheme function are used in all simulation study and real data analysis in this paper.

For the simulated data, we obtain estimates of ρX1,X2,X3 , rX1,X2 , rX2,X3 and rX3,X1 . By the permutation test 
described in the previous section, we can calculate a p-value for testing each quantity being zero. We repeat this 
procedure using three hundreds sets of simulated data.

Table 1 shows that there is no significant relationship between 3 groups (p-value of ρ̂X1,X2,X3 is 0.517 on aver-
age), which correctly captures dependence/independence of the simulation setting for Case I.

For Case II, we consider 3 groups ( Y1 , Y2 , Y3 ) again and the number of members in each group and their 
distribution assumption are as follows.

• Y1 = (Y11,Y12)
T : Y11 ∼ z + N(0, 1) , Y12 ∼ N(0, 1)

• Y2 = (Y21,Y22,Y23,Y24)
T : Y21 ∼ N(0, 1) , Y22 ∼ z2 + N(0, 1) , Y23 ∼ N(0, 1) , Y24 ∼ N(0, 1)

• Y3 = (Y31,Y32,Y33)
T : Y31 ∼ |z| + N(0, 1) , Y32 ∼ z sin(z)+ N(0, 1) , Y33 ∼ N(0, 1),

Table 1.  Averages of estimated values and the corresponding p-values from the permutation test over 300 
simulated data sets for the Case I (Independent case). The number in the parenthesis is standard deviation over 
300 simulated data sets.

Estimate p-value

ρX1 ,X2 ,X3
0.544 (0.210) 0.517 (0.268)

rX1 ,X2
0.303 (0.115) 0.447 (0.289)

rX2 ,X3
0.341 (0.077) 0.465 (0.300)

rX3 ,X1
0.287 (0.098) 0.421 (0.286)

Table 2.  Averages of estimated values and the corresponding p-values from the permutation test over 300 
simulated data sets for the Case II (dependent case). The number in parenthesis is standard deviation over 300 
simulated data sets.

Estimate p-value

ρY1 ,Y2 ,Y3
1.992 (0.419) 0.000 (0.001)

rY1 ,Y2
0.779 (0.044) 0.000 (0.000)

rY2 ,Y3
0.911 (0.022) 0.000 (0.000)

rY3 ,Y1
0.728 (0.051) 0.000 (0.000)
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where z follows uniform[−5, 5] . Here we assume all N(0, 1)s are independent. Given the structure of the groups, 
Y11 , Y22 , Y31 and Y32 are linked with nonlinear relationship.

From this setting, we generate 100 data points, that is, the number of samples is 100 ( n = 100 ) and apply our 
method to estimate ρY1,Y2,Y3 , rY1,Y2 , rY2,Y3 and rY3,Y1 . We also obtain the corresponding p-values by the permuta-
tion test. We repeat this procedure with 300 simulated data sets. The averages of estimated values and the p-values 
are provided in Table  2. A small p-value for testing ρY1,Y2,Y3 = 0 indicates that the groups are related. We can 
also see from small p-values of rY1,Y2 , rY2,Y3 and rY3,Y1 that all three groups are inter-related, which implies that 
our approach capture dependence between groups correctly for Case II. Note that the value of ρY1,Y2,Y3 can be 
larger than one as it is a combination of functions of covariances. On the other hand, the relation measure rYj ,Yk

 
should be less than equal to one as it is a correlation. Also note that 0.000 in the Table 2. indicates the value is 
zero when it is rounded to the nearest thousandth.

To investigate which variable in the group contributes to the relationship, we calculate contribution coef-
ficients, rYjl ,Yk

 introduced in the previous section. The results are given in Table 3. Recall that Y11 , Y22 , Y31 and Y32 
have a common component z in the simulation setting. The bold letters in the first column of Table  3 indicate 
this true relationship while the bold numbers in the second to fourth columns indicates small p-value cases. Y11 
in the first group Y1 is the one that contributes to the relation between Y1 and Y2 , and between Y1 and Y3 . The 
empirical contribution coefficients and the corresponding p-values show that Y11 is contributing to that relation-
ship compared to Y12 . Similarly, we can see from Table 3 that the empirical contribution coefficients successfully 
capture the contribution of Y22 , Y31 and Y32 in relation between their corresponding group and the other groups.

To visualize contribution of each variable in relation with the other group, we utilize a helio plot. Figure 1 
shows helio plots between pairs of groups in the second simulation setting (Case II). In the helio plot, variables 
in two groups are listed in a circular layout. The size of a bar indicates the value of empirical contribution coef-
ficient of that variable to the other group. For example, in the upper left helio plot in Fig. 1, the size of the bar 
corresponding to Y11 represents the value of empirical contribution coefficient of Y11 to Y2 , i.e. r̂Y11,Y2 . Also, blue 
colored bars means the p-value of the corresponding empirical contribution coefficient is below 0.05. Thus, Y11 
has a significant influence on the relation to Y2 and Y12 is less relevance in the relation to Y2 when we set 0.05 as 
the significance level. Similarly, from the same helio plot, Y22 has a significant influence on the relation to Y1 and 
the other variables in Y2 except Y22 are less relevance in relation to Y1 . From Fig. 1, we can see that GAKCCA 
reveals nonlinear relation between groups and contribution in Case II, properly.

We applied RGCCA to the simulated data of Case II (dependent case) for the comparison with GAKCCA. We 
utilized RGCCA  package in R (www.r-proje ct.org) and implemented the permutation test to extract significant 
groups. The design matrix, scheme function, the number of resamples for the permutation test and the number 
of simulated data sets are same as the ones that we considered for GAKCCA. In applying RGCCA, the sign of 
coefficients changed frequently during the respective simulation and permutation test, so the absolute value 
of coefficients was considered when we summarized the results. The results are given in Tables 4 and  5. The 
RGCCA result shows that there is a significant relationship between Y2 and Y3 (The average of absolute value of 
empirical correlation between first canonical variate of Y2 and that of Y3 is 0.875 with p-value 0.000), but weak 
relationship between Y1 and Y2 , and between Y1 and Y3 compared to the results from GAKCCA (The averages of 
empirical correlations from RGCCA are 0.164, 0.164 with p-value 0.518, 0.579, respectively). The limitation of 
RGCCA that can only consider linear relationship between groups leads to a failure in identifying clear nonlinear 
relationship within them.

Real data application. We used the data on individuals’ measures such as demographic information, a 
number of psychometric questionnaires as well as structural MRI. The data were from 86 undergraduate stu-
dents in Seoul National University, Seoul, Korea. We analyzed these data using GAKCCA to find out the rela-
tionship between four domains (Neurodevelopmental, Psychosocial, Clinical and Neurophysiological domains). 
A full list of variables in each domain is available in Supplementary Table S6 in the Online Appendix B. Six 
participants who had high level of Beck Depression Inventory (BDI-II) or Beck Anxiety Inventory (BAI) were 

Table 3.  Averages of empirical contribution coefficients and the corresponding p-values from the permutation 
test over 300 simulated data sets for the Case II (dependent case).

http://www.r-project.org
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excluded so that we use measurements from 80 participants ( n = 80 ). To apply GAKCCA method to these data, 
we chose fully connected design matrix, Gaussian kernel with median-based bandwidth and the Horst scheme 
function. Also, we set the number of samples for the permutation test to 8,000 ( m = 8, 000).

When we first applied GAKCCA to this data, we found that the significant association between domains as 
follows: neurodevelopmental and neurophysiological domains, psychosocial and clinical domains, and clinical 
and neurophysiological domains. According to this initial finding, the design matrix was modified to maintain 

Figure 1.  Helio plots of contribution coefficients rYjl ,Yk
 in Case II. The size of a bar indicates the value of 

empirical contribution coefficient of that variable to the other group. Blue colored bars means the p-value of the 
corresponding empirical contribution coefficient is below 0.05.

Table 4.  Averages of estimated absolute values and the corresponding p-values from the permutation test 
over 300 simulated data for Case II (dependent case) based on RGCCA model. The number in parentheses is 
standard deviation over 300 simulated data.

Estimate p-value

|ρY1 ,Y2 ,Y3
| 1.299 (0.198) 0.000 (0.002)

|rY1 ,Y2
| 0.164 (0.073) 0.518 (0.276)

|rY2 ,Y3
| 0.875 (0.024) 0.000 (0.000)

|rY3 ,Y1
| 0.164 (0.072) 0.579 (0.288)
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the relationships within relevant domains while eliminating those within irrelevant domains in order to clarify 
the between-group structure. The GAKCCA model was applied with the new design matrix again.

Consistent with previous studies investigating the structural brain correlates of  IQ26,27, we defined that there 
are significant relationships between the neurodevelopmental and the neurophysiological domains (Empirical 
contribution coefficient is 0.463 with p-value 0.048). Also, a trend toward significance (p = 0.077) is also reported 
in the clinical and neurophysiological domains (Empirical contribution coefficient is 0.463). In both results, the 
T1 volume data from structural MRI in the neurophysiological domain appeared to play the most dominant role 
in association to the neurodevelopmental domain and clinical domain, respectively (Fig. 3).

On the other hand, the alcohol use disorder (AUDIT-K) and anxiety (BAI) in the clinical domain shows the 
most dominant roles for the association to the neurophysiological domain. Also, IQ in the neurodevelopmental 
domain plays the most dominant role in association to the neurophysiological domain. In terms of this trend-
level result, this seems quite plausible in that the current clinical domain was defined through the self-reported 
questionnaires, not having any diagnoses of psychiatric illnesses. Further research narrowing down the definition 
of the clinical domain is necessary to exclude individuals with subclinical symptoms.

As expected, there was also a statistically significant relationship with a significance level 0.05 between the 
psychosocial domain and the clinical domain (Fig. 2). This finding was based on the empirical contribution 
coefficient of the psychosocial domain to the clinical domain (0.767 with p-value 0.003). With significance level 
0.05, major variables contributing to the relationship are KRQ:Emotional regulation, KRQ:Communication, 
KRQ:Self-expansion, KRQ:Self-positivity, KRQ:Life satisfaction, SSS:Emotional support, SSS:Information sup-
port, WHOQOL:Physical, WHOQOL:Social relationship, WHOQOL:Environment, IRI:Personal distress and 
ULS in the psychosocial group (12 variables), and SCID II:Avoidant, BAI and BDI-II in the clinical group (3 vari-
ables) (Fig. 3). Specifically, the psychosocial domain reflecting psychological and environmental resources (KRQ, 
SSS, etc.) were found to be highly associated with the clinical domain, which was characterized by increased 
avoidant personality traits, anxiety, and depression. These findings are consistent with previous  research28–31.

We also applied RGCCA to the data for comparison with GAKCCA. The design matrix, the scheme function 
and the number of samples for the permutation test are the same as the ones that we considered for GAKCCA. 

Table 5.  Averages of empirical absolute contribution coefficients and the corresponding p-values from the 
permutation test over 300 simulated data for Case II (dependent case) based on RGCCA model.

Estimate/p-value Y1 Y2 Y3

Y11 0.121/0.500 0.117/0.519

Y12 0.094/0.588 0.094/0.610

Y21 0.085/0.532 0.083/0.578

Y22 0.140/0.308 0.890/0.000

Y23 0.085/0.529 0.083/0.574

Y24 0.087/0.517 0.080/0.594

Y31 0.124/0.411 0.774/0.000

Y32 0.135/0.385 0.790/0.000

Y33 0.084/0.568 0.088/0.619

Figure 2.  The diagram of the significant relationships between domains based on the GAKCCA model. r̂(i),(j) 
values are empirical contribution coefficient between (i) and (j) domains, which is provided with p-values.
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The RGCCA result shows that there is a significant relationship between psychosocial and clinical domains 
(The empirical correlation between first canonical variate of psychosocial domain and that of clinical domain 
is 0.779 with p-value 0.000), but more weak relationship between neurodevelopmental and neurophysiological 
domains, and clinical and neurophysiological domains than those from GAKCCA (The empirical correlations 
from RGCCA are 0.305 and 0.389 with p-value 0.320 and 0.124, respectively).

Discussion
In this paper, we have proposed a generalized version of additive kernel CCA. Due to the nature of the objective 
function, the set of regularization parameters is introduced and we consider the cross validation by compar-
ing estimated additive components for the selection of regularization parameters. A permutation-based test is 
introduced for checking the relationship between groups. Simulation study shows the proposed method can suc-
cessfully identify nonlinear relationship between groups and reveals the influence of each variable in the group. 
Such advantages will be useful in many research areas that deal with multivariate data. However, the proposed 
approach may not properly handle applications where interactions between different variables in each group 
exist due to the assumption of additivity.

Compared with the classical CCA, which uses a simple test statistic such as Wilks’ lambda, permutation test 
requires more computation time. However, the computation burden can be effectively reduced by distributed 
computing. On the other hand, in selecting regularization parameters in GAKCCA, intensive computation is 
inevitable. Thus, it is worth investigating on developing an algorithm to make computation faster or finding a 
computationally more efficient selection method.

The classical CCA can consider the second canonical variates that maximize the correlation Corr
(
bT1 X1, b

T
2 X2

)
 

among all choices that are uncorrelated with the first canonical variates. This is not straightforward in GAKCCA 

Figure 3.  Helio plots of significant relationships based on GAKCCA model.
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but it is worth investigating as a future research since it could reveal additional structural information within 
groups that the current GAKCCA model does not explain

GAKCCA on investigating relation among individuals’ measures that are categorized as one of neurodevel-
opmental, psychosocial, clinical and neurophysiological domains reveals more relationships than RGCCA and 
those findings are consistent with previous research.

Received: 20 February 2020; Accepted: 13 July 2020
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