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Abstract

Automation of vehicular systems using deep reinforcement learning and mean-field models:
Application to heavy duty trucks

by

Saleh Mahdi Albeaik

Doctor of Philosophy in Engineering - Civil and Environmental Engineering

University of California, Berkeley

Professor Alexandre M. Bayen, Chair

The transportation sector consumes about a third of all energy consumed in the world, about
a third of which is consumed by trucks. Future transportation systems must address this
energy challenge, in addition to the other inefficiencies related to time, money, and lives
lost while the system is operating. Vehicle automation is one of the promising opportuni-
ties underway. For instance, cooperative adaptive cruise control, an extension of the more
popular cruise control and adaptive cruise control systems, promises to reduce fuel consump-
tion by up to 15% for participating trucks, reduce emissions, increase road capacity at high
technology penetration rates, and contribute to road safety.

Heavy duty trucks are complex vehicles that are designed and built for specific mission
requirements. Any of these trucks could be equipped from a wide selection of vehicle compo-
nents with a significantly wide spectrum of operating dynamics and performances. Driving
a heavy duty truck is an equally complex task. Human drivers must be well educated and
trained about the specific truck they are about to drive and operate. They must optimize in
real-time for factors such as truck dynamics and driving performance; road, truck, and pay-
load safety; truck operation economics; truck driving law constraints; mission constraints; in
addition to background traffic on the road.

Automation of heavy duty truck operation tasks require equally advanced engineering tools.
For instance, high precision modeling and control have historically required a detailed study
of each subject truck. This thesis presents a process using deep learning and deep rein-
forcement learning for microscopic longitudinal modeling and control of such trucks that is
agnostic to their internal mechanics. The process is demonstrated and evaluated for sev-
eral truck mechanical configurations using high fidelity simulation and in the field. Cruise
control of single truck operations has been considered, in addition to cooperative adaptive
cruise control for multi-truck coordination.
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Long haul heavy duty trucks often drive within shared road infrastructure with background
traffic. To account for this traffic on the road, we consider multi-scale partial differential
equation mean-field models. With this approach, each truck is modeled microscopically while
background traffic is modeled mesoscopically. A nondissipative numerical solver is developed
and evaluated for computational study of these models. The solver maintains structure and
resolution at a wide range of discretization resolutions suitable for development of optimal
control laws.

This thesis investigates computational methods for the automation of heavy duty trucks.
While vehicle driving automation is already underway, more investigation is still required
to bring about full autonomy. The future of the transportation system and trucking could
benefit from further study and development of the sciences and engineering of autonomy with
consideration to the complex interplay between the vehicle as an agent, the transportation
system as an operations context, the logistics system as a mission context, and the human
beneficiary.
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Chapter 1

Introduction

1.1 Introduction

The transportation system. The transportation system is one of the main large scale
systems interfacing with virtually everyone’s daily life and where significant scarce resource,
such as time and energy, are being consumed. In the United States, 84 billion hours were
spent on the road in 2015 accounting for an average of 45 minutes per capita per day [1].
This transportation system operates by consuming about 28% of total energy consumed in
the country [2], and in 2016, $175 billion were spent by state and local governments on
highways and roads [3].

Vehicle modeling and control. Some of these challenges are being promised to be
alleviated by recent advances in automation, optimization, and emerging technologies such
as connected automated vehicles, alternative fuels, and mobility operating models [4]–[8].
Studying transportation system efficiency and developing advanced technologies depend
heavily on the availability of reliable vehicle models. This has raised interest in advanced
tools for higher accuracy, detailed modeling, and easy of integration [9], [10].

Heavy duty trucks. The trucking industry alone consumes 10% of total national energy
[11] and contribute 6% of all emissions to transport 70% of national economic value [12],
[13]. Heavy duty trucks used for ground freight are complex vehicles and require advanced
specialized engineering tools for modeling and automation [14]–[16]. Expected gains from
automation can be significant. For instance, cooperative adaptive cruise control (CACC)
is one of the promising technologies predicted to reduce fuel consumption by up to 15%
of participating vehicles [17], and have the potential to double freeway capacity at high
technology penetration rates [18].

This manuscript. This manuscript focuses on applications of computational methods
for heavy duty truck (HDT) automation. Computational methods utilize computer simu-
lations to solve complex engineering problems. Here, we use produce simulation models of
heavy duty trucks using deep learning, develop truck control and coordination systems using
simulation based deep reinforcement learning, and develop a numerical solver for multi-scale
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simulation of trucks and traffic flows.

1.2 Computational methods in science and

engineering

Computational and data-driven methods. Computational methods have gained signif-
icant popularity that fueled numerous simulation-based science and engineering advances.
Computational methods use numerical simulations instead of analytical and hand crafted
solutions for science and engineering applications such as discovery and design [19]. Their
use has the potential to simplify tedious scientific and engineering tasks. They can also help
eliminate limiting assumptions/restrictions that are imposed for tractability or to encour-
age simplicity. Moreover, computational methods tend to support flexibility, scalability and
problem-setup-complexity by design without the need for reformulation or specialization of
solution. Sophisticated maneuvers, earth re-entry, and landing of space rockets are among
the many recent breakthroughs for computational engineering methods [20]. The use of
approximate surrogate models has been a standard practice in several computational fields
such as optimization for aerospace applications [21]. The emergence of deep learning and
its successes in these practices shows a promising path towards the next milestone; data-
driven engineering from the ground up bypassing the physics equations used to develop the
surrogate models.

Surrogate models reduce physics models into computationally tractable ap-
proximations. Surrogate models are light-weight data-based approximations of detailed
physics models [21]. This model building approach is popular in literature such as computa-
tional optimization [21] and uncertainty quantification [22] for the reduction of computational
cost of simulations. Computational cost of hand-engineered models of physics grow with the
level of modeled details, and with numerical solver requirements such as conditioning and
integration step-size. Models with cheaper simulation cost allow for bigger frameworks and
more complex computational applications [21].

Deep Learning for surrogate modeling. Machine learning gained recent popularity
for fitting highly accurate light-weight surrogate models. The authors of [23] demonstrated
the use of deep neural networks to construct surrogate models for numerical simulators in the
context of uncertainty propagation in stochastic elliptic partial differential equations. The
authors of [24] described a method of constructing surrogates in the form of support vector
machine (SVM) regressions for the purpose of exploring the parameter space of physiological
models. The authors of [25] and [26] used machine learning techniques to construct surrogate
models to simulate agent based models in the context of socioeconomic systems. In [27],
the authors investigated the use of Neural Networks (NN) to build surrogate models for
pavement construction payment-risk prediction models. The authors of [28] used neural-
network-based approximation, sensitivity analysis, decomposition, and sampling techniques
to develop a surrogate-based vehicle dynamic model. These machine and deep learning
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based surrogate models are expressive and computationally cheap for simulation intensive
and real-time applications.

Deep and Surrogate models for discovery and design applications. Simulation-
based computational methods have been effective in substituting for field experiments, which
relaxes many constraints such as safety, cost, and even ethical concerns. These simulations
along with advances in deep learning and surrogate modeling methods found use in several
computational sciences and engineering fields for discovery and design. These fields span
engineering, biology, economics, and many other social sciences. For example, [29] introduced
AtomNet, the first structure-based, deep convolutional neural network designed to predict
the bioactivity of small molecules for drug discovery applications. The authors of [30] applied
deep learning neural network approaches in the context of computational protein design.
Along with the above successes, several articles were recently published to advocate the
introduction of such methods in their respective fields. For example, [31] advocated the
introduction and application of deep learning and multilayer neural networks to agent-based
models in economics. The authors of [32] advocated for and proposed a path for using
data-driven approaches and data mining to model human decision making processes in the
context of agent-based models in social sciences.

1.3 Background on trucking automation

Heavy duty truck driving performance is details sensitive [16], [33]–[37]. A typical passenger
car could achieve a fairly consistent braking distances while the braking distance of a truck
varies significantly within a single trip; before and after hooking up to a trailer, before and
after trailer loading, and distance could double as the brakes worms up during the trip. Model
and control accuracy have been shown to be significant (and limiting) factors for precision
driving maneuvers [10], [15]. Deep learning has been shown to improve modeling accuracy
compared to state of the art classical models for passenger cars [9], [10]. However, heavy
duty truck modelling and control literature using machine learning—such as deep learning
and deep reinforcement learning—is still sparse. Heavy duty trucks are typically configured
and tailor built to optimize to their expected mission requirements. Detailed underlying
physics and internal states of trucks are configuration specific and often are different from
the more exhaustively modeled variants (components) of passenger cars.

Physics-based modeling and control of heavy duty trucks. Physics-based mod-
eling have historically been an essential step for the design of model-based vehicle control
systems [38]. The classical vehicle modeling framework is supported by a highly developed
theory; however, in practice, the process involves significant art in addition to the science.
Within the control community, vehicle models are tailored for application requirements in
an attempt to balance model accuracy (level of details) and model complexity. Most vehicles
are complex and highly non-linear systems. The model building (tailoring) process involves
identification of the relevant details, selection (if already modeled, or building new ones) of
suitable models for the desired operating range and conditions, and derivation of suitable
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approximations for the desired accuracy and complexity levels.
This process becomes more challenging with the increase in vehicle complexity (passen-

ger car vs heavy duty truck [14], [39]), maneuver precision (single vehicle vs platooning
control [14], [15]), operating range (normal vs high performance driving and drifting [40]),
and driving conditions (dry vs snow covered roads [41]). Although still demanding, fore-
front nonlinear control theory such as model predictive control (MPC) have more relaxed
constraints on the complexity of the model compared to the earlier linear control theory.
Simulation based control verification, on the other hand, where no analytical manipulation
is required, allows for models of highest level of details to be used.

Specific systems such as Cooperative Adaptive Cruise Control (CACC) cascades vehicles
at short following distances at freeway speeds. CACC maneuvers operate at the margin of
controllability/reachability, and thus require high precision control allowing for only split
seconds to correct control errors with disastrous failure consequences. For passenger cars,
typically light-weight, responsive and equipped with sufficient drive (and braking) power
under normal operating conditions, in [39], a stable longitudinal CACC string was success-
fully developed using simple linear transfer function car model. On the other hand, long
haul heavy duty trucks have lower power-to-weight ratio than passenger vehicles, suffer from
significant response delays, and from actuator saturation [14]. To develop stable longitudinal
CACC string of heavy duty trucks, the authors of [15] modeled vehicle dynamics (aerody-
namics and gravity), power-train drive dynamics (engine, torque converter, transmissions,
shafts, and tires), and brake system dynamics (engine brake, transmission retarder, and
service brake). To design controllers with analytical guarantees such as bounds on control
error, they used high-level of detail approximations to simplify their over-all model, where
for example, the engine is modeled only by the torque it generates, and the transmission is
modeled by the set of torque scaling gear ratios. However, with more flexible control design
tools, namely, using reinforcement learning to tune patch adaptive controllers, even for a
passenger car, the authors of [42] favored highly detailed actuation, power-train (engine,
transmission, steering, braking, drive-train, suspension, and tire), and rigid body dynamics
models to develop longitudinal and lateral CACC strings of passenger cars. Instead of using
high-level approximations, their model captured the internal dynamics of each component
such as the torque generating combustion process inside the engine.

In practice, these models must be fitted to the dynamics of the specific vehicle the control
is applied to. Accurate reverse engineering of a specific vehicle of interest is challenged by
physical features and analytical parameters that are difficult to model or estimate, and more
importantly, by manufacturer-proprietary details such as engine maps and gear shifting
schedules, and recently, by software defined operating modes such as eco-driving and sport
modes. Other challenges include the availability of data from hand-designed experiments
and the potential need for an expert driver to execute these experiments.

Deep approaches for vehicular applications. Deep learning (and deep-RL) methods
have reached advanced modeling (and control design) accuracy levels that are arguably
sufficient for several practical accuracy-sensitive and accuracy-critical applications; however,
the literature for vehicle dynamics modeling and control is still sparse.
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The authors of [43] and [42] published some of the early works on the use of machine
learning methods for vehicular (applications) dynamical modeling and control. Namely,
the authors of [43] used reinforcement learning to design a controller to stabilize a model-
helicopter at inverted hover point. They used stochastic linear regression to fit a physics-
based reduced model to data collected from an expert pilot. For more complex nonlinear
controls, [42] demonstrated the use of reinforcement learning to learn (tune) gains of classical
patch adaptive controllers for cooperative simulated passenger car driving using detailed
physics-based models.

A recent spark of interest in (deep learning) neural networks for vehicle modeling had
emerged. For aerial vehicles, the authors of [44] used feedforward neural networks (FNN)
to model the dynamics of a physical-model helicopter, and the authors of [45] proposed
a hybrid model that fuses white-box physics-based models with black-box deep recurrent
neural network based models to model physical-model quadrotor dynamics. The authors of
[46] proposed a simple FNN model that is suitable for model based linear-quadratic regulator
(LQR) and demonstrated improved physical-model quadrotor flight control performance.

For ground vehicles, the authors of [9] conducted a comparative analysis of different
deep learning models for the modeling of a full size physical passenger car. The authors of
[10] used FNN to model the dynamics of a full size physical passenger car and used it to
demonstrate improved control of high performance maneuvers based on classical controllers.
Modeling and control of longitudinal dynamics of heavy duty trucks using deep learning and
deep reinforcement learning have been investigated in [47]–[49], which constitute the bases
for the work published in this manuscript.

1.4 Contributions of the thesis

We breakdown the technical contributions of this dissertation as follows:

• This thesis develops, studies performance, and demonstrates a process for modeling
and control of heavy duty trucks using deep learning and deep reinforcement learning.

– A model for longitudinal dynamics of heavy duty trucks was developed using deep
learning.

– Cruise control and Cooperative Adaptive Cruise Control systems were developed
using deep reinforcement learning.

– A systematic process was developed to streamline data collection, model devel-
opment, control system development, and validation.

– Utility, extensions, and automation software was developed for simulation and
field validation of deep reinforcement learning controllers.

– Process, model, and control were demonstrated and evaluated in simulation and
for two differently configured full size trucks.
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• This thesis develops and implements a structure preserving numerical solver for non-
local conservation laws and studies its application for multi-scale vehicular traffic mod-
eling and actuation.

– A discretization scheme for a general numerical solver for multi-dimensional non-
local conservation laws was derived based on the characteristic method.

– Vectorized representation of the most computationally intensive operations of the
numerical solver was derived.

– A general numerical solver algorithm was developed and implemented.

– PDE Traffic flow models and coupled PDE-ODE vehicle and traffic flow actuation
models were implemented for the characteristic solver.

1.5 Outline of the thesis

The rest of the thesis is organized as follows:

Chapter 2: Technical Background

This chapter introduces the background and the literature relevant to heavy duty truck
automation. It introduces the heavy duty truck automation framework and gives an overview
of models and controllers used to develop driver assistant systems such as cruise controllers,
adaptive cruise controllers and cooperative adaptive cruise controllers. The chapter also
introduces the high-fidelity simulation framework used in the reset of the work, and an
engineering overview of a real full-size semi-automated truck platform. The chapter ends
with an introduction to deep learning and deep reinforcement learning background relevant
to the work presented in the rest of the manuscript.

Chapter 3: Microscopic multi-vehicle modeling and coordination
using deep learning and deep reinforcement learning

Heavy duty truck mechanical configuration is often tailor designed and built for specific truck
mission requirements. This renders the precise derivation of analytical dynamical models
and controls for these trucks from first principles challenging and tedious. The derivation
often requires several theoretical and applied areas of expertise to carry through. This
chapter investigates deep learning and deep reinforcement learning as truck-configuration-
agnostic longitudinal modeling and control approaches for heavy duty trucks. The process is
applied to simulation and real-full size trucks for validation and experimental performance
evaluation. With the approach of this chapter, (a) truck model is trained off-line, and (b)
feedback control is also trained off-line. Trained feedback controllers are applied online both
in simulation and field test for validation and transfer performance assessment.
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Chapter 4: Vehicle actuation using deep reinforcement learning

Heavy duty truck control system building processes have historically been dependent on de-
tailed mechanical configuration of target trucks. This chapter evaluates model free deep-RL
continuous control learning, transfer, and robustness as a configuration agnostic strategy for
control system development. For this purpose, deep-RL cruise control policies are developed
and validated in simulation and field experiments using two differently configured trucks.

Chapter 5: Multi-scale vehicle and traffic flow modeling and
actuation using mean-field models

Heavy duty trucks often operate within shared road infrastructure with background traffic.
Mean-field limits can be used to develop multi-scale models of the truck and its interactions
with the rest of the traffic on the road. These mean-field limits yield nonlocal conservation
laws for which the numerical solver algorithm literature is still sparse. This chapter presents
a characteristic-based numerical solver scheme. Numerical solutions to traffic flow models
and Lagrangian traffic flow actuation are presented.
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Chapter 2

Technical Background

2.1 Introduction

Heavy duty trucks are custom designed and built for specific mission requirements such as
long haul, urban delivery, mixing and construction, and mining. Choice of internal mechan-
ical components are constrained by factors such as operations and economics. For instance,
operations in mountainous regions introduce constraints on component weight and introduce
emphasis on brake effectiveness and economics. On the other hand, long haul operations on
flat roads benefit from component choice for fuel efficiency.

This chapter presents a general background on the framework for modeling and control
of heavy duty trucks. It presents an overview of the models and a selection of control
systems relevant to this thesis. It then presents a high fidelity simulation framework and an
engineering overview of full-size truck development for experimental studies. The chapter
then introduces background on deep learning and deep reinforcement learning relevant to
the work presented in this manuscript.

2.2 Truck modeling and control

This section presents the approximate physics-based truck model proposed by [14] and shown
in Figure 2.1. This model emphasize details for longitudinal and powertrain dynamics to be
suitable for heavy duty truck control applications; it is considered to be simple enough for
tractable controller design while being detailed enough to reflect essential vehicle dynam-
ics [14], [38]. The section then presents hierarchical controllers [38] based on the presented
model for cruise control and cooperative adaptive cruise control. These models and con-
trollers are presented with minor changes from their original formulation by their authors
for simplification while introducing relevant concepts to truck automation and have been
implemented for experimental validation in later chapters.
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Figure 2.1: Model and control system block diagram for heavy duty truck longitudinal
dynamics as presented in [14].

Vehicle modeling

This section presents a heavy duty truck longitudinal dynamics model that is approximated
to suite analytical control design frameworks. The longitudinal motion of the truck is ap-
proximated by vehicle longitudinal dynamics, power-train dynamics, and brake system.

Vehicle dynamics model

The vehicle longitudinal dynamics model is derived in [14] based on Newton’s method as
shown in the following equation:

mv̇ = Fx −
1

2
AfρCdv

2 − Crmg −mg sin θ,

where v is vehicle speed, Fx is traction force, m is truck mass, Af is effective frontal area,
ρ is air density, Cd is aerodynamics drag coefficient, Cr is rolling resistance coefficient,
g is gravitational constant, and θ is road grade. In general, traction force is controlled
only indirectly by commanding engine and brake torques, for which a power-train model,
presented next, is essential.



CHAPTER 2. TECHNICAL BACKGROUND 10

Power-train engine drive model

The model presented here approximates the dynamics of wheels, gearbox, clutch, and engine
as proposed by [14]. Wheel slip is assumed small and negligible for normal driving conditions.
Hence, vehicle speed can be approximated by wheel speed multiplied by wheel radius as
follows:

v = reffωw,

where reff is effective radius and ωw is wheel speed. The rotational dynamics of wheels and
transmission shaft are approximated by the following equations:

Iwω̇w = Tw − Fxreff,

Itω̇t = Tt − rGTw,

where Iw is rotational inertia combining wheels, shaft connecting wheels, and gear box shaft
that is closest to wheels; Tw is the torque on the wheel shaft; It is the rotational inertia of
gear box shaft that is nearest to the engine; Tt is the torque on the shaft; and rG is gear
ratio.

The gear box model is approximated by its transformation of the rotational speed between
its two sides according to the gear ratio as follows:

ωtrG = ωw.

Gear shift schedule is typically software-defined and is manufacturer-propriety. Here it is
approximated as function of engine throttle level and transmission shaft speed: gear shifts
up when the shaft speed is increasing and the throttle level is decreasing, while gear shifts
down when the shaft speed is decreasing and the throttle level is increasing.

A clutch, for manual transmission, or a torque converter, for automatic transmission, are
used to decouple engine from gear box and allow for temporary rotational speed mismatch
during gear shifts. Here, gear shifting is assumed fast and all associated disturbances are
negligible. This assumption allows for approximating engine shaft torque and speed to be
equivalent to transmission torque and speed as follows:

Te = Tt,

ωe = ωt,

where Te is engine output torque and ωe is engine speed, which are command-able with an
appropriate interface to some modern trucks.

Brake system model

Loaded long haul heavy duty trucks are significantly weighted vehicles requiring equally
significant energy to brake. To balance cost, safety, and brake system requirements, these
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trucks are often custom built with a combination of service brake, engine retarder, and trans-
mission retarder. Each one has a different general braking characteristics such as braking
power limits, response function, response delay, and operating range.

Here, we omit presenting a detailed model (an example model can be found in [14])
because these are highly dependant on the specific setup installed on the truck. Instead,
we briefly summarize the high-level model for service brake, for which we mainly need to
consider wheel dynamics during braking as follows:

Iwω̇w = Tb − Fxreff,

where Tb is the brake torque applied at the wheel. The brake torque is a nonlinear function
of the brake cylinder pressure as follows:

Tb = fb(Pb),

where Pb is the brake pressure at the brake cylinder and fb(·) is a nonlinear function that
depends on the design of the brake system.

Fuel consumption model

Fuel combustion in engine represents the primary energy consumed by the truck [50]. In
addition to the models historically used for fuel consumption, fuel models can be detailed by
incorporating explicit models to account for factors such as automation and CACC on fuel
consumption [17].

Engine fuel consumption model. Approximate fuel consumption models can be
derived based on engine combustion [50]. To simplify, engine is assumed to be operating
at steady state while driving on freeway and engine transients are neglected. Steady state
engine fuel consumption could be estimated using:

Fuel Consumption [g/kWh] =
mfuel

ρfuel · s
,

where ρfuel is fuel density, s is distance traveled, and mfuel is amount of fuel consumed given
by:

mfuel =

∫ tend

to

ṁfuel

3600
dt.

The flow of fuel to the engine ṁfuel is given by:

ṁfuel = ωe · δe ·
ze
2
· 60

1000
,

where ωe is engine speed, δe is engine fueling [mg/stroke], and ze is number of engine cylinders.
CACC fuel reduction effect model. Driving at short following distances as in CACC

reduces drag and thus fuel consumption. Fuel reduction from CACC is sensitive to factors
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such as controller performance, vehicle geometry, driving distance, vehicle position within the
CACC string, vehicle mass, and weather conditions [17], [51]–[54]. For a three-truck CACC
string, individual truck fuel reduction model as a function of separation distance is shown
in Figure 2.2 based on field experimental results [17]. This model suggests that all vehicles
participating in the CACC string formation, including the leading vehicle, benefit from fuel
reduction. The middle vehicle in a three-vehicle string can gain up to 17% reduction at about
4m separation, while the leader and trailing could gain up to 10% at the same separation
distance. The gain for trailing vehicle peaks at about 13% reduction at 12m separation
distance. In general, fuel reduction is inversely proportional to separation distance.

Figure 2.2: CACC fuel saving model from experimental results as presented in [17].

Discussion

This section presented an overview of the classical modeling framework along with the ma-
jor models used for heavy duty trucks. More truck configuration specific details are often
required for high precision modeling. Moreover, detailed actuation delay and saturation
modeling and analysis are crucial for high performance and safe control.
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Single vehicle automation: longitudinal cruise control

The foundational layer of heavy duty truck automation attempts to manage the complexity
of the operation of a heavy duty truck. An experienced heavy duty truck driver manages
the operating point of their truck such as speed and selected gear with careful consideration
to truck load, surrounding traffic, and terrain to optimize for safety and operational factors
such as wear and tear.

Heavy duty truck cruise controllers are designed for the basic function of truck speed
regulation; predictive cruise controllers have been proposed to incorporate look ahead in-
formation and planning functions [33], [34]. Truck parameters such as mass, air drag, and
rolling resistance may vary during its operation cycles; estimation and information systems
for these parameters and road grade are often implemented to reduce sensitivity of truck to
controls [35], [36]. The truck dynamics is sensitive to how it is operated during a trip intro-
ducing constraints for the safe and recommended operation procedures; for instance, trucks
are often built with several brake systems providing the driver a menu of options varying
in operability requirements and expected performance, sensitivity to operation, responsive-
ness, and cost of operation. Tailor designed controllers and optimizers are often employed
to manage the operations of these systems, see for example the work presented in [37] and
[16].

Cruise Control

This section presents a hierarchical controller as a baseline for longitudinal speed regulation
of heavy duty trucks with engine torque and service brake actuation as suggested by [14].
This controller was implemented and used for validation in Chapter 4.

Hierarchical Controller. The controller considered in this section is a two-level feed-
back linearization hierarchical controller consisting of an upper level controller and a lower
level controller [14], [38]. The lower level controller approximately linearizes (up to the level
of modeled details) the dynamics of the system by mapping vehicle acceleration into the
corresponding actuation control variables; engine command and brake command. This al-
lows for the design of a simpler and more modular upper level controller assuming linear
kinematics model.

Lower-level controller. The lower-level controller transforms desired acceleration into
direct engine torque command T̂e and/or brake pressure command P̂b based on the inverse
of the dynamical model presented in Section 2.2 as follows:

(T̂e, P̂b) =

{
(T̄ , 0) if ades > 0
(0, P̄b) otherwise

,

where

Te =
(mr2

effr
2
G + It + Iwr

2
G)ades

reffrG
+

1

2
AfρCdv

2reffrG + CrmgreffrG,
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Pb = f−1
b (

(mr2
eff + Iw)ades

reff

+
1

2
AfρCdv

2reff + Crmgreff),

and f−1
b (·) is the inverse function of fb(·).

Upper-level cruise controller. Assuming vehicle response is approximately linear
given the lower-level controller, upper-level cruise controller (CC) could be designed based
on the single integrator model v̇(t) = a(t) and error model eCC(t) = vref(t) − v(t), where
t is time, vref(t) is reference speed, and eCC(t) is CC error. Without detailed performance
requirements, a simple P-controller could be used to design a stable cruise controller. In the
P-control, desired acceleration, ades(t) is picked equal to kP (vref(t) − v(t)), where kP is the
control gain tuned for stability and performance requirements such as ride comfort.

Adaptive Cruise Control and Cooperative Adaptive Cruise
Control

Cooperative Adaptive Cruise Control (CACC) [55] is generally designed to stabilize a string
of vehicles driving at short following distances at freeway speed as shown in Figure 2.3.
The first vehicle is often assumed human driven or controlled using a cruise controller or an
adaptive cruise controller [15], [56]. Several spacing policies have been considered such as
constant following distance and constant following time-gap [57].

CACC variations have been implemented by several groups [58]–[61]. Emissions and fuel
are two significant factors in trucking, which motivates the further development and study
of CACC systems. Fuel reduction have been demonstrated in the field [17], [62]. Simula-
tion studies also suggest potential for an increase in road flow capacity [18] proportional to
technology penetration rate. Further theoretical and simulation studies noted a potential of
CACC strings operating as moving bottlenecks potentially contributing to a drop in capacity
[63], [64].

CACC is an extension to Adaptive Cruise Control (ACC) systems by the introduction of
intervehicle communication [15]. Intervehicle communication replaces sensor measurements
of speeds and distances to reduce feedback loop delays sited to cause string instability as
demonstrated in simulation [65] and field experiments [66]. String stability [67] and practical
string stability [68] characterize the propagation of control error in interconnected and cas-
cade systems such as CACC strings. Compared to ACC, CACC enhances synchronization
of maneuvers, which could lead to improved safety even with shorter following time gaps.

System performance is further optimized by the introduction of centralized coordination
layers. Local vehicle string coordination has been studied to compensate for local road
topography variations in [69]. Longer term coordination has been studied to plan CACC
string formation along the route of participating trucks in [70]–[72].

Vehicle following controller

Stable vehicle following maneuver is the primary maneuver in CACC systems. The ma-
neuver has been implemented using several control frameworks such as hierarchical control
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Figure 2.3: Heavy duty truck Cooperative Adaptive Cruise Control String.

[15], sliding mode control [73], and model predictive control [69]. This section presents a
simplified hierarchical control scheme as a baseline based on the work presented in [15]. This
hierarchical controller utilizes a lower-level controller as presented previously in Section 2.2
(Cruise Control). The upper level controller is designed to regulate time-gap and speed of a
two-truck CACC string.

Upper-level controller. In a two truck cooperative adaptive cruise control (CACC), a
controller is designed for the second truck (follower or ego) in the string. CACC is designed
to simultaneously regulate following speed and following time gap relative to the first truck
(leader) in the string. Assuming vehicle response is approximately linear given the lower-level
controller, CACC could be designed assuming double integrator model:

d

dt

(
x(t)
v(t)

)
=

(
v(t)
a(t)

)
,

where x(t) is longitudinal position assuming x(t) increases along vehicle forward direction.
The corresponding error model hence becomes:

e(t) =

ex(t)ev(t)
ea(t)

 =

xleader(t)− xego(t)− Lleader − Tg · vego(t)
vleader(t)− vego(t)
aleader(t)− aego(t)

 ,

where e(t) is error vector, ex(t) is distance error, ev(t) is speed error, ea(t) is acceleration error,
xleader(t) is leader longitudinal position, xego(t) is ego longitudinal position, Lleader is leader
vehicle length, Tg is desired time gap, vleader(t) is leader speed, vego(t) is ego speed, aleader(t)
is leader acceleration, and aego(t) = ades(t) is ego acceleration, which is the controllable
variable. As shown in [15], the error function linear combination ea(t) + k1 · ev(t) + k2 · ex(t)
can be stabilized to zero using the control law:

ades(t) = −(k1 + k2Tg) · (vego(t)− vleader(t))− k2 · (xego − xleader)− k2 · Tg · vleader,

where k1 and k2 are control gains chosen such that H(s) = s2 + (k1 + k2 · Tg) · s + k2 is
Hurwitz polynomial for Tg > 0 and vleader > 0.

2.3 High fidelity simulation of trucks

TruckSIM [74] is a state-of-the-art commercial software framework for truck modeling, sim-
ulation, and analysis with high fidelity modeling capabilities and a detailed vehicle library
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as in Figure 2.4. The framework provides libraries of pre-modeled truck components span-
ning engines all the way to tires and chassis as in Figure 2.5. The framework also provides
utilities to model new trucks using off-the-shelf customizable models from the TruckSIM
library, or through user provided external-models implemented in frameworks such as MAT-
LAB/Simulink. This simulation framework has been used throughout the remainder chapters
of this thesis.

Figure 2.4: Truck models and vehicle component libraries of TruckSIM [75].

Modeling and simulation

TruckSIM provides a simulation engine for their highly detailed models. Each TruckSIM
model is comprised of three primary sub-models as shown in Figure 2.5: vehicle model, a
simulation procedure, and an external model interface. The vehicle model is a composition
of highly detailed dynamical models of truck parts such as engines and tires. These models
of parts encapsulate detailed models of the components within each part such as engine and
transmission models within the powertrain part.

The simulation procedure specifies how and where the vehicle drives by means of driver
controls and road specification. Each control, such as throttle control, can be specified as
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low-level control, for example, an engine torque, or more abstractly as an automated driver
model, for example, a cruise control speed profile. The road and driving environment specifies
road surface and environmental details such as road 3D geometry, friction, and wind.

The interface model specifies import and export variables to facilitate TruckSIM model
extensibility and integration with other frameworks.

Figure 2.5: TruckSIM model decomposition.

Multiple-vehicle simulation scenarios

A multiple vehicle simulation scenario could be implemented by decomposing the scenario
into a set of vehicles and a shared road and driving environment. TruckSIM framework pro-
vides a foundational coupling model, which can be extended in frameworks such as Simulink
as in Figure 2.6. Simulink blocks of TruckSIM models implement the interface model shown
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in Figure 2.5. Additional sensors such as radars are provided to model sensor behavior and
dynamics.

Figure 2.6: Architecture for TruckSIM model extension using Simulink.

Control system implementation

For this dissertation, control systems were implemented as TruckSIM model extensions in
frameworks such as Simulink as in Figure 2.6 and in Python. Figure 2.7 shows control
system implementation architecture for experimental evaluation. The Simulation Model en-
capsulates all TruckSIM models and sensors, and the Controller encapsulates the end-to-end
(sensor to actuation) control system for all trucks in the system. The Scenario Generator
encapsulates model and control scenario specifications along with generative models neces-
sary for randomized scenario trials, while the Reset Model implements simulation (model
and controls) management logic. The data collection layer provides the logic to manage and
store simulated datasets.

2.4 Real full-size truck platform

An in-house custom-built truck automation platform is designed and implemented for the
the primary purpose of field experimentation of feedback loop controls as in Figure 2.8 and
open loop data collection Figure 2.9. This section provides a high level overview of system
architecture and implementation of platform development.
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Figure 2.7: Architecture for experimental evaluation of truck control.

The feedback loop in Figure 2.8 is comprised of a control algorithm and the heavy duty
truck as a mechatronic/robotic system. For convenience, truck mechatronic systems are
divided into the mechanical systems and powertrain relavent to truck actuation and internal
sensing and measurement systems. The primary actuators in the truck are engine drive,
service brake, and engine brake. Internal sensing and measurement systems are built-in into
the truck to provide internal truck state feedback. Additional sensors and communication
systems are installed to provide sensing and communication with truck surrounding.

In addition to the feedback loop, the truck platform is used for driving data collection
as in Figure 2.9. In open-loop data collection mode, the truck is commanded by a human
driver, and the output of sensing and measurement systems are logged into local storage.

The automation platform is built for a Volvo FH16 as shown in Figure 2.10. This platform
was developed at King Abdulaziz City for Science and Technology (KACST; Riyadh, Saudi
Arabia) based on the previous platforms and expertise at California PATH (Richmond,
California). For this dissertation, contributions included project and team development at
KACST, co-leadership and coordination of the joint research and development team between
KACST and PATH, coordination of team communication and travel, establishment of the
cooperation with Zahid Tractor, organization and planning of a technical demonstration
of the first truck automation project in Saudi, lab development and truck and equipment
purchasing at KACST, and technical reverse engineering of truck mechatronic systems.

The following subsections provide an overview of the software and hardware subsystems
used to implement these loops.
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Figure 2.8: Feedback control loop architecture.

Figure 2.9: Open loop data collection architecture.

Automated Driver Kit Hardware

The Automated Driver Kit (ADK) hardware shown in Figure 2.11 consists primarily of an
Automated Driver Control Unit (ADCU), Global Positioning System (GPS), Radar/LiDAR
system, Dedicated Short Range Communications (DSRC) On-Board Unit (OBU), and Hard-
ware Failsafe system.

The ADCU interfaces directly with the driving environment sensing and measurement
system; GPS, Radar/LiDAR, and DSRC; and with the truck’s power and mechatronic sys-
tems. The ADK is custom designed to tolerate the physical storage and driving environment
of the truck. The ADCU is installed inside the driver cabin for ease of access and develop-
ment purposes, while GPS and DSRC antennas and Radar/LiDAR scanners installed outside
of the cabin.

Custom-built interfaces are built to connect the ADCU with truck’s mechatronic (for
actuation and access to internal sensing and measurement systems) and power systems. The
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Figure 2.10: Heavy duty truck platform while still under development.
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Figure 2.11: Hardware architecture for truck automation platform.

ADCU is integrated with truck’s backbone used for communication between its subsystems
to interface with the mechatronic system. A hardware failsafe system is implemented at this
interface to terminate automatic control and return control to the driver. The system is
powered directly from truck’s main batteries.

The following subsections briefly describe each component.
ADCU. The ADCU is implemented using PCIe-104 standard; a small factor industrial

grade standard for embedded control systems. The PCIe-104 CPU board, representing the
main control computer (the main unit of the PCIe-104 system), interfaces with all other
subsystems and executes the real-time control algorithms. The PCIe-104 is mounted inside
the cap of the truck for easy access during development and testing.

Power to ADCU. The PC-104 receives its power through a 24Vdc-to-5Vdc power
supply, which feeds from the power lines connected directly to truck’s main batteries.

J-Bus Hardware Interfaces. J-1939 (J-bus) is a communication standard used in
heavy duty machinery such as trucks. The J-bus uses CAN-bus standard as its physical layer,
which is used as a communication network between vehicle subsystems. Multiple networks
may exist inside the same vehicle, each of which dedicated for specific functions/subsystems
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(critical functions such as engine and brakes, assistance functions such as sensors and target-
ing, and other general purpose vehicle information), and are separated for reasons such as
safety. The PCIe-104 CPU board interfaces with the J-buses of the vehicle using PCIe-104
CAN cards. Each CAN card makes available a single or multiple channels to interface with
different networks of the vehicle. Each physical channel is bi-directional; however, actual
read and write access privileges are constrained by manufacturer/assembler of the vehicle
and its subsystems.

Hardware Failsafe Emergency Switch. The emergency switch connects and operates
on the hardware directly and functions as a safety mechanism. It allows for guaranteed
instantaneous disconnection of the automation system and returns full control back to the
driver. This switch can be used to mitigate any effects the failure of the system may cause,
and to rapidly contain unexpected behavior.

GPS. A high frequency and high precision GPS units are used for precise positioning
of the vehicle, and also used as a global clock for synchronization functions, such as those
necessary for proper communication between vehicles. GPS interfaces with the PCIe-104
through USB or RS-232 serial port.

DSRC. Dedicated Short Range Communications (DSRC) is short range communication
system standardized for use in intelligent transportation systems (ITS) applications. Among
the many configurations in which it can be used, this project focuses on using On-Board-
Units (OBU) for reliable vehicle-to-vehicle (V2V) communication. The OBU unit interfaces
with the PCIe-104 CPU board through RS-232 serial port. To communicate with other
trucks, the OBU transceiver is connected to two diversity antennas connected at the two
sides of the truck to allow for maximum reception at all times.

Radar/LiDAR. A Radar/LiDAR combination is used as primary real-time sensors for
surrounding vehicles and other obstacles on the road. Radar systems are reliable for speed
measurement of moving objects and LiDAR is reliable for targeting and distance measure-
ment of surrounding objects. For longitudinal control systems, frontal Radar/Lidar combi-
nation is used.

Other Interfaces and Functions. Other interfaces and functions are made available
for development, troubleshooting/debugging, and logging purposes. This include ethernet,
wifi, low-level General Purpose IO, hard-drives, etc.

Automated Driver Kit Software

The Automated Driver Kit software is hosted the PCIe-104. The software consists of main
operating system, the control algorithm, ADK subsystem drivers and interfaces, process
coordinator, inter-process communication, and software failsafe system. The software coor-
dinates the interconnection between all the subsystems and executes the feedback cooper-
ative control law. Figure 2.12 highlights the most relevant components and illustrates the
interconnection between them. The following subsections briefly describe each component.

RTOS. PCIe-104 embedded system run a Real-Time Operating-System (RTOS) for guar-
anteed deterministic performance and safe operation of the vehicle. The RTOS provides and
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Figure 2.12: Software architecture for truck automation platform.

coordinates access to the the hardware layers necessary for operation, allows for the devel-
opment and execution of high level software and file systems, and helps with scheduling and
communication between processes. QNX Neutrino R© RTOS is a commercial grade Unix-like
operating system developed and currently maintained by Blackberry.

Real-Time Control Database. The Real-Time Control Database is implemented as
a Persistent Publish/Subscribe (PPS) service. PPS abstracts access-coordination and data-
sharing. It facilitates communication and data-sharing between processes; allowing for a
flexible and robust loosely coupled complex real-time software system. The PPS service
runs as a singleton process inside the PC-104 embedded system and is accessible by all other
processes. Each process is provided with read-write privileges to create, update, and read
real-time variables.

J-Bus Software Interface. The J-Bus software interface consist of low-level device
drivers, high-level signal handlers, J-1939-Standard to SI-Standard (or an equivalent high
level format) translators, and an interface with the Real-Time Control Database. This
interface provides read-write access to the available CAN-networks in the vehicle. Read
(from vehicle) functions maintain up to date information about the truck and J-bus-shared
sensor information inside the database. Write (to the vehicle) functions are used to execute
commands requested for the automation of the truck (by the control algorithm). J-1939
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bus messages are low-level messages that are encoded and packetized to stream through a
communication network. The high-level signal handler is the closest layer (next to the driver)
to hardware to operate on J-bus data. It coordinates encoding, decoding, packetizing, and
unpacking messages when they are received and before they are transmitted/redistributed on
each side (PC-104 side, and vehicle side). This involves translation between J-1939-Standard
encoding and units, and between the SI-system (or an equivalent high level format) used by
the subsystems inside the PC-104.

GPS Driver. GPS software is primarily developed to read GPS position and global
time information and make it available to the reset of the system. It uses RS-232 interface,
which does not require tailored low-level driver. The GPS handler translates the global posi-
tioning and timing messages to formats suitable for local control (ex: spherical to cartesian
coordinate systems).

DSRC Driver. Vehicle-to-Vehicle communication follows a standard communication
protocol. DSRC uses RS-232 interface, which does not require tailored low-level driver.
However, it requires the implementation of a software communication stack for encod-
ing/decoding, serialization/deserialization, and packetization/unpacking. Moreover, to en-
sure reliable real-time operation, the software stack implements protocols to maintain reli-
able quality of service (minimize delay, packet dropping, etc). DSRC communicates safety
messages and essential information for control system operation and for reliable real-time
feedforward control functions.

Control Algorithms. The control algorithm aggregates all sensor and communicated
information to execute a feedback control loop. For a cooperative adaptive cruise control
system (CACC) for example, it consumes information such as positions, speeds, and accel-
erations of all vehicles in the CACC formation and detects cut-ins. It uses this information
to compute new commands the engine or brake must execute at each control cycle. En-
gine and brake commands are the lowest low-level commands made accessible by the vehicle
manufacturer.

Data logging. A logger runs as an independent process inside the PCIe-104 embedded
system. It captures the state of the Real-Time Control Database at adjustable sampling
intervals. The data is then stored either inside the PCIe-104 computer or in an external
hard drive for off-line analysis. This is done via the built-in QNX database structure QDB.

Wi-Fi, Ethernet, and Laptop-Access. General purpose access to the PCIe-104 and
its QNX operating system is facilitated by standard networking and network access software;
namely, standard ethernet/wifi communication stacks, and SSH protocol.

2.5 Deep learning

Recent progress in machine learning, optimization methods, and sophisticated software ab-
straction techniques gave rise to deep learning. Deep learning methods are used to fit large
and complex models to data. Artificial neural network (ANN) model for instance is one of
the common parametric universal nonlinear function approximators [76]; theoretically ex-
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pressive enough to approximate any finite dimensional function. Besides the ability of deep
learning to fit large and complex models, these methods are capable of utilizing raw data,
and hence avoid manual feature (problem variables) engineering and feature selection.

Advanced neural network architectures have been successfully trained using deep learn-
ing to solve (and stack and transfer solutions for) many practical problems. These archi-
tectures include convolutional neural networks (CNNs) for predictive image processing and
understanding, recurrent neural networks (RNN) for language modeling and translation, and
generative models for raw audio signal generation [77], [78]. Many of the optimized solutions
outperformed hand-engineered ones, and more importantly, many of them outperformed or
were on-par to human performance on the same task (where applicable).

Artificial Neural Networks

Artificial neural networks, feedforward neural networks, or simply neural networks are used
synonymously in this chapter. Neural networks are parametric (with respect to their weights
and biases) universal function approximators [76]. They are structured in layers that trans-
form inputs to outputs [79]. The output of each layer is a linear combination of its inputs
followed by a nonlinear activation function such as the sigmoid function. Outputs from each
layer represent input to the following layer.

For each multidimensional (with respect to number of inputs and outputs) data point,
this is represented algebraically as oi := ϕi(Wioi−1 + bi) for i ∈ {1 · · ·L} where L is the
number of network layers, Wi and bi are weights and biases of layer i of layer respective size,
oi is output of layer i, o0 := x for x ∈ Rn is network input vector of n features, and oL ∈ Rm

is network output vector of m targets. ϕi is the non-linear activation function at layer i.
The nonlinear activation function, number of layers, and layer sizes are design choices

(hyper-parameters) which affect the expressive power of the network. These hyperparameter,
along with input-output scaling strategy, parameter initialization strategy, and choice of op-
timization strategy impact trainability and training speed for the network. ANNs are trained
by optimizing an objective function such as MSE = 1

k

∑k
j=1 ‖o

(j)
L − y(j)‖2

2 for continuous re-

gression over the parameter space of the network, namely, Wi and bi, where y(j) and o
(j)
L are,

respectively, the ground truth output and the ANN prediction of the jth multidimensional
data point.

Recurrent Neural Networks

RNN architecture is an advanced variant to ANNs that is used for time-series modeling.
It was popularized for its ability to capture time dependencies and hidden (latent) state
dynamics. In its most standard form, RNNs use output feedback (acting as memory cells)
to propagate information through time. RNNs are trained by unfolding the network across
time-steps and sharing a single set of parameters across all of the steps. However, standard
RNNs suffer from vanishing/exploding gradients because, during training (optimization),
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Figure 2.13: LSTM cells utilize internal memory variable Ct in addition to output feedbacks
ht to efficiently learn latent state dynamics and long term dependencies. 1

derivatives get repeatedly multiplied across time-steps. This affects trainability (slow or
stopping of optimization convergence). More sophisticated RNN architectures are used in
practice to avoid these problems. Namely, in this manuscript, we use LSTM cells [80] shown
in Figure 2.13. LSTMs utilize carefully designed gating structure to transmit information
through an additional internal memory variable Ct, besides output feedback ht, bypassing
the repeated multiplications of the gradient.

Algebraically, LSTM output equation is ht = ot∗tanh(Ct), where ot = σ(Wo[ht−1, xt]+bo)
and ∗ is the element-wise vector multiplication operator. LSTM internal memory cell update
equation is Ct = ft∗Ct−1+it∗C̃t, where ft = σ(Wf [ht−1, xt]+bf ), it = σ(Wi[ht−1, xt]+bi), and
C̃t = tanh(WC [ht−1, xt] + bC); tanh and σ are non-linear activation functions, respectively,
the hyperbolic tangent and sigmoid functions; xt ∈ Rn is input vector at time-step t, ht ∈ Rm

is output vector at time-step t, and Ct ∈ Rm is internal memory vector at time-step t; Wo,
Wf , Wi, WC , bo, bf , bi, bC are shared network parameters (neural weight matrices and neural
bias vectors) of proper sizes; and ft, it, C̃t, and ot are intermediate variables for presentation
purposes.

LSTM networks are often trained using a truncated version of the unfolded network,
and applying stochastic gradient methods (batch training). For example, the training set
is split into k time-series examples of length l each. The weights and biases are trained
iterative using batches of k̃ (≤ k) examples, where k, k̃, and l are hyperparameters. For
continuous regression problems, a typical objective function to train the network is MSE =
1
k̃l

∑k̃
j=1

∑l
t=1 ‖h

(j)
t − y

(j)
t ‖2

2, where h
(j)
t and y

(j)
t are, respective, the ground truth output

vector and the LSTM prediction vector of the jth time-series example at time-step t.
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Figure 2.14: A simplified reinforcement learning system diagram.

Implementation and practical considerations

Tensorflow [81] is an open-source computational software library popular for implementa-
tion of deep learning algorithms. Models are described as computational graphs where nodes
represent operations and edges represent data flows. Problem data are represented as place-
holders for reusability and model parameters are represented as variables that can be fitted
or estimated from data. Tensorflow library makes available several optimization algorithms
for fitting model to data. Tensorflow optimization algorithms are iterative algorithms that
utilize built-in automated differentiation of objective function with respect to relevant graph
variables. A fitted model is portable and can be reused by feeding new data samples through
model placeholders to evaluate respective outputs.

In practice, learning can be made efficient by applying standard pre-processing steps to
clean and prepare data. Depending on specific model architecture, these steps include data
alignment, handling of missing data, and data normalization or standardization. Additional
practical considerations include choice of parameter initialization and hyper-parameter op-
timization method.

2.6 Deep reinforcement learning

Deep reinforcement learning (deep-RL) provides a formalism for learning of sequential de-
cision problems with feedback including continues feedback control. Deep-RL problems are
formulated with an environment and an agent. The environment abstracts the “world” the
agent observes and act upon within the objective of maximizing its lifetime reward as shown
in Figure 2.14. Deep-RL has been successfully used to solve many challenging problems such
as the development of AI that learns by experience to play and win Atari games [82], Go [83],
and others. It has been applied to continuous control problems [84] and continuous control
problems in traffic control [85].

1This image and organized equations are courtesy of http://colah.github.io/posts/2015-08-
Understanding-LSTMs/
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Design of continuous control problems can be formulated as a deep-RL problem mod-
eled as a POMDP defined by the tuple (S, P,OS,OP,A, r, ρo, γ, T ), Where S represents the
state space of an RL-environment (system); P is state transition probability space (gov-
erning dynamics of the system); OS represents the observable state space (space of system
outputs); OP is probability distribution of observation space (governing dynamics of observa-
tion model); A represents the action space (actuation and control variables) of an RL-agent
(a decision function, a policy, or a controller); r is reward function (system performance
metric); ρo is initial state distribution; γ is reward discount factor over time; and T is
time horizon. In this manuscript, we use model free Policy Gradient learning [84], [86] to
computationally optimize for expected discounted cumulative reward for an agent policy πθ
parameterized by θ:

θ∗ = argmax
θ

T∑
t=1

E(st,at)∼pθ(st,at) [r(st, at)]

where st and at are state and action at time step t, and pθ is probability distribution over
state and action space.

RL-Lab [84] is a practical python framework for deep-RL. It provides interfaces to specify
application details such as environment and agent models, initial distributions, and reward
computation. It automates the learning process including the reward sampling and agent
model optimization steps.

2.7 Conclusion

This chapter presented the standard framework used for heavy duty truck modeling and
control and presented a high level background to the class of standard models and a selection
of control systems. The chapter then presented fidelity simulation along with a high level
background on software framework for simulation-based study and development of truck
systems. The chapter concludes with a high level overview for the development of a full-
size truck automation platform for field experiments. Next chapter uses this background to
develop and demonstrate a modeling and control process for heavy duty trucks using deep
learning and deep reinforcement learning.
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Chapter 3

Microscopic multi-vehicle modeling
and coordination using deep learning
and deep reinforcement learning

3.1 Introduction

In this chapter, we develop a deep-learning-based longitudinal model for heavy duty trucks
and validate its modeling accuracy for heavy duty trucks of different configurations both in
simulation and using real-physical trucks.

Model-free deep reinforcement learning has been shown to achieve improved performance
in many applications in addition to simplifying several previously intractable problems.
Transfer of learned policies from simulation is often challenged however by the reality-gap
(the mismatch between model and corresponding real-physical system). This chapter stud-
ies the application of deep learning for longitudinal modeling of heavy duty trucks and its
application to minimize reality-gap for transferable deep reinforcement learning continuous
control policies as shown in Figure 3.1.

The process uses deep learning to build deep replica models for each truck from some
real vehicle pool. These deep replica models are used to develop deep environments suitable
for deep reinforcement learning continuous control tasks. The chapter takes into consider-
ation several of the factors either traditionally or expected to impact modeling and control
performance such as vehicle mechanical configuration, operational scope, setup, and traffic
scenarios.

Deep learning and deep reinforcement learning offer potential for improved performance
at the expense of guarantees such as bounds on control error that are better understood
using classical methods. To compensate, more in depth evaluation is always required. To
simplify investigation and avoid expulsion of combinatorics however, the chapter focuses on
presenting the process and experimental evaluation of the relevant components and leave
additional investigations such as robustness for later chapters.
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Figure 3.1: The deep truck process for the development of field-testable deep RL continuous
control policies for longitudinal automation of heavy duty trucks and a sample of the pools
and operational variations relevant to this work.
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3.2 Modeling problem formulation

In this chapter, we formulate heavy duty truck longitudinal dynamics modeling as a time-
series supervised deep learning problem. The longitudinal dynamics model fDT , detailed in
the next section, is represented as:[

x(k + 1)
y(k + 1)

]
= fDT

([
u(k)
w(k)

]∣∣∣∣[x(k)
y(k)

]
,Φ

)
, (3.1)

where x represent internal state, y represent truck response, u represent controllable inputs
to the truck, w represent uncontrollable conditions relevant to the dynamics, and Φ represent
model parameters. The initial conditions are given by x(k = 0) = xo and y(k = 0) = yo.

Model parameters Φ are trained by solving the following optimization problem:

min
Φ

∑
k

‖ŷ(k|Φ)− y(k)‖2
2

where ŷ is the model-based estimate of y given ground truth historical driving time-series
data y, u, w, initial state vector x(k = 0), and proper recursive substitution of the estimate
of the internal state vector x̂(k|Φ) for x as follows:[

x̂(k + 1|Φ)
ŷ(k + 1|Φ)

]
= fDT

([
u(k)
w(k)

]∣∣∣∣[x̂(k|Φ)
y(k)

]
,Φ

)
. (3.2)

The model is trained using a K-step unfolded time-series mini-batch Adagrad (Adaptive
stochastic gradient) algorithm [87], [88]. Each gradient step is estimated from M independent
samples (time-series model evaluations) each of K time steps as follows:∑

m=0...M

∑
k=0...K

‖ŷn,m(k|Φ)− yn,m(k)‖2
2,

where the sub-indices abstract time-series splits and n = 0 . . . N represent the mini-batch
index. Training is initialized with random deep network parameters, and with x̂n,m(k =
0|Φ) = 0 for all n and m. Given the trained model, truck simulations are generated from:[

x̂(k + 1|Φ)
ŷ(k + 1|Φ)

]
= fDT

([
u(k)
w(k)

]∣∣∣∣[x̂(k|Φ)
ŷ(k)

]
,Φ

)
, (3.3)

and initialized using x̂(k = 0|Φ) = 0 and ŷ(k = 0) = yo, where yo represent the observable
initial condition of truck dynamics.

Variable instantiations are detailed for each respective experiment in the later sections;
however, we assume in general, for longitudinal dynamics,

u(k) =

[
Ecmd(k)
Bcmd(k)

]

y(k) =

 v(k)
a(k)
frate(k)


w(k) = θrdg(k),
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where Ecmd(k) is engine command, Bcmd(k) is brake command, v(t) is vehicle speed, a(k) is
vehicle acceleration, frate(k) is fuel rate, and θrdg(k) is road grade each at discrete time step
k.

3.3 Deep model

This section presents the fDT model structure used to represent the longitudinal dynamics
of the heavy duty truck. The model assumes that only controllable inputs to the truck,
uncontrollable driving environment variables, and truck responses are known and measurable
while the configuration of the truck and relevant internal state variables are not specified.

The state model,
x(k + 1) = H(u(k), w(k)|x(k), y(k)),

represents an integrated state observer and tracker equations, and state update and encoder
equations. The state model, H(·), is represented in this chapter as a long short-term memory
(LSTM) recurrent neural network (RNN). The use of a single deep network unit to represent
this model enables parameter sharing for the state observer, tracker, updater, and encoder
functions.

The output model,
y(k) = G(x(k)),

represents an integrated state decoder equation and explicit output constraints model. The
output model is represented by a cascade of a state decoder D and an explicit constraints
models C such that y(k) = C(D(x(k))). The state decoder is implemented as a fully con-
nected feedforward neural network parameterized by Φnn. In the remainder of this chapter,
we implement discrete-time longitudinal kinematics model as an explicit constraint model
for longitudinal response output variables:

v(k + 1) = v(k) + a(k) · dt,

where v(k) and a(k) are longitudinal velocity and acceleration respectively, and dt is discrete
time step. Other variables were left unconstrained.

3.4 Driving cycles for data collection

In this chapter, we assume that the internal dynamics of trucks can be observed from datasets
were y = (v, a), u = (Ecmd, Bcmd), and w = θrdg are jointly spanning. We consider that,
without specialized driving data collection facilities, a human driver is most practical for
data collection. Internal truck control signals u are often not accessible though the human
driver interface (pedals), however, but are processed though vehicle manufacturer proprietary
control systems as shown in Figure 3.4. We thus approximate such spanning dataset by a
driving cycle consisting of (1) w and y spanning arbitrary acceleration/deceleration profiles,
(2) w and v spanning coasting (u = 0), and (3) w and Bcmd spanning braking to zero speed.
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For the field experiments presented in this chapter, these instructions were given to a hu-
man driver to execute for data collection. In simulation, we used a random generative model
to approximate such a driving cycle. The generative model utilizes a moving average random
walk model as a road profile generator. Coasting and braking to zero episodes are generated
using direct randomized initializations. The spanning arbitrary acceleration/deceleration
profiles were generated from the model presented in the next section.

Generative model for state space spanning driving cycles

For the numerical experiments presented in this chapter, we simulate arbitrary driving cycles
using a speed profile generative model based on a time adaptive unstable stochastic speed
controller. We designed it as a random speed profile (driving cycle) generator that samples
the state space “fairly” uniformly.

Double integrator model is used with hard saturation limit at desired maximum and
minimum speeds as follows:

v(t) = max(min(v(t− dt) + a(t) · dt, vmax), vmin),

where vmin and vmax are desired minimum and maximum speeds of generated profile. Accel-
eration is sampled from a normal distribution as:

a(t) = N (µa, scaling · µa(t), σa, scaling · σa(t)),

where µa, scaling and σa, scaling are tuning parameters.
Acceleration statistics are designed based on speed dependant unstable feedback control.

Average acceleration is given by:

µa(t) = 1− v(Ti)

vref

,

where vref is control reference speed, here set to vmin+vmax

2
. The standard deviation is designed

to allow for bursts of spontaneous high accelerations but discourage it at extreme speeds
(vmin, and vmax) as follows:

σa(t) =
v(Ti)

vref

·
(

1− v(Ti)

vmax

)
.

Ti is used for acceleration-based adaptive temporal discretization for sampling acceler-
ation statistics, and is designed to make high acceleration episodes short lived. The non-
negative integer index is updated to i := i+ 1 and Ti+1 is re-sampled when t equals Ti+1 and
integrated as follows:

Ti+1 = Ti + dmax(N (µT ) · (1− |µa(t)|), dt)e,

where µT is a tuning parameter.
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To smooth out the noise, we pass the generated acceleration signal though a moving
average filter to get af (t), and re-integrate speed with a softmax operator as follows:

vf (t) =
max(vf (t− 1) + af (t) · dt, vmin)

1 + e
1
2
·(max(vf (t−1)+af (t)·dt,vmin)−vmax)

,

noting that acceleration signal has to be recalculated, as needed, from speed signal after this
step.

3.5 Deep-RL continuous longitudinal control

In this chapter, we use deep-reinforcement-learning to design end-to-end heavy duty truck
controllers allowing for offline (1) design/tune the controller, (2) calibrate the controller
module to the specific physics of each truck, (3) design an embedded state observer/tracker.
In developing these controls we assume limited observable input and output (IO), unknown
truck mechanical configuration, and unknown relevant internal state. We formulate the
problem as a Partially Observable Markov Decision Processes (POMDP) and solve it using
deep reinforcement learning framework as discussed in Chapter 2.

Deep-RL cooperative adaptive cruise control

Figure 3.2: Two truck cooperative adaptive cruise control system setup.

This section formulates an end-to-end two-truck cooperative adaptive cruise control
(CACC) [15] using deep-RL based on the longitudinal truck model developed in this chapter.
In this system, we consider a human driven leader vehicle, and a follower semi-automated
to simultaneously regulate speed and time gap as shown in Figure 3.2.

The environment is modeled by a two point mass system representing each of the two
trucks. Both vehicle dynamics were modeled using the double integrator kinematic model.
Leader vehicle (leader) dynamics were simplified as a linear system. The velocity of the
controlled truck (ego) is modeled as a nonlinear system according to the deep truck model
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fDT presented earlier in this chapter. This results in the following environment model:
pleader(k + 1)
vleader(k + 1)
pego(k + 1)
vego(k + 1)

 =


1 dt 0 0
0 1 0 0
0 0 1 dt
0 0 0 0



pleader(k)
vleader(k)
pego(k)
vego(k)



+


0
1
0
0

 · aleader(k) · dt

+


0
0
0
1

 · fDT,ego,v
Ecmd, ego(k)

Bcmd, ego(k)
θrdg, ego(k)

∣∣∣∣[xego(k|Φ)
vego(k)

]
,Φ

 ,

where fDT,ego,v represents the velocity component from the deep truck model for the ego
truck, and relevant variables (Ecmd, ego, Bcmd, ego, θrdg, ego, xego, and Φ) are as defined in
Section 3.2. As shown in Figure 3.2, pleader, vleader, and aleader are absolute longitudinal
position, velocity, and acceleration representing the leading vehicle, and pego and vego are
absolute longitudinal position and velocity of the ego vehicle. Time step size is represented
by dt.

The agent is represented by the probability distribution function π(ak|ok,Φagent), where
ak represent agent action, ok represent observation at time step k, and Φagent represent agent
parameters. The corresponding control u(k) is implemented as:

u(k) =

[
Ecmd, ego(k)
Bcmd, ego(k)

]
= fπ




vleader(k)
vego(k)

pleader(k)− pego(k)
vego(k) · Tgtarget

θrdg(k)




= E

π
ak

∣∣∣∣ok =


vleader(k)
vego(k)

pleader(k)− pego(k)
vego(k) · Tgtarget

θrdg(k)

 ,Φagent




representing the mean value for a Multi-Layer Perceptron (MLP) Gaussian distribution
model.

The reward function is designed to simultaneously regulate time-gap between ego and
leader to a given desired time-gap, and regulate velocity of ego to match that the leader. The
agent is penalized for actuation cost, here approximated by engine and brake commands.
Safety constraint is implemented as a very large penalty term applied when minimum safety
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distance is violated. The reward function is modeled as:

r(k) = −αp(pleader(k)− pego(k)− vego(k) · Tgtarget)
2

− αv(vleader(k)− vego(k))2 − αEE2
cmd(k)− αBB2

cmd(k)

− αcrash · (pleader(k)− pego(k) ≤ dsafety),

where Tg(k) is actual time-gap between leader tail and ego head, Tgtarget is target (desired)
time-gap, αx, αv, αE, and αB are positive constants, αcrash is a large positive constant, dsafety

is minimum safety distance, and all other variables are as defined earlier in this section.
Each training episode is initialized using leader position pleader(k = 0) = 0, random

initial ego truck position error pleader(k = 0) − pego(k = 0) − vego(k = 0) · Tgtarget from a
uniform(po,min, po,max), random initial leader speed vleader(k = 0) from uniform(vo,min, vo,max),
random initial ego truck speed error vego(k = 0)− vleader(k = 0) from uniform(vo,min, vo,max)
distribution, random desired time gap Tgtarget from a uniform(Tgo,min, T go,max) distribution,
and random constant road grade θrdg from a uniform(θrdg, o, min, θrdg, o, max) distribution. To
simplify the setup, we also assume aleader(k) = 0. All distribution boundaries are positive
constants chosen to cover the desired operational state-space of the CACC system and be
constrained by the state-space covered by the deep model where appropriate.

3.6 Vehicle pool

We primarily utilize three trucks with three different mechanical configurations for the study
presented in this chapter as shown in shown in Figure 3.1 and Figure 3.3. One truck is
simulation based used primarily for numerical experiments. The remaining two trucks are
full-size real-physical trucks that had been modeled using two different physics-based power-
train models in [14] and [15] and used to develop high precision control systems within each
respective article.

Simulation framework and simulation truck mechanical configuration. Simula-
tion experiments in this chapter are conducted in TruckSim [74], a black-box state-of-the-art
commercial software framework with high fidelity modeling capabilities and a detailed vehicle
and vehicle component libraries.

The truck, shown in Figure 3.3, is equipped with a 402hp engine. The engine shaft is
connected to one side of the transmission via clutch. The clutch allows speed difference
between the engine and the transmission when gear shifts. The transmission has ten forward
gears and one reverse gear. The other side of the transmission is connected to rear wheels
via a differential gear with a fixed reduction ratio. The truck is equipped with an air-brake
system. The front air-brakes have capacity of 7.5 kN-m on each wheel. The rear brakes
have capacity of 10 kN-m on each wheel. Actuation control input to the truck are engine
torque and brake cylinder pressure. The details are presented here for completeness and for
reporting purposes, but are irrelevant to the deep model.

Real full-size Freightliner truck mechanical configuration. The Freightliner
truck used for the results in this section is a tractor-only Freightliner Century truck driven
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Figure 3.3: Real full-size and simulations trucks of multiple mechanical configurations used
in this research.

by a 435 hp turbocharged Detroit Diesel diesel engine and equipped with a 6 gear true-
automatic (equipped with torque-converter) Allison transmission system. The service brake
is a drive by wire all the way to the wheels. The truck is not equipped with road grade
sensors.

Real full-size Volvo truck mechanical configuration. The second set of exper-
iments were conducted using a Volvo VNL truck (with and without a tractor) driven by
a 500 hp engine. The mechanically most significant differentiator of this truck from the
Freightliner truck is the transmission system which is an automated manual-transmission
(equipped with clutches).

3.7 Vehicle interface

Access to vehicle powertrain is often primarily provided through a human driver interface
(pedals) and is mediated by proprietary controllers as shown in Figure 3.4. For precision
sensitive applications however, it is often desirable to probe as close to the powertrain as pos-
sible (e.g. engine torque or engine fuel rate control signals). We access these signals through
a custom-built automated driver interface connected to vehicle communication backbone J-
1939. The interface provide access to powertrain and sensor signals; however, architectural
details and signal accessibility vary between truck platforms. Multiple layers of fail-safe
safety systems were implemented to ensure experiments remain faithful to published de-
scription while maintaining safety on the road. Parallel interfaces and system architecture
is used for the simulation truck.
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Figure 3.4: Interface architecture for deep modeling and control of heavy duty trucks.

3.8 Experiments

This section presents experimental evaluation of the process detailed in this chapter. The
section starts by applying the process to a simulation based truck to present detailed per-
formance statistics. The section then reapplies the process to full-size trucks.

Deep modeling of the simulation truck

This section presents experimental results for the development of a deep learning model as
described in Section 3.2 for the simulation truck.

Deep model specifications

In this experiment, the uncontrollable conditions w(k) = θrdg(k)[%] represent road grade.
The controllable input to the truck is given by u(k) = [Ecmd(k), Bcmd(k)], where Ecmd(k) is
engine torque in [N −m] and Bcmd(k) is service brake master cylinder pressure [0− 100%].

The output (truck response) vector is given by y(k) = [a(k), v(k), Frate(k)], where a(k) is
longitudinal acceleration in [m/s2], v(k) is longitudinal speed in [m/s], and Frate(k) is fuel
rate in [cm3/s].
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Driving datasets

For training, we simulated a total of four hours of driving using the data collection strategy
presented in Section 3.4. We generated another three hour set for testing and validation
to evaluate modeling performance on unseen data. All datasets span speeds from zero to
35 m/s and road grades from ±3%. A sample of the dataset is shown in Figure 3.5 and
Figure 3.6.

Model learning curves

This section presents learning curves for training the deep truck model for the simulation
truck using the data presented in this section. Figure 3.7 shows the loss function statistics
(mean, min and max) based on training form Equation (3.2) and deployment form Equa-
tion (3.3) from 30 seeds. Each curve is produced using a separate dataset both unseen during
training.

Both learning curves stabilize and converge by the 600th epoch. They exhibits spikes we
speculate are a symptom of the inherent stochasticity of the mini-batch algorithm we used.
An expected loss gap between training form curve and deployment form curve is observed.

Results and model validation

This section presents model validation results using an unseen validation dataset. Figure 3.8
shows modeling error statistics as a function of model simulation time from 90 independent
random trails. Error statistics are generated as:

ErrorStatistic(k) = Statisticm (ŷm(k|Φ)− ym(k))

where m is trial number, and ŷ follow the deployment form Equation (3.3). Distributions
(initial speed distribution, visited speed over time and across all trials, visited road grades
over time and across all trials) of the validation dataset are shown in Figure 3.9.

Mean of modeling error stays bounded near zero over the 40 second simulation time. On
average acceleration deviates by less than 0.5m/s2 and fuel deviates by less than 10−3 at any
given time. The statistics also show that the error of modeled speed is expected to remain
within 1.5m/s over a 40 second simulation time.

A sample model validation dataset is shown in Figure 3.10 and Figure 3.11. In this
validation experiment, the model is initialized once at k = 0 and then simulated for 2000
time steps (tend = 200s). The dataset exhibits a large initial error transient with significant
model response delay estimation error. Error statistics appear to be (by visual inspection)
stationary consistent with error statistics in Figure 3.8.

Deep-RL control of the simulation truck

This section presents experimental results for the development of a deep-RL CACC as de-
scribed in Section 3.5 for the simulation truck.
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Figure 3.5: A ground truth sample dataset representing inputs to the deep model.
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Figure 3.6: A ground truth sample dataset representing outputs from the deep model.
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Figure 3.7: Learning curve—min/max and mean from 30 seeds—for deep modeling of the
TruckSIM truck.

Training setup and learning curves

For this experiment, the sampling rate is set to 10Hz (dt = 0.1s) and we assume flat driving
environment with no other relevant driving environment variables; thus we substitute w(k)
with the empty set. The controllable input to the ego truck (agent output) is given by
u(k) = [Ecmd, ego(k), Bcmd, ego(k)], where Ecmd, ego(k) is requested engine torque in [N −m]
and Bcmd, ego(k) is requested service brake master cylinder pressure percentage [0 − 100%].
The agent π is modeled using an ANN that has 3 hidden layers, each of size 25.

Each training episode is initialized using pleader(k = 0) = 0, random initial ego truck
position pego(k = 0) from a −(vego(k = 0) · Tgtarget + uniform(−1.39, 1.39)), random initial
leader speed vleader(k = 0) from uniform(8.3, 22.2) and vego(k = 0) from vleader(k = 0) +
uniform(−1.39, 1.39) distributions, and random desired time gap Tg from a uniform(2, 5)
distribution. To simplify the setup, we also assume aleader(k) = 0.

The deep-RL controller was trained on RLLab [84] using batch size of 20000, max path
length of 800 (sampled at 10Hz) and discount factor of 0.9999. We trained ten policies
(ten seeds). The average discounted returns plot is shown in Figure 3.12. The trained
policies shown in the plot converged after 500 iteration. The observed sharp numerical
negative infinity return values are caused by crashes between the two trucks inside the
training environment as specified by the reward function presented in Section 3.5. These
crashes happen as the agent of the deep reinforcement learning explores the state-action
space, which is implemented here by means of a stochastic agent policy.
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Figure 3.8: Model error statistics—standard deviation (red shaded areas) and mean (blue
curves) from 90 trials—for deep modeling of the TruckSIM truck.
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Figure 3.9: Scenario distribution of the dataset used to compute model validation statistics
presented in Figure 3.8.
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Figure 3.10: A sample ground truth and model output using a sample validation set.
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Figure 3.11: A sample error over time between ground truth and model output using a
sample validation set.
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Figure 3.12: Learning curve—min/max (light red shaded area) and mean (dark red curve)
from ten seeds—for deep cruise control policy based on deep model of the TruckSIM truck.

Control validation results

This section validates the performance of the deep-RL cooperative adaptive cruise controller
against both the deep environment and transfer into TruckSIM as shwon in Figure 3.13.
DeepEnv-set experiment is a replication of the training setup and consists of 100 rollouts
drawn from the same training distributions (environment model and initialization distribu-
tions). The same controller is zero-shot transferred to TruckSIM to produce TruckSIM-set
consisting of 10 rollouts drawn from the same initialization distributions.

The policy is designed to simultaneously regulate speed and time-gap. In DeepEnv-set,
time-gap error converges to steady state error between ±0.05s within 10s from the start
time of the experiment, while speed error converges to steady state error between ±0.03m/s
within 25s from the start time of the experiment both with mean error of approximately
zero.

TruckSIM-set evaluates the transfer of the same policy to TruckSIM environment with
the same random distributions. Observed shift in control performance is caused by shift
in truck model distribution due to modal mismatch discussed in the modeling experiments.
Time-gap error converges to steady state error between 0.04s and −0.2s within 10s from
the start time of the experiment, while speed error converges to steady state error between
±0.02m/s within 25s from the start time. The time-gap mean error converges to −0.06s,
while speed mean error converges to approximately zero. The controller exhibits a nonlinear
bimodal speed control over/undershoot.
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Figure 3.13: Control error statistics—min/max (dashed curves), standard deviation (red
shaded areas) and mean (blue curves)—for the deep policy evaluated against the deep envi-
ronment and against TruckSIM environment.

Figure 3.13 shows preliminary learning results for deep-RL cooperative adaptive cruise
controller and shows preliminary evidence to expect marginal shifts in error statistics when
transferring the policy from the deep-truck environment to the “real” environment (here
conducted using a simulated truck).

Deep modeling of full-size trucks (field experiments)

This section presents field experimental results for the model described in this chapter.
The section documents experiments conducted using two differently configured real-physical
heavy duty trucks. These same two trucks were modeled using two different physics-based
power-train models in [14] and [15] used to develop high precision control systems within
each respective article.

Configuration one: Freightliner

In this experiment, the truck is not equipped with any sensors relevant to the driving envi-
ronment (e.g. road grade) and thus we substitute w(k) with the empty set. The controllable
input to the truck is given by u(k) = [Ecmd(k), Bcmd(k)], where Ecmd(k) is requested per-
centage engine torque in [0− 100%] and Bcmd(k) is service brake pedal position [0− 100%].

The output (truck response) vector is given by y(k) = [a(k), v(k), Frate(k)], where a(k) is
longitudinal acceleration in [m/s2], v(k) is longitudinal speed in [m/s], and Frate(k) is fuel
rate in [cm3/s].
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Experiments for this truck has been carried out at a nearly flat test track with straight
roads the longest of which is around 300 meters long at the Richmond Field Station at
California. The truck was driven for about 16 minutes to collect primarily slow speed dataset
covering from zero to 18m/s. The dataset was split into 85 percent for training and 15 percent
to test modeling performance on an unseen dataset.

Configuration two: Volvo

The truck is equipped with a road grade sensor where w(k) = θrdg(k)[%]. The control-
lable input to the truck is given by u(k) = [Ecmd(k), Bcmd(k)], where Ecmd(k) is requested
percentage engine torque in [0− 100%] and Bcmd(k) is service brake command [m/s2].

Actuation and accessible signal measurement of the brake system in this truck is asym-
metric. The service brake system in this truck is not directly actuatable (and signals not
interceptable); instead, desired deceleration is processed through Volvo propriety systems.
After collecting the data, we substitute brake commands with observed deceleration gated
by brake pedal gating switch signal.

The output (truck response) vector is given by y(k) = [a(k), v(k), Frate(k)], where a(k) is
longitudinal acceleration in [m/s2], v(k) is longitudinal speed in [m/s], and Frate(k) is fuel
rate in [cm3/s].

This truck was primarily driven over non-flat open freeways. The truck was driven for
about 24 minutes to collect primarily freeway speed driving dataset covering speeds from
20m/s to 30m/s. The dataset was split into 85 percent for training and 15 percent to test
modeling performance on an unseen dataset.

Results and model validation

We validate modeling performance against an unseen ground truth dataset from each truck
configuration as shown in Figure 3.14. In this figure, mean and standard deviation for accel-
eration, speed, and fuel rate modeling errors are charted as a function of model simulation
time. The statistics were produced from an ensemble of ten timeseries simulations. Each
simulation is fresh initialized at time zero, and simulated using knowledge of inputs and
the uncontrollable conditions only. Error statistics are generated as ErrorStatistic(k) =
Statisticm (ŷm(k|Φ)− ym(k)) where m is trial number, and ŷ follow the deployment form
Equation (3.3).

In this figure, acceleration error is bounded between ±0.5m/s2. For the Freightliner,
speed error remained bounded between ±0.5m/s mean of speed error 0.12m/s after the
initial transient. For the Volvo, speed error remained between −0.5m/s and 1m/s with a
significant error bias approaching 0.5m/s during the 15 seconds of simulation. Fuel rate
modeling error is bounded between ±1 once the initial transient decays. We speculate that
model performance degradation for the Volvo truck is influenced by insufficient data to model
truck dynamics over graded roads.
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Figure 3.14: Model error statistics—standard deviation (red shaded areas) and mean (blue
curves) from 10 trials—for deep modeling of the Freightliner and the Volvo trucks.

Deep-RL control of full-size trucks (field experiments)

This section presents control experiments for the deep-RL CACC system presented earlier.
The system was operated as a two vehicle ACC (using radar instead of direct communica-
tions) system on non-flat open freeways. The leader is a passenger car and the follower is
the Volvo truck presented earlier.

Figure 3.15 shows gap closing regulation performance where the leader drove at nearly
constant speed with initial speed error of 2m/s, initial time gap error of 1s, and a desired
time-gap setting of 1.5s. The gap was closed within 15 seconds and to within error bound
of ±0.2m/s and 0.35s. Leader conducted a quick successive changes of speed towards the
end of experiment causing the observed speed ripple after time 17s.

Figure 3.16 shows tracking performance over an arbitrary driving cycle conducted by
the leader vehicle with a desired time-gap setting of 1.5s. Speed error was regulated to
within ±0.5m/s and time gap was regulated to between 0.05m/s and 0.3m/s. A lane
change maneuver was conducted at time 63s causing a momentary misalignment between
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ego vehicle’s sensor line-of-sight with the leader. Speed and distance measurements of a
farther vehicle down stream was detected causing the observed discontinuity.

Figure 3.15: Tracking speed, time-gap, and control error for the Volvo deep CACC policy
evaluated against the real environment—gap closing maneuver.

Figure 3.16: Tracking speed, time-gap, and control error for the Volvo deep CACC policy
evaluated against the real environment—leader following maneuver.
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3.9 Conclusion

Detailed study of each heavy duty truck in some pool of trucks has historically been required
to develop and fit precise analytical models and controls. This chapter discusses the applica-
tion of deep learning and deep reinforcement learning as an approach to simplify the process
and abstract detailed vehicle underlying mechanics with a potential for improving modeling
and control precision. A brief experimental evaluation is presented as a walk through the
process and as preliminary performance validation.

The deep models and deep-RL controls presented in this chapter successfully (1) infers
relevant latent and state variables (such as gearbox), (2) performs dynamic state estimation
(such as selected gear and brake cylinder pressure at t = 0) and tracking (latent state
variable values for t > 0), and (3) successfully performs system identification and parameter
estimation (such as the aerodynamic drag effect and its coefficient).

This chapter focuses on outlining the process of applying deep learning and deep reinforce-
ment learning for modeling and control of heavy duty trucks. More extensive experimenta-
tion and comparison with established classical approaches is still required for validation and
performance evaluation. Furthermore, the process presented here still requires full replica-
tion for each target truck, and each truck combination (multi-truck environments). Further
investigation is still required to introduce transfer learning of longitudinal dynamics across
mechanical configurations. Data sampling efficiency and utilization of existing first-principle
models could also be investigated to improve the process presented here.
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Chapter 4

Vehicle actuation using deep
reinforcement learning

4.1 Introduction

Cruise control is considered, as of today, one of the fundamental driver assistant systems
for freeway driving. Previous chapter presented and validated a process, summarized in
Figure 3.1, for modeling and control of heavy duty trucks using deep learning and deep
reinforcement learning (deep-RL). Starting with the same pre-trained deep truck models and
following the same process, this chapter composes and studies deep-reinforcement-learning-
based longitudinal cruise control systems for heavy duty trucks. The chapter uses deep
neural networks as a model for the controller module and trains it using deep reinforcement
learning framework. The deep reinforcement learning environment model is embedded with
deep truck models to reduce simulation-to-reality-gap and to study controller transfer-ability
from offline deep training environment to real physical systems. The chapter evaluates
transfer and robustness performance, and validate control accuracy for heavy duty trucks of
different configurations both in simulation (TruckSIM truck) and using real-physical trucks
(Freightliner and Volvo trucks) using a variety of operational scopes and scenarios.

4.2 Problem formulation

In this chapter, we use deep-reinforcement-learning to design end-to-end heavy duty truck
controllers allowing for offline (1) design/tune the cruise controller, (2) calibrate the controller
module to the specific physics of each truck, (3) design an embedded state observer/tracker.
In developing these controls we assume limited observable IO, unknown truck mechanical
configuration, and unknown relevant internal state. We formulate the problem as a Partially
Observable Markov Decision Processes (POMDP) as presented in previous chapter and solve
it using deep reinforcement learning framework.
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Deep-RL longitudinal heavy duty truck cruise control

This section presents cruise control as a deep-RL continuous control task. The deep-RL
environment transition probability distribution P is implemented using deep-truck non-linear
dynamics model defined previously in Equation 3.1 in Chapter 3 as follows:[

x(k + 1|ΦDT)
y(k + 1|ΦDT)

]
= fDT

([
u(k)
w(k)

]∣∣∣∣[x(k|ΦDT)
y(k)

]
,ΦDT

)
,

where x represent internal state of the truck, y represent truck response, u represent con-
trollable inputs to the truck, w represent uncontrollable conditions relevant to the dynamics,
ΦDT represent internal truck model parameters, and k is discrete time-step of size dt. The
model fDT is a recurrent deep learning model for which internal state encoding is dependent
on ΦDT.

The agent is represented by the probability distribution function π(ak|ok,Φagent) and the
corresponding control u(k) is implemented as:

u(k) = fπ

 y(k)
ytarget(k)
w(k)


= E

π
ak∣∣∣∣ok =

 y(k)
ytarget(k)
w(k)

 ,Φagent


representing the mean value for a Multi-Layer Perceptron (MLP) Gaussian distribution
model.

The agent is rewarded for regulating truck response y at target response ytarget as follows:

r(t) = α ‖y(k)− ytarget(k)‖2
2 + β ‖u(k)‖2

2 ,

where α and β are positive constants.
Initial distribution of the environment ρo is given by the initial distributions of the set

{x, y, w, ytarget}. The internal state of the truck x is initialized to zero as specified in Chap-
ter 3. The variables y, w are initialized by sampling from the maximum ignorance uni-
form distribution uniform(min,max) where the bounds of each distribution are specified
according to the expected operating range of the controller and the validity domain of the
deep truck models. The variable ytarget (modeled as a constant during training) is initial-
ized by sampling from yo + uniform(−yδ, yδ) where distribution of initial regulation error
|y(k = 0)− ytarget(k = 0)| comes from maximum ignorance uniform distribution bounded by
yδ.
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Variable instantiations are detailed for each respective experiment in the later sections;
however, in general, for a cruise control,

u(k) =

[
Ecmd(k)
Bcmd(k)

]
y(k) = v(k)

ytarget = vtarget(k)

w(k) = θrdg(k),

where Ecmd(k) is engine command, Bcmd(k) is brake command, v(t) is vehicle speed, vtarget(k)
is target speed (set-value, or set-speed), and θrdg(k) is road grade each at discrete time step
k.

Training and transfer procedure

The deep-RL agent policies are trained offline (with respect to target truck) simulated en-
vironment using the model free policy gradient TRPO [84], [86] algorithm. For validation,
agent policies are zero-shot transferred for closed loop evaluation (online) on each truck. To
enable transfer, we minimizing model mismatch and close the reality gap by embedded high
accuracy models of each truck of interest using Deep Truck Model approach in Chapter 3.

4.3 Experiments

This section presents experimental evaluation of the control approach presented in this chap-
ter. We conduct experiments in simulation for detailed evaluation and replicate the procedure
using two full-size real-physical trucks that have different mechanical configurations. Control
performance is validated against the model based controller presented in Section 2.2 (Cruise
Control).

Experiment name/label notation

For convenience of cross-referencing, in this chapter, we label each experiment using a cascade
of codes ‘code/1-code/2-code/3-. . . ’ and use the following codes:

Code/1: Experiment truck platform/environment code. This code references
the truck/environment used to conduct the experiment. The code takes one of the following
variations:

DE: This code references experiments conducted using deep environment (deep truck
model based).

TS: This code references experiments conducted using TruckSIM.
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FL: This code references experiments conducted using real full-size Freightliner truck.

VL: This code references experiments conducted using real full-size Volvo truck.

Code/2: Target velocity waveform code. This code references the target velocity
(or set-speed) waveform used to conduct the experiment. The code takes one of the following
variations:

STEP: This code references experiments conducted using a step function.

LRMP: This code references experiments conducted using a low acceleration (|[0− 0.5]|
m/s2) ramp function.

HRMP: This code references experiments conducted using a high acceleration (|[1− 1.5]|
m/s2) ramp function.

SINE: This code references experiments conducted using a sine wave.

Code/3: Road topography code. This code references the major topography features
of the road used to conduct the experiment. The code takes one of the following variations:

FLT: This code references experiments conducted over a flat (or nearly flat) road.

NFLT: This code references experiments conducted using a graded (non-flat) road.

Code/4: Control policy identification code. This code is used to help identify the
control policy used for each experiment. The code takes one of the following variations:

DTSDP: This code references experiments conducted using a deep policy trained based
on a deep model of the TruckSIM truck platform.

DFLDP: This code references experiments conducted using a deep policy trained based
on a deep model of the Freightliner truck platform.

DVLDP: This code references experiments conducted using a deep policy trained based
on a deep model of the Volvo truck platform.

TSMBH: This code references experiments conducted using the model based hierarchical
controller presented in Section 2.2 (Cruise Control).

Code/5: Control policy note code. This code references other notes relevant to the
policy or the experiment. The code takes one of the following variations:

MG: This code indicates that the control policy models gravity (this is a default for
the model based controller).
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NMG: This code indicates that the control policy does not model gravity (this is a
default for the deep policies).

EOB: This code indicate that the control policy is operated outside of the engine com-
mand training distribution bound.

Numerical validation experiments

Simulation environment and truck mechanical configuration

The experiments in this section are conducted in TruckSIM [74], a black-box state-of-the-
art commercial software framework with high fidelity modeling capabilities and a detailed
vehicle and vehicle component libraries.

The truck, shown in Figure 3.3, is equipped with a 402hp engine. The engine shaft is
connected to one side of the transmission via clutch. The clutch allows speed difference
between the engine and the transmission when gear shifts. The transmission has ten forward
gears and one reverse gear. The other side of the transmission is connected to rear wheels
via a differential gear with a fixed reduction ratio. The truck is equipped with an air-brake
system. The front air-brakes have capacity of 7.5 kN-m on each wheel. The rear brakes
have capacity of 10 kN-m on each wheel. Actuation control input to the truck are engine
torque and brake cylinder pressure. The details are presented here for completeness and for
reporting purposes, but are irrelevant to the deep model.

Training setup and learning curves

The deep-RL environment is embedded with a deep truck model learnt for the truck described
in this section using open loop driving data as described in Chapter 3. For this experiment,
the sampling rate is set to 10Hz (dt = 0.1s). The truck is not equipped with any sensors
relevant to the driving environment (e.g. road grade) and thus we substitute w(k) with
the empty set. The controllable input to the truck (agent output) is given by u(k) =
[Ecmd(k), Bcmd(k)], where Ecmd(k) is requested engine torque in [N − m] and Bcmd(k) is
requested service brake master cylinder pressure percentage [0− 100%].

Agent observation vector is given by o(k) = [v(k), vtarget(k), θrdg(k)], where v(k) is longi-
tudinal speed in [m/s], vtarget(k) is target longitudinal speed in [m/s], and θrdg(k) = 0 for a
flat road used for this experiment. The agent π is modeled using an ANN that has 3 hidden
layers, each of size 25.

The deep-RL controller was trained on RLLab [84] using batch size of 20000, max path
length of 800 (sampled at 10Hz) and discount factor of 0.9999. We trained ten policies (ten
seeds). The average discounted returns plot is shown in Figure 4.1. Training of all ten
policies started with random agent initialization and hence the low initial return. The first
100 iterations are exploration intensive leading to high variance between trained policies.
Variance between these policies reduces and converge after 200 iteration.
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Figure 4.1: Learning curve—min/max (light red shaded area) and mean (dark red curve)
from ten seeds—for deep cruise control policy based on deep model of the TruckSIM truck.

Control validation setup and validation results: Control performance, transfer,
and sensitivity

This section validates the performance of the deep-RL cruise controller developed in the
sections above, evaluates its transfer performance, and sensitivity to several of the major
assumptions used to train the controller. Deep-RL controller performance is compared to
a full-featured nonlinear classical model-based controller baseline. Compared to the bare-
minimum deep-RL controller, the baseline controller is calibrated using ground truth pa-
rameters (TruckSIM model parameters), real-time truck internal-state feedback (gear ratio),
and gravity model.

Figure 4.2 shows closed loop experimental performance statistics conducted against (A)
the deep truck environment, (B) TruckSIM environment, and (C) replicates the TruckSIM
environment set of experiments using the baseline classical controller.

DeepEnv-set experiment is a replication of the training setup and consists of 100 rollouts
drawn from the same training distributions (environment model, initial speed, set-values,
etc). The same controller is zero-shot transferred to TruckSIM to produce TruckSIM-set
consisting of 100 rollouts drawn from the same initial speed and set value distributions.

TS—LRMP—FLT—DTSDP, TS—HRMP—FLT—DTSDP—EOB, and
TS—STEP—NFLT—DTSDP—NMG experiment sets assess controller performance sen-
sitivity to the major assumptions. The deep-controller was trained assuming constant
set-speeds for each rollout. To violate this assumption, in TS—LRMP—FLT—DTSDP,
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Figure 4.2: Control error statistics generated from 100 random trails per experiment set for
(A) the deep policy evaluated against the deep environment, (B) the deep policy evaluated
against TruckSIM, and (C) the model based hierarchical controller.
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Figure 4.3: A decomposition of validation results—min/max (dashed curves), standard de-
viation (red shaded areas) and mean (blue curves)—of TS—HRMP—FLT—DTSDP—EOB
experiment set into acceleration ramps and deceleration ramps.

100 rollouts were conducted using ramp set-speed trajectories drawn from vtarget(k) =
vtarget(0) + aLRMPk, where vtarget(0) − v(0) is drawn from uniform(−1.39, 1.39)[m/s] and
aLRMP is drawn from uniform(−0.5, 0.5)[m/s2].

Training distributions were specified based on observation space; i.e., to cover/span
operational-distributions for initial-speeds and initial-errors, and implicitly assume these
distributions is action-space spanning; it spans corresponding operational-distributions of
engine and brake command spaces. The TS—HRMP—FLT—DTSDP—EOB experiment-
set explicitly violate this assumption in addition to the constant set speed assumption.
During training, action space was limited to 0− 1000N −m and then operated in truckSIM
for 0−1700N−m. To explicitly operate the engine torque out of bound, the vtarget trajectory
distribution was drawn from ramps with high accelerations; aHRMP is drawn from a uniform
distribution supported by (−1.5,−1.0) and (1.0, 1.5) [m/s2].

The training environment assumed flat roads. To violate this assumption, we replicated
the TruckSIM-set on non-flat roads. Road grade is assumed constant for each rollout and is
drawn from −2% to 2% grid spaced by 0.25%.

For all TruckSIM environment experiments, after the agent is trained offline in DeepEnv,
it is transferred (unchanged) and tested online in TruckSIM against the same TruckSIM
truck used for model development. The simulation environment is setup with a single truck
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Figure 4.4: A decomposition of validation results—min/max (dashed curves), standard de-
viation (red shaded areas) and mean (blue curves)—of TS—HRMP—FLT—TSMBH exper-
iment set into acceleration ramps and deceleration ramps.

controlled at 10Hz on a flat road (unless otherwise is stated).
In TruckSIM, to automate the simulation process and ensure consistency, to initialize

each rollout, we drive the truck to vtarget(0) + 0.28m/s then apply constant break cylinder
pressure of 0.1 until vehicle speed v is within 0.1m/s from vtarget(0) then activate experiment
session and activate the controller. Each experiment (rollout) is run for 80s (800 steps).

For each experiment set, Figure 4.2 shows mean, variance, and min/max of speed error
ev(k) = v(k) − vtarget(k), and shows mean variance, and min/max of acceleration error
ea(k) = ėv(k).

All experiments are initialized with speed error drawn from uniform(−0.5, 0.5)[m/s].
Experimental results show stability of the deep-RL cruise controller for which acceleration
errors converge to near zero for all experiments and all experiment sets. Acceleration error
converges to zero, and hence cruise control steady state speed is reached, within 5s.

Speed error statistics for TS—HRMP—FLT—DTSDP—EOB appear significantly larger
compared to the other experiment sets. In this set, higher accelerations magnify the effects
of truck control delays. Speed error caused by delay creates a bimodal distribution consistent
with the bimodal support of vtarget distribution (positive error for negative accelerations and
vice versa) as can be seen in Figure 4.3 and Figure 4.4.

Transfer performance and sensitivity is primarily seen from the speed steady state error
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distributions. Transfer from DeepEnv to TruckSIM-set shifts the speed steady state mean
from 0.145m/s to 0.121m/s and the variance from 0.017 to 0.033. Violation of the constant
set speed assumption shifted the mean to 0.077m/s and the variance to 0.129. The combined
violation of constant set speed assumption and engine torque out of bound shifts mean
to −0.026m/s and the variance to 0.381. Driving over non-flat roads shifts the mean to
0.069m/s and the variance to 0.146.

Figure 4.2 shows stability of the learned deep-RL cruise controller, shows transfer of the
controller from the deep-truck environment to the TruckSIM environment with relatively
marginal shift in error statistics, and its tolerance to some shifts in distributions from those
of the training environment with reasonable error trade-off. The base control scenarios
(STEP—FLT ) primarily suffer from an over-estimation of mechanical resistances leading
to positive constant steady state error. Steady state error variance increases for LRMP
and HRMP due to the additional delay error, not observable for constant target speeds, and
increases proportionally with acceleration. Steady state error variance in NFLT experiment-
sets is affected by the change in dynamics due to effective gravitational force. Performances
and tolerances (shifts in distributions) are consistent with those from the baseline controller.

Field experiments

This section presents field experimental results for the controllers described in this chapter.
The section documents experiments conducted using two differently configured real-physical
heavy duty trucks. These same two trucks were modeled using two different physics-based
power-train models in [14] and [15] used to develop high precision control systems for each
respective article.

Truck platforms/configurations and field driving environment

This section gives an overview of the full-size trucks, shown in Figure 3.3 used to conduct
the experiments in this chapter.

Freightliner truck. The Freightliner truck used for the results in this section is a
tractor-only Freightliner Century truck driven by a 435 hp turbocharged Detroit Diesel
diesel engine and equipped with a 6 gear true-automatic (equipped with torque-converter)
Allison transmission system. The service brake is a drive by wire all the way to the wheels.
The truck is not equipped with road grade sensors. Experiments conducted using this truck
has been carried out at a nearly flat test track with straight roads the longest of which is
around 300 meters long at the Richmond Field Station at California.

Volvo truck. The second set of experiments were conducted using a tractor-only Volvo
VNL truck driven by a 500 hp engine with an automated manual-transmission (equipped
with clutches). Experiments conducted using this truck has been carried out primarily at
open non-flat freeways.
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Truck interface for control

The vehicles used for experiments in this section were developed for automated vehicle
research and fitted with safety installations appropriate for automation and control experi-
ments. Actuation, feedback, and data logging utilizes direct access to the standard vehicle
network J1939-bus at 10Hz.

Validation results and discussion

Figure 4.5: Control error signals for experiment sets using the Freightliner truck.

This section presents field validation results for the deep-RL cruise controller developed
for full size real-physical heavy duty trucks. We conduct six sets of experiments to validate
transfer and controllers’ sensitivity to major assumptions employed during training. We
conduct these sets of experiments using two different trucks, three different controllers, and
over flat and graded roads. Error signals and error statistics for the conducted experiments
are shown in Figure 4.5, Figure 4.6, Figure 4.7, and Figure 4.8.

The FL—STEP—FLT—DFLDP1 experiment set consists of step function set-speed con-
trol trajectories conducted using the FL on a nearly flat road. This control policy is one of
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Figure 4.6: Speed and acceleration signals for experiment sets using the Freightliner truck—
set value signals in dashed lines, and truck response in solid lines.

two policies we used for validation in this section. We conducted six rollouts all with near
zero initial speed; initial speeds and initial errors are outside training bound. A set value
of 9.72m/s was used for four of the rollouts, and a set value of 11.11m/s and 12.5m/s were
used for one rollout each. Rollout results of this experiment were aligned (along time axis)
at the boundary of the training initial error distribution (1.39m/s).

This controller appears to be underdamped with bounded steady state oscillations. Steady
state oscillations are consistently bounded between -0.46 and -0.069 m/s with overshoot of
0.32 m/s from set value.

The FL—STEP—FLT—DFLDP2 experiment set consists of step function set-speed con-
trol trajectories conducted using the FL on a nearly flat road. This set was conducted using
a second policy. We conducted three rollouts all with near zero initial speed; initial speeds
and initial errors are outside training bound. A set value of 9.72 m/s, 11.11m/s, and 16m/s
were used for one rollout each. The rollouts of this experiment were aligned (along time
axis) at the boundary of the training initial error distribution (1.39m/s).

Accelerations converged to within steady state error of ±0.2m/s2 for this set of experi-
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Figure 4.7: Control error signals for experiment sets using the Volvo truck.

ments resulting in a smoother stable steady state speeds. Steady state speed converged to
within -0.34 and -0.26 m/s.

The VL—STEP—NFLT—DVLDP1—MG experiment set consists of step function set-
speed control trajectories conducted using the Volvo on a non-flat road using a controller
policy with road grade feedback. We conducted two rollouts; the first rollout with an initial
speed of 10m/s and set speed of 20m/s, and the second rollout with initial speed of 16m/s
and set speed of 25m/s. The rollouts of this experiment were aligned (along time axis) at
the boundary of the training initial error distribution (2.5m/s).

Accelerations converged to within steady state error of ±0.62m/s2 for this set of exper-
iments resulting in a smoother stable steady state speeds. Steady state speed converged to
within -0.85 and -0.48 m/s. Drops in speed at -4.5s and -3.2s are gear-shifting instances.

The FL—LRMP—FLT—DFLDP2 experiment set consists of ramp function set-speed
control trajectories conducted using the FL on a nearly flat road. We conducted two rollouts
all with near zero initial speed; initial speeds and initial errors are outside training bound.
The (constant) acceleration of the first ramp function is 0.4m/s2 and the second ramp
function is 0.6m/s2.
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Figure 4.8: Speed and acceleration signals for experiment sets using the Volvo truck—set
value signals in dashed lines, and truck response in solid lines.

Accelerations converged to within steady state error of ±0.3m/s2 and steady state speed
converged to within -0.42 and -0.28 m/s. Decaying transient oscillations were observed with
maximum error of -0.80 and 0.75 m/s after initial error and before convergence to steady
state error. These oscillations were primarily caused by the still disengaged torque converter,
which engages at about 8 ∼ 10m/s. These oscillations do not appear in the step response
because of the higher acceleration requested in those experiments.

The VL—SINE—NFLT—DVLDP1—NMG experiment set consists of sine function set-
speed control trajectories conducted using the Volvo on a non-flat road using a controller
policy with no road grade feedback. We conducted three sine cycle runs with average speed
of 25m/s, amplitude of 2 m/s, and cycle of 60 s.

Speed of this set of experiments converged to within -1.1 m/s and -0.6 m/s. The higher
speed error in this experiment is caused by the un-controlled for gravity effects. Speed and
acceleration of this experiment have higher amplitude white noise than the other experiments.

The VL—STEP—NFLT—DVLDP1—NMG experiment set consists of constant function
set-speed control trajectories conducted using the Volvo on a non-flat road using a controller
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policy with no road grade feedback. We show the steady state ensemble of eleven 25-second
rollouts.

Speed of this set of experiments converged to within -1.0 and -0.6. The higher speed error
in this experiment is caused by the un-controlled for gravity effects. Speed and acceleration
of this experiment have higher amplitude white noise than the other experiments.

In this section, transfer performance from DeepEnv of two different policies to the same
real-physical truck, and transfer of two policies to two different trucks were shown. Moreover,
control performance sensitivity to violating the constant set speed assumption and to road
profile modeling were assessed. The controllers achieved consistent performance across a
wide range of the state space of the truck with minimum feedback information for the set of
conducted experiments.

Deep control performance compared to baseline

The deep-RL based feedback controller is tested in the field against the same real truck. Con-
trol experiments here were limited to engine drive control. The scenarios were constrained
by the relatively short length of the test track. Figures 4.9, 4.10, and 4.11 show experimental
control performance results for a step and a saturated ramp functions. These experiments
demonstrate comparable steady state control performances between RL and model-based
control. The offset between reference value and RL-control response for both experiments,
and the larger transient oscillations for the ramp function experiment are artifacts of the
optimization-based design cost function we used. Namely, the offset is an artifact of the
trade-off between input cost (non-zero engine torque to counter resistances) and speed error
cost. The larger transient oscillations are artifact of the cost function’s emphases on accurate
speed tracking, which resulted in an aggressive high gain controller.

4.4 Conclusion

This chapter presented preliminary experimental evaluation of deep-RL-based longitudinal
heavy duty truck cruise control. The experiments demonstrated transfer (from offline model
to online real environment) and robustness of controllers learned offline based on deep truck
model environment. The experiments evaluated the potential of the pipeline (deep truck
and deep-RL) as configuration agnostic strategy to develop non-linear controllers for heavy
duty trucks.

The deep model and deep-RL controls presented in this chapter successfully (1) infers
relevant latent and state variables (such as gearbox), (2) performs dynamic state estimation
(such as selected gear and brake cylinder pressure at t = 0) and tracking (latent state
variable values for t > 0), and (3) successfully performs system identification and parameter
estimation (such as the aerodynamic drag effect and its coefficient).

Deep learning and deep RL offer a convenient alternative to modeling and control of
dynamical system. This convenience however comes at the expense of formal guarantees
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Figure 4.9: Control performance for 17.63m/s step set value function conducted using
Freightliner truck.

Figure 4.10: Control performance for 15.43m/s step set value function conducted using
Freightliner truck.
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Figure 4.11: Control performance for 15.43m/s saturated ramp set value function conducted
using Freightliner truck.

requiring more exhaustive evaluation of possible variations such as vehicles and operational
details, and a more extensive field testing is still needed. While safety is outside the scope
of this chapter, failure conditions are expected to occur and must be studied and accounted
for. Moreover, the preliminary transfer and robustness performance results presented here
must be studied and evaluated in more details in relationship to the choice of deep learning
and deep-reinforcement learning algorithms and models, to the expected performance of the
source model used to develop the deep environments, and more importantly in comparison to
policies (1) learnt directly using the real-environment, and (2) learnt using classical vehicle
models.
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Chapter 5

Multi-scale vehicle and traffic flow
modeling and actuation using
mean-field models

5.1 Introduction

The earlier chapters of this manuscript investigated the automation of heavy duty trucks.
Namely—in Chapters 2, 3, and 4—modeling and control of heavy duty trucks using classical
methods and using machine learning have been investigated, in addition to high fidelity
simulation and field development and implementation. Section 3.5 of Chapter 3 briefly
investigated microscopic modeling and control of multi-truck systems. This chapter extends
these notions to investigate the automation of the heavy duty truck within the bigger context
of a vehicular traffic stream on the road.

Vehicular traffic on the road can be inherently unstable as has been experimentally
demonstrated in [89], [90]. The presence of automated vehicles within this traffic stream
can influence these streams with potential for capacity multiplication [18] or creating bottle-
necks [63], [64]. In [85], [91], microscopic numerical and field experimental studies have been
conducted for the automated vehicle as a traffic flow smoothing agent to improve capacity
and energy consumption in the simplified setting of ring roads.

Demonstrating these gains in open networks such as an open freeway require more de-
tailed models and controllers, an effort being investigated by the Circles project with a
multi-campus team lead by UC Berkeley. Flow [85], [92] proposes deep reinforcement learn-
ing framework to study microscopic traffic flow instabilities and their control. Transfer of
traffic flow smoothing controllers controllers from ring roads to open networks has been in-
vestigated in [93] and from simulation to scaled physical models has been studied in [94].
However, computational cost of microscopic simulation of traffic scales with the number of
simulated vehicles, which can be expensive for open networks.

Macroscopic models [95]–[98] have historically been considered an effective tool to study
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large scale traffic systems. Mean-field modeling framework provides an approach to derive
macroscopic models given descriptions of the microscopic interactions between considered
agents [99]–[101]. These mean-field models allows for the investigation of such traffic streams
at multiple scales. Namely, it provides a formal framework to study microscopic automated
vehicles as they drive within a traffic stream that is modeled macroscopically, and allows for
the development of optimal control systems to actuate this traffic.

The mean-field limit to model such system yields models representing PDE nonlocal con-
servation laws. The literature on numerical solvers for these models is still sparse. Namely,
to the best of our knowledge, [102] is the only published numerical solver. This chapter
focuses on developing a structure preserving numerical solver algorithm suitable to study
multi-scale traffic models and flow actuation.

5.2 Nonlocal conservation laws and mean-field models

Conservation laws [103] have been used to describe a wide range of phenomena such as
conservation of energy, conservation of mass, and conservation of momentum. Many other
phsyical phenomena are naturally nonlcal however motivating the theory of nonlocal conser-
vation laws. These laws arise from mean field limits to describe interactions such as pedes-
trian dynamics, swarms, and traffic flow. The nonlocal theory is mathematically smother
[104]–[106] compared to the local theory. That is, for the local theory, entropy condition
must be introduced to single out the physically relevant solution; information is lost over
time otherwise and weak solutions are thus not unique. Information is not lost over time
in the nonlocal theory, and thus weak solutions of nonlocal conservation laws are naturally
unique.

Nonlocal conservation laws can be used to describe the dynamics of a large spectrum
of physical phenomena where some quantity is conserved while interacting nonlocally. This
makes them suitable to model traffic flow in transportation systems for instance [107]–[109],
model nonlocal multi-class traffic flow [110], and study the smoothing of the nonlocal term
and shock formation [111]. They have also been used to study traffic modelling from nonlocal
follow the leader ordinary differential equations [112] and the corresponding traveling waves
complemented in [113].

Nonlocal conservation laws have also been used to model and study supply chains [114]–
[116]. Generalization to multi-commodity models on networks have been developed in [117],
[118], and material flow in conveyor belts have been presented in [119], [120]. They have
also been used as a tool in several other domains such as biological and industrial modeling
[121], and crowd dynamics [122].

Nonlocal conservation law model

In this chapter, we develop a general numerical solver scheme based on a triangulation of
the characteristic for the the class of two-dimensional nonlocal conservation laws presented
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in Definition 5.2.2. The same theory could be extended to solve higher dimensional models,
but we leave outside the scope of this manuscript.

Assumption 5.2.1 (Input datum). In this work, assume the following:

• T ∈ R>0.

• Ω := R2.

• ΩT := (0, T )× Ω.

• q0 ∈ BV (Ω;R).

• h : ΩT × Ω is a compactly supported Lipschitz continuous kernel.

Definition 5.2.2 (The problem considered: multi-dimensional nonlocal conservation laws).
In this work we consider the following PDEs in the variables (t,x) ∈ ΩT recalling Assump-
tion 5.2.1, where q : ΩT → R is density:

qt(t,x) + Div
(
H [q](t,x)q(t,x)

)
= 0

q(0,x) = q0(x)

and define the nonlocal operator

W [q](t,x) =

∫
Ω

h(t,x, x̃)q(t, x̃)dx̃

H [q](t,x) = V (W [q](t,x))

As we want to have solutions which can be discontinuous we require a weaker form of
solutions, so called weak solution. To obtain the definition of weak solution, we multiply the
previous PDE with a sufficiently smooth test function and integrate over the entire space-
time horizon. After an integration by parts, the derivatives are now on the test functions and
we then postulate that the corresponding integral equation holds for all test functions from
a sufficiently large set. In equations, take a ϕ : [0, T ]× Ω → R so that ϕ(T, x) = 0 ∀x ∈ Ω
and lim|x|→∞ ϕ(t,x) = 0 ∀t ∈ [0, T ] and write:

ϕ(t,x)qt(t,x) + Div
(
H [q](t,x)q(t,x)

)
ϕ(t,x) = 0

An integration over space-time and then, the integration by parts to shift derivatives to the
test-function ϕ leads to:∫∫

ΩT

ϕ(t,x)qt(t,x) + Div
(
H [q](t,x)q(t,x)

)
ϕ(t,x) dx dt = 0 (5.1)



CHAPTER 5. MULTI-SCALE VEHICLE AND TRAFFIC FLOW MODELING AND
ACTUATION USING MEAN-FIELD MODELS 74

integration by parts leads to what we consider as the weak solution formulation:

−
∫∫

ΩT

ϕt(t,x)q(t,x) dx+

∫∫
Ω

[
ϕ(t,x)q(t,x)

]t=T
t=0

dx

−
∫∫

ΩT

H [q](t,x)q(t,x)∇ϕ(t,x) dx dt = 0

(5.2)

∫∫
ΩT

ϕt(t,x)q(t,x) dx+

∫∫
Ω

ϕ(0,x)q0(x) dx

+

∫∫
ΩT

H [q](t,x)q(t,x)∇ϕ(t,x) dx dt = 0

(5.3)

Theorem 5.2.3 (Well-posedness of the weak solution and the characteristics). Let Assump-
tion 5.2.1 hold and assume that q ∈ C([0, T ];L1(R)) is given. For any smooth test function
ϕ : [0, T ] × Ω → R so that ϕ(T, x) = 0 ∀x ∈ Ω and lim|x|→∞ ϕ(t,x) = 0 ∀t ∈ [0, T ], the
weak solution, defined in Eq. (5.3), is well-posed and admits a unique solution. The following
integral equation in ξ : ΩT × (0, T )→ Ω is the characteristics in integrated form:

ξ(t,x; τ) = x+

∫ τ

t

H [q](t, ξ(t,x; s)) ds (5.4)

and the solution can then be defined in terms of this characteristics

q(t,x) = q0(ξ(t,x; 0)) det(D2ξ(t,x; 0)) ∀(t,x) ∈ ΩT (5.5)

∫
∆

q(t,x) dx =

∫
∆

q0(ξ(t,x; 0)) det(D2ξ(t,x; 0)) dx =

∫
ξ(0,∆;t)

q0(x) dx (5.6)

The proof to this theorem can be found in [105] and in [123].

Motivation for the characteristic solver

The numerical solver presented in this chapter preserve discontinuities compared to classical
finite volume solvers, which are inherently numerically dissipative as shown in Figure 5.15
in Section 5.6 (Nondissipative property section). Moreover, the characteristic solver is less
sensitive to CFL conditions that are commonly required for classical numerical solvers such as
[102]. The numerical solutions using the method presented here maintain structure and the
important properties of the solution at different discretization resolutions (mesh resolution
and time scales). These properties offer tools to study and understand solutions of nonlocal
conservation laws better. Theoretical bases for this approach have been studied in [105],
[123]–[125]. To the best of our knowledge, [102] is the only published numerical solver for
these models to date of this manuscript.
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5.3 General solvers and underlying theory

This section uses Theorem 5.2.3 to develop a general solver for the class of nonlocal conser-
vation laws presented in Definition 5.2.2. The theorem states the existence and uniqueness of
solutions to the characteristic curves of these PDE models. These curves represent the basis
to solve the PDE models by means of a triangulation evolution in time and a corresponding
evolution of respective density profile approximated by this triangulation.

To discritize the domain x of the solution, a meshing scheme is defined next. For a two
dimensional domain, this could be represented using a triangulation, which then is evolved
in time. This triangulation is then augmented with a density profile evolving in time to
represent the solution q. This section starts with general definitions that are later used to
derive numerical solver equations.

Definition 5.3.1 (Domain surface triangulation). Define the triangulation TΦ as the set of
triangles {∆(j)|j ∈ {1 . . . J}} where J is the number of triangles in the triangulation such
that ∆(j) ⊂ R2, ∪Jj=1∆(j) covers some open connected domain Φ ⊂ R2 without holes and,
for any i, j ∈ {1 . . . J} and i 6= j, ∆(i) ∩∆(j) is empty. Each triangle ∆(j) is defined by the
ordered set of three vertices (or points) p(j,i) where j ∈ {1 . . . J}, i ∈ {1 . . . 3} and p(j,i) ∈ R2.
Let P ∈M ×R2 be the set of unique vertices in the triangulation where M is the number of
vertices in this set.

Definition 5.3.2 (Time evolving triangulation). Define the time evolving triangulation
TΦ(t) as a diffeomorphic manifold approximated by the triangulation TΦ such that the trian-
gles are allowed to move and deform as a function of time t according to some differentiable
map operating on traingle vertices. Hence define the evolving triangle ∆(j)(t) as the trian-
gle represented by the ordered set of three vertices (or points) p(j,i)(t) where j ∈ {1 . . . J},
i ∈ {1 . . . 3} and p(j,i)(t) ∈ R2. Let P ∈ M × R2 be the set of unique vertices in the
triangulation where M is the number of vertices in this set.

Remark 5.3.3 (Generalization to arbitrary meshing schemes). We assume triangular meshes
in this work for convenience, but they can be generalized to meshes with arbitrary face ge-
ometry.

Definition 5.3.4 (Density profile triangulation). Define density profile triangulation as the
triangulation TΩ(t) and assign some density value q(j)(t) to each ∆(j)(t) ∈ TΩ(t) where
j ∈ {1 . . . J}.

Remark 5.3.5 (Density profile approximation). The density profile is approximated as a
piece-wise constant surface in Definition 5.3.4. This allows for a simple and efficient numeri-
cal solver. Density surface could alternatively be estimated using higher order approximations
such as multidimensional trapezoidal rule for higher accuracy.

These definitions along with Theorem 5.2.3 are used next to derive a discritized solution
as follows:
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Theorem 5.3.6 (Density solution along characteristic faces). Define a characteristic face
as the region enclosed initially by any given triangle ∆. A characteristic face evolution in
time is defined as the evolution of each point x ∈ ∆ according to the characteristic curves.
Then, along these characteristic faces, q(t,x) is conserved, and hence:∫

∆

q(t,x) dx =

∫
ξ(0,∆;t)

q(0,x) dx (5.7)

Use Definition 5.3.4 to approximate q(t,x), and let each triangle evolve according to the
characteristic curves defined in Eq. (5.4), then, for each j ∈ {1 . . . J}:

qj(t) ≈ qj(0)

∫∫
∆(j)(0)

dx∫∫
∆(j)(t)

dx
(5.8)

For simplicity, we assume that a triangular characteristic face remain a triangle as it
evolves according to the characteristic curves. With this assumption, computation of the
evolution of the triangles in time simplifies to evolution of the three vertices representing the
triangle. For each vertex, this evolution in time could be discritized as follows:

Theorem 5.3.7 (Explicit Euler integration of characteristic curves and faces in time). Using
first order Euler integration, for τ = t+ δt and some small discrete step δt, we discretize the
characteristic Eq. (5.4) of the PDE in Definition 5.2.2 as follows:

ξ(t,x; τ) ≈ x+H [q(t)](t,x)δt (5.9)

Remark 5.3.8 (Time discritization of the characteristic curves). Higher order integration
schemes such as Runge–Kutta could be used as well. However, in this chapter, we use Euler
integration for simplicity and low computational complexity.

Computation of the characteristic curves in Eq. (5.9) require a computation of the non-
local convolution. By linearity of the integral operator in W defined in Definition 5.2.2, we
could evaluate the convolution for each triangle separately. The computation of the convo-
lution could be simplified by utilizing the assumption that q is constant inside each triangle.
If explicit computation of convolution of the nonlocal term h is tedious, one could further
simplify the computation by assuming that h is constant inside each triangle. This would
lead to the following:

Theorem 5.3.9 (Discritization of the nonlocal convolution). Consider the nonlocal convo-
lution defined in Definition 5.2.2:

W [q](t,x) =

∫∫
Ω

h(t,x, x̃)q(t, x̃)dx̃ (5.10)
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Let TΩ(t) be a triangulation as defined in Definition 5.3.2 representing the integral domain
Ω, then the nonlocal convolution could be written down as:

W [q](t,x) =
J∑
j=0

∫∫
∆(j)(t)

h(t,x, x̃)q(t, x̃)dx̃ (5.11)

Assuming q is constant inside each triangle, the convolution simplifies to:

J∑
j=0

q(j)(t)

∫∫
∆(j)(t)

h(t,x, x̃)dx̃ (5.12)

where the double integral could be computed explicitly or reduced to a single integral using
divergence theorem. Otherwise, the convolution could be further simplified by taking the
two-dimensional Riemann sum approximation to get:

J∑
j=0

q(j)(t)h(j)(t,x)

∫∫
∆(j)(t)

dx̃ (5.13)

Where h(j)(t,x) is some discretization scheme of the nonlocal kernel (such as the aver-
age value inside triangle j or the value of the kernel at the centroid of the triangle), and∫∫

∆(j)(t)
dx̃ represent the area of each respective triangle, which can be computed explicitly in

a trivial way.

Discontinuities in Definition 5.2.2 are introduced with the initial condition but are neither
created or destroyed as the solution evolves in time; as can be observed from Theorem 5.2.3
where the solution represents transportation of the initial datum multiplied by smooth func-
tions. Accurate representation of these discontinuities in the solution rely on properly ap-
proximating these discontinuities into the triangulation defined in Definition 5.3.1 and the
solver presented in this section inherently maintains their evolution in time. This could be
enforced by extending the definition of the triangulation into a triangulation constrained by
the discontinuity boundary as shown in Figure 5.4 and Figure 5.5.

The evolution of the mesh in time causes deformation, and because of discretization, this
potentially leads to degeneracy or degradation of mesh quality. To maintain the quality of
the solution, a CFL type condition to track mesh quality is necessary. This condition would
evaluate mesh properties such as triangle overlapping, triangle malformation, etc. Triangles
overlap happen when the order of vertices in the triangulation is violated while evolving them
in time as shown in Figure 5.9. This can occur when the time step δt of the explicit Euler
is chosen inappropriately too large. Triangle malformation stems from model dynamics that
either concentrate density beyond the handling of numerical tools as shown in Figure 5.8
or spread it until density cannot be precisely represented without refinement. When the
mesh degrades, the mesh must be restored using a process that conserves the L1 mass of the
solution and preserves the discontinuity boundary.
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The solver presented in this section is L1 conserving that does not destroy discontinuities.
It approximates the solution to the initial value problem of the PDE model by means of a
moving in time mesh, a property that could support efficiency; we only need to triangulate
and solve for the non-zero regions of the domain. Moreover, the solution is constructed by
a naturally mesh adaptive way; the mesh deforms according to the dynamics.

The solver in this section introduces several types of error outlined as follows:

Error 1: Triangulation of initial datum: this is introduced due to the discritization of the dis-
continuity boundary and the discritization of the value of q. For example, a square
boundary can be approximated accurately, however, a circle can only be represented
approximately with the coordinates used in this section. We also assume that the
value of q is piecewise constant within each triangle.

Error 2: Computation of the nonlocal term: this section suggested approximation of the
nonlocal kernel h as a piecewise constant within each triangle, which could introduce
error into the nonlocal operator H . This could be remedied by explicit integration
instead.

Error 3: Geometric approximation of characteristic face evolution in time: this section as-
sumes that a triangle in x at some time instance t remains a triangle as it evolve
according to the characteristic equation in time. This assumption will introduce
error into the solution. However, for characteristic equations with small lipschitz-
constant, and for sufficiently small time steps, deformation triangle geometry and
hence the associated error is negligible.

Error 4: Mesh maintenance: error could be introduced for approximate restorations of de-
generate meshes. This could be remedied by increase in algorithm and computa-
tional complexity.

5.4 Vectorized representation

This section presents the fundamental equations necessary to implement the solver in a
vectorized form. The discrete time characteristic equation in Eq. (5.9) is cast as the trian-

gulation vertex update equation, for each point p
(k)
(i) ∈ P

(k) where i ∈ 1 . . .M and k is the
discrete time step, as follows:

p
(k+1)
(i) ≈ p(k)

(i) +H [q(k)](p
(k)
(i) )δt (5.14)

Hence, the update equation for all vertices of the triangulation can be represented in
vector form as follows:

P (k+1) ≈ P (k) +H [q(k)](P (k))δt (5.15)
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where P is an M × 2 where each row is a vertex from the triangulation represented by its
2D coordinates (x, v) as follows:

P (k) =


p

(k)
(1)

p
(k)
(2)
...

p
(k)
(M)

 =


x

(k)
(1) v

(k)
(1)

x
(k)
(2) v

(k)
(2)

...

x
(k)
(M) v

(k)
(M)

 (5.16)

TheH is an M×2 matrix representing the nonlocal operator evaluated at each respective
vertex of the triangulation; noting that H [q(k)](P (k)) represent element-wise evaluation of
H for each vertex in P (k). This operator is evaluated given a user defined function V (W ).
However, in general, for each vertex, the nonlocal convolution W could be evaluated using
Theorem 5.3.9 in following vector form:

W (k)[q](x) =
J∑
j=0

q
(k)
(j) h̃

(k)
(j)(x) (5.17)

=
[
h̃

(k)
(1)(x) h̃

(k)
(2)(x) · · · h̃

(k)
(J)(x)

]
·


q

(k)
(1)

q
(k)
(2)
...

q
(k)
(J)

 (5.18)

where

h̃
(k)
(j)(x) =

∫∫
∆

(k)
(j)

h(k)(x, x̃) dx̃ (5.19)

≈ h
(k)
(j)(x)

∫∫
∆

(k)
(j)

dx̃ (5.20)

The discretization of h
(k)
(j) is chosen as appropriate for the problem. For instance, this

could be the average value inside triangle j or the value of the function evaluated at the
centroid of the triangle.

This W (k)[q](x) will have to be evaluated for each x ∈ P (k) hence, in vector form:

W (k)[q](P (k)) =


W (k)[q](p

(k)
(1))

W (k)[q](p
(k)
(2))

...

W (k)[q](p
(k)
(M))

 =


ĥ

(k)
(1,1) ĥ

(k)
(1,2) · · · ĥ

(k)
(1,J)

ĥ
(k)
(2,1) ĥ

(k)
(2,2) · · · ĥ

(k)
(2,J)

...
...

. . .
...

ĥ
(k)
(M,1) ĥ

(k)
(M,2) · · · ĥ

(k)
(M,J)

 ·

q

(k)
(1)

q
(k)
(2)
...

q
(k)
(J)

 (5.21)
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where the matrix
[
ĥ

(k)
(i,j)

]
is the matrix representing h̃

(k)
(j) evaluated for vertex i and integrated

over triangle j as follows:

ĥ
(k)
(i,j) = h̃

(k)
(j)(p

(k)
i ) (5.22)

This matrix can be generated with a properly formatted argument matrices and using
element-wise operations.

Density of each triangle can be updated using the equation from Theorem 5.3.6 as follows:

q
(k+1)
j ≈ q

(k)
j

area
(

∆
(k)
(j)

)
area

(
∆

(k+1)
(j)

) (5.23)

where the area of a triangle is half the absolute value of its determinant, which can be
evaluated given the coordinates of its vertices (xi, vi) ∈ R2 for i ∈ {1 . . . 3} as follows:

|x1(v2 − v3) + x2(v3 − v1) + x3(v1 − v2)|
2

(5.24)

Density scaling equation can be vectorized using element wise operations or using matrix
operations for properly formatted matrices.

5.5 Solver algorithm

This section presents an outline for the characteristic-based solver algorithm for Defini-
tion 5.2.2 utilizing the theory presented in the earlier sections. The core of the algorithm
is an iterative density profile mesh evolving process presented in Algorithm 2. This core
solver takes an initial density profile mesh {P,ConList,Density}, the desired time horizon
T , and initial time step size δt as an input, and generates the solution q as an output. In
addition to the primary solver equations to evolve the mesh, time step adaptation and mesh
maintenance are performed to correct for mesh degeneracy.

This section also presents support algorithms to the core solver; namely, Algorithm 1,
an algorithm to generate discontinuity preserving initial density meshes to use as an input
for Algorithm 2, and Algorithm 3, an algorithm to restore the density profile mesh to use to
correct for mesh degeneracy.

Algorithm 1 takes, as input, desired domain boundary approximated as a triangle and
defined by two corner points; triangulation resolution approximated by the desired number
of unique triangle vertices in the mesh; an initial density function that is queryable given
any point within the domain; mesh face density estimation function such as a function that
evaluates the density function at the centroid of the provided triangle; and discontinuity
boundary for discontinuous initial density functions approximated by a set of points and
a set of edges edges. This algorithm uses domain boundary and resolution to generate
vertices, which are used to generate a Delaunay Triangulation [126], or Constrained Delaunay
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Triangulation [127] constrained by discontinuity boundary for discontinuous initial density
functions. Note that the initial density value of each triangle is presented in the algorithm
outline with a for loop. This for loop could be vectorized for simple estimation function such
as those evaluating density at triangle centroids. This function outputs Edisc to represent and
keep track of discontinuity boundary. This set references points from P and hence remain a
static set during integration and can be used to extract Pdisc after they have had evolved in
time when needed.

The solver algorithm presented in this section causes mesh deformation with potential for
degeneracy as discussed earlier in this chapter. Triangle overlapping could be corrected for by
adapting the time step, and triangle malformation could be corrected for using an algorithm
such as Algorithm 3. Note that this mesh maintenance algorithm is not L1 mass conserving.
To conserve L1 mass after remeshing, Qest[Qo](facei) function passed from Algorithm 3 to Al-
gorithm 1 must be designed carefully for this purpose. Otherwise, the remeshed surface could
be approximated using a simple piece-wise constant interpolation function Qest[Qo](facei) as
already assumed for initial density profile approximation.

Algorithm 1: Simple discontinuity preserving initial density mesh generation al-
gorithm

Input : Initial domain boundary {x1,min, x1,max, x2,min, x2,max}
Input : Triangulation resolution—number of mesh vertices along each

dimension—{x1,resolution, x2,resolution}
Input : Queryable initial density function Qo(x)
Input : Mesh face density estimation function Qest[Qo](facei)

1 Generate sample points Pmesh inside initial domain at defined resolution;
2 if Qo is discontinuous then

Input : Discontinuity boundary set defined as set of points Pdisc and an
ordered set of edges Edisc from the point set Pdisc

3 Generate P and ConList using Constrained Delaunay Triangulation of the
augmented point set {Pmesh ∪ Pdisc} constrained by the discontinuity boundary
set {Pdisc, Edisc};

4 else
5 Generate P and ConList using Delaunay Triangulation of the point set Pmesh;
6 Let Edisc be an empty set;

7 end
8 for ( j = 0; j ≤ |ConList|; i = i+ 1 ) {
9 Generate initial density profile Densityj = Qest[Qo](facej);

10 }
Output: Density profile mesh {P , ConList, Density, Edisc}
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Algorithm 2: Core solver for PDE Model in Definition 5.2.2

Input : Initial density profile mesh {P , ConList, Density, Edisc}
Input : Time horizon T and time step ∆t

1 for ( t = 0; t ≤ T ; t = t+ ∆t ) {
2 Move triangles: integrate characteristic curves using Eq. (5.15);
3 Solve for densities Eq. (5.23);
4 if triangle overlap then
5 Adapt time step ∆t ← ∆t

2
;

6 Undo step;

7 end
8 if triangle malformation then
9 Perform mesh maintenance;

10 Undo step;

11 end

12 }
Output: PDE solution q

Algorithm 3: Discontinuity preserving mesh maintenance

Input : Degenerate density profile mesh q as {P , ConList, Density, Edisc}
1 if Edisc is not empty then
2 Extract discontinuity boundary Pdisc from P given Edisc;
3 end
4 Apply Algorithm 1 to get qremeshed by providing q as Qo, some interpolation function

Qest, and other inputs as appropriate;
Output: Remeshed density profile qremeshed

5.6 Numerical implementation

This section presents numerical examples for Definition 5.2.2. We first validate the solver
by comparing its results against an explicit solution. We then use the algorithm to develop
numerical solutions to a traffic flow model and to Lagrangian traffic actuation. Finally, we
compare the results to a classical solver based on viscosity approximation to illustrate the
nondissipative property of our algorithm.

Validation against an explicit solution

This section validates the solver against an explicit solution to the model in Example 5.6.1
solved in [105]. In this model, the nonlocal operator computes the overlap of q with a fixed
in x integral region with a quadratic support. With a square-shaped initial datum q(0,x),
the initial datum moves diagonally in x from one corner of the nonlocal integral region to
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stop at the other corner with a variable speed that peaks while the mass of q is fully inside
the nonlocal integral region.

Example 5.6.1 (Moving solution with quadratic support). Consider the following model in
the variables (t,x) ∈ [0, T ]× R2 for a sufficiently large T :

qt(t,x) + Div
(
H [q](t,x)q(t,x)

)
= 0

q(0,x) = χ[− 1
2
, 1
2

]2

and the following nonlocal operator:

W [q](t,x) =

∫ 2

0

∫ 2

0

q(t,x)dx

H [q](t,x) = W [q](t,x) ·
[
1
1

]
The solution of the equation can be stated as:

q(t,x) = χ[ξ(t)− 1
2
,ξ(t)+ 1

2
]2(x)

where χ is the indicator function and:

ξ(t) :=



1

2− t
− 1

2
, t ∈ [0, 1]

t− 1

2
, t ∈ (1, 2]

2.5− 1

t− 1
, t ∈ [2, T ]

The explicit and numerical solution is shown in Figure 5.1. In this figure, the numerical
solution is evaluated for dt = 0.01 and a mesh resolution of 40 samples per dimension as
outlined in the algorithm section. The numerical error in this example is primarily due to
the approximation of the nonlocal convolution. The error could be reduced by computing
an explicit solution to the nonlocal term, or by increasing mesh resolution, which could be
observed in Figure 5.2.

In Figure 5.2, evaluate L2 mass of the error between the explicit solution and the numer-
ical solution for a several combinations choices of dt and mesh resolutions. The correlation
between mesh resolution and solution accuracy can be observed.

It can be noted that the L2 mass of the error tend to drop towards the end of the
simulation, especially for high resolution meshes. Error in this model is primarily caused
by estimation of the nonlocal operator while the structure and discontinuities of the initial
datum are preserved. The effect of this error diminish towards the end of the simulation
due to the dynamics of the model. While this decay of the L2 mass of the error cannot
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be observed for classical solvers, which smooth the initial datum over time, this is not a
generally expected behavior for this solver for all models. Hence more complex models must
be studied to validate the solver.

Computational time is shown in Table 5.1. The computational time is estimated for
solving the model with T = 4 and with dt and mesh resolutions as shown in the table.
The initial mesh covers covers [−0.6, 0.6]2 domain. The nonlocal convolution is the most
compute extensive step to solve this model, which scales quadratically with the resolution
of the two-dimensional mesh as will be shown in more details in the following sections.

Table 5.1: Computational time in seconds to numerically solve the model in Example 5.6.1.

Traffic flow model

In this section, we use the algorithm developed in this chapter to solve the PDE model of
traffic flow presented in Example 5.6.2. This model is a mean-field limit adapted from [99]
to describe mesoscopic freeway traffic flow dynamics using the microscopic intelligent driver
model (IDM) [128]. In this model, q encodes the density of vehicles driving at a given speed
and located at a given spatial position along the modeled freeway.

Example 5.6.2 (mesoscopic traffic flow model).

qt(t, x, v) + v∂xq(t, x, v) = −∂v
((
H[q(t)](x, v)

)
q(t, x, v)

)
(5.25)

q(0, x, v) = q0(x, v), (x, v) ∈ R× R>0 (5.26)
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(a) (b)

Figure 5.1: Comparison of numerical solution to an explicit solution to Example 5.6.1.
Evolution of solution in time is shown in (a) where the filled square is the numerical solution
and the red outline is the explicit solution. The evolution of absolute error in time is shown
in (b).
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Figure 5.2: Evolution of L2 mass of error between numerical solution and explicit solution
as a function of time for Example 5.6.1.
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with the nonlocal operators a defined in

H[q](x, v) = a− a
(
v
v0

)δ
− a

∫
R

∫
R>0

h(x− x̃)q(x̃, ṽ)

(
s0 + vT + v(v−ṽ)√

2ab

x̃− x− l

)2

dṽ dx̃.
(5.27)

h(x) :=

e
− 1

( ε02 )
2
−(−x− ε0

2 )
2

, if − ε0 < x < 0,

0, otherwise.
(5.28)

(5.29)

where vo, δ, so, T , a, b, l, and εo are tuning parameters.

Numerical solutions to this model for a rectangular initial datum are shown in Figure 5.3
for mesh resolutions 20 and 40 and time step dt ∈ {0.1, 0.01}. This example represent the
flow of a stream of vehicles. Vehicles move in space at their respective speeds and accelerate
according to the IDM model. In Figure 5.4, we add a second rectangular region into the
initial datum. This initial datum represents a fast stream of vehicles approaching a slower
one. It can be observed from the solution that the faster stream slows down as it approach
the slower stream, while the slower stream speeds up according to the IDM model.

In these figures, accuracy is affected by the rectangular discontinuity boundary con-
straints imposed into low resolution meshes. Figure 5.5 solve the same model and initial
datum presented in Figure 5.4 without imposing an explicit discontinuity constraint into the
mesh. While the general behavior is still consistent, significant drop in the resolution of the
solution can be observed. Overall, solution robustness to mesh resolution and time step can
be noted in all figures presented.

The numerical solution is generated by means of an evolving in time mesh as shown in
Figure 5.8. In Figure 5.8, given the dynamics over time, density concentrates in x where
triangle sizes approach zero causing numerical challenges. With too large time steps, triangle
overlap occurs as shown in Figure 5.9.

Computational time to solve this model is shown in Table 5.2. The system is solved for
time horizon of one with an initial datum covering [0, 20]2 domain. For mesh resolutions
10, 20, 30, 40, 50, and 60, the number of triangles and unique vertices for each are as
follows: (190, 116), (766, 424), (1753, 938), (3129, 1646), (4919, 2562), and (7095, 3670).
Computational complexity scales approximately linearly with number of simulated frames
( 1
dt

) and quadratically in the number of triangles in the mesh as shown in Figure 5.6 and
Figure 5.7. Computational time for meshes of resolution 10 are dominated by software
overhead.
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Figure 5.3: Numerical solution to model presented in Example 5.6.2 with a rectangular initial
datum.
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Figure 5.4: Numerical solution to model presented in Example 5.6.2 with two interacting
rectangular regions in the initial datum.
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Figure 5.5: Numerical solution to model presented in Example 5.6.2 with two interacting
rectangular regions in the initial datum provided to the solver without an explicit disconti-
nuity boundary.
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Table 5.2: Computational time in seconds to numerically solve the model in Example 5.6.2.

Figure 5.6: Computational time scaling as a function of the number simulated time frames
for several mesh resolutions.



CHAPTER 5. MULTI-SCALE VEHICLE AND TRAFFIC FLOW MODELING AND
ACTUATION USING MEAN-FIELD MODELS 92

Figure 5.7: Computational time scaling as a function of mesh resolution for several time step
settings.

Multi-scale Lagrangian control of traffic flow

In this section, we extend the solver algorithm presented in this chapter in order to solve
the coupled ODE-PDE mean-filed system model presented in Example 5.6.3. This model
extends the model presented in Example 5.6.2 to describe multi-scale dynamics of traffic
flow by embedding microscopic dynamics of automated vehicles into the mesoscopic traffic
stream. This model could be used to describe Lagrangian traffic flow actuation.

Example 5.6.3 (mesoscopic traffic flow actuation using automated vehicles).

qt(t, x, v) + v∂xq(t, x, v) = −∂v
((
H[q(t), y(t), ẏ(t)](x, v)

)
q(t, x, v)

)
(5.30)

q(0, x, v) = q0(x, v), (x, v) ∈ R× R>0 (5.31)
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Figure 5.8: Mesh deformation and density concentration overtime. Numerical solution is
shown in the top row, and underlying mesh is shown in the lower row.

with the nonlocal operators a defined in

H[q, y, ẏ](x, v) = αH1[q](x, v) + βHa
1[y](x, v) + γHa

2[y, ẏ](x, v) (5.32)

H1[q](x, v) = a− a
(
v
v0

)δ
− a

∫
R

∫
R>0

h(x− x̃)q(x̃, ṽ)

(
s0 + vT + v(v−ṽ)√

2ab

x̃− x− l

)2

dṽ dx̃.

(5.33)

Ha
1[y](x, v) := h(x− y) (V (y − x)− v) , (5.34)

Ha
2[y, w](x, v) := h(x− y) · (w − v) (5.35)

V (x) := Vmax

tanh
(
x
d0
− 2
)

+ tanh(2)

1 + tanh(2)
(5.36)

h(x) :=

e
− 1

( ε02 )
2
−(−x− ε0

2 )
2

, if − ε0 < x < 0,

0, otherwise.
(5.37)

coupled with

ÿ(t) = H[q(t), y(t), ẏ(t)](y(t), ẏ(t)) + u(t) t ∈ [0, T ] (5.38)

y(0) = y0 (5.39)

ẏ(0) = ẏ0. (5.40)

where vo, δ, so, T , a, b, l, εo, α, β, γ, ε0 and d0 are tuning parameters.

A numerical solution of the system is shown in Figure 5.10. The top row of this figure
shows the effect of three autonomous vehicles driving a slower speed diverging from the rest
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Figure 5.9: Triangle overlapping because of a too large time step δt. Numerical solution is
shown in the top row, and underlying mesh is shown in the lower row.

of the stream. This could be compared to the standard traffic stream without actuation in
the lower row of the same figure. The autonomous vehicles cause congestion behind them.

A replication of the numerical examples shown in Traffic flow model section is shown in
Figure 5.11 and in Figure 5.12. Stronger effect for the autonomous vehicles can be observed
in Figure 5.11 where the stream slows down while interacting with the autonomous vehicles.
The same faster stream is slowing down in Figure 5.12 primarily due the slower traffic
ahead of it. This makes it drive more consistently with the autonomous vehicles and hence
autonomous vehicle effects are less significant. Again, solution robustness to mesh resolution
and time step can be noted.

Computational time to solve this model is shown in Table 5.3. The system is solved for
time horizon of one with an initial datum covering [0, 20]2 domain similar to the setup pre-
sented in the earlier section. Computational complexity scales approximately linearly with
number of simulated frames ( 1

dt
) and quadratically in the number of triangles in the mesh as
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shown in Figure 5.13 and Figure 5.14. It can be observed from these tables and figures that
the computational complexity of the ODE coupling is negligible compared to the computa-
tional complexity of the core PDE model as presented in the earlier section. Although not
the main subject of this chapter, a detailed study of the computational complexity of the
ODE coupling would require proper scaling of the ODE system as well, which was neglected
here.

Table 5.3: Computational time in seconds to numerically solve the model in Example 5.6.3.

Nondissipative property

The solver presented in this chapter is nondissipative; it can numerical solve for models with
discontinuities accurately. This maintains structure and validity of the solution for longer
time horizons. To illustrate this property, this section compares the approach in the chapter
to the classical solver presented in [102]. In Figure 5.15, an initial datum with rectangular
support is used to solve the model in Example 5.6.3. The top row shows numerical solution
generated using our approach at several time steps, while the lower row shows a numerical
solution using the classical solver at the same time steps. The initial datum used for the
classical solver is moved by a small margin from the boundary of the domain because of
ghost cells.

The solver in this chapter inherently tracks discontinuities accurately compared to clas-
sical viscosity approximation methods, which on the other hand inherently smooth solutions
over time. Classical solver smoothing effects could be reduced by tuning solver parameters,
which is a challenging exercise, yet the effect is expected to persist. This is because the
CFL condition must hold and requiring a significantly smaller time steps, and in the case of
this specific example, the CFL must be picked exactly equal to one for the discontinuities to
move with the proper velocity, which is challenging since the velocity field is space-velocity
dependent (as per H).
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Figure 5.10: Numerical solution to actuated traffic model presented in Example 5.6.3 and
non-actuated traffic model presented in Example 5.6.2. Red asterisks represent actuated
vehicles.

5.7 Conclusion

This chapter presented an L1 conserving numerical solver for nonlocal conservation laws.
The solver supports tracking of discontinuities and is robust to discretization resolution. The
chapter presented the theoretical basis for the solver along with a vectorized representation
of the core equations for implementation, and were used to develop the solver algorithm.
Numerical traffic flow modeling and Lagrangian traffic actuation examples were presented.

The solver’s robustness to discretization resolution while maintaining properties of the
solution makes it suitable for compute extensive methods such as numerical analysis and
optimal control. Moreover, optimal control using adjoint equation method could further
benefit from the re-utilization of mesh evolution forwards in time to improve accuracy and
scalability while solving backwards in time. The solver can support parallesim—by design—
to solve system models such as extensions to traffic models from one link to models of several
road links.

The solver introduces four types of error; triangulation of initial datum, approximation
of the nonlocal term, triangle geometry approximation over time, and approximate mesh
restorations. Some error introduced by the solver could be remedied by introducing more
complexity or prior analysis of model equations. For instance, the nonlocal convolution could
be computed explicitly, which would reduce the error introduced to the solution, and would
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Figure 5.11: Numerical solution to model presented in Example 5.6.2 with a rectangular ini-
tial datum and three autonomous vehicles embedded into the stream. Red asterisks represent
actuated vehicles.
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Figure 5.12: Numerical solution to model presented in Example 5.6.3 with two interacting
rectangular regions in the initial datum and three autonomous vehicles embedded into the
stream. Red asterisks represent actuated vehicles.



CHAPTER 5. MULTI-SCALE VEHICLE AND TRAFFIC FLOW MODELING AND
ACTUATION USING MEAN-FIELD MODELS 99

Figure 5.13: Computational time scaling as a function of the number simulated time frames
for several mesh resolutions.

further robustify the solver to triangulation resolution.
The numerical solution approach presented here depends on an evolving in time mesh.

The mesh deforms and could degenerate over time potentially degrading the accuracy of
the solution. We introduced a simple algorithm that could be used to restore the solution.
More detailed algorithms could be implemented to ensure higher accuracy tracking of mesh
quality and mesh restoration [129]–[133].

The solver could be further improved by extensions to support for source terms and
boundary value problems, the implementation of higher order numerical integrators, and a
study of parallelization. Careful convergence analysis is still necessary to support the validity
of the solver; this would require a study of how the solution changes as ∆ → 0 and δt → 0
and at which precision it would converge to the real solution. By construction, and based
on the supporting theory, we speculate that with the solver presented in this chapter has a
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Figure 5.14: Computational time scaling as a function of mesh resolution for several time
step settings.

Figure 5.15: Numerical solution to actuated traffic model presented in Example 5.6.3 using
the solver presented in this chapter and the solver presented in [102]. Red asterisks represent
actuated vehicles.
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linear convergence in δt and mesh resolution.
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Chapter 6

Conclusion and future steps

6.1 Introduction

Transportation system consumes about a third of all the energy consumed in the world, and
a third of which is consumed by trucks [2], [11]. Truck automation could potentially lead
to fuel consumption reduction [17] and flow capacity improvement [18]. Long haul heavy
duty trucks spend significant amount of time driving in freeways, a relatively simple driving
environment compared to urban driving environments. This makes autonomous long haul
trucks amongst the most likely vehicles to become the first to mature for full deployment.
However, heavy duty trucks are highly complex compared to other ground vehicles and
require highly specialized engineering tools to study and automate [16], [33]–[37]. Black-
box computational tools help abstract the complexity and have improved accuracy in many
modern applications including vehicle dynamics and control [9], [10]. For heavy duty trucks,
this thesis developed and demonstrated a process for microscopic modeling and control using
deep learning and deep reinforcement learning. To incorporate background vehicular traffic
on the road for truck automation, the thesis considered multi-scale mean-field models. A
structure preserving numerical solver was developed to allow for the study of these models
and for the development of optimal control schemes.

6.2 Discussion and open problems

Heavy duty trucks are complex vehicles that are designed and built for specific mission
requirements. Any of these trucks could be equipped from a wide selection of vehicle compo-
nents with a significantly wide spectrum of operating dynamics and performances. Driving
a heavy duty truck is an equally complex task. Expert human drivers must be well educated
and trained about the specific truck they are about to drive and operate.

A human driver must optimize in real-time for factors such as truck dynamics and driving
performance; road, truck, and payload safety; truck operation economics; truck driving law
constraints; mission constraints; in addition to background traffic on the road. While doing
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so, they must continuously monitor and make complex decisions. For instance, to decelerate,
they must decide if they should apply any brake, and if so, they must decide between several
brake system options that might be available to them, each with a different performance and
economics characteristics. They must take into account the surrounding traffic situation and
road topography to make time optimal decisions for brake application timing and duration.

Automation of these tasks historically required advanced expertise and advanced theo-
retical and applied tools. Automation of longitudinal driving require an expert level un-
derstanding of the specific maneuver (such speed regulation or leader following) of interest.
Maneuver specifications inform a coupled modeling, control design, and validation processes.
Mathematical models are custom built to take into account the significant dynamics of the
truck important to achieve the maneuver, the theoretical control framework requirements
and limitations, and practical aspects such as available information, details, and accessibility
to specific truck components.

Common truck mechanical configurations and commonly utilized components are mod-
eled for high fidelity simulation frameworks such as TruckSIM. These frameworks require
expert level knowledge of vehicle mechanics and their mechanical configurations to oper-
ate. Modeling of a specific truck of interest into these frameworks often require more than
calibration of model components. Extensions and custom built models may be required to
produce sufficiently accurate models. An example of these often required extensions include
specialized types of retarders and custom built service brakes.

Deep and deep reinforcement learning approach. Chapter 3, Microscopic multi-
vehicle modeling and coordination using deep learning and deep reinforcement learning,
and Chapter 4, Vehicle actuation using deep reinforcement learning, introduced a process
for microscopic modeling and control of heavy duty trucks using deep learning and deep
reinforcement learning. Deep learning and deep reinforcement learning are frameworks that
have proved effectiveness to abstract complex dynamical details. These two chapter develop
a process to abstract required expertise in trucks and dynamical systems to streamline the
development process of truck models and controllers.

With this process as an alternative approach, truck models and controller could be devel-
oped with significantly higher efficiency; (1) drive the truck to collect information about its
dynamics in form of data, (2) pass the data to a black-box deep learning system to produce
a fitted simulation model of the truck, (3) pass the simulation model to a black-box deep
reinforcement learning system to produce simulation based optimal controllers. For the three
trucks prominently used for validation in this thesis, and the examples of cruise controllers
and cooperative adaptive cruise controllers, this process produced models and controllers
that are ready to ship within hours from start to finish; including time for data collection,
training, and packaging. This could be compared to classical approaches, which are often
iterative, and would require days or weeks to calibrate and tune.

The work presented in these two chapters is however just the first step to simplify the pro-
cess of truck automation system development. The method as described in this manuscript
produce models that are over-fit to the specific truck configuration for which that data was
collected, and produce controllers that are over-fit to the specific truck models and for the
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specific control task used for training. This issue appears for any single truck and between
multiple trucks.

For a single truck, configuration was assumed static. However, a truck could change
configuration as it operates; this could happen for instance when a trailer is attached or
removed. And between trucks and control tasks, no transfer learning was considered. This
is an inefficient utilization of data, compute power for training, and could eventually lead
into a difficult to manage collections of data, models, environments, etc.

Moreover, the process considered here does not utilize existing literature on physics based
vehicle modeling and control. For instance, gravity models are well understood by the
classical theory of vehicle dynamics. Incorporating gravity models into the deep modeling
and control process could significantly reduce the amount of required data for modeling and
the required scenarios for control learning.

The process is also challenged by many practical details, some of which still require
expert level knowledge to address. For instance, asymmetric data access and control access
is a common problem for custom built vehicle automation platforms. The service brake
of the Volvo truck presented in this manuscript accepts deceleration in m/s2 as a control
command, which is then converted internally (using propriety controllers) to raw brake
cylinder actuation signals. Only brake pedal deflection is accessible for data collection from
open loop human driving sessions. This required either data collection from a scheduled
automated sessions, which can be challenging, or by manipulating the data to approximate
expected signals by the truck.

In this research, we used heuristics to specify required amount of data and scenarios
to consider for data collection and for simulation based control design. A more formal in-
vestigation of necessary and sufficient data and scenarios is still required. Moreover, these
chapters conducted only a brief comparative analysis to classical control approaches. A more
extensive comparative analysis is still necessary, along with more extensive performance and
robustness analysis. Moreover, black-box models such as deep learning and deep reinforce-
ment learning controllers offer abstraction of details and performance improvement at the
expense of guarantees that come with classical methods. While not the subject of this thesis,
this challenge is also still open for further investigation.

Numerical solver for multi-scale mean-field models. Chapter 5, Multi-scale vehicle
and traffic flow modeling and actuation using mean-field models, introduced multi-scale
mean-field modeling of microscopic automated vehicles with mesoscopic background traffic.
Mean-field theory provides a formal framework for theoretical study of mesoscopic models
given microscopic descriptions of the constituent agents. The literature on numerical solvers
for these models is still sparse, which is otherwise necessary to incorporate these models into
computational frameworks.

The numerical solver developed maintains structure and preserves discontinuities allowing
for higher accuracy of numerical solutions for longer time horizons. This could be compared
to classical approaches for numerical solvers of PDEs, which use viscosity approximation and
smooth solutions. Smoothing could be reduced by optimizing solver parameter. However,
this is not always easily achievable, such as for the case of the examples presented in this
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manuscript, for which the velocity of the discontinuity is space-velocity dependent.
With the approach of this solver, mesh quality is tracked as a CFL type condition, which

is otherwise difficult to define and tune. Euler time discretization could cause triangles to
overlap, and model dynamics could cause individual triangles to degenerate. These condi-
tions could be easily defined, implemented, verified, and corrected for.

With this approach, only the non-zero regions of the initial datum must be meshed and
solver for, for the remainder of the time horizon. This reduces the computational complexity
compared to solvers that require meshing and solving for all parts of the domain where mass
could evolve into.

Moreover, numerical approximations generated using this numerical solver are robust to
discretization resolution (both time and mesh). This makes it suitable for compute inten-
sive applications such as optimal control strategies using adjoint equations. Computational
efficiency of the optimizer could be managed by employing adaptive resolution strategies.

This manuscript validated this numerical solver using a model for which an explicit so-
lution exists. The model used is, however, primitive. More complex models with explicit
solutions must be used for more rigorous validation. Moreover, robustness to discretization
resolution is only shown with brief numerical examples. A more formal theoretical conver-
gence analysis is still required.

We utilized several simplifying assumptions to develop the numerical solver presented
here. For instance, the initial datum was assumed triangle-piece-wise constant, we assumed
triangles maintain geometry, and we employed simple first order Euler time discretization.
While the overall numerical approximations remain valid, accuracy could be improved by
employing higher order methods.

The approach of this numerical solver utilizes a moving in time mesh that can degenerate.
More investigation is still required to refine the algorithm presented here to correct for
this degeneration. The algorithm does not clearly answer questions (or make simplifying
assumptions) such as the choice of a proper interpolation function, the approach for adaptive
remeshing (denser areas maintain denser triangulation), accuracy loss to these corrective
steps, computational complexity to conduct these steps, etc.

6.3 Future steps

Automated vehicles operate within a larger complex context of the transportation systems
while serving mobility missions. Development of fully autonomous vehicles of the future
would require a comprehensive investigation and consideration of at least the vehicle, the
system where it operates, the mission it serves, along with the human beneficiary. Aspects
of fully autonomous vehicular systems have been considered for ground transportation and
mobility systems [134]–[147], air traffic systems [148]–[150], and warehouses [151], [152].

The literature on fully autonomous trucking systems is still sparse. Enriching this litera-
ture would require the development of fully autonomous truck system modeling framework.
Such framework would detail trucks as primary vehicles, the transportation system as the
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context of operation, the logistic system for mission specification. This modeling frame-
work could then be extended to develop an automation framework that brings together the
wealth of literature on strategies to control and optimize the performance of the system.
Such modeling and automation frameworks could help study in detail the opportunities and
the potential for future fully autonomous ground freight.
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[19] M. Schäfer, Computational engineering: introduction to numerical methods.
Springer, 2006.
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[129] C. Wojtan, N. Thürey, M. Gross, and G. Turk, “Deforming meshes that split and
merge,” in ACM SIGGRAPH 2009 papers, 2009, pp. 1–10.

[130] A. Zaharescu, E. Boyer, and R. Horaud, “Transformesh: A topology-adaptive mesh-
based approach to surface evolution,” in Asian Conference on Computer Vision,
Springer, 2007, pp. 166–175.

[131] S.-W. Cheng and J. Jin, “Deforming surface meshes,” in New Challenges in Grid
Generation and Adaptivity for Scientific Computing, Springer, 2015, pp. 69–89.

[132] S.-W. Cheng and T. K. Dey, “Maintaining deforming surface meshes,” in Proceedings
of the nineteenth annual ACM-SIAM symposium on Discrete algorithms, Society for
Industrial and Applied Mathematics, 2008, pp. 112–121.

[133] S.-W. Cheng and J. Jin, “Edge flips and deforming surface meshes,” in Proceedings of
the twenty-seventh annual symposium on Computational geometry, 2011, pp. 331–340.

[134] V. Garikapati, “Modeling and simulation of automated mobility districts,” National
Renewable Energy Lab.(NREL), Golden, CO (United States), Tech. Rep., 2018.

[135] ——, “Optimizing fleet operations in automated mobility districts: Serving on-demand
mobility with automated electric shuttles,” National Renewable Energy Lab.(NREL),
Golden, CO (United States), Tech. Rep., 2019.

[136] Y. Chen, S. Young, X. Qi, and J. Gonder, “Estimate of fuel consumption and ghg
emission impact from an automated mobility district,” in 2015 International Confer-
ence on Connected Vehicles and Expo (ICCVE), IEEE, 2015, pp. 271–278.

[137] Y. Hou, S. E. Young, V. Garikapati, Y. Chen, and L. Zhu, “Initial assessment and
modeling framework development for automated mobility districts,” National Renew-
able Energy Lab.(NREL), Golden, CO (United States), Tech. Rep., 2018.

[138] K. Dresner and P. Stone, “A multiagent approach to autonomous intersection man-
agement,” Journal of artificial intelligence research, vol. 31, pp. 591–656, 2008.



BIBLIOGRAPHY 117

[139] I. H. Zohdy, R. K. Kamalanathsharma, and H. Rakha, “Intersection management
for autonomous vehicles using icacc,” in 2012 15th international IEEE conference on
intelligent transportation systems, IEEE, 2012, pp. 1109–1114.

[140] R. Hult, M. Zanon, S. Gros, and P. Falcone, “Optimal coordination of automated
vehicles at intersections: Theory and experiments,” IEEE Transactions on Control
Systems Technology, 2018.

[141] C. Yu, Y. Feng, H. X. Liu, W. Ma, and X. Yang, “Corridor level cooperative trajectory
optimization with connected and automated vehicles,” Transportation Research Part
C: Emerging Technologies, vol. 105, pp. 405–421, 2019.

[142] S.-H. Lin and T.-Y. Ho, “Autonomous vehicle routing in multiple intersections,” in
Proceedings of the 24th Asia and South Pacific Design Automation Conference, ACM,
2019, pp. 585–590.

[143] M. Hausknecht, T.-C. Au, and P. Stone, “Autonomous intersection management:
Multi-intersection optimization,” in 2011 IEEE/RSJ International Conference on In-
telligent Robots and Systems, IEEE, 2011, pp. 4581–4586.

[144] M. Pavone, “Autonomous mobility-on-demand systems for future urban mobility,” in
Autonomes Fahren, Springer, 2015, pp. 399–416.

[145] K. Spieser, K. Treleaven, R. Zhang, E. Frazzoli, D. Morton, and M. Pavone, “Toward a
systematic approach to the design and evaluation of automated mobility-on-demand
systems: A case study in singapore,” in Road vehicle automation, Springer, 2014,
pp. 229–245.

[146] Z. Chen, F. He, Y. Yin, and Y. Du, “Optimal design of autonomous vehicle zones in
transportation networks,” Transportation Research Part B: Methodological, vol. 99,
pp. 44–61, 2017.

[147] L. Conceição, G. Correia, and J. P. Tavares, “The deployment of automated vehicles in
urban transport systems: A methodology to design dedicated zones,” Transportation
Research Procedia, vol. 27, pp. 230–237, 2017.

[148] A. M. Bayen, “Computational control of networks of dynamical systems: Application
to the national airspace system,” PhD thesis, stanford university, 2003.

[149] P. K. Menon, G. D. Sweriduk, and K. D. Bilimoria, “New approach for modeling,
analysis, and control of air traffic flow,” Journal of guidance, control, and dynamics,
vol. 27, no. 5, pp. 737–744, 2004.

[150] D. Chen, M. Hu, H. Zhang, J. Yin, and K. Han, “A network based dynamic air traffic
flow model for en route airspace system traffic flow optimization,” Transportation
Research Part E: Logistics and Transportation Review, vol. 106, pp. 1–19, 2017.

[151] D. B. Poudel, “Coordinating hundreds of cooperative, autonomous robots in a ware-
house,” Jan, vol. 27, pp. 1–13, 2013.



BIBLIOGRAPHY 118

[152] V. Digani, “Traffic coordination for agv systems: An ensemble modeling approach,”
PhD thesis, Mar. 2016. doi: 10.13140/RG.2.2.28743.50089.

https://doi.org/10.13140/RG.2.2.28743.50089

	Contents
	List of Figures
	List of Tables
	Introduction
	Introduction
	Computational methods in science and engineering
	Background on trucking automation
	Contributions of the thesis
	Outline of the thesis

	Technical Background
	Introduction
	Truck modeling and control
	High fidelity simulation of trucks
	Real full-size truck platform
	Deep learning
	Deep reinforcement learning
	Conclusion

	Microscopic multi-vehicle modeling and coordination using deep learning and deep reinforcement learning
	Introduction
	Modeling problem formulation
	Deep model
	Driving cycles for data collection
	Deep-RL continuous longitudinal control
	Vehicle pool
	Vehicle interface
	Experiments
	Conclusion

	Vehicle actuation using deep reinforcement learning
	Introduction
	Problem formulation
	Experiments
	Conclusion

	Multi-scale vehicle and traffic flow modeling and actuation using mean-field models
	Introduction
	Nonlocal conservation laws and mean-field models
	General solvers and underlying theory
	Vectorized representation
	Solver algorithm
	Numerical implementation
	Conclusion

	Conclusion and future steps
	Introduction
	Discussion and open problems
	Future steps

	Bibliography



