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Abstract

State Estimation of Sampled-Data Systems including Applications to Vehicle

Navigation and Tracking

by

Sharad Shankar

State estimation is a crucial part of navigation and control methods, however most

well-known state estimation techniques assume some combination of linearity, Gaussian

noise, as well as uniform sampling and synchrony of the process and measurements. This

is a limitation for problems like integrated aircraft navigation, switched circuit moni-

toring, and maneuvering vehicle tracking where these simplifying assumptions may not

hold. In this thesis, state estimation methods that accommodate these facets of real-world

problems are explored. Methods discussed include finite-horizon nonlinear real-time op-

timization methods and Switched Kalman filtering for asynchronously switching systems.

Some theoretical convergence results are presented along with results in simulations based

on the aforementioned real-world systems.
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Chapter 1

Introduction

Navigation and Control have played a significant role in human history, from the ex-

ploration and settling of the pacific islands [46], to the steam engine [52], to the moon

missions [29], to the spectrum of important problems we find today. Exciting mod-

ern problems include navigation with local measurements [72], vision [59], and signals

of opportunity [56], obstacle tracking and collision avoidance [5][93], and monitoring

and regulation of power systems [87] and chemical processes [68]. These problems use

cutting-edge tools from planning and control, which work by feeding back information

from measurements of our system. Unfortunately, available measurements are often in-

direct to the system, related to only a subset of the states, or contain significant random

noise [61]. Statistical state estimation methods are fundamental to achieving control,

decision, and planning objectives by inferring reliable information about system states

from measurements.

Two significant achievements relating to state estimation came about near the turn

of the 19th century, in the context of marine navigation. One was the invention of preci-

sion timing devices that allowed for the fusion of information like speed relative to water

from rotor measurements, as well as global positioning from astral measurements [27].
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Introduction Chapter 1

The other was the initial formulation and solution of the recursive least squares problem

by Gauss and Legendre [77]. In the 1940’s the linear state estimation problem was ad-

dressed by Wiener [86], and in 1959 Rudolf Kalman found an efficient recursive solution,

the Kalman filter (KF) [42], inspired those advancements from the 1800’s. The inter-

vening 150-plus years had also encompassed significant developments in control theory,

signal processing, statistics, and computing, each of which paved the way for designing

optimal and robust state estimators [77]. Kalman filters are capable of efficiently and

optimally fusing data from a variety of sensors while also incorporating prior knowledge

about the system dynamics. However, as we will discuss in Section 2.1 and the beginning

of Section 3, Kalman filters have limitations when dealing with combinations of non-

linearities, non-Gaussian noise, asynchrony, or discrete switching behavior that arise in

many modern applications.

Further developments in technology during the past sixty years have given us more

tools to use, including real-time optimization (RTO) approaches. RTO allows for esti-

mation with minimal approximation in nonlinear or non-Gaussian problems, as well as

with equality and inequality constraints [65]. These methods rely on efficient numerical

optimization solvers, of which there are more and better each year. Moving Horizon Esti-

mation (MHE) is a RTO approach that optimizes a cost function over a finite horizon to

produce either a state or trajectory estimate [3]. MHE is closely related to Model Predic-

tive Control (MPC), similarly to how Kalman Filtering is part of the Linear-Quadratic

Gaussian control problem. Variants of MHE allow for simultaneous estimation of system

parameters [45], estimation with mixed continuous and discrete states [23][31], as well

as approximation of the full information problem [66][67]. RTO approaches may have

benefits over even very general filtering methods, like Particle Filters (PFs), for certain

nonlinear or hybrid problems [66]. The formulation of MHE estimation solutions to a

variety of interesting practical problems is a vibrant area of study.

2
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In this thesis, we consider the framework of sampled-data systems, which combines

continuous-time processes and discrete-time measurements. Sampled-data systems can

better describe real-world cyber-physical systems than continuous- or discrete-time state-

space models on their own [74]. Most existing state estimation methods including Lu-

enberger observers, Wiener-Kolmogorov Filters, KFs, PFs, and MHEs are nominally

stated in either purely continuous or purely discrete time. Standard discretization of

the continuous-time process is not always practical, since in many applications measure-

ments and events occur at non-constant or multi-rate intervals. The complexity and

multi-component nature of systems like vehicles and power networks requires careful

adaptation of existing methods to minimize errors and ensure algorithm convergence.

Our goal is to provide tools and analysis that will aid in the design of state estimators

in these contexts.

This document is divided into two parts: Chapter 2 which deals with estimation for

nonlinear sampled-data systems with potentially nonlinear and non-Gaussian measure-

ments, and Chapter 3 which explores estimation with discrete switching events that may

occur asynchronously to the measurement times.

In Chapter 2 we develop an algorithm we call Finite Horizon Maximum Likelihood

Estimation (FHMLE) inspired by MHE. First in Sections 2.1 and 2.2 we review exist-

ing state estimation methods including filters and MHE, along with their strengths and

drawbacks. FHMLE is a MHE method that explicitly formulates the problem as a max-

imum likelihood trajectory optimization assuming continuous-time dynamics. We apply

this technique to an aircraft integrated navigation application, as covered in Section 2.3

and demonstrate its performance in simulations of an aircraft carrier landing problem

with local radio-frequency (RF) measurements in Section 2.4. Available data includes

RF measurements like pseudo–ranges, angles of transmission (AoT), and Doppler shift

measurements, as well as accelerometer and gyroscope measurements. The navigation
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estimates are obtained by solving a finite-dimensional nonlinear optimization using a

primal-dual interior point algorithm (PDIP). This is an important problem to address as

landing requires very high accuracy in position, velocity, and orientation estimates even

in situations where GPS is compromised [18]. Our simulations show that the FHMLE

provides some benefits over unscented Kalman filtering for this nonlinear problem when

our RF sources produce poor Geometric Dilution of Precision (GDoP).

In Chapter 3 we explore state estimation of systems with asynchronous switching

behavior. Asynchronously switched sampled-data systems can help model power sys-

tems and vehicles that evolve in continuous-time with switching behavior and discrete

time measurements. In Section 3.3 we adapt existing methods for synchronous switched-

system estimation, like the interacting multiple-model extended-viterbi algorithm [36],

for the asynchronous case by adding estimation of inter-sample switch times. In Sec-

tion 3.1 we provide theorems which ensure the statistical convergence of switched KF

error dynamics under reasonable assumptions, and give intuition for the design of these

methods. Simulations of both a circuit monitoring problem as well as a maneuvering

vehicle tracking problem are performed in Sections 3.2 and 3.4 respectively. Switched

power converters are an important component of direct current power systems and motor

controllers [22]. Vehicle tracking is part of both air-traffic control and onboard collision

avoidance systems [57][64]. These simulations show how poor resolution in knowledge of

switch times can lead to significant error in state estimates, motivating our theory and

methods.
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Chapter 2

Finite Horizon Maximum Likelihood

Estimation

In this section we discuss finite horizon approaches to state estimation of sampled data

systems like

9xptq “ fpxptq, uptq, tq (2.1)

yk “ hkpxptkqq ` vk (2.2)

where xptq is our state, uptq is our input, yk is our sampled measurement, and vk is

a random noise. Some systems may also include an additive disturbance, although in

continuous time care must be taken in formulating and discretizing stochastic dynamics

[78][28].

Finite Horizon Estimation is an extension of ideas from Moving Horizon Estimation

which we discuss in Section 2.2. When sensors like accelerometers and gyroscopes are

available, we may be able to estimate our state without the dynamics model f , as we

discuss in Section 2.3 in the context of Integrated Navigation. First, however, we will
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examine popular filtering methods and how they perform in this setting.

2.1 Brief review of common state estimation methods

and limitations

State estimation itself actually has three phases: Filtering, Smoothing, and Predic-

tion. The goal of each is to use a history of measurements up to the current time k,

ys, . . . , yk´1, yk with k ą s, to estimate states at various times, present, past, and future.

In a filtering problem we use these measurements to estimate just the current state, xk.

In smoothing we may instead be estimating previous states like xk´i with i ą 0. Pre-

diction problems try to estimate future states like xk`i with i ą 0. In this section we

will discuss common filtering methods, though these methods depend on the ability to

do prediction over one timestep, and can be extended to perform smoothing as well.

An important distinction with estimators is whether they provide a “point estimate"

or an estimate of a distribution/interval. For example, if we are estimating a static

parameter µ where measurements are received as yk „ N pµ, σ2q for some σ ą 0, then we

could just report the average value, avgty1, . . . , yku, or we could report the average along

with either a confidence interval or variance to represent our uncertainty in the mean

estimate. The methods described in this section are not point estimators, as they all fit

into the recursive Bayesian estimation framework in which we are estimating posterior

distributions.

In filtering methods we are able to recursively solve the full-horizon (also called full-

information) posterior distribution estimation (FIE) problem

ppxk|y1, y2, . . . , ykq (2.3)
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using our solution to the problem

ppxk´1|y1, y2, . . . , yk´1q (2.4)

and our knowledge of ppxk|xk´1q and ppyk|xkq. In the case of linear systems with additive

Gaussian noise,

xk “ Fk´1xk´1 ` Gk´1uk´1 ` dk´1, dk´1 „ N p0, Qkq, Qk “ Q1
k ą 0 (2.5)

yk “ Hkxk ` nk, nk „ N p0, Rkq, Rk “ R1
k ą 0 (2.6)

a KF gives us the following closed form equations that solve this problem

x̂k|k´1 “ Fk´1xk´1 ` Gk´1uk´1 (2.7)

Kk “ pFk´1Pk´1F
1
k´1 ` Qk´1qH

1
k

`

HkpFk´1Pk´1F
1
k´1 ` Qk´1qH

1
k ` Rkq

´1
˘

(2.8)

x̂k “ x̂k|k´1 ` Kkpyk ´ Hkx̂k|k´1q (2.9)

Pk “ pI ´ KkHkqpFk´1Pk´1F
1
k´1 ` Qk´1q (2.10)

where x̂k is the mean, and Pk the variance of ppxk|y1, . . . , ykq for each value of k. These

equations do not require uniform sampling, nor consistent number of measurements. The

properties necessary for convergence of the standard Kalman filter are given in [6], and

are called uniform observability/detectability and uniform controllability/stabilizability.

However, in the nonlinear or non-Gaussian case, these recursive methods require some

level of approximation. For a nonlinear system, xk`1 “ fpxk, ukq`dk and yk “ hpxkq`nk,

7
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the standard extended Kalman filter uses linearization about the estimated mean [78],

Fk “
B

Bx
fkpx, uq|x̂k,uk

Hk “
B

Bx
gkpxq|x̂k

(2.11)

to compute the Kalman gain and covariance, where the prediction x̂k`1|k and predicted

measurement hpx̂k`1|kq can be computed from the nonlinear equations. If linearization

leads to large errors in our estimates and estimated covariances for our sampling fre-

quency, then this version of the EKF may lead to divergence of N px̂k, Pkq from the true

ppxk|y1, . . . , ykq [71][85]. The unscented Kalman filter (UKF) suggested by Julier and

Uhlmann [41] avoids linearization by instead propagating through our nonlinear equa-

tions a set of “sigma points" representing the one standard deviation ellipse of a Gaussian

approximation of the relevant distributions. In the event that Gaussians do not describe

the posterior distribution well, for example in the case of measurements with bimodal

likelihood or heavy tails [54][37], this assumption may also be problematic [72]. We will

see an example of this in Section 2.4.

The most general form of a recursive Bayesian estimator is called the particle filter,

or Sequential Monte Carlo (SMC) method. Instead of approximation with Gaussians, we

now represent our distributions using a set of samples from the distribution, our “parti-

cles". Similarly to the UKF, our particles are simulated through the nonlinear dynamics

and measurement equations. However, rather than using the unscented transform to be

able to use the standard KF update equations, we instead update the weights on our

particles based on the likelihood of measurements given each particle. As our number

of particles approaches infinity, we should be able to accurately represent the posterior

distribution [20].

In particle filters, we might want to save computational cost by using fewer samples.

8
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However, with few samples the nature of our resampling (or lack thereof) could lead to

either few informative particles, otherwise known as sample degeneracy, or poor cover-

age of our space, otherwise known as sample impoverishment. For particle filters, [17]

and [92], for example, deal with the impoverishment and degeneracy issues and suggest

resampling strategies to prevent impoverishment. Particle filters can easily become com-

putationally expensive as we increase either the number of particles or complexity of our

resampling scheme, and therefore may not be appropriate for real-time applications [66].

Despite this, particle filters do have good mean-squared convergence properties without

the curse of dimensionality as shown in [20].

Particle filters further suffer from degeneracy issues when we wish to simultaneously

estimate system parameters in addition to states [48]. For example a car might accelerate

as :x “ 1
m
u for input force u. If we don’t know the exact value of the vehicle mass m, then

to correctly filter and control the system we will need to estimate this value in addition

to our position and velocity. In this type of situation, both Kalman and particle filters

are limited in their ability to produce accurate estimates without significant memory

and computation costs. Multiple-model [33] and adaptive Kalman filters [55][53], as well

as Rao-Blackwellized particle filters [70][48] are examples of approaches to this type of

problem.

In the context of sampled-data systems, some of these drawbacks can be quite sig-

nificant. For example, each of these methods assume that the nonlinear discretization

xk`1 “ fpxk, ukq ` dk is known from the continuous time equations obtained through

physical modeling. However, as mentioned in the introduction of this Chapter, such

discretizations may not be easily obtained, and errors can accumulate over time when

using single-timestep prediction. Furthermore, sufficiently detailed representations of our

posterior may be difficult to compute within single sample period, leading to potential

latencies in receiving estimates for control.

9
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2.2 Review of moving horizon estimation literature

We now explore some alternatives to filtering methods that, with some trade-offs,

might avoid some of the problems encountered by filtering methods. Moving Horizon

Estimation computes trajectory estimates which are suboptimal in the sense of filtering

and smoothing at each timestep, but can be computed quickly even in nonlinear and

non-Gaussian settings by leveraging the power of numerical optimization solvers.

In moving horizon estimation we generally have discrete-time systems of the form

xk`1 „ Fkpxk, ukq

yk „ Hkpxkq

(2.12)

where uk is known, and we essentially know ppxk`1|xk, ukq as well as ppyk|xkq. To estimate

xk, we optimize the maximum a posteriori cost over a finite window of N measurements

JMHE “ ppyk´N`1, . . . , yk|xk´N`1, . . . , xkqppxk´N`1, . . . , xk|xk´Nqppxk´Nq (2.13)

To make this more recognizable, consider the system with additive Guassian noise,

xk`1 “ fkpxk, ukq ` dk dk „ N p0, Qkq

yk “ hkpxkq ` nk nk „ N p0, Rkq

(2.14)

and suppose we know that xk´N „ N px̄k´N , Pk´Nq. If we have independence assumptions

ppdi, djq “ ppdiqppdjq and ppni, njq “ ppniqppnjq for i ‰ j, and ppni, djq “ ppniqppdjq for

10
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all i, j, then we can write our optimization using logarithm of cost as

max
xk´N ,xk´N`1,...,xk

k
ÿ

i“k´N`1

∥yi ´ hpxiq∥2Ri
`

k
ÿ

i“k´N`1

∥xi ´ fpxi´1, ui´1q∥2Qi´1

` ∥xk´N ´ x̄k´N∥2Pk´N

(2.15)

Using some auxiliary variables di we can rewrite this as

max
xk´N ,xk´N`1,...,xk,dk´N ,...,dk´1

k
ÿ

i“k´N`1

∥yi ´ hpxiq∥2Ri
`

k´1
ÿ

i“k´N

∥di∥2Qi´1
` ∥xk´N ´ x̄k´N∥2Pk´N

s.t. di “ xi`1 ´ fpxi, uiq for all i P tk ´ N, . . . , k ´ 1u,

(2.16)

which is a constrained nonlinear least-squares problem that we can then solve using a

numerical optimization method. Examples of solvers optimized for MHE include CasADi

[7], and Tenscalc [34, 35]. Some formulations will omit terms relating to xk´N from the

problem if we have no information about about its distribution [67]. It is noteworthy

that an optimal filter or smoother of a state at a specific time i would marginalize over

states at all other timesteps in the trajectory. This is generally expensive, and so we

perform only the trajectory optimization and then use the obtained estimates as sub-

optimally filtered and smoothed values for feedback control [63][67]. Another benefit of

omitting marginalization is that it ensures that our estimate is representative of some

likely feasible solution. For example if we marginalized over a variable with a bimodal

distribution, we might end up with an optimal estimate that lies between the two peaks

rather than at one or the other.

As discussed in Section 2.1, it is common to have static system parameters that we

may need to simultaneously estimate along with our state. In a simultaneous state and

11
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parameter MHE [45], we now have cost function

JMHE “ ppyk´N`1, . . . , yk|θ, xk´N`1, . . . , xkqppxk´N`1, . . . , xk|xk´N , θqppxk´N , θq (2.17)

which we optimize for xk´N , . . . , xk and θ, again potentially omitting the step of marginal-

izing, although techniques like Expectation-Maximization can be used to marginalize out

θ in this case [25].

In these formulations we no longer use measurements from before time k´N `1 that

were part of the FIE problem. However, in order to achieve full-information estimation,

we can replace ppθ, xk´Nq with ppθ, xk´N |y1, . . . , yk´Nq or an approximation thereof. Our

prior then becomes an “arrival cost", the computation/approximation and effectiveness

of which is explored in [66], [45], [81], and [49], for example. One benefit of arrival

cost computation in MHE versus posterior computation in filters is that through parallel

processing more time can be allotted for the computation [81]. In many cases however,

we pay only a small penalty for excluding information from before our window [67], and

so arrival costs can often be omitted.

A significant benefit of MHE, that it shares with MPC, is the ability to include

additional constraints in our problem. This is especially helpful in MPC when our inputs

are inequality bounded [67], and this can also apply in MHE when we must simultaneously

estimate inputs as in [62]. However, this can also be beneficial in handling states and

measurements from non-Euclidean spaces as we will see in Section 2.3. For example,

if our state evolves on the surface or interior of a sphere we can naturally encode this

information using an equality or inequality constraint respectively. It is worth noting that

there are KF variants which can operate on manifolds like [12] as well as optimization

algorithms on manifolds without embedding [14]. We will build on the insights and tools

used in MHE to develop our finite horizon method.
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2.3 Finite horizon maximum likelihood aircraft inte-

grated navigation

In this section we expand on the concept of FHMLE by considering the example

of integrated navigation using common radio frequency (RF) measurements. First we

review literature about integrated navigation, then we develop an FHMLE which we will

compare to a UKF in simulation in Section 2.4.

2.3.1 Introduction to the integrated navigation problem

Integrated navigation here refers to the estimation of the position and orientation of

a moving rigid body, based on a fusion of measurements collected from radio frequency

(RF) beacons and an Inertial Measurement Unit (IMU). The RF beacons provide timing

information from which we extract pseudo-range measurements (i.e., ranges up to an

unknown constant due a clock offset), angle of transmission (AoT) measurements con-

structed by processing the signals transmitted/received by an antenna array, and velocity

measurements obtained from the Doppler shift on the RF carrier frequency.

The fusion of pseudo-range with IMU measurements is a well-studied problem for

Global Navigation Satellite Systems (GNSS) [11], in which the satellites play the role

of the RF beacons. However, our setup presents a few key differences: First, we are

interested in scenarios where the RF beacons are localized to a relatively small region

of space, which would lead to very poor Geometric Dilution of Precision (GDoP) [11]

in a GNSS setting. Second, we are also interested in scenarios where the number of

beacons is small, in particular, fewer than the minimum of four beacons required for a

system operating just with pseudo-range measurements and asynchronous clocks. Third,

in addition to the usual pseudo-range measurements, we also have angle of transmission
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measurements, which as we will show, can compensate for the lack of beacons and poor

GDoP. The use of angle of transmission or angle of arrival measurements in integrated

navigation is discussed in [39], while localization using Doppler measurements is discussed

in [4]. This work is especially relevant to GPS-denied scenarios, where only a small

number of ground-based beacons are available, for example when navigating using Signals

of Opportunity [56].

In this thesis, we construct a maximum-likelihood estimator (MLE) for the position

and orientation of a moving rigid body that fuses all available measurements (RF and

IMU) over a finite window of time with constant length T , and ending at the current

time t0. Considering a finite window of time (and consequently a finite number of mea-

surements) and finitely parameterizing the position/orientation over the time window

pt0 ´ T, t0s, enables us to compute the maximum likelihood estimate numerically using a

nonlinear programming solver. In this work, we use a primal-dual interior-point (PDIP)

method that has been optimized for real-time computations [35].

A UKF approach for navigation in the GNSS setting appears in [83] and an atti-

tude observer and EKF combination is considered in [16]. Our approach is in contrast

to this type of Kalman filtering based approaches that recursively compute estimates

and require approximations to nonlinear dynamics and non-Gaussian noise. Extended

Kalman Filters (EKFs) locally linearize nonlinear dynamics and measurement equations,

while the Unscented Kalman Filter (UKF) assumes that the prior and posterior dis-

tributions are adequately approximated by a finite set of “sigma points” [41]. A key

benefit of the approach proposed here is that we need not assume that the posterior

distribution of the state estimate is Gaussian, which is an important assumption in the

derivations of both the EKF and UKF. Nonlinear measurements or dynamics often result

in non-Gaussian posterior distributions, which can cause Kalman filter-based methods
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to diverge or converge to sub-optimal solutions, depending on initialization and mea-

surement history [24, 71]. However, in a FHMLE approach, we are able to re-initialize

independently at each step, as well as compute solutions for multiple initializations. This

prevents the filter from getting “stuck” on a suboptimal trajectory. Furthermore, EKFs

and UKFs are designed for additive Gaussian noises, however such an assumption on the

AoT measurements is problematic because an error in direction should be constrained to

the unit-sphere. There are several well-studied unit-sphere distributions from the field of

Directional Statistics, including the von Mises-Fisher and Kent distributions.

Finite horizon MLE techniques also differ from Kalman filtering-based approaches in

that the former discards old measurements. While this appears to be a disadvantage at

first, it also means that the effect of outliers or poor initializations is quickly attenuated.

In the context of our problem, we will see that the use of a finite horizon helps the system

rapidly recover from the effect of measurements taken over unfavorable geometries (i.e. all

beacons localized to a small region of space). Our finite horizon MLE is heavily inspired

by the literature on Moving Horizon Estimation (MHE) [76], which also considers a finite

window of measurements, but typically also includes a penalty term to account to the

“missing” measurements. A sliding window approach to GNSS/INS integration appeared

in [30]. The effect of changing the length of the sliding window is considered in [95].

One final benefit of an approach that reduces state estimation to a numerical optimiza-

tion lies in the ability to incorporate constraints into the design of the estimator. These

constraints can be used, e.g., to restrict estimates to known bounds. For example, we can

add constraints on bias terms for IMU sensors or on the position/orientation/velocity of

the rigid body. Such constraints add additional information that can greatly improve

the estimation accuracy. We note that equality constrained versions of both EKFs and

UKFs also exist [76], but they rely on projections, and suffer from many of the challenges
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mentioned above.

To illustrate the potential of our approach we present simulation results obtained

from a scenario in which an aerial vehicle lands on an aircraft carrier and estimates its

positions using an affordable IMU unit and measurements from RF beacon on board of

the aircraft. The vehicle starts a few kilometers away from the aircraft, which presents

a very unfavorable geometry [11] since all RF beacons are localized very close to each

other (in comparison to the distance between aircraft and beacons). Our results show

that the FHMLE is especially attractive to estimate the parameters mostly affected by

this challenging geometry, consistently leading to smaller estimation error in regions with

poor geometry.

This Section is organized as follows: In Subsection 2.3.2, we introduce the mea-

surement models and likelihood functions to formulate the FHMLE optimization. The

conversion of the maximum likelihood estimation to a numerical optimization is discussed

in Section 2.3.3, together with a brief description of the nonlinear programming solver

that we use. The next Section, Section 2.4 presents simulation results for an integrated

aerial navigation system based on RF beacons aboard an aircraft carrier. We use these

simulations to compare the performance of the FHMLE and a UKF approach to navi-

gaion.

2.3.2 Problem formulation and measurement models

Consider a coordinate frame B attached to a rigid body that moves with respect to an

inertial frame C and denote by pp,Rq P SEp3q the instantaneous position and orientation

of the frame B with respect to C. Our goal is to estimate pptq P R3 and Rptq P SOp3q

over an interval t P pt0 ´T, t0s based on a set of measurements Ypt0´T,t0s taken by sensors

attached to B during the interval pt0 ´T, t0s. Here, SEp3q denotes the special Euclidean
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group and SOp3q the special orthogonal group in three dimensions [58].

We denote by ℓ
`

Ypt0´T,t0s | p,R
˘

the likelihood of the set of measurements Ypt0´T,t0s

given the time evolutions p and R of the position and orientation of B with respect to

C, respectively. This notation enables us to express the maximum-likelihood estimator

(MLE) as

pp̂, R̂q – arg max
pPP,RPR

ℓ
`

Ypt0´T,t0s | p,R
˘

,

where P and R denote “admissible” sets for the functions pptq and Rptq, t P pt0 ´ T, t0s

that define the position and orientation of B with respect to C, respectively. For p and

R, to be “admissible”, they must be compatible with the dynamics of the rigid body,

with the understanding that in order to solve (2.25) numerically, the sets P ,R must be

parameterized using a finite number of parameters. We defer further discussion on the

parameterization of these sets to Section 2.3.3 and focus the remainder of this section on

the construction of the likelihood function that appears in (2.25).

relative position
to beacon  k
p − bk

y

z

x

Ao =Tk

p − bk

ρk

vehicle
(p,R)

beacon  k
bk

= ||p − ||ρk bk

t
sent

f c

tC

+ ΔtC

Figure 2.1: RF measurements: pseudorange, angle of transmission, Doppler shift.
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Pseudorange Measurements

The pseudorange measurement ρkptq associated with the reception of an RF message

from beacon k at time t is typically defined as

ρkptq – cpt ´ tsentq,

where tsent denotes the time at which the message was sent and c is the RF propagation

speed. Let bk be the position in the coordinate frame C of the beacon that transmitted

the message. Assuming that the receive antenna is at the origin of the coordinate frame

B, under ideal conditions we would have

ρkptq “ }pptq ´ bk},

where ∥¨∥ denote the Euclidean norm of a vector (see Figure 2.1). However, the send time

tsent and the receive time t are measured with respect to two clocks that are not perfectly

synchronized. In addition, the RF detection circuit introduces a stochastic error in the

measurement of the receive time. Denoting by ∆ptq the offset between the transmitter

and receiver clocks and assuming a zero-mean Normal distribution with variance σ2
ρ for

the stochastic component of the error, the pseudorange measurement ρkptq is a Normal

random variable with mean }p ´ bptqq} ` c∆ptq and variance σ2
ρ, leading to the following

likelihood function:

ℓ
`

ρkptq|pptq,∆ptq
˘

“

exp
´

´

`

ρkptq´∥pptq´bk∥`c∆ptq
˘2

2σ2
ρ

¯

?
2πσρ

. (2.18)
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Angle of Transmission Measurements

The angle of transmission measurement AoTkptq associated with the reception of an

RF message from beacon k at time t is defined by the unit vector pointing from the

beacon to the receive antenna. Under ideal conditions we would have

AoTkptq “
pptq ´ bk

}pptq ´ bk}
(2.19)

(see Figure 2.1), but RF detection errors will also introduce a stochastic error in this

measurement. We assume that the measurement follows a von Mises-Fisher unimodal

isotropic distribution on the unit sphere in R3, with mean direction given by (2.19) and

concentration parameter κ ą 0 [1], which leads to the following likelihood function:

ℓ
`

AoTkptq|pptq
˘

“

κ exp
´

κ ppptq´bkq1AoTkptq
∥pptq´bk∥

¯

2πpeκ ´ e´κq
. (2.20)

Note that a high value for the concentration parameter κ ą 0 of a von Mises-Fisher distri-

bution corresponds to a distribution tightly clustered around the mean, and consequently

less noise on AoTk, whereas the limiting case κ Ñ 0` corresponds to the uniform distri-

bution. For non-isotropic distributions of the AoT error, one could base the likelihood

on the Kent distribution instead [43].

Figure 2.2 shows the Weighted Geometric Dilution of Precision (WGDOP) for various

sets of measurement types over the sample trajectory and beacon positions used in the

simulations of Section ??. WGDOP is an approximation of the position and clock offset

estimation error that is obtained from the inverse of the Fisher Information matrix of the

weighted least squares problem with linearized measurements [69]. Note that GDOP is

infinite with only three pseudorange measurements and no AoT. Adding AoT measure-

ments significantly improves WGDOP, with diminishing returns between two and three
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Figure 2.2: Weighted GDOP for various measurements

angle measurements.

Doppler Shift Measurements

The relative motion between transmitter and receiver antennas creates a Doppler

shift

∆fkptq – f rec
k ptq ´ f c

k

between the carrier frequency f rec
k ptq, measured by the RF detector at time t, and the

original carrier frequency f c
k transmitted by beacon k. Under ideal conditions we would

have

∆fkptq “ ´
f c
k

c

ˆ

d

dt
}pptq ´ bk}

˙

“ ´
f c
k

c

ppptq ´ bkq1 9pptq

}pptq ´ bk}
,
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but due to measurement errors we assume that the perceived Doppler shift is a zero-mean

Normal distribution with variance σ2
f , leading to the following likelihood function:

ℓ
`

∆fkptq| 9pptq
˘

“

exp
´

´

`

∆fkptq`
fck
c

ppptq´bkq1 9pptq

∥pptq´bk∥

˘2

2σ2
f

¯

?
2πσf

¨ (2.21)

IMU Measurements

An accelerometer attached to the frame B produces a measurement amptq of the

proper acceleration expressed in B, which is given by

amptq – Rptqp:pptq ´ gq ` abptq,

where g denotes the local gravity vector expressed in the inertial frame C, for example g “
„

0 0 9.8065

ȷ

in the North-West-Up (NWU) inertial navigation frame. Additionally,

abptq is an additive bias introduced by the sensor. For simplicity, we assume that the

accelerometer is calibrated to remove the effect of other deterministic errors such as scale

factor and non-orthogonality errors [82], and that this measurement is further corrupted

by additive zero-mean Gaussian noise with covariance matrix Σa, so that we obtain the

following likelihood function

ℓ
`

amptq|:pptq, Rptq
˘

“
exp

`

´1
2
∥amptq ´ Rptqp:pptq ` gq ´ abptq∥2Σ´1

a

˘

?
2π3 detΣa

(2.22)

where ∥x∥2Λ denotes the quadratic form x1Λx.

A rate-gyro attached to B produces a measurement ωmptq of the angular velocity
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expressed in B, given by

ωmptq – Rptqωptq ` ωbptq

where the entries of the angular velocity vector ω “ r ωx ωy ωz s are obtained from

9RptqR1
ptq “

„

0 ´ωzptq ωyptq
ωzptq 0 ´ωxptq

´ωyptq ωxptq 0

ȷ

and ωbptq denotes an additive bias introduced by the sensor. We similarly assume that

the gyroscope is calibrated to remove other deterministic errors, and is corrupted by ad-

ditive zero-mean Gaussian noise with covariance matrix Σω, and we obtain the following

likelihood function:

ℓ
`

ωmptq|Rptq, 9Rptq
˘

“
exp

`

´1
2
∥ωmptq ´ Rptqωptq ´ ωbptq∥2Σ´1

ω

˘

?
2π3 detΣω

. (2.23)

A magnetometer attached to B produces a measurement mmptq of the local magnetic

field expressed in B, given by

mmptq – Rptqm

where m denotes the direction/intensity of the local magnetic north expressed in the

inertial frame C. Assuming that this measurement is corrupted by additive zero-mean

Gaussian noise with covariance matrix Σm, we obtain the following likelihood function:

ℓ
`

mmptq|Rptq
˘

“
exp

`

´1
2
∥mmptq ´ Rptqm∥2Σ´1

m

˘

?
2π3 detΣm

. (2.24)

For simplicity, we assume here that the magnetometer has been calibrated to remove the
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effect of any soft and hard iron distortions.

Total Likelihood Function

While our main goal is to estimate the position pptq and orientation Rptq of the rigid

body attached to the coordinate frame B, the likelihood of the sensor measurements that

we have introduced above depend on three other quantities that need to be estimated

in addition to pptq and Rptq: the offset ∆ptq P R between the clock of the beacons and

the clock of the RF receiver, the accelerometer bias abptq P R3, and the rate-gyro bias

ωbptq P R3. In light of this, our maximum-likelihood estimator (MLE) is actually of the

form

pp̂, R̂, ∆̂, âb, ω̂bq – arg max
pPP,RPR,∆PD,

abPAb,
ωbPΩb

ℓ
`

Ypt0´T,t0s | p,R,∆, ab, ωb

˘

, (2.25)

where D, Ab, and Ωb denote admissible sets for the functions ∆ptq, abptq, and ωbptq.

Assuming that the random variables associated with the likelihood functions given

by (2.18), (2.20), (2.21), (2.22), (2.23), and (2.24) are all conditionally independent, and

given the trajectories p P P , R P R,∆ P D, ab P Ab, and ωb P Ωb, the likelihood function

ℓ
`

Ypt0´T,t0s | p,R,∆, ab, ωb

˘

in (2.25) is obtained as the product of the pdfs in (2.18),

(2.20), (2.21), (2.22), (2.23), (2.24) for each of the measurements available in Ypt0´T,t0s

taken by sensors in the interval pt0 ´ T, t0s.

Since each of the pdfs in (2.18), (2.20), (2.21), (2.22), (2.23), (2.24) is from the

exponential family, rather than performing the maximization in (2.25), we instead solve
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the following optimization

pp̂, R̂, ∆̂, âb, ω̂bq – arg min
pPP,RPR,∆PD,

abPAb,
ωbPΩb

´ log ℓ
`

Ypt0´T,t0s | p,R,∆, ab, ωb

˘

, (2.26)

which has the same set of minima tp,R,∆, ab, ωbu.

2.3.3 Numerical Optimization

This section addresses two key aspects of involved in solving (2.26): first, the param-

eterization of the sets of admissible functions, and second, the numerical method used to

solve the resulting optimization.

Trajectory Parameterization

To solve (2.26) using a numerical solver, we need to use finite parameterizations for

the sets of admissible functions P ,R,D,Ab,Ωb.

For temperature compensated IMU sensors, the accelerometer and rate-gyro biases

drift very slowly so we can typically neglect changes in the biases over time intervals

of length T on the order of tens of seconds [60]. This corresponds to sets Ab,Ωb con-

sisting of signals in R3 that are constant over the whole interval pt0 ´ T, t0s and can be

parameterized, for example by

Ab –
␣

a P R3 : }a} ď La

(

, Ωb –
␣

ω P R3 : }ω} ď Lω

(

,

where La and Lω denote maximum norms for the accelerometer and biases, typically

obtained from the manufacturers datasheets.

Temperature-compensated clock circuits typically exhibit a very small drift over time
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intervals of tens of seconds [51]. However, pseudoranges are extremely sensitive to such

errors (recall that, at light speed, 1 nano second corresponds to about 0.3 meters), so

we consider a richer class of admissible functions for the clock offset D. Specifically, we

allow the set D of admissible clock offsets to contain not only constant offsets but also

constant clock drifts, denoted by β, over the time interval of interest. This corresponds

to a set of linear functions of the form:

D –
␣

βpt ´ t0q ` ϕ : |β ´ 1| ď L∆, ϕ P R
(

,

where L∆ denotes the maximum mismatch between the frequencies of the two clocks.

For a model-free parameterization of the sets P and R, we draw inspiration from

direct collocation methods for trajectory optimization [8], and parameterize admissible

trajectories pptq, t P pt0 ´ T, t0s with the values of the function pptq at a fixed set of N

times

τ1 – t0 ´ T ă τ2 ă ¨ ¨ ¨ ă τN´1 ă τN – t0, (2.27)

which means that P is parameterized by

`

ppτ1q, ppτ2q, . . . , ppτNq
˘

P R3N . (2.28)

Following the collocation methods terminology, we refer to the τi as knots. While splines

provide a very general and attractive option to interpolate the value of pptq and its

derivatives between the knots, for numerical efficiency, the results presented here use a

different and more computationally efficient approach: We take the knots, τi, to be the

times at which we have measurements, meaning that we do not need to interpolate pptq
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between the knots, but we do need to compute the first and second derivatives of pptq for

the likelihood functions of the Doppler and accelerometer measurements in (2.21) and

(2.22), respectively. We evaluate these derivatives using the Lyness and Moler algorithm

[50], which for second-order polynomials and equally spaced knots τi ´ τi´1 — h leads to

9ppτiq “
ppτi`1q ´ ppτi´1q

2h
, :ppτiq “

ppτi`1q ´ 2ppτiq ` ppτi´1q

h2
, @k P t2, . . . , N ´ 1u.

(2.29)

Formally, this means that P is the linear subspace of functions from pt0 ´ T, t0s to R3

whose first and second derivatives at each knot τi are equal to those of the third-order

Lagrange polynomial that interpolates the function at the three knots closest to τi. In

view of (2.29), this particular set P has the desirable feature that the values of ppτiq

and its derivatives 9ppτiq and :ppτiq are all linear combinations of at most three of the

optimization parameters in (2.28).

To parameterize the admissible set of orientations R, we follow a similar approach,

except that we represent rotation matrices using unit quaternions. In particular, we pa-

rameterize an admissible trajectory Rptq, t P pt0´T, t0s by a sequence of unit quaternions,

`

qpτ1q, qpτ2q, . . . , qpτNq
˘

P SUp2q
N

corresponding to the orientations at the knots in (2.27). We then take R to be the linear

subspace of functions from pt0 ´ T, t0s to SUp2qN whose first and second derivatives at

each knot τi are equal to those of the 3rd order Lagrange polynomial that interpolates

the function at the 3 knots closest to τi, which means that we can again obtain simple

formulas for 9qpτiq and 9Rpτiq using the Lyness and Moler algorithm. These derivatives are

needed for the likelihood function of the rate-gyro measurements in (2.23).
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Remark 1 (Known dynamics). The above approach to constructing the sets P and R

has the advantage that it does not require knowledge of the specific rigid body dynamics.

However, when such a model is known incorporating these dynamics may potentially

decrease the estimation errors. To understand how this could be accomplished within

the framework of this thesis, suppose that the motion of the rigid body attached to the

coordinate frame B follows dynamics of the following general form:

9x “ fpx, tq, pptq “ G
`

xptq
˘

, Rptq “ H
`

xptq
˘

, x P Rn. (2.30)

The sets P and R are naturally parameterized by the initial conditions to (2.30) as

follows:

P – tpx0 : x0 P Rn
u, R – tRx0 : x0 P Rn

u,

where

px0ptq – Gpφpt;x0, t0 ´ T qq, Rx0ptq – Hpφpt;x0, t0 ´ T qq, (2.31)

and φpt;x0, t0´T q denotes the solution to (2.30) with initial condition xpt0´T q “ x0. To

follow this approach, we would not need to solve (2.30) explicitly as (2.31) seems to imply.

Instead, and inspired again by direct collocation methods, we would parameterize the sets

by the values of xpτiq at the knot points and regard (2.30) as optimization constraints at

the knot points. l
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Primal-Dual Interior-Point Solver

For the parameterizations of the admissible sets discussed in Section 2.3.3, the opti-

mization in (2.26) is of the form

fpx̂q “min
␣

fpxq : F pxq ě 0, Gpxq “ 0, x P Rnx
(

, (2.32)

where x̂ denotes the optimizer of f . We solve this optimization numerically using a

second-order Primal-Dual Interior Point (PDIP) method. While this class of methods

guarantees convergence only when the function fpxq is convex and the constraints F pxq ě

0, Gpxq “ 0 define a convex set [15], in practice PDIP methods they perform well on

a much wider class of problems. The particular solver that we use is generated by the

MATLAB® toolbox TensCalc [34, 35]. This toolbox generates specialized C-code solvers

for optimization problems like (2.32) and is especially fast for optimizations up to a few

thousands of optimization variables and constraints. Short solve times are achieved by a

combination of features that include automatically detecting and exploring the sparsity

structure of the Hessian matrix of fpxq and the Jacobian matrices of F pxq and Gpxq to

speed up each iteration of the PDIP iteration, reusing intermediate computations within

and across iterations, and the use of code that improves the efficiency of micro-processor

pipelining and caching [35].

Remark 2. Solver Complexity for Sparse Problems The key challenge with FHMLE is

that, at each time step, we need to solve the optimization in (2.26). However, it turns that

the specialized C-code solvers produced by the MATLAB® toolbox TensCalc [34, 35] are

very efficient for the type of optimizations needed by FHMLE. Due to the independence

of measurements across time and the numerical method used to handle dynamics in

(2.29), we note that the Hessian matrix associated with the optimization in (2.32) is
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sparse because

B2f

Bpp,RqpτiqBpp,Rqpτjq
“ 0,

for all indices i and j such that |i ´ j| ą 1. This means that the number of nonzero

entries of the Hessian increases linearly with the number of knots. Solve times for state-

of-the-art methods of inverting sparse matrices scale essentially linear with the number

of nonzero elements [26]. The computational complexity of a second-order PDIP method

is determined by the complexity of inverting the Hessian matrix B2f
Bxx1 , therefore PDIP

solve times increase linearly with the size of time window considered [15].

Implementation for FHMLE

One limitation of second-order PDIP methods is that the optimization criterion fpxq

and the constraint function F pxq, Gpxq must be twice-differentiable. This is not the case

in our problem, because the likelihood functions associated with the angle of transmis-

sion in (2.20) and the Doppler shift in (2.21) contain a division by }pptq ´ bk} that is not

differentiable at the point pptq “ bk. However, one can confidently exclude such points

from the set of admissible pptq, because this would imply that the rigid body was collo-

cated with the beacon. Nevertheless, we have found that the convergence of the solver

was improved by introducing the additional slack optimization variables

rkptq –
ppptq ´ bkq1AoTkptq

∥pptq ´ bk∥
, (2.33)

which enabled us to rewrite (2.20) as

f
`

AoTkptq|pptq
˘

“
κ exppκrkptqq

2πpeκ ´ e´κq
(2.34)
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subject to the following constraint that enforces (2.33):

∥pptq ´ bk∥ rkptq “ ppptq ´ bkq
1AoTkptq. (2.35)

Note that both (2.34) and (2.35) are smooth everywhere, as opposed to the original

likelihood in (2.20). A similar procedure can be applied to smooth the likelihood of the

Doppler measurements in (2.21). While the use of slack variables increases the size of the

optimization, the added numerical stability generally decreases the number of iterations

for the solver, and overall results in smaller solve times.

Remark 3 (Regularization and a-priori information). Solver convergence is sometimes

improved by introducing L2-regularization terms on some variables, e.g., in the IMU

biases ab and ωb. From a Bayesian perspective, this is equivalent to placing a Gaussian

prior on those variables and simply amounts to including additional quadratic additive

terms in (2.26). Similarly, box inequality constraints placed on optimization variables,

which may also be viewed as priors, can improve solver convergence. l

2.4 Simulations of aircraft integrated navigation

The FHMLE and a tightly integrated UKF were compared in a simulated scenario

where an aerial vehicle approaches an aircraft carrier from the south in a North-West-

Up (NWU) inertial frame. Three RF beacons were placed on board the aircraft carrier:

two at the start of the landing strip (one on each side separated by 40 meters) and

one on the control tower (44 meters north of the western forward beacon and 35 meters

above the deck). The noise parameters for the sensors are summarized in Table 2.1.

The values corresponding to the RF measurements (pseudorange, angle of transmission,

and Doppler shift) were obtained through detailed Monte Carlo simulations of the RF
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signal processing that leads to these measurements and the IMU sensor parameters were

obtained from InvenSense’s MPU-6050 MEMS IMU datasheets [38].

Parameter Symbol Value
RF propagation speed c 299792458 m/s
RF carrier frequency f c

k 5.4 GHz
pseudorange noise variance σρ 1 m
angle of transmission noise concentration κ 2 ¨ 104

Doppler shift noise variance σf .1 Hz
gravity field g

”

0
0

9.8065

ı

m/s2

accelarometer noise covariance matrix Σa .15 I3ˆ3 [m/s2]
rate-gyro noise covariance matrix Σω .05 I3ˆ3 [rad/s]
local magnetic field m

”

40000
0
0

ı

[nT]
magnetometer noise covariance matrix Σm 400 I3ˆ3 [nT]
measurements sampling frequency h 20Hz
FHMLE horizon length T 1 sec

Table 2.1: Simulation parameters.

A FHMLE horizon length of one second with a measurement frequency of 20 Hz leads

to an optimization over 20 knots. The accelerometer bias, gyroscope bias, and clock drift

are assumed constant over each window, since each changes relatively slowly to the scale

of a second. This leads to an optimization in 268 variables with 140 equality constraints,

corresponding to the simulation displayed in Figure 2.3. Despite the Hessian being 408ˆ

408, at most 9000 elements are nonzero, or around 5.4% of the matrix entries. Since

the number of nonzero matrix entries scales linearly, while the size of the matrix scales

quadratically, we expect the percentage of nonzero elements to decrease with horizon

length. No regularization was used for the FHMLE, however box constraints were placed

on the position and bias terms to improve convergence.

Unscented Kalman Filter Estimator

To test the effectiveness of our approach against the prior state of the art, we used an

Unscented Kalman Filter (UKF) to solve the same estimation problem. In essence, the
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UKF uses the unscented transform to extend Kalman Filtering to scenarios with nonlin-

ear dynamics or measurements. The unscented transform uses a set of “sigma points” to

represent the first two moments of a given distribution. In a UKF, the unscented trans-

form takes the estimated mean x̂ptq and variance P̂xptq at time t, and computes sigma

points s1ptq, s2ptq, ..., sn`1ptq each in Rn, for n the dimension of the state x. It can be

shown that a correct choice of the n`1 sigma points fully describes the first two moments

of a distribution [41]. These sigma points are simulated through the noisy process and

measurements to obtain sigma points of the predicted state and measurement at time

at a subsequent time. The UKF then performs the same update as the usual Kalman

filter through the inverse unscented transform. The key benefit of an UKF is that the

it is generally less sensitive to filter divergence [24] than Kalman filters extensions that

rely on local linearization like the EKF [84]. The UKF in this simulation was designed

with the same modeling assumptions as the FHMLE, except that the AoT measurements

were modeled as independent and identical Gaussian noises in the azimuth and elevation

angles of the origin of B with respect to C. The resulting simulated distribution is similar

to the von Mises-Fisher distribution, especially for large values of κ, and preserves the

notion of angle as belonging to the unit sphere.

Filter Initialization

The FHMLE and the UKF estimators both depend on how they are initialized: At

every time, the FHMLE nonlinear solver needs to be initialized with a state estimate

that is the starting point for the PDIP iterations. The state of the UKF filter needs to

be initialized at the start of an experiment (and whenever the filter diverges).

Each pair pAoTi, AoTjq of angle of transmission measurements, corresponding to bea-

cons i and j, provides a position estimate p̄ij at the point p that is closest to the corre-
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sponding AoT rays:

p̄ij – min
p,αi,αj

}p ´ bi ` αiAoTi}
2

` }p ´ bj ` αjAoTj}
2.

We initialized the FHMLE estimator using the straight line trajectory that better fits

these p̄ij and that is compatible with the Doppler velocity measurements (which is a

simple least squares problem). While this initial estimate may not be particularly good

at fitting the pseudo-range measurements and the IMU measurements, the PDIP was able

to very reliably converge from this initialization to the maximum likelihood estimate in a

small number of iterations. We note that with three angle of transmission measurements,

we can get three estimates p̄ij by selecting pi, jq equal to p1, 2q, p2, 3q, or p2, 3q. Initializing

with these 3 options, we selected the one which converged to the largest value for the

likelihood function. The same algorithm is then used to initialize the UKF at the start

of each trial.

Results and Discussion

Figure 2.3 compares the estimation errors and 1-σ bounds for the UKF and FHMLE

over 1000 Monte Carlo trials of measurements generated as in Section 2.4. These plots

show that the UKF has a significant initial position bias and is noisier towards the

beginning of the trajectory. Figure 2.4 shows the empirical distributions of the norms

of UKF and FHMLE position errors over two segments of trajectory: the the first 10

seconds of the trajectory where geometry is poor, as well as the final 20 seconds where

geometry is improved. This figure confirms that the UKF is heavier tailed in the first

10 seconds, while the performance of the two methods is comparable in the final 20.

This is likely due to a combination of poor geometry and the fact that the UKF uses an

approximation of the von Mises-Fisher distribution, while the FHMLE is able to handle
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the exact equations. Figure 2.5 demonstrates that by increasing κ to 2.5 ¨ 104 and using

a higher cost IMU (In this example a Honeywell HG-1700 IMU [60] with Σa “ 0.03I3ˆ3

m{s2), we enter a regime where the UKF is actually more effective than the FHMLE at

estimating position, especially in the final 20 seconds. Figure 2.3 also shows that FHMLE

estimates of attitude, velocity, and bias terms are all either comparable or clearly better

than those of the UKF.

Figure 2.6 shows a sample MC trial for position and attitude errors, demonstrating

that the UKF position estimates are smoother than the FHMLE estimates. However this

comes with the drawback that the effects of noisy measurements taken in segments with

poor geometry on estimates persist for longer than in the FHMLE, which can recover

more quickly from unexpectedly poor quality measurements. This is the primary tradeoff

between the two methods. Both FHMLE and UKF attitude estimates are nonsmooth,

but errors are quite small.

Figure 2.7 shows the errors in position and velocity of the FHMLE without angle

measurements. Because the initialization described above is not available without angle

measurements, the filter is initialized with truth at the start of the trials and then warm

starts are used throughout the rest of the trajectory. Regularization as in Remark 3 was

observed to be necessary for convergence of the FHMLE without AoT measurements.

Comparing Figures 2.3 and 2.7 demonstrates that the FHMLE performs significantly

better in position and velocity estimates with AoT measurements than without. This

matches the intuition given by Weighted GDOP in Figure 2.2.

To validate the usefulness of the proposed FHMLE algorithm for more general ma-

neuvers, we consider the case where the aircraft completes a banked circle of diameter 600

meters, centered 1500 meters from the deck of the carrier. Such a maneuver is common

in the lead up to the carrier approach, and banked turns and descent combined capture
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many possible aircraft motions. The Monte Carlo error results in histogram form over

100 Monte Carlo trials of 30 second flights are shown in Figure 2.8. We see the effect of

bias and multimodal behavior in the UKF estimates. The UKF estimates appear to have

lower variance, albeit with significant bias, than the FHMLE estimates in most cases.

The FHMLE estimates, while less smooth, appear to be unbiased for every variable.

Figure 2.9 shows the effect of horizon length on runtime and root mean-squared error

(RMSE). The FHMLE runtime for the one second horizon used for Figures 2.3-2.7 is

around 11ms, while the UKF runtime in Matlab is around 5ms, and both are well below

our sampling time for RF measurements (50ms). This plot shows that we can use a

window up to around 2 seconds in length without average runtimes exceeding 30 ms.

The computation times also grow approximately linearly with the window length, as

suggested by the discussion in Section 2 The RMSE also decreases with horizon length,

however these gains are offset by the latency introduced in estimation, especially for a

rapidly moving vehicle. The determination of optimal window lengths is explored further

in [95].
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(a) position estimation errors (b) velocity estimation errors

(c) attitude estimation errors (d) bias estimation errors

Figure 2.3: Monte Carlo positions, velocities, orientation, and bias average errors with
sigma bounds (solid red: FHMLE average error, dashed red: FHMLE 1-σ error, dot-
dashed black: UKF average error, dotted black: UKF 1-σ error).
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(a) first 10 seconds (b) final 20 seconds

Figure 2.4: Empirical distribution of ∥p̂ ´ p∥ in the first 10 and final 20 seconds respec-
tively. Red represents the FHMLE error, grey the UKF error, and dark red sections are
where the two distributions overlap.

(a) first 10 seconds (b) final 20 seconds

Figure 2.5: Empirical distribution of ∥p̂ ´ p∥ in the first 10 and final 20 seconds respec-
tively, with κ “ 2.5 ¨ 104 and Σa “ 0.03 I3ˆ3 m{s2. Red represents the FHMLE error,
grey the UKF error, and dark red sections are where the two distributions overlap.
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(a) position estimation errors (b) attitude estimation errors

Figure 2.6: Position and attitude estimation errors over a singe MC trial (solid red:
FHMLE error, dot-dashed black: UKF error).

(a) position error without AoT (b) velocity error without AoT

Figure 2.7: Position and velocity Monte Carlo estimation errors without angle of trans-
mission measurements (solid red: FHMLE average error, dashed red: FHMLE 1-σ error).
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(a) position estimation errors (b) attitude estimation errors

Figure 2.8: Position and attitude estimation errors over 100 MC trials of a 600m diameter
banked circle. Red represents the FHMLE error, grey the UKF error, and dark red
sections are where the two distributions overlap..
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Figure 2.9: Average Runtimes and RMSE for various horizon lengths.
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2.4.1 Conclusions

Navigation using RF beacons is useful in GPS-denied environments or when relying

on Signals of Opportunity. We derived a Finite Horizon Maximum Likelihood Estimator

for integrated navigation using realistic RF measurements. Benefits of the finite hori-

zon approach include avoiding linearization, naturally accommodating constraints, and

allowing for a richer class of noise models. This thesis shows that, by using appropriate

numerical methods, FHMLE in integrated navigation is effective and compares favorably

to a UKF in when using low-cost IMUs and in situations with poor geometry, especially

when making use of AoT measurements.

Our simulation results show that the FHMLE tends to produce estimates that, while

having a smaller estimation error can be less smooth than those obtained from a UKF. In

moving horizon estimation (MHE), this is often resolved by adding to the optimization

cost terms that penalize the distance between the current estimate and the one obtained

with the previous window of measurements [30, 65]. Experimenting with this option and

understanding its implications in the context of maximum likelihood estimation is an

important topic for future research. Other topics for future research include the develop-

ment of FHMLE approaches to the “loose integration” of RF and IMU measurements (as

in [11]) and the simultaneous estimation of position/orientation and the parameters of

the noise distributions (covariance matrices for Gaussian distributions and concentration

parameters for the von Mises-Fisher distribution).
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Chapter 3

State Estimation with Asynchronous

Switching Behavior

Real-world systems are often best modeled in continuous time, for example using equa-

tions of motion, but with measurements taken at discrete instants [75]. Many systems

also vary their behavior between discrete modes, either by their construction or to sim-

plify control [90]. Examples include vehicles with a gearbox transmission, power systems

using switched circuits or sources, or an aircraft with several trim conditions including

cruising and banked turning. In real-world systems we must also consider noise in our

measurements, usually represented by random additive noise. A practical formulation

for such systems is a stochastic sampled-data switched system [73], given by

9xptq “ fpσptq, xptq, uptqq ` wptq

yptkq “ hpσptkq, xptkqq ` vptkq,

where xptq is the state, uptq is an input, wptq is a disturbance, yptkq is a measured output

subject to random noise vptkq, σptq is a “switching signal" taking values in a finite set

41



State Estimation with Asynchronous Switching Behavior Chapter 3

that tells us the active mode at time t, and tk are discrete times indexed by k. The

control of such systems is addressed, for example, in [47].

State estimation of discrete-time switched systems has attracted considerable atten-

tion, including works by Alessandri et al [2]. In these papers, the unknown switching

signal is estimated using a Maximum-Likelihood method combined with either Kalman

filtering or Moving Horizon Estimation of the continuous states. In contrast, Interacting

Multiple-Model (IMM) approaches to hybrid system state estimation have been suggested

in [10] and [40]. Ho [36] augmented these methods using Viterbi algorithm concepts to

obtain pseudo Maximum-A-Posteriori (MAP) solutions to the windowed estimation prob-

lem. In [32], a review of estimation methods for switched systems is provided.

In these prior works, it is always assumed that switches occur only at times that

measurements are obtained, in other words the sampling times. There are papers that

consider estimation of continuous-time switched systems like [88], [44], and [79]. In [89],

the authors consider switches that occur at a constant offset from the measurement times.

However we could not find prior works that consider the problem of fully asynchronous

switches with sampled measurements.

In this thesis we address state estimation when switches can occur at any time between

measurement samples. In Section 3.1 we provide results on the convergence of Kalman

filtering methods in the setting where the switching signal is known at sampling times,

but exact switching times are unknown. We build upon analysis first done by Anderson

and Moore [6], and more recently extended by Zhang [94]. Our results provide bounds

on the mean error and mean-squared (MSE) of the estimates, which can be useful in the

context of control [19].

In Section 3.3 we provide a method for simultaneously estimating the state xptq and

switching signal σptq. This method is inspired by the IMM extended-Viterbi (IMM-

EV1) approach [36]. In Sections 3.2 and 3.4, we show simulations that demonstrate our
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theoretical results and validate the performance of our modified algorithms.

3.0.1 Problem description

We consider a linear sampled-data output-error switched system,

9xptq “ Apσptqqxptq ` Bpσptqquptq (3.1)

yptkq “ Hxptkq ` vk, (3.2)

for xptq P Rn, uptq P Rℓ, vk, yk P Rm, and Apσptqq P tAp1q, . . . , ApLqu a n ˆ n matrix,

Bpσptqq P tBp1q, . . . , BpLqu a n ˆ ℓ matrix, with switching signal σptq P t1, . . . , Lu. Our

goal is to jointly estimate the switching signal and state at discrete periodically sampled

timesteps tk “ kT , where T is the sampling period. We denote the state, input, and active

mode at the discrete timesteps as xk “ xptkq, uk “ uptkq and σk “ σptkq respectively, as

well as the active system matrices Ak “ Apσptkqq and Bk “ Bpσptkqq. We impose a dwell

time τd ą T so that switches occur at least τd apart from each other and at most once

per sample. We can then parametrize the signal σt by the sequences tσku and tt̄ku, where

the latter specifies the exact time at which a switch occurs within the interval rtk, tk`1q.

We assume a zero order hold (ZOH) for the input, so that we have an exact discrete

time update equation

xk`1 “ Fkxk ` Gkuk, (3.3)

where

Fk “ eAk`1pT´t̄kqeAk t̄k. (3.4)

and

Gk “ Fk

ż t̄k

0

e´AkτBkdτ `

ż T

t̄k

eAk`1pT´τqBk`1dτ. (3.5)

43



State Estimation with Asynchronous Switching Behavior Chapter 3

3.1 Error bounds for state estimation

3.1.1 Assumptions

We consider the following definition of observability for a time-varying discrete-time

linear system [94].

Definition 1 (Uniform Observability). The sequence pFk, Hq is uniformly observable,

i.e. there exist constants h P Zą0 and ρ1 P Rą0 such that for all x P Rn

ρ1 ∥x∥2 ď x1

˜

k`h
ÿ

i“k

Φ1
k`h,iH

1R´1HΦk`h,i

¸

x

where Φi,k – Fi´1 ¨ ¨ ¨Fk`1Fk.

In many cases, uniform observability of time-varying systems like switched systems is

difficult to verify for all possible switching signals [9]. By imposing a dwell time, uniform

observability of each mode can generate uniform observability of the switched system.

Assumption 1 (Each mode observable). Each unswitched pair peApiqT , Hq represents a

uniformly observable system with constants h1, . . . , hL, ρ11, . . . , ρL1 .

Lemma 1. Suppose that we have Assumption 1 and τd ą hT , where h – maxth1, . . . , hLu.

Then the switched system in (3.3), (3.2) is uniformly observable for every admissible

switching sequence with constants h “ 2h ´ 1 and ρ1 “ mintρ11, . . . , ρ
L
1 u, that do not

depend on the sequence.

Proof: Given that τd ą h̄T , the system must spend greater than hj timesteps in

any mode j. In order to guarantee that the time window rtk, tk`hq contains at least hj

samples uninterrupted in a single mode j, then our window must be at least h “ 2h̄ ´ 1
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samples long. In any window of this length we must have,

ρ ∥x∥2 ď x1

˜

k`2h̄´1
ÿ

i“k

Φ1
i,kH

1R´1HΦi,k

¸

x

where ρ “ mintρ11, . . . , ρ
L
1 u. l

Assumption 2 (Some Modes Observable). Suppose that some of our modes are uni-

formly observable and we place a restriction on the ratio of time spent in unobservable

modes, i.e. exists rt P r0, 1q and T0 P R such that the time spend in unobservable modes,

Tu, in a given interval pt1, t2q satisfies

Tupt1, t2q ď τd ` rtpt2 ´ t1q @t2 ą t1 ě 0 (3.6)

Lemma 2. For some modes observable, let the dwell time be τd ą hT , the maximum hi

among observable modes. Then the system is uniformly observable with constant

h “

S

2h ´ 1 `
τd
T

1 ´ rt

W

(3.7)

and ρ1 the minimum ρj1 associated with observable modes.

Proof: Similarly to Lemma 1, any window of length h is guaranteed to spend at

least h timesteps uninterrupted in an observable mode. The rest of the proof is identical

to that of Lemma 1. l

3.1.2 Errors in system matrices

A Kalman filter is the MAP state estimator of a discrete-time system. Kalman filters

compute state estimates x̂k and their associated covariance matrices Pk at sample k.
45



State Estimation with Asynchronous Switching Behavior Chapter 3

We assume that our initial conidition is a random variable xp0q „ N px̂0, P0q and that

vk „ iid N p0, Rq for R a m ˆ m symmetric positive-definite matrix. We compute the

estimate at sample k`1 by combining yk`1 with a prediction x̂k`1|k based on the previous

estimat x̂k. These sources of information are combined through the Kalman gain matrix

Kk, which depends on the system matrices as well as the measurement noise variance

R. When we do not know system matrices Fk and Gk exactly, due to uncertainty in

switching times, but have estimates F̂k and Ĝk, then our output-error Kalman filter

update equations are of the form,

x̂k`1|k “ F̂kx̂k ` Ĝku (3.8)

Pk`1|k “ F̂kPkF̂
1
k (3.9)

Kk “ pF̂kPkF̂
1
kqH 1

pHpF̂kPkF̂
1
kqH 1

` Rq
´1 (3.10)

x̂k`1 “ pI ´ KkHqx̂k`1|k ` Kkyk`1 (3.11)

Pk`1 “ pI ´ KkHqPk`1|k. (3.12)

First we provide error bounds for our estimated system matrices assuming that we know

the correct sequence tσku but not the exact switching times tt̄ku, instead using estimates

tt̂ku plugged into (3.4), (3.5) to compute F̂k and Ĝk. In this scenario we will bound the

error of our state estimates using bounds on the error of the estimated state transition

matrices due to switching time uncertainty.

Lemma 3 (Error in Estimation of System Matrices). For a transition between modes i

and j, let the error in switching time estimation be denoted rt – t̂´ t̄, then the estimation
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error, rF – F̂ ´ F is bounded in norm as

∥∥∥ rF∥∥∥ ď |rt| ∥Apjq ´ Apiq∥ ep∥Apjq´Apiq∥`3∥Apiq∥`∥Apjq∥qT

ď T ∥Apjq ´ Apiq∥ ep∥Apjq´Apiq∥`3∥Apiq∥`∥Apjq∥qT

(3.13)

and the estimation error, rG – Ĝ ´ G is bounded in norm as

∥∥∥ rG∥∥∥ ď

∥∥∥ rF∥∥∥ e∥Apiq∥T ∥Bpiq∥ ` |rt|e∥Apjq∥T
¨
`

e∥Apiq∥T ∥Bpiq∥ ` e∥Apjq∥T ∥Bpjq∥
˘

. (3.14)

Proof: Call Fj “ eApjqpT´t̄q, Fi “ eApiqt̄, Ej – e´Apjqrt and Ei – eApiqrt. We then have

that F̂ “ F̂jF̂i “ FjEjEiFi, so rF “ FjpEjEi ´ IqFi, then

∥∥∥ rF∥∥∥ ď ∥EjEi ´ I∥ ∥Fj∥ ∥Fi∥

ď
∥∥pEj ´ E´1

i qEi

∥∥ ep∥Apjq∥`∥Apiq∥qT

ď

∥∥∥pe´Apjqrt
´ e´Apiqrt

qeApiqrt
∥∥∥ ep∥Apjq∥`∥Apiq∥qT .

Then using the fact that
∥∥eX`Y ´ eX

∥∥ ď ∥Y ∥ e∥X∥`∥Y ∥ [91] where Y “ ´Apjqrt ´ Apjqrt

and X “ ´Apiqrt, we obtain (3.13).

Our error in G, after some manipulation, can be written as

rF

ż t̂

0

e´ApiqτBpiqdτ ` eApjqpT´t̄q

ż

rt

0

e´ApiqτBpiqdτ ´ eApjqpT´t̄q

ż

rt

0

eApjqτBpjqdτ

from which we obtain

∥∥∥ rG∥∥∥ ď

∥∥∥ rF∥∥∥ ż t̂

0

e∥Apiq∥τ ∥Bpiq∥ dτ ` e∥Apjq∥T
ż ∥rt∥

0

`

e∥Apiq∥τ ∥Bpiq∥ ` e∥Apjq∥τ ∥Bpjq∥
˘

dτ
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which gives us (3.14) after computing integrals. l

The bounds in (3.13) and (3.14) guarantee that the errors in F̂ and Ĝ go to zero as

the error in t̂ goes to zero, which happens when our sampling period goes to zero. These

bounds also improve as the Apiq’s become more similar to each other.

3.1.3 Estimation error bounds

To bound the estimation error of our filter, we denote the filter error by ek – x̂ ´ x,

and the prediction error be zk`1 – xk`1 ´ F̂ x̂k ´ Ĝkuk. With switching time uncertainty,

the estimation error propagates as

ek`1 “ pI ´ KkHqzk`1 ` Kkvk`1 (3.15)

where in a sampling period in which no switch occurs,

zk`1 “ F̂kek (3.16)

and in a period where a switch occurs,

zk`1 “ F̂kek ` rFkxk ` rGkuk. (3.17)

We define the mean squared errors Σk – Ereke
1
ks and Ωk – Erzkz

1
ks. These update

as

Σk`1 “ pI ´ KkHqΩk`1pI ´ KkHq
1
` KkRK 1

k. (3.18)

where when no switch occurs,

Ωk`1 “ F̂kΣkF̂
1
k (3.19)
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and when a switch occurs,

Ωk`1 “ F̂kΣkF̂
1
k ` F̂kErekx

1
ks rF 1

k ` rFkErxke
1
ksF̂k

` rFkE rxkx
1
ks rF 1

k ` F̂kEreksu1
k
rGk

` rFkE rxksu1
k
rG1
k ` rGkukE rxks

1
rF 1
k

` rGkukEreks
1F̂ 1

k ` rGkuku
1
k
rG1
k.

(3.20)

We will need the following:

Assumption 3. Pk|k´1 is positive definite and bounded above for all k. The upper bound

is shown in [94]. Let λ denote the maximum, and λ the minimum eigenvalue that P´1
k|k´1

can have.

Fact 1 (Observability of error dynamics). In [94] it is shown that if the sequence pF̂k, Hq

uniformly observable then the sequence pF̂kpIn´Kk´1Hq, Hq is also uniformly observable,

i.e. there exists ρ3 P Rą0 such that for the same h as in Definition 1,

ρ3 ∥e∥2 ď e1

˜

k`h
ÿ

i“k

Φ̄1
i,kH

1R´1HΦ̄i,k

¸

e

for all e, where Φ̄i,k – Fi´1pIn ´ Ki´2Hq ¨ ¨ ¨FkpIn ´ Kk´1Hq.

We now present a theorem bounding the expected prediction error and mean-squared

prediction error.

Theorem 1 (Bounds on prediction error). Given Assumptions 1 and 3, and suppose

E rx1
kxks ă γ2, and ∥uk∥ ă δ for all k, let

d –
α3

ρ3
λpγ2

∥∥∥ rFk

∥∥∥2

` 2γδ
∥∥∥ rFk

∥∥∥∥∥∥ rGk

∥∥∥ ` δ2
∥∥∥ rGk

∥∥∥2

q

where α3 “ 1 ` α1{α2, α1 ą 0 the largest possible eigenvalue of H 1Pk|k´1H for all k, and
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α2 ą 0 the smallest eigenvalue of R. Then there exist constants β ą 0 and ξ ą 0 such

that if

cpaq –
λ

λ

`

a ` β
?
a ` ξ

˘

for a P Rą0, then for any i P Zą0

∥E rzk`is∥2 ď max
␣

c
`

∥E rzks∥2
˘

, c pcpdqq
(

. (3.21)

Furthermore, there exist constants ωh ą 0 and ωh´1 ą 0, such that the prediction MSE

is bounded for all times k ` j, j P Zą0. as

trpΩk`jq ď max

"

λ

λ
ptrpΩkq ` 2ωh´1q ,

λ

λ

ˆ

2λσ3

ρ3
ωh ` 2ωh

˙*

. (3.22)

A proof is provided just below in Section 3.1.4.

Remark 4 (Estimation error bounds). Given the bounds in Theorem 1, we can also bound

E reks and Σk for arbitrary k using

∥E reks∥ ď ∥I ´ Kk´1H∥ ∥E rzks∥ (3.23)

and

trpΣkq ď ∥I ´ Kk´1H∥2 trpΩkq ` ∥Kk´1∥2 trpRq (3.24)

which follow from (3.15) and (3.18) respectively.

Notably, the assumption E rx1
kxks ă γ2 also serves as a bound on ∥E rxks∥2 and

variance of xk. This theorem and remark state that the dwell time condition ensures

that intermittent model uncertainties due to switching do not lead to unbounded growth
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in our state estimation errors.

3.1.4 Proof of Theorem 1

From (3.15)-(3.17) we get that

E rzk`1s “ F̂kpI ´ Kk´1HqE rzks

when no switch occurs between samples k and k ` 1, and

E rzk`1s “ F̂kpI ´ Kk´1HqE rzks ` rFkE rxks ` rGkuk

when a switch occurs. We use the Lyapunov function

Vk – E rzks
1 P´1

k|k´1E rzks

which from Assumption 3 is positive definite and upper bounded. We have that

Vk`1 ´ Vk “ ´E rzks
1 H 1S´1

k HE rzks (3.25)

when no switch occurs, where Sk – HPk`1|kH
1 ` R. When a switch occurs,

Vk`1 ´ Vk “ ´E rzks
1 H 1S´1

k HE rzks ` 2q1P´1
k`1|kΛkE rzks ` q1P´1

k|k´1q. (3.26)

where Λk – F̂kpI ´ KkHq and q – rFkE rxks ` rGkuk. It is derived in [94] that,

E rzks
1 H 1S´1

k HE rzks ď ´
1

α3

E rzks
1 H 1R´1HE rzks (3.27)
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for α3 ą 0 defined in our theorem. For a switch occurring between times k and k ` 1 but

no switches in the interval tk ` 1, . . . , k ` hu we then know that Vk`h ´ Vk is bounded

above by

´
1

α3

E rzks
1

˜

k`h
ÿ

i“k

Φ̄1
i,kH

1R´1HΦ̄i,k

¸

E rzks ` 2q1P´1
k`1|kΛkE rzks ` q1P´1

k|k´1q.

From uniform observability and Fact 1 we have

Vk`h ´ Vk ď ´
ρ3
α3

∥E rzks∥2 ` 2q1P´1
k`1|kΛkE rzks ` q1P´1

k|k´1q. (3.28)

In other words, we now know that

Φ̄1
k`h,kP

´1
k`h|k`h´1Φ̄k`h,k ´ P´1

k|k´1 ď ´
ρ3
α3

I. (3.29)

We want to show that for a switch occurring between samples k and k ` 1, the expected

prediction error at sample k ` h satisfies,

$

’

’

&

’

’

%

Vk`h ă Vk if ∥E rzpkqs∥2 ą d

∥E rzpk ` hqs∥2 ă cpdq if ∥E rzpkqs∥2 ď d

for some constant d ą 0, and positive continuous function cp¨q. We proceed by considering

the two cases:

1. Suppose ∥E rzks∥2 ą d. We want to show that

∥E rzks∥2 ą d ñ Vk`h ´ Vk ă 0 (3.30)

Applying S-procedure [80] to (3.28), we know that (3.30) is true if and only if (3.31)
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is true.

Dπ ą 0 s.t. π

»

—

–

´I 0

0 d

fi

ffi

fl

´

»

—

–

´
ρ3
α3
I Λ1

kpP´1
k|k´1q

1q

q1P´1
k|k´1Λk q1P´1

k|k´1p
rFkxk ` rGkukq

fi

ffi

fl

ą 0 (3.31)

By Schur complement, this is equivalent to (3.32).

Dπ ą 0 s.t.
ρ3
α3

´ π ą 0 and πd ´ q1P´1
k|k´1q ´ p

ρ3
α3

´ πqq1P´1
k|k´1ΛkΛ

1
kpP´1

k|k´1q
1q ą 0

(3.32)

If we choose π “
ρ3
α3

´ ε for some small enough ε ą 0, such that if

d ą
α3

ρ3
λpγ2

∥∥∥ rFk

∥∥∥2

` γδ
∥∥∥ rFk

∥∥∥∥∥∥ rGk

∥∥∥ ` δ2
∥∥∥ rGk

∥∥∥2

q

then we satisfy the conditions in (3.32) and therefore show that the Lyapunov

function decreases before the next switch occurs. Then the maximum value attained

by ∥E rzk`is∥2 for i ą 0 satisfies

∥E rzk`is∥2 ď
λ

λ

`

∥E rzks∥2 ` β ∥E rzks∥ ` ξ
˘

(3.33)

where

β – 2 ∥Λ∥ pγ
∥∥∥ rFk

∥∥∥ ` δ
∥∥∥ rGk

∥∥∥q (3.34)

ξ – γ2
∥∥∥ rFk

∥∥∥2

` γδ
∥∥∥ rFk

∥∥∥∥∥∥ rGk

∥∥∥ ` δ2
∥∥∥ rGk

∥∥∥2

(3.35)

2. Suppose ∥E rzks∥2 ď d. Then by substituting d into (3.26) we get

Vk`1 ď pλ ´ λminp
∥∥H 1S´1

k H
∥∥qqd ` λβ

?
d ` λξ. (3.36)

Since we showed that the Lyapunov function is non-increasing over a timestep with
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no switch and must decrease over h or more timesteps with no switch, then (3.36)

gives us an upper bound on Vi for k ă i ă k ` j where k ` j is the sample where

the next switch occurs. Then

∥E rzk`js∥2 ď cpdq –
λ

λ

`

d ` β
?
d ` ξ

˘

(3.37)

which is a bound greater than d. If ∥E rzk`js∥2 ą d then applying (3.33) to (3.37)

tells us the maximum value attained by ∥E rzk`is∥2 for i ą 0 must satisfy

∥E rzk`is∥2 ď cpcpdqq (3.38)

(3.33) and (3.38) produce (3.21).

To prove (3.22) we will use the following Lyapunov function,

Wk – trpP´1
k|k´1 ¨ Ωkq

and proceed by similar analysis as with the expected error. We will use the following

Ruhe trace inequality [13, Fact 5.12.4, p. 333]:

Fact 2. For positive semi-definite Hermitian matrices A and B with eigenvalues ordered

largest to smallest, a1 ě a2 ě ¨ ¨ ¨ ě an ě 0 and b1 ě b2 ě ¨ ¨ ¨ ě bn ě 0 respectively, the

following holds
n
ÿ

i“1

an´i`1bi ď trpABq ď

n
ÿ

i“1

aibi (3.39)

which gives us

λtrpΩkq ď trpP´1
k|k´1Ωkq ď λtrpΩkq (3.40)

where λ and λ are the maximum and minimum eigenvalues respectively attainable by
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P´1
k|k´1 which are given by Assumption 3. We can bound the update of our Lyapunov

function, Wk`1 ´ Wk, over the step after a switch using (3.18)-(3.20), (3.39), (3.40), and

the fact that 2E re1xs ď εE re1es ` 1
ε
E rx1xs for arbitrary ε ą 0 as

Wk`1 ´ Wk ď tr
ˆ

`

Φ̄1
k`1,kP

´1
k`1|kΦ̄k`1,k ´ P´1

k|k´1

˘

Ωk

˙

` λε
∥∥∥F̂k

∥∥∥∥∥∥ rFk

∥∥∥ trpΣkq ` λTk

(3.41)

where
Tk`1 “ pF̂kE reks ` rFkE rxksq

1
rGkuk

` u1
k
rG1
kpF̂kE reks ` rFkE rxksq

`
1

ε
rF 2
kE rx1

kxks ` rG2
k ∥uk∥2

` F̂kKk´1RK 1
k´1F̂

1
k

with a switch. The Lyapunov function change over h steps, Wk`h ´Wk, is then bounded

by

tr
´´

Φ̄1
k`h,kP

´1
k`h|k`h´1Φ̄k`h,k ´ P´1

k|k´1 ` εηI
¯

Ωk

¯

` tr

˜

P´1
k`h|k`h´1

h´1
ÿ

i“0

Φ̄1
k`i|kTk`h´1´iΦ̄k`i|k

¸

where η – λ
∥∥∥F̂k

∥∥∥∥∥∥ rFk

∥∥∥ ∥I ´ Kk´1H∥ and Ti “

∥∥∥F̂iKi´1RK 1
i´1F̂

1
i

∥∥∥ when i ‰ k. From

(3.40) and (3.29), we get

Wk`h ´ Wk ď

ˆ

´ρ3
α3

` εη

˙

trpΩkq ` λtr

˜

h´1
ÿ

i“0

Φ̄1
k`h|k`iTk`iΦ̄k`h|k`i

¸

(3.42)

We choose ε “ ρ3{p2α3ηq, which also affects the value of Tk. Therefore we see that over

any h steps, if the MSE at time k satisfies

trpΩkq ą
2λα3

ρ3
tr

˜

h´1
ÿ

i“0

Φ̄1
k`h|k`iTk`iΦ̄k`h|k`i

¸

(3.43)
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then Wk`h ´ Wk ď 0. We note that it might be possible to achieve a better bound with

different choice of ε. We must then consider the fact that unlike for the expected error

in (3.27), the Lyapunov function Wi can now increase even in non-switch intervals due

to the Tk terms. We will again deal with this by splitting into two cases. First let ωj be

defined as the upper bound derived from our upper bounds on Fk, Kk, etc., as well as

bounds on rF and rG from Lemma 3, and bound on ∥E rzks∥ in (3.21), of the quantity

tr

˜

j´1
ÿ

i“0

Φ̄1
k`j|k`iTk`iΦ̄k`j|k`i

¸

ď ωj,

for any k. We know that for any j ą 0,

Wk`j ´ Wk ď λωj

Let us consider the two cases:

1. Suppose trpΩkq ą 2λα3

ρ3
ωh. Then (3.41) and (3.42) tell us that Wk`h ă Wk and the

maximum value between k and k ` h is bounded as

trpΩk`jq ď
λ

λ
ptrpΩkq ` ωh´1q for j P tk, . . . , k ` hu, (3.44)

which is also the maximum value attained until some trpΩk`jq ď λα3

ρ3
ωh, since the

value cannot increase over h steps otherwise. This brings us to our next case:

2. Suppose trpΩkq ď 2λα3

ρ3
ωh. Now the maximum value that trpΩk`1q could attain is

trpΩk`1q ď
λ

λ

ˆ

2λα3

ρ3
ωh ` ω1

˙

If we achieved the maximum then trpΩk`1q ą 2λα3

ρ3
ωh, so Wk`h`1 ď Wk`1 and
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+
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Figure 3.1: Boost Converter Circuit

therefore the maximum value of trpΩk`jq for all j ą 0 is bounded as

trpΩk`jq ď
λ

λ

ˆ

2λα3

ρ3
ωh ` ωh

˙

j P Zą0 (3.45)

with (3.44) and (3.45) combine to prove (3.22), with an additional ωh´1 or ωh added

to each to account for the case of starting in non-switch timestep. l

3.2 Case study: switching power conversion

A boost converter is a popular switching power converter for stepping up a DC voltage

without transformers or amplifiers. This is necessary when a high-power source is not

available to perform amplification. A model for a realistic boost converter is provided in

[21]. We have dynamics as given in (3.1) where

Ap1q “

»

—

–

´R1{L1 0

0 ´1{R0C0

fi

ffi

fl

,

Ap2q “

»

—

–

´R1{L1 ´1{L1

1{C0 ´1{R0C0

fi

ffi

fl

,

Bp1q “ Bp2q “ r1{L1 0s
1.
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Figure 3.2: Example state evolution for Boost Converter starting with switches every 1.2
ms then increasing to every 0.9 ms at 0.02 seconds, blue dashed line indicates iL and red
solid line indicates v0.

Here, x “ riL v0s
1 and u “ vin. We additionally choose y “ v0, or in other words

H “ r0 1s. We use the values R1 “ 2 ohms, L1 “ 500 microhenrys, R0 “ 50 ohms,

C0 “ 470 microfarads, and vin “ 100 volts from [21]. Figure 3.2 shows the result of

simulating this system.

We simulated 10 seconds of operation with switch frequencies ranging from 1.2 to 0.9

ms/switch, and output voltages ranging between 100 and 120 volts, with measurement

noise corresponding to R “ 5 volts2.

Table 3.1 shows the effect of sample period T on the Kalman filter estimation error

when exact switching times are unknown but the active modes are known at switching

times. Table 3.2 shows how effective the gridded estimation in (3.46) is when sampling at

0.5 ms for different values of g over 100 trials. As expected more precision in the switching

time interval leads to more accuracy in the Kalman filter estimates, with diminishing
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T (ms) 0.75 0.5 0.35 0.15 0.1
RMSEpiLq (amps) 19.2 13.5 8.74 6.60 4.21
RMSEpv0q (volts) 3.46 2.74 2.13 1.63 1.24

Table 3.1: Effect of Decreasing Sampling Period on Kalman filter RMSE

T {g (ms) 0.5 0.25 0.167 0.125 0.1
RMSEpiLq (amps) 13.5 10.7 9.40 9.17 9.09
RMSEpv0q (volts) 2.74 2.15 2.00 1.96 1.89

Table 3.2: Effect of increasingly precise gridded switching time estimation on Kalman
filter RMSE, 100 trials

returns. This effect is greater with faster sampling than switching time optimization

since faster sampling also gives us more measurements. However, in Table 3.1 the most

improvement we would expect from having more measurements, in the case where our

state was held constant, is a factor of
?
5 « 2.24 between T “ 0.5 and 0.1 ms. However,

our accuracy improves by a factor of around 3, showing the effect of improved precision

in switching time.

3.3 Joint estimation of state and switching

In Theorem 1, the error in the state estimates is driven by the switching time errors

appearing in Lemma 3. We will augment the IMM Extended-Viterbi Kalman filter (IMM-

EV1 KF) [36] with the maximum likelihood problem of estimating switching time within

a single sample interval given by

Jkpτq – p
`

yk`1|xk`1 “ x̂k`1|k,t̄“τ

˘

Where x̂k`1|k,t̄“τ is found, for example, by computing (3.4), (3.5) and plugging into (3.3).

We can search for the optimum of this cost by gridding the sample period rtk, tk`1q with
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g points tτiu
g
1 where τi – iT

g
´ T

2g
. We can then compute

t̂k “ arg max
τi

Jkpτiq. (3.46)

We can now state Algorithm 1, a heuristic method which builds on the IMM-EV1 Kalman

filter by including our gridded switching time estimation. To ensure that λ exists in

Assumption 3, we add ϵI to each Pk|k´1 for some small ϵ ą 0.

Algorithm 1. filter bank tpx̂1
k, P

1
k q, . . . , px̂L

k , P
L
k qu

mode probabilities a1k, . . . , a
L
k

for i from 1 to L do

for j from 1 to L do

compute t̂ijk for switch from i to j using (3.46)

let bij “ Jkpt̂ijk q

end for

ĵ “ maxj bij

compute x̂i
k`1, and P i

k`1 from x̂ĵ
k, P

ĵ
k , and t̂iĵk ,

aik`1 “ biĵa
ĵ
k

end for

normalize aik`1’s
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3.4 Case study: maneuvering vehicle tracking

A model of a continuous-time switched system representing a vehicle moving in two

dimensions with x “ rx1 9x1 x2 9x2s
1 is given by,

Ap1q “ Ap2q “ Ap3q “ I2 b

»

—

–

0 1

0 0

fi

ffi

fl

Bp1q “

„

0 0 0 0

ȷ1

Bp2q “

„

0 ´1 0 1

ȷ1

Bp3q “

„

0 1 0 ´1

ȷ1

where b denotes the Kronecker product, with τd ą 1 second and measurements sam-

pled every 0.5 seconds. This double-integrator system corresponds to the discrete time

switched systems used in [36], among others. Its discretization with ZOH over timestep

T is given by

F p1q “ F p2q “ F p3q “ I2 b

»

—

–

1 T

0 1

fi

ffi

fl

(3.47)

Gp1q “

„

0 0 0 0

ȷ1

Gp2q “

„

´T 2

2
´T T 2

2
T

ȷ1

Gp3q “

„

T 2

2
T ´T 2

2
´T

ȷ1

.

We consider a single trajectory over 10 seconds, with uptq “ 1, starting in mode 1,

swiching to mode 2 at 1.65 seconds, to mode 3 at 2.75 seconds, and back to mode 1 at

3.9 seconds. The resulting trajectory is shown in Figure 3.3 along with a single trial of
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Figure 3.3: Single trial of vehicle true and estimated trajectories using Algorithm 1 for
g “ 1, 2, 5

estimate trajectories computed using Algorithm 1 where

H “

»

—

–

1 0 0 0

0 0 1 0

fi

ffi

fl

, R “

»

—

–

0.05 0

0 0.05

fi

ffi

fl

.

We compute the RMSE over 500 monte carlo trials, and the results for varying divisions,

g, of our sampling time are show in Figure 3.4.

3.4.1 Conclusion

We showed stability under dwell-time constraints of Switched System Kalman filter-

ing errors with intermittent uncertainty in system dynamics due to unknown switching

times. The bounds developed, while conservative, give us guarantees and intuition about

filter implementations like the IMM-EV1 KF. Simulations of a boost converter and ma-
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Figure 3.4: Vehicle position and velocity estimation RMSE over 500 MC trials, Algo-
rithm 1 with g “ 2 shown with red circles, g “ 5 with yellow squares, and g “ 10 with
purple triangles. Blue x’s mark the switching times.

neuvering vehicle showed improvement in the accuracy of filtering algorithms when we

improved the precision of switching time estimates.

An immediate extension is to consider requirements on control algorithms to satisfy

the assumptions in Theorem 1. It would be interesting to extend these results to nonlinear

problems, for which our analysis could be applied to linearized error dynamics.
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