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Tyler Scott [Assistant Professor]
Assistant Professor in the School of Public and International Affairs at the University of Georgia, 
204 Baldwin Hall, Athens, GA 30602.

Abstract

This paper addresses two research questions: (1) Does collaborative environmental governance 

improve environmental outcomes? and (2) How do publicly supported collaborative groups with 

different levels of responsibility, formalization, and representativeness compare in this regard? 

Using a representative watershed quality data series, the EPA’s National Rivers and Streams 

Assessment and Wadeable Streams Assessment, in conjunction with a watershed management 

regime database coded for this analysis, I test the relationship between collaborative governance 

and watershed quality for 357 watersheds. Since these are observational data, a multilevel 

propensity score matching method is used to control for selection bias. Using an augmented 

inverse propensity weighted estimator, I estimate the average treatment effect on the treated for six 

different water quality and habitat condition metrics. Collaborative watershed groups are found to 

improve water chemistry and in-stream habitat conditions. I then use hierarchical linear regression 

modeling to examine how group responsibilities, membership diversity, and formalization affect 

the predicted impact of a collaborative group. Groups that engage in management activities (in 

comparison to coordination or planning) are found to achieve greater environmental gains. Limited 

differentiation is found with regards to the presence of a group coordinator, increased goal 

specificity, or greater stakeholder diversity.

INTRODUCTION

“Collaborative governance” and “collaborative management” are normatively popular 

concepts that have been widely employed in environmental policy applications worldwide 

(Ansell & Gash, 2008; Hall & O’Toole, 2000, 2004; Innes & Booher, 2004; McGuire, 2006; 

Newig & Fritsch, 2009a). Collaboration has been shown to enhance cooperation and foster 

belief change among stakeholders (Leach et al., 2013; Lubell, 2004a), generate funds and 

support for alternative policy measures when problems are too diffuse or difficult to address 

via regulation (Margerum, 2011), and increase the implementation success of policies and 

programs (Agranoff & McGuire, 2003; Meier, 2005). However, we still know very little 

about the relationship between collaboration and environmental outcomes (Carr et al., 2012; 

Koontz & Thomas, 2006) or how the environmental outcomes of collaborative approaches 

compare to those of other policy alternatives (Margerum, 2011; Schneider et al., 2003).

(tyler.scott@uga.edu). 
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This issue, whether collaborative environmental governance improves environmental 

outcomes, is the primary research question addressed in this analysis. My second research 

question builds upon the first, asking: What design and implementation characteristics make 

groups more or less effective at improving environmental outcomes? Research shows that 

collaboration alone does not necessarily yield improved outcomes (Newig & Fritsch, 2009a), 

but there is little existing evidence informing how policymakers might best wield 

collaborative governance as a strategic, context-appropriate policy tool. I address these 

questions using a common application of collaborative environmental governance—

collaborative watershed planning and management groups (Gerlak et al., 2012; Grafton & 

Hussey, 2011; Hoornbeek et al., 2012; Imperial, 2005; Lubell, 2004a, 2004b, 2004c; 

Mazmanian & Kraft, 2009; Sabatier, 2005; Thomas & Koontz, 2011). The next section 

describes how this analysis fits within—and builds upon—the existing literature. I then 

specify the empirical approach used in this analysis and explain how it is appropriate given 

the data and research questions. Subsequent sections then detail my data collection process 

and coding scheme, present model results, and discuss findings.

THEORETICAL RATIONALE

As a wide and growing body of synthesis literature attests, public policy scholars are 

interested in studying the role and impact of collaborative governance in a variety of policy 

sectors (Bingham & O’Leary, 2008; Carr et al., 2012; Donahue & Zeckhauser, 2011; 

Huxham, 2003; Innes & Booher, 2010; McGuire, 2006; O’Leary & Bingham, 2009; 

Sabatier, 2005). However, much of this work concerns the quality of the collaborative 

process (Ansell & Gash, 2008; Coglianese, 1997; Frame et al., 2004; Leach, 2006; Leach et 

al., 2002; Langbein, 2000; Lubell, 2005; Sabatier & Shaw, 2009) or addresses changes in 

intermediate outcomes such as: (1) stakeholder cooperation and consensus (Collins et al., 

2007; Fuller, 2009; Lubell, 2004a, 2005; McGuire & Silvia, 2010; Schively, 2007; Susskind, 

1996; Weible et al., 2004); (2) the production of plans and other outputs (Beierle, 2002; 

Biddle & Koontz, 2014; Innes, 1996; Innes & Booher, 1999; Leach & Sabatier, 2005; 

Lubell, 2005; Margerum, 2011; Newig & Fritsch, 2009b; Wondolleck & Yaffee, 2000); and 

(3) stakeholder perceptions of outcomes (Leach, 2006; Leach et al., 2002; Lubell, 2004c; 

Provan & Milward, 1995; Ulibarri, 2015) that result from collaborative approaches (Carr et 

al., 2012; Koontz & Thomas, 2006). For instance, Lubell (2005) shows how collaborative 

groups with strong procedures and well-codified practices can enhance stakeholder trust and 

collective action beliefs, thereby increasing support for collaborative policy efforts.

Procedural and intermediate outcomes can be significant in their own right, but it is 

important to recognize that policymakers use collaborative governance as a tool for 

improving policy outcomes (Hoornbeek et al., 2012; Koontz et al., 2004). In other words, 

policymakers purposefully choose to engage in collaborative planning and management 

(Huxham, 2003; Vangen & Huxham, 2003) as a means by which to “make or implement 

public policy or manage public programs or assets” (Ansell & Gash, 2008, p. 544). 

Relatively few works have focused on the role of government in initiating and supporting 

collaborative groups in this fashion (Huxham, 2003; Koontz et al., 2004; Mandell, 1999, 

2001; Schneider et al., 2003; Vangen & Huxham, 2003).
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Initiating and maintaining collaborative governance takes time and effort; accordingly, for 

policymakers there are “trade-offs associated with participating in… collaborative efforts 

that divert scarce resources from other activities” (Layzer, 2008, p. 290). These trade-offs 

naturally raise a question of efficacy: Does collaborative governance improve environmental 

outcomes? While there are many in-depth case studies that point to specific outcomes 

(Ansell & Gash, 2008; Margerum, 2011; Newig & Fritsch, 2009b), there is little systematic 

evidence in this regard (Carr et al., 2012; Koontz & Thomas, 2006). Collaborative 

governance is believed to help facilitate decisionmaking, better address interrelated 

problems, carry greater legitimacy, and improve implementation (Sabatier et al., 2005). 

Other benefits attributed to collaboration include access to information, implementation 

support, and reduced conflict (Gigone & Hastie, 1993; Hill & Lynn, 2003; Moreland et al., 

1993; Sabatier et al., 2005; Susskind et al., 1999). At the same time, collaborative processes 

can be time consuming and difficult (Margerum, 2011), and there are legitimate concerns 

about whether collaborative institutions are, as asked by Lubell (2004b), “all talk and no 

action.” My primary hypothesis (H1) is that collaborative watershed governance results in 

improved environmental outcomes:

H1: Collaborative watershed governance results in improved environmental outcomes.

Policymakers not only face the general choice of whether to support collaborative 

governance, but also regarding the specific form that their collaborative efforts will take. The 

current literature contains several typologies and theoretical frameworks that characterize 

collaborative groups in terms of (1) conceptual themes such as geographic scale, 

institutional scale, inclusiveness, or stakeholder incentives (Ansell & Gash, 2008; Cheng & 

Daniels, 2005; Emerson et al., 2012; Margerum, 2011); or (2) comparisons between agency-

led and independent collaborative institutions (Bidwell & Ryan, 2006; Moore & Koontz, 

2003). For instance, (Margerum, 2008, 2011) distinguishes between the institutional scales 

on which collaboration occurs, while Moore and Koontz (2003) characterize groups in terms 

of seating (e.g., agencybased or stakeholder-based). However, none of these typologies 

pertain specifically to the choices policymakers face when designing and implementing a 

collaborative group within a given institutional context.

Ansell and Gash (2008) and Emerson et al. (2012) each pose prominent theoretical 

frameworks that identify key variables, such as participatory inclusiveness and stakeholder 

incentives, which mediate outcomes. While these frameworks speak broadly to institutional 

design, they do not distinguish between specific group characteristics. Thus, along with 

testing the direct “treatment effect” of a collaborative watershed group, I operationalize this 

literature by comparing collaborative groups in terms of the concrete design and 

implementation choices public managers must make, such as designating group tasks or 

inviting group members.

Specifically, I test three collaborative group attributes believed to be key drivers of group 

impact: (H2) the level of management responsibility accorded to the collective (Group 

Responsibility); (H3) diversity of representation in the group (Stakeholder Representation); 

(H4) group formalization (Group Formalization). In the remainder of this section, I provide 

a brief overview of each subhypothesis and orient each within the literature.
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Group Responsibility—Group Responsibility (H2) contrasts groups that serve as 

coordinating bodies or engage in outreach, monitoring, or planning from groups that engage 

in management activities, such as serving as the lead entity for salmon recovery actions or 

managing land use in the watershed. Groups conducting management activities presumably 

engage in more intensive and ongoing collaboration. Incentives to manipulate and act 

cooptively are checked in situations in which actors expect to engage in ongoing cooperation 

(Ansell & Gash 2008, p. 560). Repeated interactions influence the willingness of 

organizations to collaborate (Innes, 1998; Moreland et al., 1993), and more intensive 

collaborative processes are shown to increase information exchange and produce higher 

quality decisions (Beierle, 2002). However, increasing the intensity of interactions (e.g., 

from information sharing to planning to joint implementation) requires greater stakeholder 

engagement and investment (Margerum, 2011; Sabatier et al., 2005; Wondolleck & Yaffee, 

2000). Along with requiring greater time and effort (Hill & Lynn, 2003; Sabatier et al., 

2005), higher intensity collaborative efforts necessitate increased power sharing among 

participants (Margerum, 2011). Lubell et al. (2002) find that as these types of transaction 

costs increase, it is more likely that actual collaboration will be supplanted by nominal, in-

name-only collaboration. Thus, more group responsibility might not result in a larger impact 

if groups are unable to adequately fulfill such a role.

H2: Increased responsibility for a collaborative group is associated with beneficial 
environmental outcomes.

Stakeholder Representation—Collaborative endeavors are theorized to be more 

effective when they incorporate a broader range of information and perspectives (Burby, 

2003; Innes & Booher, 1999; Margerum, 2011; Wondolleck & Yaffee, 2000) because this 

increased breadth facilitates better decisionmaking (Dryzek, 1997; Gregory et al., 2001; 

Smith, 2004), improved compliance (Sabatier et al., 2005), and more effective policy 

implementation (Burby, 2003; Carlson, 1999). While Anderson et al. (2013) demonstrate 

that being more responsive to stakeholders does preclude technically sound management, the 

literature expresses concern that attempting to incorporate the interests and knowledge of all 

relevant stakeholders potentially results in diluted—and thus ineffectual—plans and policies 

(Coglianese, 1997, 1999; Koontz et al., 2004). Further, an increased number of organizations 

can make it more difficult to develop key linkages (Alexander, 1995; Gray, 1989), and 

incorporating additional jurisdictional levels (horizontally and hierarchically) can make 

group actions less tractable (Margerum, 2011). To examine this, Stakeholder Representation 

(H3) considers the extent to which a group is comprised solely of local governments (cities, 

counties, and special districts) or also includes higher level public organizations (e.g., state 

and Federal agencies), tribal governments, and external organizations such as businesses, 

agricultural interests, nongovernmental organizations (NGOs), and universities.

H3: Diverse representation in a collaborative group is associated with beneficial 
environmental outcomes.

Group Formalization—Formalization (H4) distinguishes between collaborative efforts 

that are more ad hoc and those that have a stronger institutional presence (Alexander, 1993; 

Huxham & Vangen, 2005; Imperial, 2005; Margerum, 2011). While formal group structures 

and processes are found to enhance collaborative group function and longevity (Ferguson, 
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2004; Margerum & Born, 2000)—and increased resource support in general is found to 

enhance group efficacy (Curtis & Byron, 2002; Parker et al., 2010; Yaffee et al., 1996)—it 

remains unclear how specific resource expenditures, such as hiring a dedicated coordinator 

or producing more specific plans and agendas, affect group impact. I compare groups on two 

aspects of formalization: (1) the presence of a dedicated coordinator and (2) whether a group 

has itemized goals or objectives.

In some cases, a coordinator can provide key administrative support and ease group tensions 

(Imperial, 2005; Huxham & Vangen, 2000; Margerum, 2002; Susskind & Cruikshank, 1987; 

Susskind et al., 1999). Likewise, better-specified goals and objectives can “help motivate 

groups to resolve conflicts” (Margerum, 2011, p. 121; see also Mattessich et al., 2001; 

Susskind & Cruikshank, 1987), enable groups to better assess their efficacy and focus their 

efforts (Anderson, 1995; Hoch, 2000; Innes & Booher, 1999; Levy, 2013; Margerum, 2011; 

Wondolleck & Yaffee, 2000), and clearly allocate responsibilities (Margerum&Holland, 

2001). On the other hand, coordinators are not free, and there can be significant opportunity 

costs associated with efforts to further formalize group processes or better specify plans 

(Margerum, 2011; Wood & Gray, 1991). Nonetheless, I hypothesize that more formalized 

groups will be more strongly associated with improved water quality.

H4: Increased formalization of a collaborative group is associated with beneficial 
environmental outcomes.

METHODOLOGY

Estimating the Effect of Collaborative Watershed Groups

A direct comparison between the treatment group (watersheds with an active collaborative 

group) and control group (watersheds without an active collaborative group) is 

inappropriate, since self-selection into the treatment group is attributable to characteristics 

that also affect watershed conditions. I address the issue of selection bias using a matching 

method (Rosenbaum & Rubin, 1983) that estimates the average treatment effect (ATE)1 

(Cameron & Trivedi, 2005) using an augmented inverse propensity weighted estimator 

(AIPW) (Glynn & Quinn, 2010).

The AIPW estimator ATEAIPW  ( (see also Robins et al., 1994; Scharfstein et al., 1999) 

involves two basic elements: (Step 1) fitting a model that estimates the probability of 

“treatment” (in this case, the presence of an active collaborative group) as a function of 

relevant observables (i.e., a propensity score, or the estimated probability that a given 

observation falls in the treatment group [Cameron & Trivedi, 2005; Rosenbaum & Rubin, 

1983]); and (Step 2) fitting two models that estimate the outcome variable2 of interest under 

treatment and control conditions, respectively, and weighting each outcome estimate by the 

propensity scores estimated in Step 1 in order to produce a weighted average of the two 

regression estimators (Glynn & Quinn, 2010). Essentially, the two regression models fit in 

1The ATE is defined theoretically as ATE = E[Y(1) – Y(0)].
2As the presence of a collaborative group can predate both the Wadeable Streams Assessment (WSA) and the National Rivers and 
Streams Assessment (NRSA), I do not model the change in outcomes between the WSA and NRSA, since both the WSA and the 
NRSA present potentially relevant “post-treatment” outcomes.
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Step 2 are used to estimate a contrast between what would happen if every observation were 

put in the control group and what would happen if every observation were put in the 

treatment group (Freedman & Berk, 2008; Robins & Rotnitzky, 1995). This adjustment is 

applied to the standard inverse propensity weight (IPW) estimator (which simply estimates 

the ATE as the average difference between the treatment and control groups after weighting 

each observation by its corresponding propensity score) to take advantage of the information 

in the conditioning set (the data used to estimate the propensity scores) and to improve the 

small sample properties of the IPW estimator (Glynn & Quinn, 2010). I specify the 

ATEAIPW  estimator and describe the technical details of this approach, in particular the 

analytical advantages of the AIPW estimator relative to the IPW estimator, in Appendix A.3

The ATEAIPW  estimator only removes selection bias if it suitably accounts for the factors 

that motivate selection into the treatment group (Cameron & Trivedi, 2005, p. 873). For this 

analysis, this assumption is well founded, as Lubell et al. (2002) provide a comprehensive 

analysis of the contextual factors that motivate the formation of collaborative watershed 

groups. By including variables in the propensity score model that Lubell et al. (2002) 

identify as key drivers, I am confident that this model removes a great deal of the omitted 

variable bias. The multilevel logistic regression model used to estimate propensity scores 

(Pr[Z = 1]) is specified:

Pr Zi = 1 Xi = logit−1 γe[i] + θo[i] + Xiβ (1)

where the probability of being in the treatment group is modeled as a function of covariate 

vector X, which includes the variables identified by Lubell et al. (2002) as important 

predictors of group presence. Specifically, for each observation i, X includes developed, 

forested, and agricultural land cover, population density, active National Pollutant Discharge 

Elimination System (NPDES) permits (for a five-year period prior to the WSA or NRSA), 

the ratio of NPDES enforcement actions to permits (within the same five-year period), 

watershed area, and median income.4 To allow for the possibility that groups occur more 

frequently in particular geographic regions and become more prevalent over time, I estimate 

propensity scores using a multilevel logistic regression model that fits random intercept 

terms γe[i] for each Omernik Level II Ecoregion e and θt[i]] for each year t.5

3Though it is also possible to estimate the treatment effect by including relevant covariates and the estimated propensity scores 
directly in a standard regression model, an advantage of the AIPW estimator is that it relaxes the linearity assumption of a regression 
model, instead differencing the outcomes of collaborative watersheds and the weighted matched noncollaborative watersheds (Black & 
Smith, 2004). All appendices are available at the end of this article as it appears in JPAM online. Go to the publisher’s Web site and 
use the search engine to locate the article at http://www3.interscience.wiley.com/cgi-bin/jhome/34787.
4p(Treatment)_Agriculture + % forest + % developed + watershed area + pop. density + median income + NPDES permits + NPDES 
enf. ratio + state + year (ecoregion and year are random effects).
5I use ecoregion instead of state as a geographic grouping indicator because state-level random effects result in overfitting. For a few 
states in the data, there are either no treatment (Massachusetts, New Hampshire, New Jersey, Oklahoma, and Kansas) or control 
(Georgia) observations. In reality, however, the “population” of watersheds in each state includes watersheds with and without an 
active collaborative group. While the state in which an observation occurs is an important predictor of selection, in this case the state 
variable is too good of a predictor for the propensity score model (since predictions are based solely on observed data). Ecoregion is 
an excellent proxy, because the nine different Level II Omernik ecoregions in these data are able to capture geographic context 
(political, social, and environmental variables that might influence selection and make the presence of a collaborative group more 
likely) without being subject to sampling zeros that greatly increase the number of estimated propensity scores at or near 0 or 1.

Scott Page 6

J Policy Anal Manage. Author manuscript; available in PMC 2021 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www3.interscience.wiley.com/cgi-bin/jhome/34787


Two important empirical considerations for the propensity score estimation model are (1) 

that the “conditioning set,” that is, the variables with which propensity scores are estimated, 

are relatively similar between the treatment and control groups; and (2) that the distributions 

of estimated propensity scores for the treatment and control groups generally encompass the 

same range so as to provide common support (Glynn & Quinn, 2010; King & Zeng, 2006). 

For instance, if estimated propensity scores for observations in the control group are 

between 0.05 and 0.88, a treatment observation with a propensity score of 0.95 is not 

adequately supported by the model, since the model was fit without any observations with a 

propensity score greater than 0.88. Since the AIPW estimator weights observations in 

accordance to their observed similarity, the propensity score distributions do not need to be 

perfectly congruent, but it is at least important that they sufficiently overlap. Appendix B6 

examines the covariate balance between the treatment and control groups in greater detail, 

demonstrating that the selection model has common support, that is, that the estimated 

propensity scores for the observations in the treatment and control groups span a similar 

range (and that, while not identical, the frequency distribution of scores for each group 

largely overlap).

For Step 2 of the AIPW estimation procedure, I use a pair of multilevel models to estimate 

the water quality outcomes under treatment (collaborative governance) and control 

conditions. Each model includes (1) observed covariates at the individual observation level 

to minimize omitted variable bias7; and (2) models group-level random effects so as to 

adjust for lack of independence among samples taken in multiple time periods from the 

same site or from different sites in the same geographic region.8

Each model groups observations by state, four-digit Hydrologic Unit Code (HUC4) 

subbasin, and year, as well as by the two points of randomization in the WSA and NRSA 

sampling design: Level II Omernik Ecoregion and Strahler stream order (both described in 

the Data section).9 At the first level of the model I estimate water quality outcomes for 

individual stream-year i in sub-basin w, state s, year t, ecoregion e, and stream order o 
(equation (2))10 :

6All appendices are available at the end of this article as it appears in JPAM online. Go to the publisher’s Web site and use the search 
engine to locate the article at http://www3.interscience.wiley.com/cgi-bin/jhome/34787.
7Note that these covariates do not need to be identical to the conditioning set used to estimate the propensity scores in Step 1 (Glynn 
& Quinn, 2010); thus, in Step 1, I specify only those covariates identified by Lubell et al. (2002) as being key predictors of 
collaborative governance, and in Step 2, I include some of these same covariates but also additional variables that are related directly 
to water quality outcomes.
8The advantage, relative to a more common fixed effects approach, is that a multilevel model accounts for uncertainty associated with 
each group-level adjustment (Gelman & Hill, 2006; Raudenbush & Bryk, 2001) by shrinking the adjustment toward the overall sample 
mean as the size of the group decreases. In other words, as the within-group sample size decreases, the model places more credence 
upon the whole sample estimate, and vice versa. This “partial pooling” takes advantage of more available information (Greenland et 
al., 1991; Poole, 1991) and avoids overstating differences between groups (Gelman, 2006; Gelman & Hill, 2006). For data in which 
individual observations are nested within higher level groupings, a multilevel model produces more reasonable inferences (Gelman, 
2006) and more reliable estimates (Gelman et al., 2012).
9Since these groups are “non-nested,” such that two observations can be in the same HUC4 sub-basin but different states, or vice 
versa, the model is a “cross-classified” model (Gelman & Hill, 2006; Raudenbush & Bryk, 2001).
10Empirically, each model is specified as: Outcome Metric_Site Disturbance + % agriculture + % forest + % developed + pop. density 
+ median income + road density + HUC4 + state + year + stream order + ecoregion (HUC4, state, year, stream order, and ecoregion 
are random effects).
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Y i = αw[i] + λs[i] + τt[i] + γe[i] + θo[i] + ∑
l

δl Site i + εiwsteo (2)

where Yi represents the dependent variable, a given quality metric (e.g., nitrogen level) for 

sample i. Accordingly, αw[i] represents the conditional intercept estimate for i given that it is 

in HUC4 basin w; similarly, λs[i] represents the conditional intercept estimate for state s, τt[i] 

the conditional intercept estimate for year t, γe[i] the conditional intercept estimate for 

ecoregion e, and θo[i] the conditional intercept estimate for stream order o. Next, δl 

represents a vector of control parameters 1 to l for a given site (Sitel[i]) (listed in Footnote 9). 

Finally, εiwsteo represents the random error associated with observation i. Note that each of 

the random intercepts are themselves modeled; for instance, HUC4 groups are modeled as:

αw = α0 + μw (3)

in which α0 represents the average outcome across basins and basin-level random error is 

denoted as μw. State, year, ecoregion, and stream order random effects are modeled in the 

same way (i.e., the group level outcome as a function of the across group outcome and 

group-level random error); these equations are omitted for space considerations.11 Even 

though the AIPW estimator has many advantages, it remains possible that resultant ATE 

estimates are biased upwards due to unobserved factors that are positively related to both the 

presence of a group and water quality outcomes. These data remain observational in nature, 

and accordingly these results should not be considered to necessarily provide an unbiased 

causal estimate. Nonetheless, conditioning on observed variables identified in the literature 

as being key to selection likely absorbs most of the influence of unobserved nonrandom 

drivers. Even if omitted variable bias remains, it is likely to be small, and in the absence of 

more rigorous experimental designs these estimates provide better evidence than currently 

exists for policymakers considering initiation or support of a collaborative watershed group.

Comparing Different Types of Groups

The second part of this analysis aims to compare the predicted effects of different types of 

collaborative watershed groups. To estimate how group characteristics affect predicted group 

impact, I fit a single multilevel model that expands upon equation (2) by adding three 

additional terms:

Y i = αw[i] + λs[i] + τt[i] + γe[i] + θo[i] + p Ci + Ci
+ ∑

k
βkCollabk[i]Ci + ∑

l
δlSitei + εiwsteo (4)

Equation (4) adds three elements to equation (2): the propensity score (p[Ci]) for each 

observation as estimated in equation (1), a main effect for collaborative group presence (Ci), 

11In discussing multilevel models, it is important to note that the standard heuristics applied to fitting parameters in ordinary least 
squares regression and similar (e.g., logistic) models, statistical significance, is inappropriate for determining which group-level 
indicators to leave in and which to leave out (Gelman & Hill, 2006, p. 271). For instance, the model includes a grouping indicator for 
each group, not just the indicators found to be statistically significant. This is because the focus of the analysis is not on examining 
intergroup differences, but rather on generating the best possible estimate.
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and a summation term (Σkβk) representing a vector of the predicted change in water quality 

for each group characteristic 1 to k for observation i (Collabk[i]), conditional on the presence 

of a group (Ci). In other words, each observation i is associated with a binary variable (Ci) 

reflecting whether that observation is within a watershed with an active collaborative group, 

and then a series of interaction terms (Collabk[i]Ci), which model the difference for groups 

with and without a given characteristic (e.g., group coordinator). Having an active group is 

an obvious prerequisite for having a group coordinator or any other group characteristic. 

Accordingly, these interaction terms provide a more meaningful—and empirically grounded

—interpretation, since the potential impact of any specific management characteristic 

rightfully should be expressed as altering the predicted impact of a collaborative group and 

not independently. For observations without an active collaborative group, each interaction 

term automatically cancels out (since Ci = 0). In the next section, I describe the data used to 

fit these models.

DATA

Dependent Variables

The data used to assess water quality outcomes come from two national surveys, the WSA 

and the NRSA. The WSA, conducted in 2004 to 2005, sampled 1,392 stream sites that were 

randomly selected from all streams of a given size within an ecological region. In other 

words, the sampling was stratified by ecological region and stream size.12 The probability-

based design used stratification to generate a random representative sample by ecoregion and 

EPA region. This presents a unique opportunity for empirical research since most research 

on collaborative governance selects observations based upon on either the independent 

(management characteristics) or dependent (outcome) variables. The NRSA conducted in 

2008 and 2009 resampled 357 original WSA sites. These 357 sites form the basis of this 

analysis. Figure 1 shows the location of each site.

The WSA and NRSA assess the ecological condition of each site according to a series of 

measurements of chemical stressors, metrics of physical condition, and biological indicators. 

From these data, six variables are selected to provide a holistic representation of stream 

condition and water quality: total phosphorus content and total nitrogen content (chemical 

stressors caused by human activities such as mining or agriculture), water turbidity and in-

stream natural habitat (physical indicators reflect more proximate habitat destruction), and 

indices of riparian vegetation and benthic community abundance (biological indicators of 

condition).13,14 In order to measure water quality and stream condition holistically, two 

variables are specifically chosen from each broader category (chemical, physical, and 

12The WSA surveyed only perennial, wadeable streams. Perennial refers to streams that flow year round under conditions of normal 
precipitation. The WSA sampling protocol is stratified by Strahler stream order. “Wadeable streams,” that is, those that can be sampled 
without using a boat, are generally considered to be of orders 1 through 5. However, Strahler ordering does not directly correspond to 
stream size; rather, the Strahler protocol orders models streams as directed graphs, analogous to a tree. Ordering proceeds in reverse 
from bottom to top, thus a “leaf” stream, that is, one that has no tributaries, is of order 1. The Ohio River is an eighth-order stream, the 
Mississippi River is a 10th-order stream, and the Amazon River in South America is a 12th-order stream. The sample was also 
stratified by the nine (of 15 total) Omernik North American Level II ecoregions that occur in the continental United States, such as the 
Great Plains and Mediterranean California.
13Total phosphorus and total nitrogen content are both measured in absolute terms, using micrograms per liter (μg/L) as units. 
Turbidity is measured in nephelometric turbidity units, using a tool called a nephelometer, which gauges the amount of light reflected 
by the particles in water. In-stream habitat complexity and riparian cover are both calculated using line-transect surveys, which 
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biological). The particular indicators used were selected on the basis of presence in both the 

WSA and NRSA and completeness of the data. Along with the preceding footnotes, Table 1 

provides more detail about the dependent variables.

To facilitate comparison across outcomes, each outcome metric is logtransformed (to 

achieve a more normal distribution), and then mean centered and divided by two standard 

deviations (Gelman, 2008). This is particularly important for phosphorus, nitrogen, and 

turbidity, which, as shown in Table 1, each have an extremely positive skew (i.e., a few 

observations have very high values). While this method of standardization makes direct 

interpretation more difficult than does using untransformed or log-transformed inputs (which 

can be interpreted as simple elasticities), it offers three advantages for this analysis. For the 

ATE estimates, standardized effects can be compared across metrics that are originally on 

different scales. Further, with regards to the regression models used in the second part of the 

analysis, this method of standardization renders continuous variables on a similar scale to 

untransformed binary variables (Gelman, 2008). This allows for comparison between binary 

or categorical variables of interest (related to the presence of a collaborative group) and 

other model inputs. Finally, the parameter estimates for transformed continuous inputs 

compare predicted change associated with said variable moving from a low or high value (or 

vice versa), as the coefficient reflects the change in outcome predicted by a two standard 

deviation change in the input.

Covariates

Publicly available external data are also incorporated into this analysis, primarily for 

modeling propensity scores as described above. Watershed land cover data (the percentages 

of HUC8 land cover that are impervious, used for agricultural purposes, or covered by 

wetlands and forests) are obtained from the National Land Cover Database (NLCD). Income 

and population data are obtained from the American Community Survey (ACS). 

Government spending data are procured from the U.S. Census Bureau (stemming from the 

Census of Governments). NPDES permitting and enforcement data are obtained from the 

U.S. EPA. These data, and the scripts used to produce these data, are available by request.

calculated the summed areal proportion of each cover type. For instance, to calculate habitat complexity the surveyor assesses 
coverage at specific points in a 10-m by 20-m littoral plot. These data are then used to estimate the areal proportion of the reach that 
contains natural cover for fish and other aquatic fauna. Because this metric is a summation of the proportion of the reach that is 
covered by several different kinds of cover, including boulders, large woody debris, and overhanging vegetation, this value can be 
greater than 1. In the data used for this analysis, sites range in value for the variable from 0 to 2.58. Similarly, because riparian cover is 
a summation of the proportion of the streamside riparian area that is covered by canopy, midlayer, and ground-level cover, this value 
can be greater than 1 as well. Sites range in value for this metric from 0 to 2.18 in the data.
14The benthic condition index is more complicated. To assess benthic condition, the WSA and NRSA generate an index for 
macroinvertebrate assemblage by assessing “least disturbed” sites in each ecoregion, using these sites as the basis of comparison for 
assessing stream conditions. There are numerous ways to assess the condition of a macroinvertebrate community, including 
abundance, composition, diversity, and various submetrics related to particular taxa. Further, the appropriateness and significance of 
these various metrics can differ by region. Thus, for each of the nine ecoregions within which sampling was stratified, a particular 
subset of six benthic community metrics were chosen upon which to generate a macroinvertebrate multimetric index (MMI) for each 
ecoregion (each individual metric is scored on a 1 to 10 scale, after which all six metrics are summed and then normalized to a 0 to 
100 scale). Metrics were chosen on the basis of sensitivity to human disturbance, commonness among sites, independence of candidate 
metrics, and applicability across ecoregions (EPA, 2013). For instance, in the Xeric ecoregion (composed of the Great Basin, much of 
Southern California, and the Intermountain West), the MMI incorporates metrics for noninsect percent distinct taxa, percent 
individuals in top five taxa, scraper richness, clinger percent distinct taxa, EPT richness distinct taxa, and tolerant percent distinct 
individuals. In total, there are 21 different metrics that are part of the MMI for at least one ecoregion.
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Independent Variables

In order to develop a watershed management database, data were collected from (1) 

legislative documents that allocate management responsibilities and funds to groups; (2) 

group reports, mission statements, membership lists, and constitutional documents; and (3) 

watershed management plans (specifically the portion of each plan that discusses the use and 

role of public involvement) for each of the 357 watersheds that were sampled for both the 

NRSA and WSA. In very few cases are the majority of these sources available for a given 

watershed, so a primary challenge is to apply a uniform coding scheme to diverse sources.

The coding process for each watershed begins at the EPA’s “Surf Your Watershed” site for 

the HUC8 designation associated with the observation.15 This page provides background 

information including the state(s) and county(ies) with land area in the watershed, the 

primary watershed name, and links to various monitoring Web sites and in some cases local 

watershed organizations. I then proceeded to search for the documentation described above, 

starting with links provided on the EPA page, proceeding to state and local government 

documentation and databases, and finally conducting an extensive Google search using 

keywords (e.g., “watershed council,” “river management group,” etc.) and local geographic 

names to find groups and data sources without a presence in official channels. All sources 

used to develop these data are available from the author. This multisource approach, taking 

advantage of the various resources available on state and Federal agency Web sites and 

databases, is quite similar (though expanded) to the approach used by Moore and Koontz 

(2003) to identify and survey watershed groups in the state of Ohio.

In determining whether a watershed is considered for the purpose of this analysis to be 

managed collaboratively, only groups in which at least one governmental entity participates 

are included. Since the focus of this research is on the use of collaborative governance for 

public purposes, cases of interest are those in which public agencies act as “initiators and 

instigators of collaborative governance” (Ansell & Gash, 2008, p. 545) by devoting time and 

resources to the group. The ultimate question then is whether such public expenditure 

improves policy outcomes, in this case water quality. This coding strategy proves inclusive, 

encompassing a wide variety of interorganizational collaborative institutions with the 

exception of local citizen groups. These advocacy-oriented groups are not of interest in this 

particular study given my specific focus on collaborative efforts that are initiated or 

supported by public managers (i.e., instances in which a public entity has chosen to devote 

resources toward collaborative governance).

Variables of interest are coded as follows.

Dedicated Coordinator—Groups were coded “1” if the group does have a designated 

coordinator or director and “0” otherwise. This variable does not reflect the coordinator’s 

effort level.

Objective Formalization—Anderson (1995) and Margerum (2011) distinguish between 

three ways in which groups codify their aims and purposes: (1) “mission statements”: a 

15http://cfpub.epa.gov/surf/locate/index.cfm.
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broadly conceived sentence (or paragraph) that provides a general statement about the 

impetus and aims of the group; (2) “goals”: itemized, but unspecific, tenets that “describe a 

desired future condition” (Margerum, 2011, p. 126)—for example, “I. Improve water quality 

in river; II. Increase awareness about environmental behavior in community”; and (3) 

“objectives”: itemized statements that outline specific actions intended by the group or 

specific metrics by which the group is able to measure its output or outcomes (Anderson, 

1995). In practice, the distinctions between goals and objectives are somewhat blurry; 

perhaps most problematically, the list of aims published by a group often contains a mix of 

both goals and objectives (i.e., some items are specific and measurable and some are not). 

Thus, since this analysis does not delve deeply into the content of group goals and 

objectives, it is most appropriate for this analysis to code a binary variable comparing groups 

that only publish a mission statement (0) and groups that develop an itemized list of goals 

and objectives (1). This facilitates a comparison between groups that more clearly codify 

their purposes by developing an itemized list of motives and tasks and those that do not.

Diversity of Representation—As specified above, since this study concerns publicly 

supported collaborative governance efforts, the baseline requirement for a watershed group 

to be coded as such is that the group includes a public institution as a member. Thus, the 

“null value” for a group’s diversity is a group that is comprised solely of local governmental 

representatives. Groups are scored for the presence of tribal governments, businesses, local 

stakeholders (e.g., advocacy organizations), NGOs (e.g., Nature Conservancy), research or 

educational organizations such as universities or colleges, agricultural interests, Federal 

agencies, and state agencies. A group receives either a “1” (present) or “0” (absent) 

reflecting membership by each other type of organization. These values are then summed. 

Thus, if a group is constituted solely from representatives of local government, tribes, and 

the business community, then said group’s score for the number of stakeholder types 

included is a “2” (since membership by local government is requisite for inclusion in the 

analysis).

Group Responsibility—In order to develop a comprehensive coding scheme for the types 

of responsibility policymakers accord to a collaborative group, seven general categories of 

tasks that emerge inductively from the data are employed: planning, management, outreach, 

monitoring, coordination, projects, and education. Collaborative group activities such as 

joint policy implementation are more intensive than activities such as information sharing 

because they entail greater transaction costs (Margerum, 2007; Wondolleck & Yaffee, 2000). 

Practical distinctions between many of these activities are not always concrete (for instance, 

a group that uses “restoration projects” for “education” and for “outreach”). Even without 

more detailed data concerning group activities and responsibilities, a general contrast 

emerges between groups that engage in management activities and those that do not. Many 

groups serve as information sharing forums or conduct restoration, education, or outreach 

projects; others engage in management activities such as overseeing endangered species 

recovery efforts or land use planning and management. For this variable, a group is coded as 

“1” if it has management responsibilities (e.g., the group itself is the lead entity on an 

environmental restoration plan or for Endangered Species Act recovery actions, or a group 

manages land use in the watershed) and “0” if it does not have such responsibilities.
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Table 2 summarizes the distribution of these variables across groups. In the data collection 

process, it became apparent that groups vary considerably in terms of their “presence” in 

gray literature (e.g., agency reports) and on the Internet. Some group Web sites contain an 

archival section from which past yearly reports and older documents are accessible, or a 

specific page that references staff or organizational members. For other groups, a more 

deductive approach is necessary. For instance, a group resolution might be cosigned at the 

bottom by group members. These data would then be used to record membership of different 

stakeholder types. This heterogeneity increases the potential for Type II error, either the 

conclusion that a group does not exist (or more likely) overlooking a specific group 

characteristic simply because a given document or textual reference is not found or is not 

available.

While I am unable to eliminate this potential source of bias, I am confident that any bias is 

likely to be quite small for several reasons. First, I employ a consistent data discovery and 

coding protocol to limit bias due to collection methods. Second, Leach et al. (2002) show 

that concerted efforts in small geographic areas are successful in identifying additional 

groups and group characteristics; investigator time and resource limitations, in that I am only 

able to devote a few hours of time to any one observation and am unable to visit any sites, 

are thus the main cause of Type II error. For this reason, I expect that underidentification is 

random, meaning that it increases standard errors but does not bias the results (Lubell et al., 

2002). As with Lubell et al. (2002), this analysis sacrifices the level of detail that would be 

affordable with a regional approach in favor of national generalizability. Third, it is possible 

that a group’s choice not to maintain an active public presence and provide up-to-date 

records is not randomly distributed. While this could also bias treatment estimates, the 

implications that such a choice holds for a group’s environmental impact is unclear, and 

there is not compelling rationale that would indicate this significantly biases the results. 

Finally, the data collection process I employ is similar to methods that have been used—and 

published—in the past (e.g., Leach et al., 2002; Lubell et al., 2002; Moore & Koontz, 2003).

The coding process itself is similar to that of qualitative document analysis (QDA) (Altheide 

et al., 2008; Altheide & Schneider, 2012), often used in political science. Since QDA 

involves the qualitative coding of textual sources for meaning, precision, and impartiality are 

primary methodological concerns (Guba & Lincoln, 1994). This analysis is concerned with 

manifest structures, rather than latent concepts. Thus, coding in this case is primarily a 

question of identification, rather than one of subjective interpretation. For instance, if a 

group document lists an individual as being a “coordinator” or “executive director,” then a 

group is coded as having a coordinator. Thus, I do not believe that partiality is a significant 

concern in this analysis. To address precision, I provide an “audit trail” (Platt, 1981) in 

Appendix C16 that presents the coding protocol applied to each textual resource. This 

provides an overview of the analytical process applied to each data source. Likewise, in 

adherence to the recommendation of Guba and Lincoln (1994) to provide full access to data 

so that findings can be replicated and verified, the author intends to make available the data 

16AH appendices are available at the end of this article as it appears in JPAM online. Go to the publisher’s Web site and use the search 
engine to locate the article at http://www3.interscience.wiley.com/cgi-bin/jhome/34787.
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sources employed (including group Web sites, plans, reports, etc.) for each assessed 

watershed. These are available on request.

RESULTS

Collaborative Group Presence

In evaluating these results one should be concerned not only with the statistical significance 

of the parameters of interest, but also with how the estimated effect of a variable behaves 

across all six outcome metrics. Colloquially, one might interpret increased levels of nitrogen, 

phosphorus, and suspended solids and decreased vegetation, in-stream habitat, and benthic 

abundance as “bad for the environment” and the converse as “good for the environment.” In 

interpreting ATE estimates and model coefficients, it is important to note that the dependent 

variables are not uniform in directionality. So that each estimated parameter reflects the 

direction of predicted change in the outcome variable, the directionality of each variable is 

kept “as-is.”

Generally, if collaborative watershed management improves environmental outcomes, one 

might expect to observe a negative ATE for the phosphorus, nitrogen, and turbidity level 

models, and a positive ATE for benthic community health, riparian cover, and habitat 

complexity models. The same holds true for subsequent regression models. However, not all 

policies and programs will affect all of these variables simultaneously. For instance, a 

program that targets sources of nonpoint pollution such as fertilizer use might significantly 

affect water chemical content but have no bearing on riparian habitat. Thus, while using six 

metrics in concert provides a holistic conception of water quality, one should not necessarily 

expect any effect to perform in a wholly consistent way across all six outcome metrics. I 

discuss this issue in greater detail in the context of the model results below.

Of the 357 sites sampled under both the WSA and NRSA, 124 are found to have a 

collaborative watershed management group at the time of the WSA sample, and 167 are 

found to have a collaborative watershed management group at the time of the NRSA sample. 

However, one issue regarding the assignment of watersheds into the “treatment” group is 

that the various outputs of a collaborative group (such as plans or joint projects) do not likely 

have an immediate effect on on-the-ground conditions; instead, it is likely that any such 

effect would take time to be realized. For this reason, it makes little pragmatic sense to 

model a sample taken in the same year in which a group was formed as being in the 

treatment group.

While there is limited evidence about how long it takes for group actions to manifest, Leach 

et al. (2002) and Leach and Sabatier (2005) find that perceived success (on the part of 

participants) increases after groups have been active for approximately four years (of course, 

as discussed previously, it is unclear how perceived success relates to actual outcomes). 

Based on these results of Leach et al. (2002) and Leach and Sabatier (2005), I model all 

watersheds in which a collaborative group has been active for at least four years prior to the 

sample date as being in the “treatment” group. This results in a treatment group size of 233 

(87 WSA samples and 146 NRSA samples), with 481 observations in the control group. The 

treatment estimates obtained using the AIPW estimator are shown in Table 3. Standard 
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errors for each ATE are estimated via bootstrapping (Funk et al., 2011; Glynn & Quinn, 

2010).

Table 3 presents bootstrapped confidence intervals for each ATE estimate (the average effect 

of a collaborative group that has been active for at least four years prior to the observation). 

These bounds represent 95 percent confidence intervals for each ATE as estimated by 500 

bootstrap samples. I label as significant any ATE estimate for which the bootstrapped 95 

percent confidence interval does not contain zero. Four of the six ATE estimates 

(phosphorus, nitrogen, turbidity, and in-stream habitat complexity) are thus found to be 

significant with 95 percent confidence. All four of these ATE estimates also have a sign 

suggesting that collaborative groups engender environmental improvement.

For interpretation, it is helpful to think of the ATE estimates as if they are each a regression 

coefficient associated with a binary treatment variable, in this case a collaborative watershed 

management group that has been active for at least four years. Again, each outcome metric is 

log-transformed and then standardized by mean centering and then dividing by two standard 

deviations (see Gelman, 2008). Thus, the expected phosphorus level for a watershed in the 

treatment group (i.e., treatment = 1 vs. treatment = 0) is 21.5 percent less than a watershed in 

the control group. Since the standardized unit is two standard deviations of the log-

transformed phosphorus variable (the standard deviation of which equals 1.52), we can 

multiply the coefficient by twice the standard deviation, and then exponentiate the result to 

produce a multiplicative effect estimate of 0.78 (exp[−0.08 × 1:52 × 2] = 0.78). This predicts 

that a watershed with a collaborative group will have a phosphorus level 22 percent below 

that of an untreated watershed. Similarly, the suggested effects on nitrogen and turbidity are 

a reduction of 23 percent (SD = 1.29) and 21 percent (SD = 1.65), respectively. In-stream 

habitat complexity is predicted to increase by 15 percent (SD = 0.62). The suggested effects 

on benthic community health and riparian cover are both negligible and insignificant.

These results can perhaps be explained by considering the extent to which a collaborative 

watershed group might have influence over each of these metrics. Of these six metrics, 

riparian cover is most subject to the influence of the landowner directly proximate to the 

sample site; it is not likely that actions elsewhere in the watershed meaningfully influence 

riparian cover at the site. Thus, finding a significant increase in riparian cover is perhaps a 

“hard case,” in that it would require the group to exert some form of influence directly on 

that plot of land. Conversely, land use and management actions taken elsewhere in the 

watershed that reduce net erosion or chemical pollution are likely to indirectly affect stream 

conditions at the sample site. Simply put, one might say that riparian cover more closely 

depends on actions taken at the sample site, whereas in-stream vegetation, turbidity, or 

phosphorus content to a greater extent depend on actions taken somewhere in the watershed.

The negligible predicted difference in benthic health is perhaps explained by the link 

between riparian cover and benthic health, as benthic heath is shown to be sensitive to 

proximate conditions such as riparian cover (Sweeney et al., 2004). Further, the impacts of 

upstream logging and other disturbances on benthic community health are shown to resonate 

up to 40 years after such behavior has ceased (Zhang et al., 2009); thus, it is possible that 
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benthic conditions change on a much longer time scale and thus most groups have simply 

not been active long enough for there to be a detectable effect.

Figure 2 presents the results of a sensitivity analysis that supports this interpretation. In 

Figure 2, the cutoff for an active group (e.g., all groups active at least four years or six years) 

varies along the x-axis for each outcome metric, while the ATE estimate associated varies on 

the y-axis. Generally, the parameter estimates remain fairly consistent, supporting the use of 

the four-year cutoff that I explore most fully in this analysis. As expected, one result that 

occurs as the cutoff is raised (i.e., requiring a group to have been active for more years to be 

considered part of the treatment group) is that the confidence interval surrounding the ATE 

estimate becomes slightly wider due to the decreasing sample size of the treatment group as 

the cutoff becomes more stringent.17

The most interesting finding emerging from the sensitivity analysis is that the ATE for 

benthic health increases steadily as the cutoff for an active group increases. When the ATE is 

estimated using only groups that have been active at least eight years or more, the presence 

of a collaborative group is predicted to have a statistically significant positive effect on 

benthic health (shown in the panel as the confidence interval does not span the dashed line 

representing an estimate of zero effect). Since benthic community health is perhaps slowest 

to respond to new management practices, this lends further support for the contention that 

collaborative governance does have a beneficial effect on water quality overall. I further 

address these results in the Discussion section.

Table 4 presents the multilevel regression models used to test group characteristics. Each 

outcome metric is shown in a separate column. Control variables that are not substantively 

interesting, specifically the propensity scores used to control for selection bias, are not 

included in Table 4. All continuous numeric inputs to each model are standardized via the 

method described above. Table 4 also does not present the random intercept adjustments 

modeled for HUC4, state, and year groups (fit to account for spatial and temporal 

dependencies), and for stream order and ecoregion (fit to account for the points of 

randomization in the WSA and NRSA design). Table 4 presents bootstrapped confidence 

intervals for each parameter; the level of significance specified in the table refers to the 

maximum bootstrapped interval at which a parameter is “significant,” that is, does not 

contain 0. This is the optimal way to test hypotheses related to linear mixed model effects, 

since residual degrees of freedom are uncertain for a multilevel model18 (Bates et al., 2014; 

Bolker et al., 2009).

Before assessing the variables of interest, it is important to consider the consistency of 

parameter estimates for known sources of environmental degradation included as control 

variables in each model. These models are able to identify established causes of water 

17In the data, there are 291 observations associated with an active group. As the number of years required to be considered part of the 
treatment group increases, the treatment group sample size declines to 270 (two or more years), 260 (3), 233 (4), 219 (5), 193 (6), 178 
(7), and 159 (8).
18The multilevel model is a compromise between a complete pooling (no fixed effects) and no-pooling (fixed effects) model, where 
the precise amount of pooling differs for each group. Thus, it is unclear what the correct degrees of freedom used to calculate the t or F 
statistic and test a given parameter should be, since the appropriate degrees of freedom presumably differ across each group of 
observations.
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quality changes, such as road density and agricultural land use. For instance, the results in 

Table 4 show that an increase in agricultural land usage within a watershed has a significant 

positive effect on phosphorus and nitrogen levels (i.e., increased pollution levels); this 

speaks to the face validity of this modeling approach.19 Note that the estimated effect of an 

active group in Table 4 is not directly comparable to the ATE estimates in Table 3, because 

each model in Table 4 has an additional interaction term that acts on the treatment variable. 

The regression-based ATE estimates will likely differ in any case given that the AIPW 

estimator uses a nonparametric differencing approach.20

Group Responsibility

The interaction term “WG × Management” in Table 4 represents the predicted difference in 

each outcome metric between groups that have actual management responsibilities and those 

that do not (e.g., groups that serve as coordinative bodies or that engage in stakeholder 

outreach and education). As described in the specification of the model above, group 

characteristics are interacted with group presence because a characteristic only has meaning 

in the context of an active group (for instance, a group must be active to have any type of 

responsibility, management, or otherwise). Using interaction terms ensures that the group 

characteristic coefficients can be interpreted as representing the predicted difference between 

groups with and without said characteristic. Table 4 suggests that a group with management 

responsibilities has a significant negative impact on phosphorus levels and a significant 

positive impact on benthic community health.

Using the same method of interpretation applied to the ATE estimates above (multiplying 

the parameter estimate by two times the standard deviation of the variable and then 

exponentiating the result to get a multiplicative effect), a group with management 

responsibilities is associated with a 37 percent (SD = 1.52) lower phosphorus level and a 27 

percent higher benthic index score (SD = 0.74). While the sign of the coefficient for the 

estimated effect on nitrogen level, riparian cover, and in-stream habitat complexity is in the 

hypothesized direction (reduced pollution, improved habitat condition), these effects are all 

insignificant; the estimated effect on turbidity is insignificant and not in the hypothesized 

direction. These results provide limited support for the hypothesis that collaborative groups 

with management responsibilities have a relatively greater impact on water quality. Table 4 

shows that the difference in phosphorus level between the two group types is very similar to 

that of the predicted difference (in terms of both sign and significance) associated with a two 

standard deviation increase in county median income. Similarly, the difference associated 

with management groups with regards to benthic community health is similar in magnitude 

to the change associated with a two standard deviation increase in agricultural land usage.

19Phosphorus, nitrogen are strongly linked to agricultural land use (Tong & Chen, 2002). Similarly, in Table 4 road density is 
positively related to stream turbidity, phosphorus level, and nitrogen level, and negatively related to benthic condition. This fits with 
established ecological findings; for instance, roads increase erosion and sediment yield, thereby increasing stream turbidity (Forman, 
1998; Montgomery, 1994), and water runoff from roads carries heavy-metal pollutants that can harm benthic communities (Forman, 
1998; Horner & Mar, 1983).
20A potential complicating factor in testing group characteristics is that correlation between characteristics might hinder simultaneous 
estimation (i.e., multicollinearity). I tested for this possibility by fitting a distinct model for each group characteristic, and comparing 
these isolated estimates to the parameter estimates from the unrestricted model including all group characteristics; parameters from the 
restricted models (one characteristic each) were almost identical to those in the unrestricted model. Thus, I present only the 
unrestricted model results.
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Stakeholder Representation

The number of stakeholder types in a group is considered as a continuous variable 

(standardized in the same way as the continuous covariates) in the “WG × Stakeholders” 

interaction term. While the parameter estimates predict a small increase in pollution 

(phosphorus, nitrogen, and turbidity) as the number of stakeholder types in a watershed 

group increase, none of these parameters are statistically significant. As the number of 

stakeholder types is mean centered and standardized, this means that there is not a great deal 

of difference between an “average group” involving local governmental representatives and 

four or five additional stakeholder types (the mean number of additional types is 4.3) and 

either a limited group involving only local governmental representatives (e.g., local city and 

county officials) or a diverse group involving all coded stakeholder types. This does not 

corroborate the theory that collaborative institutions are made more effective by 

incorporating a broader range of perspectives (Burby, 2003; Innes & Booher, 1999; 

Margerum, 2011; Wondolleck & Yaffee, 2000), but it also does not evidence that broader 

involvement dilutes policy actions (Coglianese, 1997, 1999; Koontz et al., 2004).

Group Formalization

Table 4 also tests two aspects of group formalization: (1) whether or not a group has a 

dedicated coordinator, and (2) the level of goal specification a group codifies. The “WG × 

Coordinator” interaction term represents the predicted difference between a group that has a 

coordinator and a group that does not. Only one coefficient is significant (turbidity, which is 

predicted to decrease by 33 percent [SD = 1.65]), but five of six are of a sign suggesting that 

groups with a coordinator achieve greater environmental gains. Given that it is fairly 

accepted that coordinators serve a valuable purpose, it is very interesting that these results do 

evidence a stronger, more substantive difference between groups that have a coordinator and 

those that do not. One potential source of variation not captured available in these data is the 

work level of the coordinator. In some cases, a group coordinator works on a part time—or 

even largely volunteer—basis, or serves as coordinator as part of her broader job description 

at a government agency. Other groups have a coordinator who works full time in support of 

the group. Presumably, better data that are able to codify coordinator effort level would more 

carefully test the benefit of having a full-time, dedicated coordinator.

The “WG × Goals/Objectives” term in Table 4 compares groups that have either itemized 

goals or objectives to the reference category, groups that publish only a mission statement. 

While several of the results are insignificant and of almost zero magnitude (phosphorus level 

and in-stream habitat condition), it is interesting to note that groups with itemized goals and 

objectives are associated with much higher (40 percent, SD = 1.29) nitrogen levels and 

reduced benthic community health (20 percent, SD = 0.74). While the lack of significance 

and a consistent pattern among the remaining outcome metrics makes it difficult to draw an 

overarching conclusion, these results suggest that itemizing purposes and goals does not 

necessarily make a group any more impactful.
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DISCUSSION

The results of this analysis suggest that collaborative watershed groups achieve water quality 

and in-stream habitat gains. Watersheds with a collaborative group that has been active at 

least four years are estimated to have significantly lower levels of phosphorus content, 

nitrogen content, and turbidity. These watersheds are also estimated to have significantly 

greater in-stream habitat complexity (e.g., woody debris and aquatic plants). There is no 

significant estimated difference with regards to benthic community health or riparian cover 

(but the sign of each parameter is positive, meaning that all six ATE estimates are of a sign 

suggesting environmental improvement). As discussed above, considering the conceptual 

linkage between the actions of a collaborative watershed group and site-specific measurables 

lends explanatory context to these results. Water content metrics are obviously subject to 

proximate inputs, but they also more broadly reflect land use and environmental behavior 

throughout the watershed. For instance, if group actions help several farms mitigate fertilizer 

runoff, such activities would be reflected in a water quality sample taken downstream. 

Similarly, while in-stream habitat conditions are of course subject to onsite actions such as 

channelization, upstream land usage such as logging and development (or conversely 

restoration actions) can result in flow changes and floods that alter downstream habitat 

(Crispin et al., 1993; Wang et al., 1997).

Given that benthic community health is related to upstream activities such as logging 

(Harding et al., 1998), it is interesting that no significant effect is found on this metric. This 

result is likely attributable to the fact that benthic communities continue to demonstrate the 

effects of land use actions decades after the activity has ceased (Harding et al., 1998; Zhang 

et al., 2009, actually refer to stream biodiversity as “the ghost of past land use”). 

Accordingly, linking collaborative group presence to changes in benthic community health 

likely requires a longer time horizon. Lastly, inability to identify a link between 

collaborative groups and riparian cover is likely attributable to the fact that this metric least 

reflects aggregate watershed management and restoration actions and most reflects 

proximate actions by whichever entity owns that piece of property.

Comparing different types of groups, this analysis identifies a distinction between 

collaborative groups given management responsibilities (e.g., lead management entity for an 

Endangered Species Act recovery plan) and those tasked solely with coordination or 

planning. Two of the six parameters are significant and five of six are of the hypothesized 

sign, providing limited evidence that groups given management responsibilities stand apart 

as more effective. These results suggest that the additional costs of collaborative 

management (as opposed to coordination or planning), such as increased power sharing 

(Margerum, 2011), time and resource commitment (Hill & Lynn, 2003; Sabatier et al., 

2005), and investment in the process (Margerum, 2011; Sabatier et al., 2005; Wondolleck & 

Yaffee, 2000), do result in increased environmental benefits as well.

Little differentiation is found with regards to stakeholder representation. A possible reason 

for the lack of significance associated with stakeholder representation is that this analysis 

focuses specifically on government-sponsored collaborative watershed groups. For instance, 

in the face of existing theory and evidence (Burby, 2003; Dryzek, 1997; Gregory et al., 
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2001; Innes & Booher, 1999; Margerum, 2011; Smith, 2004; Wondolleck & Yaffee, 2000), it 

would seem unlikely that incorporating additional perspectives and interests into the policy 

process does not matter at all. However, it is very plausible that the role of government-

sponsored watershed groups and scope of their activities are fairly constrained, such that 

there is ultimately little variation in outcomes regardless of inputs. For instance, even 

watershed groups that engage in management actions do not have broad rulemaking and 

enforcement authority, but rather manage land use or similar issues (that are otherwise 

typically the responsibility of local governments [Koontz et al., 2004]). Watershed groups 

cannot pass new laws or implement a market-based water quality trading system. Thus, 

groups are necessarily limited by their legislative and regulatory environment.

Group impacts are shown to differ somewhat by group formalization, but not necessarily in 

the hypothesized direction. The results suggest that groups with itemized goals and 

objectives actually perform worse with regards to phosphorus level and benthic community 

health. It is not readily clear why this is the case, but given the prevailing wisdom that 

increased specification helps groups to resolve conflict and better assess efficacy 

(Margerum, 2011; Mattessich et al., 2001; Susskind & Cruikshank, 1987), the lack of 

association between goal specificity and improved environmental outcomes is noteworthy. It 

is plausible that regardless of goal specificity, the goals or objectives that end up being 

prioritized are those that closely dovetail with existing regulatory mandates, and thus the 

nominal goals of the group do not track closely with empirical actions. While this does not 

explain the significant results opposite of the hypothesized direction, it does perhaps explain 

why goals and objectives are not linked to environmental improvements. Finally, while the 

presence of a group coordinator or facilitator is linked only to a significant decrease in 

turbidity, as discussed above the lack of conclusive results in this regard is likely due to the 

fact that these data combine coordinators of various types and capacities. Resource 

limitations and a lack of data availability prevent ascertaining the effort level of a group 

coordinator.

A prominent distinction that emerges from these results is the contrast between the 

significant ATE estimates associated directly with collaborative group presence and the 

inability of the group characteristics tested to “account” for the predicted difference between 

a watershed with an active collaborative governance institution and a watershed without such 

an entity. One potential reason is that the variables tested might not be the variables that 

drive group effectiveness (as measured by environmental impact). A notable omission, of 

course, is group funding levels. While one would presume that differential effectiveness 

associated with funding discrepancies is somewhat of a given, this relationship is worth 

testing to posit whether public agencies devoting funds to collaborative endeavors are 

getting any “bang” for their “buck.” Of course, resource munificence alone cannot be the 

sole driver of group effectiveness. For instance, the findings above conclusively identify a 

significant benefit associated with having a group coordinator.

These results also highlight the essential role of qualitative research in understanding the 

role and function of collaborative governance. It is unlikely that large-N statistical analysis 

alone can definitively answer these questions. For instance, the extensive case studies 

conducted by Margerum (2011) speak to contextual variables and localized drivers of group 
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efficacy that do not necessarily emerge in a larger-N cross-sectional analysis. Given that the 

uncertainty and complexity of environmental systems makes it difficult to parse effects of 

collaboration amidst other influences (Koontz & Thomas, 2006; Rapp, 2008), process 

tracing and the use of program logic models (Bickman, 1987; Margerum, 2011; McLaughlin 

& Jordan, 1999) might serve as an evaluatory complement to the systematic analysis of 

outcomes conducted in this project. Most importantly, these works highlight the 

idiosyncratic nature of local environmental management; what works well in one context 

might not work well in another, and this is very difficult to tease out in a large-N statistical 

analysis.

CONCLUSION

It is easy to lose sight of the fact that collaborative governance requires the expenditure of 

time and effort by public actors, and that these resources could be applied elsewhere. In 

other words, collaboration is not just a “concept… [but potentially] a way of solving 

problems… and achieving results” (Margerum, 2011, p. 306). However, much of what we 

currently know about the environmental impacts of government-supported collaborative 

institutions is based upon evidence from small-N case studies or studies that use subjective 

measures (e.g., stakeholder perceptions or quality of policy outputs) as proxies for 

environmental outcomes. Previous research (e.g., Biddle & Koontz, 2014; Hoornbeek et al., 

2012; Koontz, 2003; Leach & Sabatier, 2005; Lubell, 2004a; Ulibarri, 2015,) has shown that 

collaborative governance has a positive effect both on intermediate outputs and perceived 

policy or program effectiveness. This analysis uses a unique data set and a rigorous 

analytical approach to build upon these works by conducting one of the first large-N 

statistical analyses that systematically tests the relationship between collaborative 

governance and environmental outcomes. Most importantly, the use of objective outcome 

data (water quality and habitat metrics) across a large geographic scale represents a major 

advancement.

Simply put, these results evidence that collaborative governance institutions (in this case, 

collaborative watershed groups) do improve ecological outcomes. It is also important to note 

that I find no indication across any of the six outcomes metrics that collaborative governance 

engenders worse environmental outcomes. This demonstrates that the lowest common 

denominator effect (Coglianese, 1999) is less of a concern than might be thought, and that 

fears of collaboration leading to more talk and less action might be somewhat unfounded. 

Despite the rigorous matching approach employed, it remains possible that the ATE 

estimates are biased upwards due to unobserved factors that are positively related both to the 

presence of a group and to water quality outcomes. However, since matching is based upon 

research evidence regarding the factors that drive collaborative group formation (Lubell et 

al., 2002), it is likely that this approach successfully reduces omitted variable bias. Further, 

as discussed, these estimates represent a significant step forward even if some omitted 

variable bias remains (and given the infeasibility of randomized assignment in this context, it 

is unlikely that experimental data will be available in the future).

Due to the inconclusive findings with regards to group characteristics, this work does not 

shed a great deal of light on the question of how collaborative watershed management 
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improves environmental outcomes. The lack of definitive results associated with group 

characteristics generally accepted as beneficial (e.g., presence of a coordinator, goal 

specificity) is particularly interesting. One suggestion emerging from the literature is that 

collaborative watershed governance in general represents a shift in focus toward nonpoint 

water quality problems that are not suitably addressed by state and Federal regulatory 

authorities (Hardy & Koontz, 2008; Hoornbeek et al., 2012; Koontz et al., 2004). This shift 

in focus, however operationalized, might matter more than the specific details of the group 

itself at a macro level. Group characteristics are not likely irrelevant, but perhaps are more of 

a contextual issue rather than the basis for collaborative group impact.

Future research directions include the addition of a third wave of data from the 2013 to 2014 

NRSA (to be released in 2016 following laboratory analysis of samples), as well as 

additional data concerning group budgets, procedures, and activities. Also, while I control 

for land and resource use in this analysis, future research will take advantage of larger 

samples to allow for a better understanding of how collaborative groups can be more or less 

effective (in terms of producing desired outcomes) in specific contexts. This ongoing work is 

important, as perhaps the central takeaway of this analysis is that we as policy scholars and 

practitioners need to think more deeply about why we believe that collaborative groups are 

an effective tool for achieving public policy goals.

APPENDIX A: AIPW SPECIFICATION AND PROPENSITY SCORE BALANCE

The ATE is estimated using the AIPW via:

ATEAIPW = 1
n ∑

i = 1

n XiY i
π Zi

− 1 − Xi Y i
1 − π Zi

− Xi − π Zi
π Zi 1 − π Zi

* (1 − π Zi E Y i Xi = 1, Zi + π(ZiE Y i Xi = 0, Zi ]
(A.1)

where π Zi  is the estimated propensity score given the set of control variables Z for site i, 

Yi is the observed outcome, and Xi is the treatment variable for site i. Equation (A1) builds 

upon the basic inverse propensity weight (IPW) estimator by adjusting for a weighted 

average of the two regression estimators.21 Glynn and Quinn (2010, p. 41) show that 

ATEAIPW  is a consistent estimator for ATE when either (1) the propensity score model is 

correctly specified; or (2) the two outcome regression models are correctly specified (see 

also Scharfstein et al., 1999). This means that the estimate is “doubly robust” (Bang & 

Robins, 2005; Glynn & Quinn, 2010) to uncertainty about both the selection process and the 

outcome model. Since the empirical processes that drive the existence of collaborative 

watershed groups and water quality conditions are both complex, this is a significant 

advantage. Using the ATEAIPW , I estimate the effect of an active collaborative group for 

each of the outcome metrics used in this analysis.22

21The adjustment term is [(1 − π(Zi)E(Y i |Xi = 1, Zi) + π(ZiE(Y i |Xi = 0, Zi)] such that 

1
n ∑i = 1

n {(
XiYi
π(Zi)

−
(1 − Xi)Y i
1 − π(Zi)

) −
(Xi − π(Zi)

π(Zi)(1 − π(Zi))
} is the basic ATEIPW  estimator.

Scott Page 22

J Policy Anal Manage. Author manuscript; available in PMC 2021 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



While the AIPW estimator has many advantages, it also can exhibit an extremely high 

variance when weights applied to observations are very small or very large. This occurs 

when estimated propensity scores are close to 0 or 1 (since weights are derived from the 

inverse propensity scores). Pohlmeier et al. (2013) thus recommend a shrinkage method that 

stabilizes the treatment estimators by shrinking the propensity scores pi = Pr Zi = 1|Xi
toward the unconditional mean treatment value (see also Busso et al., 2014; Frolich, 2004):

pi
2 = 1 − λi(n)pi + λi(n)D (A.2)

where D is the mean treatment value and λi (n) the “tuning” parameter used to shrink the 

scores, is specified as λi(n) = 1/ (n  (Pohlmeier et al., 2013). This method reduces weight 

variance, thereby reducing variance in the ATE estimators as well (Pohlmeier et al., 2013).23 

This procedure results in ATE estimates nearly identical to those generated without tuning, 

but serves to greatly reduce the estimate standard errors.

APPENDIX B: EXAMINING PROPENSITY SCORE BALANCE

To examine covariate balance, Table B1 presents average values for the treatment and 

control groups for each variable included in the propensity score model. The third column 

presents the P-value resulting from a standard two-sample t-test comparing the mean values. 

Three substantive differences that do emerge are that (1) control observations have, on 

average, a county population density twice as high as treatment observations; (2) control 

observations have, on average, about four more active NPDES permits within their HUC8 

watershed than do treatment observations (since the variance of population densities among 

watersheds is quite high, the t-test fails to identify a statistical significant difference between 

the treatment and control groups even though the average difference is quite high in 

substantive terms); and (3) watersheds with an active group have, on average, about 25 

percent agricultural land, compared to 20 percent in the control group.

This is consistent with the predicted role of collaborative groups as primarily targeting 

nonpoint source pollution (Hardy & Koontz, 2008; Hoornbeek et al., 2012; Koontz et al., 

2004; addressed in the Discussion and Conclusion sections); watersheds with a higher level 

of NPDES permits are presumably those for which point source pollution is a more 

significant issue, whereas watersheds with fewer NPDES permits (as well as lower 

population density and a higher percentage of agricultural land) are likely those for which 

nonpoint source pollution is a more significant driver of water quality. It is important to 

remember, however, that the reason we examine the degree to which the treatment and 

control groups are balanced on observables is due to concern that the two groups might 

differ in ways that are unobserved as well (differences in observables can obviously be 

22Discussed in Data section, six outcome metrics are used in order to comprehensively assess environmental condition: nitrogen 
content, phosphorus content, turbidity, benthic community health index, in-stream habitat complexity, and riparian cover. Thus, six 
ATE estimates are generated.
23Other common techniques applied to very low or very high weights are (1) to discard all weights above and below specified cutoffs; 
and (2) to truncate all weights above and below specified cutoffs. The former method discards potentially valuable information and 
sacrifices efficiency, and given the relatively small sample size for this analysis is not the best option. The latter method essentially 
shrinks only extreme parameters; the advantage of the shrinking method used in this analysis is that it applies a consistent procedure to 
all observations.
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controlled for in the model). In this case, it is highly plausible that the observables do 

sufficiently account for variation between the treatment and control groups, since land cover, 

development, and point source pollution permits provide a comprehensive reflection of local 

watershed characteristics. This is likely why coarser metrics such as voting records (tested 

but left out of the final models) are insignificant and do not improve model fit, since the 

aforementioned covariates do a better job of capturing local heterogeneity.

Since the AIPW estimator relies on observed covariates to estimate selection probability, it 

is also important that the distributions of each covariate are relatively balanced between the 

treatment and control groups; otherwise, the selection model lacks common support. Figure 

B1 shows that while there are more control observations overall, covariate frequency 

distributions for the treatment and control groups are highly similar.

While Table B1 shows that the mean covariate values differ somewhat between the treatment 

and control groups, Figure B1demonstrates that the overall distributions for each covariate 

overlap nicely. While there are more control observations, the range and relative frequency 

of observations are highly similar between the two groups. Figure B2 shows a similar 

distribution for the actual propensity scores. As might be expected, the distribution of 

propensity scores for the control group is skewed slightly lower than the distribution of 

propensity scores for the treatment group; nonetheless, the overall distribution for each spans 

the same range. Also, note that there are very few scores close to 0 or 1; this is in part due to 

the application of the shrinkage method, and helps ensure stable estimation within the 

weighting process.

Table B1.

Comparison of covariates between treatment and control groups.

Group active
≤ 4 years

No group or
active

<4 years

P-value

Percent developed 0.020 0.030 0.007
**

Percent agricultural 0.250 0.200 0.010
*

Watershed area 4,772.560 4,488.880 0.102

Pop. density 21.660 44.070 0.178

Median income 45,264.620 47,677.090 0.032
*

NPDES permits 6.810 10.820 0.009
**

NPDES enforce ratio 0.690 0.760 0.651

Note:

**P < 0.01

*P < 0.05.
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Figure B1. 
Covariate Distributions, Treatment, and Control Groups.
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Figure B2. 
P-score Distributions, Treatment, and Control Groups.

APPENDIX C: EXAMPLE CODING PROTOCOL

Note: This process is applied iteratively across available documents. Since many groups 

have distinct documents that reference bylaws, membership, and funding, for instance, a 

group might initially receive a “0” for each category of stakeholder representation when 

coding the bylaws document; these variables will then be updated to reflect new data 

subsequently produced by analyzing the membership roster.

Q1: Is this textual source an (1) official group Web site; (2) annual group report; (3) group 

bylaw or charter document; (4) piece of authorizing legislation?

If no → disregard. If yes → proceed to Question 2.

Q2: Does the textual source contain language that addresses a group’s purpose?

If no → proceed to Question 5. If yes → proceed to Question 3.

Q3: Does the text speaking to a group’s purpose present an itemized set of purposes?

If no → code Objective Formalization as “MISSION STATEMENT.” If yes → proceed to 

Question 4.

Q4: Does the itemized set of purposes contain specific, measurable points of reference (e.g., 

“reduce total nitrogen level” instead of “improve water quality”).

If no → code Objective Formalization as “GOALS.” If yes → code Objective Formalization 

as “OBJECTIVES.”

Q5: Does the textual source contain language describing or listing group membership?
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If no → proceed to Question 14. If yes → proceed to Question 6.

Q6 to Q13: Does text describing group membership list a tribe (or business, Federal agency, 

etc.) as a member of the group?

If no → code Tribal Representation as 0, proceed to next question. If yes → code “Tribal 

Representation” as 1, proceed to next question—for Q6 to 12, proceed to next stakeholder 

type; for Q13, proceed to Q14.

Q14: Does textual source contain specific reference to a group coordinator or facilitator?

If no → code COORDINATOR as 0, proceed to Q21. If yes → code COORDINATOR as 1, 

proceed to Q21.

Q15: Does textual source identify year in which group was formed?

If no → proceed to Q22. If yes → code FORMATION YEAR as specified year.

Q16 to Q23: Does textual source contain language reference to group actions or 

responsibilities related to EDUCATION (e.g., group “runs environmental education 

programs in local schools”)?

If no → proceed to next question. If yes → code GROUP ACTIVITY as “education.”

Q17: Outreach (e.g., group “reaches out to local farmers”).

Q18: Coordination (e.g., group “provides forum where agencies can share information”).

Q19: Monitoring (e.g., group “conducts ongoing monitoring of stream pollutants”).

Q20: Projects (e.g., group is “conducting restoration on local creek”).

Q21: Planning (e.g., group is “charged with developing comprehensive action plan”).

Q22: Management (e.g., group is “lead local entity for water improvement program”).

Q23: Permitting (e.g., group is “administers land use permits within the watershed”) If 

GROUP ACTIVITY is “Management” or “Permitting” code GROUP RESPONSIBILITY as 

“1” otherwise code GROUP RESPONSIBILITY as “0.”
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Figure 1. 
Sites Sampled in WSA and NRSA.
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Figure 2. 
ATE Estimates with Varying Cutoff.
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Table 1.

Outcome metrics (unstandardized).

Mean SD Units Details

Phosphorus 131.68 402.49 μg/L Total nitrogen content

Nitrogen 1,216.69 2,206.71 μg/L Total phosphorus content

Turbidity 289.08 166.67 NTU Turbidity level

Benthic health 351.53 206.20 Index score (0 to 100) Benthic multimetric index

Riparian cover 298.19 183.53 Sum areal prop. Ground + mid + canopy cover

In-stream habitat 197.37 133.28 Sum areal prop. All natural cover types

NTU, nephelometric turbidity unit.
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Table 2.

Group variables.

Variable Levels n   Percent

Has coordinator None 54 23.2

Dedicated coordinator 179 76.8

All 233 100.0

Goal Formalization 0 138 59.2

1 95 40.8

All 233 100.0

Group Responsibility 0 129 55.4

1 104 44.6

All 233 100.0

Total stakeholder types 0 (local government only) 12 5.2

1 13 5.6

2 15 6.4

3 25 10.7

4 50 21.5

5 64 27.5

6 35 15.0

7 14 6.0

8 5 2.1

All 233 100.0
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Table 3.

Average treatment effect (ATE) (y < 4).

Phosphorus Nitrogen Turbidity Benthic Riparian In stream

ATE −0.08* −0.10* −0.07* 0.03 0.05 0.11*

[−0.16; −0.02] [−0.17; −0.02] [−0.16; −0.01] [−0.06; 0.11] [−0.02; 0.11] [0.02; 0.18]

Note:

*
0 is outside the confidence interval.
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