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Inferring cell state from cell behavior

Jacob C. Kimmel

Abstract

Cell populations display heterogeneous and dynamic phenotypic states at multiple scales. Similar to

molecular features commonly used to explore cell heterogeneity, cell behavior is a rich phenotypic

space that may allow for identification of relevant cell states. Inference of cell state from cell behavior

across a time course may enable the investigation of dynamics of transitions between heterogeneous

cell states, a task difficult to perform with destructive molecular observations. Cell motility is one

such easily observed cell behavior with known biomedical relevance. To investigate heterogeneous

cell states and their dynamics through the lens of cell behavior, we developed Heteromotility and

Lanternfish, software tools to extract quantitative motility features from timelapse cell images. In

mouse embryonic fibroblasts (MEFs), myoblasts, and muscle stem cells (MuSCs), Heteromotility

analysis identifies multiple motility phenotypes within the population. In all three systems, the

motility state identity of individual cells is dynamic. We demonstrate that using deep neural

networks and heuristic machine learning methods, cell types and states can be discriminated in

multiple systems. Quantification of state transitions reveals that MuSCs undergoing activation

transition through progressive motility states toward the myoblast phenotype. Transition rates

during MuSC activation suggest non-linear kinetics. By probability flux analysis, we find that this

MuSC motility state system breaks detailed balance, while the MEF and myoblast systems do not.

Balanced behavior state transitions can be captured by equilibrium formalisms, while unbalanced

switching between states violates equilibrium conditions and would require an external driving

force. Our data indicate that the system regulating cell behavior can be decomposed into a set of

attractor states which depend on the identity of the cell, together with a set of transitions between

states. These results support a conceptual view of cell populations as dynamical systems, responding

to inputs from signaling pathways and generating outputs in the form of state transitions and

observable motile behaviors.
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Chapter 1

Inferring cell state from cell motility

behavior reveals a dynamic state

system and broken detailed balance

1.1 Introduction

Within any group of cells, each individual cell is not necessarily like its neighbors. These differences

often have functional significance, with cells at different points along the phenotypic spectrum

exhibiting distinct behavior [1]. This has been noted across a broad swath of cell biology, including

in the cases of stem cell biology [2, 3] and cell geometry definition [4]. Regulatory decisions at

one scale may reflect phenotypes at other scales, allowing identification of a broad “cellular state”

based on a more limited set of observations. Effective classification of cancerous cell functionality

based on morphology demonstrates this concept [5–7]. Since cell state determines cell function,

state transitions may manifest as changes in cell behavior. Understanding the regulation of cell

behavior will require understanding the nature of the cell state-space and the transitions that take

place within it. Is the state space continuous or discrete? Are all state transitions equally likely,

as in an equilibrium system, or do they tend to take place in a specific sequence, as in computing

device? Answering such questions requires a framework for defining cell state in terms of observable

2



behaviors. Regardless of the method used to probe cell state, it must be able to measure state in

living cells at multiple time points, in order to allow state transitions to be characterized.

Recent advances in single cell assays have allowed for detailed, quantitative descriptions of

individual cells at the molecular level. Single cell sequencing technologies in particular have

uncovered heterogeneity at both the transcriptional and epigenetic level [8, 9]. In multiple stem

cell compartments, molecular analysis of heterogeneity has revealed that not all stem cells are

functionally equivalent. Within the hematopoietic [10], muscle [11], epithelial, and other [12] stem

cell pools, subpopulations of cells with different functionality coexist. Stem cell heterogeneity has

been demonstrated in the form of lineage-bias or differences in regenerative capacity. A similar

phenomena is present in malignant tumors. Within a given tumor, some subpopulations may have

higher tumorogenic potential, or increased resistance to a particular therapy [13,14]. Understanding

heterogeneity in these and other contexts is essential to building an accurate picture of cell-based

systems.

In addition to defining cell states to account for population heterogeneity, we also seek to

understand the transitions between states, because those transitions reveal the logic of the cellular

control system. In seminal work, Waddington introduced the conceptual model of an ‘epigenetic

landscape’ governing cell phenotype decisions, akin to a potential energy landscape in a physical

system [15,16]. In this model, cells progress through phenotypic states by migrating continuously

down the gradient of the landscape, eventually resting in a stable basin of attraction. This model

implies that cell state transitions are governed by a ‘potential energy’ in each state, which can be

estimated by the state’s stability. A cell system governed by this model would display detailed

balance in the absence of an external force or signal, and break detailed balance in the presence of

such an external input [16, 17]. By directly measuring the dynamics of cell state transitions, we

can produce an estimate of the landscape for cell behavioral phenotypes and determine if state

transitions occur stochastically or are influenced by external inputs.

While existing molecular assays such as single-cell RNA-sequencing can provide detailed infor-

mation about a cell population’s heterogeneity, these assays are generally destructive and restricted

to a single time point for analysis. Methods have been developed to infer cell state lineages from

observations at a single time point [18,19], but these methods are not able to quantify dynamics and
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assume that proximity in the measured variable space describes a transition relationship between

states. Real-time, non-destructive assays that reveal subpopulation composition over time and

observe state transitions in living cells would serve as complementary approaches to investigate

cellular states and state transitions.

Cells in culture have a diverse behavioral repertoire. Each cell may exhibit motion, dynamic

morphology changes [4, 20], and symmetric or asymmetric divisions, all of which can be observed

by simple microscopy. These cell behaviors represent a rich phenotypic space from which many

quantitative features may be extracted. Behavior also has an inherent functional relevance at the

single cell level, and often a functional relevance on the system level. For example, extracellular

matrix remodeling and deposition by fibroblasts is dictated by their motion [21,22], and stem cell

and progenitor migration is critical for organismal development [23]. Within each cell, behavior

represents a layer of abstraction above molecular phenotypes. Hence, observably different behavioral

states may serve as a proxy for distinct ensembles of underlying molecular states.

Recent work from several groups has elucidated the regulatory principles governing cell shape

definition [24, 25] and the relationships between morphological variables [26] utilizing quantitative,

timelapse imaging. Profiling of static morphological information alone is sufficient to discriminate

various states of cellular perturbation [27–30]. Considering temporal information, quantification of

the dynamic transitions between morphological phenotypes using multiple Hidden Markov Model

frameworks has allowed for increased precision in classifying both chemical and genetic cellular

perturbations [20,31]. Progenitor fate outcomes have also been predicted based on cell shape and

behavior quantifications [32]. These remarkable results, achieved through quantitative exploration

of cell morphology behaviors and the dynamic transitions between them, support the notion that

quantitative analysis of cell behavior can allow for detection of cellular states and observation

of state transitions. Modeling cells as dynamical systems in this manner has proven to not only

elucidate fundamental biological principles, but to provide utility in applied contexts. Here, we

extend this approach to the analysis of cell motility behaviors and consider alternative tools for

extracting biological insight from observed state transitions.

Cell motility behaviors are inherently related to the morphological state of a cell [33–35]. Different

motility behaviors are associated with different morphological states, and some morphological events
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such as protrusion extension are directly causal for motility behaviors. However, motility events

involving a displacement event where the cell moves along a substrate to a new location are

not necessarily captured entirely through morphological descriptors. Supporting this notion, it

has recently been shown that displacement motility behaviors provide a strong signal for the

inference of hematopoietic stem cell differentiation decisions when used in addition to morphological

descriptors [36]. Therefore, we believe it is valuable to develop means of measuring motility

behaviors and considering transitions between different motility phenotypes to capture the full range

of information provided by cell behavior.

Cell motility is a particularly dramatic cell behavior, but it is difficult to examine quantitatively.

Traditional cell motility assays rely on a binary filtration of cells based on a functional test, such

as crossing a membrane barrier. Timelapse microscopy has also been appreciated for decades as a

means of tracking and quantifying cell motility at the single cell level [37–40]. These classic studies

demonstrate that cell motility is predictive of cellular function and that quantitative motility analysis

can elucidate underlying cell state control mechanisms [39, 40]. Recent approaches to timelapse

motility analysis have expanded upon these techniques to extract multidimensional quantitative

information from individual cells [32, 41–45]. However, existing methods focus largely on speed

and distance metrics of cell motility on a single arbitrarily-chosen timescale, limiting the degree of

heterogeneity that can be revealed within a population.

Here, we present Heteromotility, a software tool for quantitative analysis of cell motility in

timelapse images with a diverse feature set. In addition to commonly calculated features such

as distance traveled, turning, and speed metrics, Heteromotility provides features that allow for

comparisons to models of complex motion, such as Levy flights and fractal Brownian motion, and

estimate long-term dependence within a cell’s displacement distribution. This feature set creates

a high-dimensional space representing the possible phenotypes of cell motility. These features

may be useful for multiple downstream applications, including supervised classification of different

motility phenotypes, and unsupervised definition of different motility behaviors, both of which we

demonstrate here. Our tool is modular, and we also provide tools to map the high-dimensional

motility feature space into a low dimensional state space, tools to quantify changes in cell motility

phenotypes over time as transitions in state space, and tools to consider the stochastic or directed
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nature of these transitions. These tools allow the dynamics of cell behavior states to be elucidated,

in addition to simply identifying heterogeneous phenotypes.

We demonstrate that Heteromotility analysis is sufficient to discriminate between simulations

of several models of motion. Applied to wild-type and transformed mouse embryonic fibroblasts

(MEFs), Heteromotility analysis reveals a shared set of motility states between the two systems, in

which transformed cells preferentially occupy a more motile state. In mouse myoblasts and MuSCs,

phenotypically distinguished motility states are revealed. MuSCs display a series of progressively

more motile states, suggesting states of activation. Quantifying transition dynamics within this

state system over time reveals that MuSCs transition through state space toward a progressively

more activated, myoblast-like motility phenotype. Viewed through the lens of myogenic activation,

we are able to follow the activation dynamics of individual MuSCs for the first time. Applying

probability flux analysis, we find that the MuSC motility state system breaks detailed balance,

quantitatively confirming that these state transitions occur in an ordered and predictable sequence,

as in a computing device.

1.2 Results

1.2.1 Heteromotility analysis approach

Heteromotility analyzes motility features in a set of provided motion paths, as obtained through

timelapse imaging, image segmentation, and tracking (see Methods). From these paths, 79 motility

features are calculated to comprise a “motility fingerprint” (Fig. 1.7). These features include simple

metrics of speed, total and net distance traveled, the proportion of time a cell spends moving,

and the speed characteristics during that period. The linearity of motion is assessed by linear

regression through all points occupied by the cell in the time series, taking Pearson’s r2 as a metric

of fit. Monotonicity is also considered for the distribution of points, using Spearman’s ⇢2. In some

instances, cells have been proposed to have a directional bias when making turns [46]. Turn direction

and magnitude features are provided that consider turns on various time intervals.

Another class of features is concerned with the directionality and persistence of motion. There

are several possible ways to characterize the persistence of motion, hence we have included several
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metrics that allow for reasonable consideration. A cell’s “progressivity,” is considered as the ratio of

net distance to total distance traveled. This serves as a metric of directional persistence [47]. Mean

squared displacement (MSD) is considered for each cell for a variable time lag ⌧ , and the power

law exponent ↵ is taken as a quantification of the relationship MSD / ⌧
↵. Directed motion may

therefore be expected to have a larger value than undirected random-walk motion or non-motion,

indicating a superdiffusive behavior [48].

The distribution of a cell’s displacement steps is also informative. Motion that exhibits a

displacement distribution with a heavy right tail, referred to as a Levy flight, has been demonstrated

to optimize the success of a random search [49]. This property has led to the Levy flight foraging

hypothesis, suggesting that biological systems may perform Levy flight-like motion when searching

for resources [50–52]. To assess the Levy flight-like nature of a cell’s motility behavior, the

Heteromotility software provides metrics of displacement kurtosis for displacement distributions on

multiple time scales. Larger values of kurtosis indicate heavier distribution tails, such that higher

kurtosis may indicate more Levy flight-like motion. The Heteromotility software also considers the

non-Gaussian parameter ↵2, for which larger values indicate a more heavily tailed, Levy flight-like

distribution [53, 54]. The second and third moments of the displacement distribution are also

provided as features.

If displacements are considered as a time series, the self-similarity and long range memory

may provide insight into the coordination of motility behavior [39]. The Heteromotility software

calculates the autocorrelation function for displacements with variable time lags ⌧ as a metric of

self-similarity. Fractal Brownian motion (fBm) describes a Gaussian process BH(t) for a time t on

the continuous interval [0, T ] with successive displacements that are not necessarily independent.

The Hurst parameter H describes the self-similarity of a fBm process, with the interval 0 < H < 0.5

describing a process with negatively correlated successive displacements (large displacements are

more likely to follow small displacements), H = 0.5 describing non-correlated, independent successive

displacements (Brownian motion), and 0.5 < H < 1 describing positively correlated successive

displacements (large displacements are more likely to follow large displacements)(see Supp. Methods

for additional detail). The Heteromotility software estimates the Hurst parameter as a metric of

long range memory using Mandelbrot’s rescaled range method (see Supp. Methods) [55] [56]. As
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Brownian motion displays a Hurst parameter H = 0.5, deviations from this value may indicate

long range memory of a cell’s displacement series and coordinated motility behavior. Each of the

motility features described here concerns single cells, and none directly measure correlations in

motion between cells as may be observed during collective migration. However, cells with similar

behaviors, such as groups of “leader,” and “follower,” cells, may display correlations in single cell

features.

1.2.2 Heteromotility features are sufficient to distinguish canonical models of

motion

In principle one could devise an infinite number of motion descriptors. How can we determine

whether a given set of motion features is sufficient to capture meaningful aspects of motion? To

test whether the feature set outlined above is sufficient to distinguish biologically relevant models of

motion, we simulated and analyzed cell paths generated by four distinct motion models: unbiased

random walks, biased random walks, Levy flights, and fractal Brownian motion with long range

memory (H = 0.9)(see Methods for implementations). These data were initially simulated with the

same mean displacement size, such that the motion models are not trivially separable based on a

parameter unrelated to their defining characteristics. This problem therefore represents the most

challenging setting for separating models of these types. Large simulated data sets (n = 20,000)

were generated with a range of track lengths. Samples with a range of sizes (members per class) were

redrawn from these large populations three times per sample size/track length parameterization.

We then analyzed the simulated data to determine if the feature set is sufficient to place each model

in a distinct region of a joint feature space.

Visualization of high-dimensional data sets, such as the Heteromotility feature set, presents a

fundamental challenge. Here we employ t-Stochastic Neighbor Embedding (t-SNE), a visualization

method that embeds high-dimensional data into a low-dimensional map, to generate 2D projections

of our high dimensional feature space [57] (see Supplemental Methods for discussion of t-SNE

parameter selection). When Heteromotility feature space is visualized using t-SNE (perplexity =

50), these models of motion occupy distinct regions of feature space for a number of sample sizes
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and track lengths. A sample visualization of a simulation with 1000 members per class and track

lengths of 100 units is shown (Fig. 1.1A)(see further examples, Fig. 1.8). Unsupervised hierarchical

clustering was performed using Ward’s method [58] (see Supplemental methods for discussion).

Unsupervised clustering segregates the various models with high accuracy based on Heteromotility

features for a range sample sizes as small as 100 members per class, and lengths as short as 50 time

steps. Accuracy tends to increase with larger sample sizes and longer track lengths (Fig. 1.1B, C).

Clustering was also performed on simulations with varied fundamental parameters, and accuracy is

likewise high (Fig. 1.1F). Parameters for the bias magnitude of biased random walkers, random

walker displacement means, the Levy flier exponent, and fractal Brownian motion Hurst parameter

were all varied. 10 groupings of the four simulations with varying parameter settings were sampled

and classified as above (see Table S2 for parameter settings).

Applying a supervised Random Forest classifier [59] to each of the simulated populations, we

are able to discriminate the four models of motion with high accuracy (5-fold cross validation score)

across a range of sample sizes and track lengths (S2. Fig.) (see Supp. Methods for discussion on

classification model selection). We present the performance of a sample Random Forest classifier,

trained on simulations of 100 time steps with 1000 members per class (shown in Fig. 1.1A), in a

confusion matrix. A confusion matrix describes the errors made during classification in a matrix by

listing the true classes as rows and the predicted classes as columns with values of the matrix cells

representing the number of observations for each true class : predicted class pair (Fig. 1.1D) [60]. In

this way, values along the matrix diagonal represent correct predictions, and values off the diagonal

represent incorrect predictions. As seen in the matrix, there is little confusion between Levy flights,

fBm, and the random walks, but some confusion between unbiased and biased random walks.

The features important for effective classification can be determined by measuring the decrease

in accuracy when each feature is removed from classification. For each of the simulated populations

generated, we found the top 10 most important features based on this metric. We present the 10

features that appear most often across classifiers, and the mean decrease in accuracy associated

with removal of each feature (Fig. 1.1E). We find that the non-Gaussian parameter and other

metrics of the displacement distribution, as well as metrics of self-similarity, dominate this list. This

supports the notion that the non-traditional features provided by Heteromotility can be useful for
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Fig 1.1. Simulated models of motion can be differentiated based on Heteromotility

features. (A) Representative t-SNE visualization of Heteromotility feature space determined for
simulated motion models (1000 members/class, 100 time steps)(perplexity = 50). (B) Unsupervised
clustering accuracy for simulated data across a range of sample sizes and (C) track lengths. (D)
The Confusion Matrix of a representative Random Forest classifier trained to distinguish four
simulated models of motion shown in (A), mean accuracy of 99.8% (5-fold CV). (E) Features
ranked by importance for Random Forest classification, where importance is determined as the
decrease in accuracy when the feature is removed across all 36 simulated sample populations. The
number of times the feature appears in the top 10 most important across the 36 populations is
reflected in the ‘Count’ column. (F) Accuracy of classifying simulated motion models with varying
parameters using hierarchical clustering and a Random Forest classifier. 10 populations of the four
simulated motion models with varied parameters were generated and classified.

discriminating biologically relevant models of motion. These results demonstrate robust detection

of heterogeneous motility phenotypes using a rich space of motion features. We also find high

accuracy Random Forest classification of simulations with varied parameters (Fig. 1.1F). As a

proof-of-concept, this analysis of simulated motion indicates that the Heteromotility feature set is

sufficient to recognize different motility phenotypes where they exist.
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1.2.3 Wild-type and transformed MEFs occupy a shared region of motility

state-space

Utilizing the Heteromotility software, we are able to analyze behavior in live cells and map this

behavior into a cell state space. We initially sought to determine if this cell behavior state space

was continuous, with cell states existing along a spectrum, or discrete, with a limited set of states

cells could adopt. To answer this question, we first employed the mouse embryonic fibroblast (MEF)

culture system. Wild-type MEFs (WT MEFs) and MEFs transformed with c-Myc and HRas-V12

overexpression constructs (MycRas MEFs) [61], which serve as a cancer model, were timelapse

imaged for 8 hours to capture motility behavior. Images were segmented and tracked (see Methods),

with cell centroid coordinates used as the cell location for tracking. By considering cell centroids,

process extensions and retractions are considered as motile behaviors, in addition to displacement

behaviors that would not be captured by an analysis of morphology alone [39]. Analysis of cell

paths with the Heteromotility software revealed that WT and MycRas MEFs differentially occupy

different sections of a shared motility space, as visualized by t-SNE (Fig. 1.2A). Strikingly, MycRas

MEFs occupy a sub-region of wild-type motility space, rather than a unique region.

We applied hierarchical clustering (Ward’s method) [58] to the motility state space generated

from pooled WT and MycRas MEFs to identify heterogeneous motility phenotypes (Fig. 1.2B),

considering a set of cluster validation indices to select the optimal number of clusters [62](See Supp.

Methods for complete details). Clustering was performed on the first 30 principal components of

the motility feature set, as this dimensionality preserves > 95% of variation for each system we

study (Fig. 1.9). The Silhouette value is a metric of cluster validity on the interval [-1, 1], taking

into account the similarity of samples within a cluster and the difference between clusters [63].

Higher values indicate that samples within a cluster are similar and clusters are distinct. The cluster

partition displays a positive Silhouette value, indicating an appropriate cluster structure. Feature

mean values between clusters are also confirmed to be significantly different by multivariate analysis

of variance (MANOVA) [64]. This result suggests that the state space is continuous, but can be

decomposed into a set of overlapping states with characteristic behavioral phenotypes. We define

these motility states as heterogeneous based on significant differences from one other in feature

11



Fig 1.2. Wild-type and Myc/Ras transformed MEFs show differential occupancy

within a shared motility state-space. (A) t-SNE visualization of wild-type (blue) and
Myc/Ras transformed (red) MEFs in motility space (perplexity = 50). (B) Hierarchical clusters
visualized with t-SNE (MANOVA, p < 0.001; Silhouette Si = 0.21). (C) Proportion of wild-type
vs. transformed cells occupying each cluster. (D) Comparison of a subset of normalized feature
values between clusters (* : Holm-Bonferroni corrected p < 0.01 by ANOVA) and (E) wild-type and
transformed MEFs (* : Holm-Bonferroni corrected p < 0.01 by t-test). n > 250 cells per condition
(pooled) from six independent experiments.

space. This definition of heterogeneity is also followed for the other cell systems we investigate in

this work.

WT and MycRas MEFs are found to differentially occupy different clusters within the shared

set, as may be expected from their initial distributions in the space (Fig. 1.2C). MycRas MEFs

preferentially occupy Cluster 1, characterized by the highest average speed, proportion of time spent

moving, and distance traveled, indicating a motile state. Conversely, WT MEFs preferentially occupy

Cluster 2, characterized by the lowest average speed and time spent moving, and progressivity (net

distance / total distance), indicating a less motile state (Fig. 1.2D). A proportion of both MycRas

and WT MEFs occupy Cluster 3, a population characterized by high kurtosis and progressivity,

indicating a Levy flight like motile state that performs “jumping” motions. Observed visually,

Cluster 2 cells move relatively little, Cluster 1 cells progress smoothly, and Cluster 3 cells exhibit
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erratic motion. The transformation state-dependent distribution of MEFs between behavioral

clusters is reproducible across all “round-robin” groupings of 4 out of the 6 biological experiments

we perform (Fig. 1.10)(Supp. Methods). The clusters are also identifiable using only a small subset

of features, or even a single feature, and the relative distribution of WT and MycRas cells within

them is maintained (Fig. 1.11).

To estimate whether local cell density played a role in determining a cell’s motility behavior, we

estimate a “local cell density index” based on the sum of inverse squares of distances between a

cell and its neighbors using our cell tracking data. Constructing linear regression models between

this local cell density index and each of our measured motility features, we find no meaningful

relationships (Fig. 1.9). However, we note that our tracking data purposefully does not track every

cell, such that the local cell density index we estimate is an imperfect representation of local cell

density. We also note that our experiments are designed to minimize cell-cell contact, such that our

lack of detected cell density influence may be the simple result of sparse growth conditions failing

to reach a quorum sufficient to influence motility behavior.

MycRas and WT MEF cluster preferences are statistically significant by Pearson’s �2 test of

the transformation state ⇥ cluster contingency table (p < 0.0001). Considered as a population, the

MycRas MEFs demonstrate higher progressivity, mean squared displacement, time moving, average

speed, and self-similarity metrics than WT MEFs. This indicates that as a population they spend

more time moving in a directed manner (Fig. 1.2E).

These results suggest that high motility and low motility states exist in both wild-type and

transformed MEFs. Oncogenic transformation by c-Myc and HRas-V12 may then be viewed as an

input that leads a larger proportion of cells to adopt the high motility state, rather than introducing

a novel phenotype unseen in WT cells. This observation is consistent with studies of motility

behavior in the context of cancer, which have long suggested that increased motility is a phenotype

of malignant cells [65, 66]. Functionally, the increased motility of neoplastic cells may be related to

their potential for tissue invasion [67,68].

Importantly, the motility behavior of a cancer cell population may be indicative of disease

progression and outcomes [69]. We trained supervised classification models to predict if a cell was

wild-type or transformed based on its motility behavior. Support vector machine (SVM) classifiers
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are a set of models that learn a decision boundary between classes. SVMs have shown efficacy

in many problem domains [70]. SVM classifiers were trained on the top 62% features selected by

ANOVA F-value in a round-robin fashion for cross-validation, training on four experiments and

testing on the remaining two iteratively. On average, round-robin trained SVM classifiers are able to

classify individual cells as wild-type or MycRas transformed with ˜70% accuracy based on motility

features alone (Fig. 1.9). Parameters for feature selection and the SVM classifier were identified

by a grid search (see Supp. Methods for details). While clusters are identifiable with only a single

feature, we find classification accuracy decreases if more than ˜62% of features are omitted (Fig.

1.11). The most important features for classification were estimated based on the decrease in round

robin classification accuracy when a feature was removed, with larger decrease considered more

important. The average moving speed, time spent moving, kurtosis, and autocorrelation are the

most important features by this metric (Fig. 1.11).

1.2.4 Myoblasts display distinct motility states robust to perturbation

Our long-term goal is to understand the cell as a unit in a dynamical system, which entails not

just identifying states, but also determining how various inputs from the extracellular environment

may drive transitions between states. Mouse myogenic progenitor cells provide a well-characterized

system in which chemical signals alter the behaviors of a mechanically-active cell type [71–74], and

dynamic activation and lineage commitment processes can be manipulated [75, 76]. In light of this

long-term goal, we applied Heteromotility analysis to the myogenic system to ask how myogenic

cells occupy state space.

Myoblasts are the transit amplifying progenitor of the skeletal muscle, produced as the daughters

of muscle stem cells [75,76]. Myoblast motility has direct functional relevance, as muscle progenitors

translocate along the muscle fiber to sites of injury during muscle regeneration [73,77] and transverse

fibers during development [78]. Primary myoblasts were timelapse imaged for 8 hours, with

and without stimulation by the growth factor FGF2. FGF2 is a known mitogen, inhibitor of

differentiation, and possible chemoattractant in myogenic cells in culture [79–81]. In vivo, FGF2 is

released during muscle injury [82,83], promoting expansion of the myogenic progenitor pool and

possibly migration to sites of injury. As FGF2 is known to elicit different functional behaviors

14



Fig 1.3. Myoblasts display distinct motility states, shared by both FGF2+ and FGF-

conditions. (A) t-SNE visualization of hierarchical clusters in myoblast motility space (perplexity
= 30) (MANOVA, p < 0.001; Silhouette Si = 0.31). (B) Normalized feature means for motility
state clusters (* : p < 0.05, Holm-Bonferroni corrected t-test). (C) t-SNE visualization of FGF2
treated (blue) and untreated (red) myoblasts in motility space. n ⇡ 150 cells per condition, taken
from two separate animals, with total n = 308 cells.

in myogenic cells, introducing this perturbation allows us to evaluate the robustness of myoblast

motility states under multiple growth conditions.

Applying hierarchical clustering, two motility clusters are detected (Fig. 1.3A). This partitioning

scheme has a positive Silhouette value [63], significantly different cluster means by MANOVA,

and optimizes cluster validation metrics (Table S1). Cluster 1 is a less motile state characterized

by lower average moving speed, distance traveled, and a higher kurtosis. Conversely, Cluster 2

is characterized by a higher total distance, average speed, mean-squared displacement (MSD),

and proportion of time spent moving. These characteristics indicate that myoblasts occupy a two

state system with a consistently motile state (Cluster 2), and a less motile state that exhibits

more Levy-flight like displacement behavior (Cluster 1). Observed in videos, cells in Cluster 1 are

less motile, and display less directed motion than cells in Cluster 2 (S3, S4 Video). Clustergram

visualizations of the myoblast clusters using multiple linkages are provided (Fig. 1.12).

Both FGF2 stimulated (FGF2+) and unstimulated (FGF2-) cells co-occupy both states, with

no notable preference in state space induced by either condition (Fig. 1.3C). This is confirmed

quantitatively as a lack of preferential cluster occupancy between FGF2 treated and untreated cells

(�2 test p > 0.05 of FGF2-treatment ⇥ cluster contingency table). This negative result suggests

that FGF2 does not induce a notable effect on myoblast motility under these conditions.
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1.2.5 Muscle stem cells display motility states reflecting activation

Until this point, the cells analyzed have not been undergoing any dramatic phenotypic transitions.

In contrast, stem cells are specifically designed to undergo dynamic activation and differentiation

processes that radically reshape cell phenotype on an hours to days long timescale. Would it be

possible to observe such phenotypic transitions through the lens of cell behavior changes? We apply

Heteromotility analysis to the muscle stem cell (MuSC) system during activation from quiescence

in an attempt to observe dynamic transitions in cell behavior. MuSCs undergo an exit from

quiescence in cell culture conditions, entering an activated state over a roughly 48 hour window,

providing a model of a dynamic process where behavior state transitions would be expected [75, 84].

Heterogeneity within the MuSC population is well appreciated [11], suggesting that motility behavior

may also be heterogeneous during activation. Motility behavior is also relevant to MuSC function

due to the physiological motility behavior of muscle progenitors during regeneration, as noted above.

Primary MuSCs were isolated from limb muscles by FACS (PI-/CD31-/CD45-/Sca1-/VCAM+/↵7-

integrin+) [85] and seeded on sarcoma-derived ECM coated well plates. After 24 hours in culture,

MuSCs were timelapse imaged for 8 hours in DIC. At this stage, MuSCs have begun to activate

(MyoD
+), but are not yet committed to differentiation (MyoG

+) [84]. Visualizing hierarchical

clusters (Ward’s method) of MuSC motility features with t-SNE, it is apparent that multiple motility

subpopulations are present (Fig. 1.4A). We identify three distinct clusters with notably different

phenotypes. This partitioning scheme has a positive Silhouette value [63], significantly different

cluster means by MANOVA, and optimizes cluster validation metrics, as above (see Supp. Methods

for complete discussion). As in myoblasts, the clusters appear to separate based on differences

in total distance, average speed, and time moving. Additionally, clusters segregate based on the

linearity and progressivity of motion.

Cluster 1 is characterized by the lowest total distance, average speed, time moving, progressivity,

and MSD. Observed visually, cells in Cluster 1 are immotile and appear morphologically rounded,

lacking any filopodia characteristic of myogenic activation and motility (S5 Video). Clusters 2

and 3 are characterized by increasing measures of total distance, average speed, and time spent

moving. Cluster 3 exhibits the highest kurtosis and non-Gaussian parameter, suggesting a jumping,
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Fig 1.4. MuSC motility states reflect progressive myogenic activation. (A) t-SNE
visualization of distinct motility states, as detected by hierarchical clustering (colors)(MANOVA,
p < 0.001; Silhouette Si = 0.197)(perplexity = 70). (B) t-SNE visualization of MuSC motility
states and myoblasts in a shared space suggesting progressive myogenic motility states. (C)
Average transition rate vectors for MuSC motility states (arrows, scaled for presentation)
demonstrating transitions toward the myoblast motility phenotype over time in a shared PCA
space. (D) Subset of normalized feature means for each motility state (* : p < 0.05,
Holm-Bonferroni corrected ANOVA). (E) The magnitude (+/- SEM) of the mean transition vector
for all cells in a given state. All data represent analysis of n > 1800 cells per condition pooled from
three animals, with total n = 4316 cells.

Levy-flight like state. Cluster 2 exhibits the highest time moving, moving speed, progressivity,

linearity, net distance, and MSD, indicating a more directed motility state. Visually, Cluster 2 cells

largely move in a single direction, while Cluster 3 cells more often turn back and retrace a portion

of their previous path (S6 Video)(Fig. 1.4D)(p < 0.001 by ANOVA for all features displayed).

MuSCs incubated with FGF2 display a similar distribution in motility space compared to

untreated cells (Fig. 1.13). Quantitatively, FGF2 MuSCs display no motility state preference

relative to untreated cells (Fig. 1.13)(p > 0.05, �2 test of FGF2-treatment x cluster contingency

table). On a population level, FGF2 does not appear to significantly alter any of the motility

features calculated by our software. This negative result suggests that FGF2 may not play a role in

17



regulating motility in these conditions at this stage of myogenic activation.

Visualized in a shared t-SNE space with myoblasts, the order of MuSC motility states suggests

a progressive motion toward the myoblast state space as total distance, time moving, and speed

metrics increase (Fig. 1.4B). This is confirmed in a linear state space using principal component

analysis (PCA), in which MuSC states and myoblasts segregate primarily along the first principal

component (PC1)(Fig. 1.4C). The top 20 features contributing to PC1 in this shared space are

metrics of moving speed and time spent moving, suggesting that the features which vary most

between quiescent MuSCs and activated myoblasts are related to the speed and frequency of

movement. These quantitative results are in line with qualitative observations, in which quiescent

cells begin in a relatively immotile state and gradually increase the speed of their motility as they

activate in culture. These phenotypic changes also align well with the in vivo role of activating

MuSCs. Upon injury, MuSCs must activate from quiescence and translocate along the fiber to the

site of tissue damage, necessitating more motile behavior [72, 77]. This result indicates that MuSC

motility states reflect progressive states of activation toward the eventual myoblast motility state

space.

We explored this possibility with pseudotime analysis, which attempts to reconstruct a dynamic

cellular process from high-dimensional single cell data under the assumption that the process is

ergodic and cells move in a continuous manner through feature space over time [18,86]. Analytically,

this is most commonly achieved by fitting a minimum spanning tree through the data in reduced

dimensional space, interpreting the tree’s longest axis as a temporal axis. Pseudotime analysis in

the MuSC motility state space reflects the view that MuSC states are ordered in a progressive series

(Fig. 1.13).

To further confirm that the MuSC motility states reflect states of activation, we quantified state

transition rates and directions for cells in each MuSC state and myoblasts. Cell paths were divided

into three equal length tracks (⌧ = 20 frames) and Heteromotility features were extracted for each

of these subpaths. The state of a cell during each time interval ⌧ was defined in two dimensions as

the cell’s location along the first two principal components of a shared MuSC and myoblast PCA

space. Transitions for each cell were calculated as the vector between sequential 2D state locations.

The mean transition vector for a given cluster was calculated as the mean of all transitions made by
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all cells assigned to that cluster.

Visualizing transition rates as vectors originating from each cluster centroid in PCA space, it

is evident that cells in each MuSC state progress toward the next state in the sequence over time

(Fig. 1.4C). The myoblast motility states are present at the end of the sequence, suggesting that

MuSC states represent different stages of myogenic activation. Notably, the transition rates increase

as a function of state progression, suggesting the kinetics of activation are non-linear (Fig. 1.4F). In

this way, we provide quantitative measurements of transitions between states of myogenic activation

in single cells for the first time.

1.2.6 MuSC motility states are more dynamic than MEF and myoblast motility

states

We next sought to investigate the dynamics of our motility state systems. A key benefit of using

behavior features to define states is that a single cell can be subjected to a state assay at multiple

time points, allowing state transitions to be detected. How long does a cell reside in a particular

state? Can every state transition to every other state, or are transitions restricted to exist between

particular states, as would be the case in a state automaton? The answers to such questions would

help clarify the computational logic underlying cell behavior.

To visualize and quantify the dynamics of the motility state systems, we applied coarse-grained

probability flux analysis (cgPFA), as implemented by Battle et. al. [87] (Supp. Methods). In this

method, the first (PC1) and second (PC2) principal components are segmented into k bins, and

we define each unique combination of bins on PC1 and PC2 as a unique state. To define cell state

at multiple points using motility features, cell paths are segmented into ⌧ length subpaths and

motility features are extracted from each subpath. Cell state is defined for each subpath based on

its position in coarse-grained PCA space, where each binned coordinate is treated as a state. Cell

states are compared from one subpath to the next to quantify the dynamics of the motility state

system (see Supp. Methods).

As a validation of our implementation, we performed cgPFA on simulated cell paths that varied

their model of motility on a defined interval (⌧ = 20 time points) and compared them to invariant
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simulations, using subpaths of the same length as the variable model’s states (⌧ = 20 time points).

For each bin, a state transition rate is calculated as the vector mean of transitions from that state

bin into neighboring states in the von Neumann neighborhood. These transition rates are visualized

as arrows atop each state bin. Arrow direction represents the direction of transition rate and

arrow length represents the rate magnitude. State bins with high transition consensus therefore

display longer arrows, indicating that most cells transition in the same direction. As a measure of

state stability, the divergence of the vector field is displayed as a heatmap. States with negative

divergence may be considered metastable, with more cells entering than exiting. A Levy flight

model transitioning to a random walk displays a highly directed set of state transitions (Fig. 1.5A),

as compared to a simple random walk which displays minimal directionality (Fig. 1.5B).

Applying cgPFA to our biological systems with subpaths of length ⌧ = 20 time points (130

minutes), both WT MEF and MycRas MEF systems display no obvious state flux (Fig. 1.5C, D; Fig.

1.14). Topographically, MEF systems display a ‘basin’ of metastable states. This region has near

zero divergence and low transition rates. States on the outer periphery of this metastable region

have higher divergence and transition rates, indicating that these states are less stable (Fig 1.5C, D;

Fig. 1.14). Visualizing state space divergence in three dimensions, the metastable states appear

as a central valley, while the unstable states appear as peaks (Fig. 1.5G). Myoblast motility state

systems appear similar to the MEF systems by simple observation. The topology appears to be

dominated by a metastable basin at the center, surrounded by unstable states on the edge of this

basin. Topology is comparable between FGF2 treated and untreated conditions (Fig. 1.5E, Fig.

1.14).

MuSC motility state systems appear more dynamic than MEF and myoblast systems. This

transition directionality is apparent when viewing the transition vector fields, with many transition

rates leading toward a metastable ‘valley’ and a metastable basin on the edge of state space (Fig. 1.5F,

Fig. 1.14). Visualized in three dimensions, these metastable regions are clearly visible as valleys in

state space bordered by unstable ‘ridges’. We apply these cgPFA analyses with multiple temporal

and course-grained resolutions, and find that the results are qualitatively similar for multiple state

definition time scales and course-grained binning schemes (Fig. 1.15).

To determine how long MuSCs occupy a given state, we characterized the dwell times of each
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Fig 1.5. Coarse-grained probability flux analysis (cgPFA). cgPFA of (A) Levy flier to
random walk simulations and (B) Random walk invariant simulations. cgPFA of (C) MycRas MEF,
(D) WT MEF, (E) Myoblast FGF2+, and (F) MuSC FGF2+ motility states with subpaths of
length ⌧ = 20 time points (130 minutes). Each unique combination of bins between PC1 and PC2
is considered as a unique state. Arrows represent transition rate vectors, calculated for each state
bin as the vector mean of transitions into the neighboring states in the von Neumann neighborhood.
Arrow direction represents the direction of these transition rate vectors, and arrow length
represents transition rate vector magnitude. Underlying colors represent the vector divergence from
that state as a metric of state stability. Positive divergence indicates cells are more likely to leave a
state, while negative divergence indicates cells are more likely to enter a state. 3D representations
of (G) MEF WT, (H) Myoblast FGF2+, and (I) MuSC FGF2+ motility state divergence.

occupied state in the course-grained PCA space by exponential decay curve fitting, providing a

time constant for each state. In these course-grained state spaces, dwell times appear exponentially

distributed with time constants ranging from ⌧TC ⇡ 1 to ⌧TC ⇡ 3 (Fig. 1.16). The mean dwell
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times for state bins range from ⌧dwell = 1 to ⌧dwell ⇡ 2.2, indicating that most cells transition at

least once during the time course. Dwell times appear exponentially distributed, suggesting that the

state transition process is memoryless on the timescales we observe. Time constants are positively

correlated with the number of cells occupying a state, supporting the notion that states of high

occupancy are metastable and therefore characterized by longer dwell times (Fig. 1.16). Topology,

dwell times, and transition directionality are comparable between FGF2 treated and untreated

conditions (Fig. 1.5I, Fig. 1.14, Fig. 1.16). These results suggest that the MuSC motility state

system is more dynamic than the MEF or myoblast systems, consistent with the dynamic MuSC

activation process.

1.2.7 MuSC motility states break detailed balance

A system with a discrete set of states at equilibrium should obey the law of detailed balance, such

that each individual state transition A ! B occurs at the same rate as the reverse transition B ! A.

Systems that break detailed balance transition between states in a directed manner, such that

future behavior can be predicted by current state. Biological systems frequently break equilibrium

when undergoing directed processes, but confirming that detailed balance is broken in a given

scenario can prove challenging [87]. A system in detailed balance would be expected to exhibit equal

and opposite transition vectors with no observable pattern of transitions. In our MuSC systems,

visualizing transition rates by PFA suggests that detailed balance may be broken, as shown by the

directed nature of transition rate vectors (Fig. 1.5, Fig. 1.14).

To confirm statistically that detailed balance is broken in these systems, we defined N -dimensional

state spaces based on the first N coarse-grained principal components and performed PFA in these

spaces (ND-cgPFA)(see Methods). A 2N -dimensional matrix is generated representing every possible

set of state transitions in a given N -dimensional state space. For example, a 1 dimensional state

space is represented as a 2 dimensional matrix, each dimension coarse-grained into k bins (rows,

columns). One dimension of this 2D space represents a cell’s initial state position at one time point,

and the other represents the destination state position at the next time point (as in Fig. 1.6A,

B). This pattern is repeated for the construction of higher dimensional spaces. For instance, a 2D

state space is represented as a 4D matrix, where the first two dimensions describe initial state,
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and the next two dimensions describe final state. The number of cells that exhibit each transition

are recorded as the value of the corresponding position in the matrix (see Methods for further

description).

A system in detailed balance would be expected to display symmetry for each pairwise set of

transitions. To determine if each of our systems was in detailed balance, we performed ND-cgPFA

at several levels of dimensional (N 2 {1, 2, 3, 4}) and coarse-grained (bins k 2 {2, 3, 5, 7, 10, 15,

20}) resolution. At each level of resolution, we test each of the k
2N possible pairwise transitions for

balance by the binomial test (H0 : p = 0.50).

To validate this method, we performed cgPFA on simulated cell paths generated using variable

and invariant models of motion. A Levy flier that transitions to a random walk shows clearly

unbalanced pairwise transitions (Fig. 1.6A) at one dimension of resolution, while an invariant

random walk displays symmetry about the diagonal and balanced pairwise transitions (Fig. 1.6B).

A simple binomial test for pairwise transitions finds multiple unbalanced transition pairs in the

variant model, but not the invariant model (Fig. 1.6A, B).

N -dimensional matrices cannot be visualized in their totality as in the 1D case. As noted above,

we tested all k2N possible transitions for balance at multiple dimensional and binning resolutions for

each system. Here, the five transition pairs that are most unbalanced out of the possible set of k2N

transitions (by p value of the binomial test) in a given system and state space are presented as a 5-by-

2 heatmap, where columns represent the initial and final states in a transition pair. We present the

dimensional and coarse-grained resolution revealing the most asymmetry for each system, as noted

above each heatmap. Visualizing ND-cgPFA pairwise transitions for MEF (Fig. 1.6C), myoblast

(Fig. 1.6D), and MuSC state systems (Fig. 1.6E, F) demonstrates that transitions with some degree

of unbalance exist in each of the systems. By the binomial test (Benjamini-Hochberg corrected),

only the MuSC system (FGF2+ and FGF2-) displays significantly unbalanced transitions in any of

the course-graining schemes tested, confirming that detailed balance is broken. Our ND-PFA test is

biased toward Type II error (false negatives) rather than Type I error (false positives) for multiple

reasons, providing further confidence that the detailed balance breaking we identify is valid. It is

therefore possible that detailed balance is also broken in the MEF and myoblast systems and our

tools are simply not sufficient to detect this asymmetry.
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We performed this ND-cgPFA analysis for multiple values of the timescale parameter ⌧ and find

that these results are consistent. At each value of ⌧ , the MuSC system demonstrates broken detailed

balance and the MEF and myoblast systems do not. On a very short timescale, it is unlikely that

detailed balance is broken for a motility state system, even in a dynamic system like activating

MuSCs. In line with this biological prior, we find that detailed balance is not broken in the MuSC

system when we perform ND-cgPFA with the same number of ⌧ = 20 length windows, but set them

to overlap with a stride s = 1. In this overlapping scheme, only two time steps of difference are

present between the first and final temporal window, accounting for only 13 minutes in real time in

our experiments (Fig. 1.17).

As additional confirmation of MuSC motility state dynamism, we performed this symmetry

breaking analysis using hierarchical clustering to define cell state over the whole motility feature

space, rather than coarse-grained location along the principal components (Fig. 1.18). As with

ND-cgPFA, our positive control variable model breaks detailed balance by the binomial test, while

our negative control invariant models do not. MuSC systems again demonstrate greater pairwise

asymmetry than MEF or myoblast systems in this test (Fig. 1.18).

An important question is raised when detailed balance is broken. Is the system stationary,

with the same number of cells in each state over time, or non-stationary? We evaluated the

stationary nature of the MuSC systems by forming a contingency table comparing state occupancy

between time points for each set of length ⌧ = 20 subpaths in the dataset and find a significant

difference (p < 0.05, �2 test) for each scale where detailed balance breaking is detected. These

results collectively demonstrate the more dynamic nature of the MuSC system and demonstrate

that the MuSC motility state system is non-stationary and breaks detailed balance.

1.3 Discussion

Cell behavior phenotypes represent an under-exploited opportunity to explore the heterogeneity of

cell systems. In contrast to existing methods based on destructive molecular assays, cell behaviors

such as motility can be tracked in a single cell over time, allowing for measurement of phenotypic

state transitions. Previous work to quantify morphological dynamics has allowed for quantification
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of cell state transitions in this manner [20,24,31]. Quantification of motility behaviors in addition to

morphological dynamics may allow for detection of transitions that are not revealed by morphological

dynamics alone.

Our Heteromotility analysis software provides access to one portion of this rich motility feature

space for analysis. Applying analysis techniques common in other single cell assays, we demonstrate

that Heteromotility features are sufficient to distinguish different motility phenotypes and provide

novel insight in multiple biological contexts. In addition to detecting heterogeneity within populations,

Heteromotility analysis was also useful to quantitatively describe perturbations on the population

level.

In our three biological systems, overlapping but characteristic motility states are present in a

continuous state space. Notably, a shared set of motility states is conserved between WT and MycRas

MEFs, despite the dramatic perturbation of neoplastic transformation. A similar phenomenon

of conserved phenotypic states has been described for cell shapes. Despite a large number of

perturbations, multiple cell systems displayed a fairly limited set of cell morphology states, with

perturbation merely altering the prevalence of these states [4, 88]. These results suggest that cell

systems may have a discrete set of phenotypic states despite a much greater diversity in molecular

organization, with perturbations acting largely to alter the distribution of cells within these states,

rather than elicit novel behavior.

Although these state definitions are robust to perturbation in our conditions, the distribution of

cells among these states appears to be dynamic. This is demonstrated by the state preferences of

WT and MycRas transformed MEFs. Considering the robustness of motility state definitions, state

transitions may act as a mechanism of population level phenotype change. This is not necessarily

in opposition to a model of motility regulation in which cell phenotypes shift within a given state.

Harkening to the subsumption architectures of robotic control systems [89], a higher level state

determinant, such as oncogene expression, may be viewed as inducing a preference for the selection

of behavioral states, and substates within those states, by a more direct effector mechanism, in this

case the cell motility machinery. The mechanisms of state transitions and substate preference may

work in synchrony to specify population level phenotypes.

Within the MEF systems transformed cells preferentially occupy the more motile state, suggesting
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that neoplastic transformation shifts the distribution of cells within the motility state system. This

state preference is strong enough to allow for better-than-chance machine learning classification

of WT and MycRas MEFs based solely on motility features. Training machine learning classifiers

on quantitative motility features and ground truth patient outcomes may potentially serve as an

additional cancer diagnostic metric.

Most single cell analysis methods currently used to investigate heterogeneity are not capable

of assaying a single cell across a time course, but rather provide a detailed snapshot of a cell at

a single time point. Real-time observation of individual cells may elucidate novel properties of a

heterogeneous cell system, as pioneered by analysis of morphological dynamics. Here, we combine

the real-time nature of cell behavior observations with Heteromotility analysis to investigate the

dynamics of motility states.

In the context of MuSCs undergoing myogenic activation, we find a set of motility behavior

states progressively more similar to myoblast motility behavior. Quantifying state transitions within

each of these states, we observe that cells within each state transition toward the next state in

the series over time. State transition rates increase as a function of state progression, suggesting

that MuSC activation is not simply a linear process. This observation may have implications for

the study of MuSC heterogeneity. If the rate of phenotypic change in MuSCs is non-linear during

activation, then heterogeneity in activation kinetics between cells will be exaggerated during a

‘critical period,’ where the most rapidly activating cells are not only more activated at that moment,

but are moving toward a fully activated state more rapidly than their less activated counterparts.

This is to our knowledge the first quantification of single cell transition rates between quiescent

MuSC and myoblast phenotypes during myogenic activation. It follows that similar analysis of cell

behavior may elucidate transition dynamics in other contexts of cell biology.

A state system at equilibrium displays detailed balance, in which pairwise transitions between

all states are equal. We check for the presence of detailed balance in our motility state systems as a

method of quantitatively discerning if cells are transitioning through state space in a predictable

manner. The MuSC motility state system breaks detailed balance, while the MEF and myoblast

systems do not. This may reflect underlying properties of each system, as MuSCs are undergoing a

dynamic activation process on the timescale of imaging, while MEFs and myoblasts are not. Broken
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detailed balance in the MuSC system indicates that the current MuSC state provides predictive

information about the cell’s future state, as cell’s transit state space in a predictable way. This

supports our observation of progressive activation states discussed above. Analysis of detailed

balance breaking by real-time cell state inference from cell behavior may be a useful approach to

detect dynamic biological processes and predictable phenotypic patterns.

Moving forward, we believe that single-cell, quantitative motility analysis has multiple ap-

plications. Quantitative motility features may allow discrimination of cell states by supervised

classification, as demonstrated by our discrimination of neoplastic and wild-type MEFs. Supervised

classification in this manner may be useful in diagnostic and biosensor applications. For example,

motility metrics could be added to the cell morphology metrics commonly used to diagnose neoplasia

from patient biopsy samples.

Heterogeneous cellular states within a population of cells may be detected by unsupervised

clustering of motility features, similar to analyses of population heterogeneity performed using

single-cell molecular assays. We demonstrate this use case by identifying heterogeneous motility

states in MuSCs, which correspond to heterogeneous states of stem cell activation. Unsupervised

identification of heterogeneous populations is useful in understanding the behavior of cell systems,

as demonstrated by findings from single-cell molecular assays. Identifying heterogeneous motility

behaviors may be of particular interest in contexts where motility is directly tied to cell and tissue

function, such as tissue regeneration and immunological responses.

Analysis of cell behaviors such as motility also allows for measurement of the transition rates

between cell phenotypes. We demonstrate this application by measuring activation rates in the

myogenic system for the first time, and identifying the presence or absence of detailed balance

across biological systems. Cell state transition analysis may be applied to measure the rate of

dynamic phenotypic changes, such as stem cell differentiation, immunological activation, or neoplastic

transformation. Each of these applications of quantitative motility analysis may be paired with

exiting approaches for quantitative analysis of morphology to provide a more complete picture of

cell behavior than either approach may yield alone.
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1.4 Conclusion

Our Heteromotility software provides a means of defining cell states and quantifying transitions

between them by quantitative analysis of one aspect of cell behavior. We demonstrate motility

behavior analysis is capable of identifying unique motility states in simulations and three biological

systems. In our biological systems, these states appear to have robust definitions when perturbed,

but each cell’s state identify appears dynamic. Real-time, quantitative assays of single cells such

as Heteromotility analysis may reveal the dynamics of heterogeneous cell systems, which cannot

be accomplished by terminal molecular assays. We demonstrate this approach by showing that

MuSCs transition through a progressive set of motility states toward the myoblast motility state in

a predictable manner, breaking detailed balance.

1.5 Supporting Information

1.6 Materials and Methods

1.6.1 Heteromotility Analysis

DIC images were segmented using custom segmentation algorithms, optimized for each of the

systems we investigated. Tracking was performed with a modified version of uTrack [90]. Code is

available on the Heteromotility GitHub page. All code for the Heteromotility tool is available on the

Heteromotility Github page (https://github.com/jacobkimmel/heteromotility) and in the Python

Package Index (PyPI). Detailed descriptions of the algorithms are provided in the Supplemental

Methods.

1.6.2 Animals

All mice were housed at the University of California San Francisco following UCSF Institutional

Use and Care of Animals Committee guidelines. Adult male C57Bl/6 mice (2-4 m.o.) were used

for all myogenic cell experiments. Adult female C57Bl/6 mice (2-3 m.o.) were used as mothers to

derive MEFs.
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1.6.3 Myoblast and Muscle Stem Cell Isolations

Mononuclear cells were isolated from limb muscles of adult mice as described [91]. Myoblasts were

isolated by negative-selection against Sca1 using the EasySep Endothelial Selection kit (Stem Cell

Tech., Vancouver, BC) and subsequent 5 minute preplating. Myoblasts were maintained in myogenic

growth media (F10, 20% FBS, and [5 ng/mL] FGF2) on sarcoma-derived ECM (Sigma, St. Louis,

MO) coated dishes. All myoblasts used in experiments were below passage 4.

Wild-type muscle stem cells were isolated by FACS after incubating the bulk mononuclear

cell population with anti-VCAM-PE (BioLegend, San Diego, CA), anti-↵7-integrin-649 (R&D

Systems, Minneapolis, MN), anti-CD31-PE-Cy7 (BD Pharmingen, San Jose, CA), anti-CD45-PE-

Cy7 (BD Pharmingen, San Jose, CA), and anti-Sca1-APC-Cy7 (BD Pharmingen, San Jose, CA).

Propidium iodide was added as a live/dead marker. Muscle stem cells were selected based on a

VCAM+/↵7-integrin+, CD31-/CD45-/Sca1-/PI- profile, as previously described [85].

1.6.4 MEF Cell Culture

Wild-type MEFs were isolated from E13.5 embryos as described [92]. MEFs isolated from two separate

mothers were used for these experiments. Transformed MEFs were generated as described [61],

generously donated by the authors. All wild-type MEFs used in experiments were from passages 2 -

5. All MEFs were maintained in DMEM, 10% FBS, 1% Penicillin / Streptomycin at 37O C and 5%

CO2.

1.6.5 Timelapse Motility Imaging

All imaging was performed on a Nikon Ti using a 20X air objective and an Oko temperature and

carbon dioxide incubation unit set to 37O C and 5% CO2. Images were captured by a Hamamatsu

C11440-22CU camera (pixel size 6.5 x 6.5 µm). Twenty-five images with 10% edge overlap covering

a 3.3 mm square at the center of each 96 well were captured. Focus was maintained throughout the

timelapse using the Nikon PerfectFocus system. Each XY position was segmented and analyzed

independently. XY positions that experienced overexposure or out of focus events were removed

from analysis by manual screening of the data.
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MuSCs were seeded at 500-1000 cells/well in 20 wells of a 96 well plate immediately after FACS

sorting. After 23 hours to allow for adaptation to culture, media was exchanged for the relevant

experimental medium and MuSCs were incubated for 1 hour to adapt. MuSCs were imaged at 20X

in DIC for 10 hours with a temporal resolution of 6.5 minutes / frame. Myoblasts were passaged

and plated on sarcoma-derived ECM coated optically clear plastic 96 well plates 24 hours prior to

imaging at 300-500 cells/well. Media exchanges were performed 1 hr prior to imaging, in the same

manner as MuSCs. Myoblast imaging was performed at 20X in DIC for 10 hours with a temporal

resolution of 6.5 minutes / frame. For FGF2 perturbation experiments, 10 wells of a 96 well plate

were imaged in growth media with [5 ng/mL] FGF2, and the remaining 10 were imaged in growth

media with [0 ng/mL] FGF2. MEFs were similarly plated in optically clear plastic 96 well plates

(without ECM coating) 16-20 hours prior to imaging at the 300-500 cells/well and imaged in the

same manner. The initial 18 frames of imaging were omitted from downstream analysis for MEF

and myoblast experiments, and the initial 30 from MuSC experiments to minimize the effect of

initial XY drift in our imaging apparatus.

1.6.6 Image Segmentation

Brightfield images were segmented using custom segmentation algorithms, optimized for each of

the systems we investigated. Segmentation algorithms are steerable filters [93] for edge detection,

top-hat filtering [94], and Otsu thresholding [95], utilizing implementations available in the Matlab

Image Processing Toolbox. These standard segmentation methods were combined with contrast

adjustments, noise filtration, and background subtraction as needed for each system. Images were

segmented independently for each field-of-view. Cells spanning multiple fields of view were not

segmented. For tracking, the centroid of segmented cells was taken to be the cell location.

1.6.7 Heteromotility

All code for the Heteromotility tool and downstream analysis is available on the Heteromotility Github

page and in the Python Package Index (PyPI) (https://github.com/jacobkimmel/heteromotility).
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1.6.8 Cell Tracking

Tracking was of cell centroids was performed using a global nearest neighbor optimization approach,

as implemented in uTrack [90]. Specific parameters were devised for each cell type to optimize

tracking, and are provided in the Heteromotility Github code base. Only cells that remained in

the same field-of-view throughout the timelapse were tracked. All tracks were visually screened for

accuracy, and any erroneous tracking events (tracking of non-cellular objects, tracks crossing, etc.)

were removed from analysis.

1.6.9 Distance and Speed Calculations

Total distance is calculated as the sum of all displacements along a given cell’s path. Net distance is

the distance between the initial and final points along the path. Progressivity is defined as the ratio

of net distance to total distance traveled.

Minimum speed is the minimum displacement value along a cell’s path. Maximum speed is the

maximum displacement value. Average speed is the mean of all displacement values. Time Moving

is the proportion of time a cell spends above a given threshold speed. Average moving speed is the

mean speed of a cell while above a threshold value.

1.6.10 Turning Features

To determine the magnitude and direction of a cell’s turning behavior, the cell’s instantaneous

direction is first established by performing linear regression on a range of points size 2� about every

point pt in the time series T where � < t < T � �. The cell’s movement direction relative to the x

axis on the interval [pt � �, pt + �] is considered to establish directionality to the regression. This

vector R is assumed to represent the cell’s direction at pt. The cell’s position pt + ⌧ is considered

for a given time lag ⌧ . If pt + ⌧ falls left relative to R, the cell is said to have made a left turn, and

vice versa. The magnitude of each turn is calculated as the angle between the vector R and the

vector from pt to pt + tau.
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1.6.11 Correlation Features

The linearity of a cell’s path is calculated as Pearson’s r2 value of a linear regression through all

two-dimensional positions a cell occupied during the time course. Similarly, the monotonicity of a

cell path is calculated as Spearman’s ⇢2 for the same distribution of two-dimensional coordinates.

1.6.12 Displacement Distribution Features

Mean Squared Displacement Coefficient

Mean squared displacement (MSD) is calculated for the two-dimensional vector of positions X and

a given time lag ⌧ as

MSD(⌧) = hxt+⌧ � xti

Here, ⌧ denotes the given time lag, xt denotes the position at time t, and hi denotes the mean

value of an expression. MSD is calculated for ⌧ in the range [1, 30]. The relationship of MSD to

⌧ can be expressed in a general form MSD(⌧) / ⌧
↵. The exponent ↵ in this relationship can be

easily estimated by power transformation of the resulting values, such that logMSD / ↵ log ⌧ and

↵ not represents the slope of a linear regression through logMSD vs log ⌧ .

Kurtosis

To calculate the kurtosis of a cell’s displacements, we consider displacement sizes for a variable time

lag ⌧ , so that X⌧ represents the distribution of displacements for a given time lag ⌧ . We calculate

kurtosis as the standard fourth central moment:

kurtosis(X⌧ ) = hx4 � x̄i � 3

Kurtosis values for each cell path are normalized against the kurtosis of a random walker’s

displacement distribution, which displays a Gaussian kurtosis of 3.
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Non-Gaussian Parameter

The Non-Gaussian parameter ↵2 is calculated as described [53].

↵2 =
h�x

4i
3h�x2i2 � 1

Here, hi denotes the mean of an expression and �x denotes an individual displacement in the

distribution. Effectively, the ↵2 parameter denotes a ratio of kurtosis to variance for a distribution,

as kurtosis(X) = hx4� x̄i, and �
2 = hx� x̄i2. For a Gaussian distribution, ↵2 = 0. As the tails of a

distribution increase in weight, ↵2 also increases. As such, ↵2 acts as a metric of the Non-Gaussian

nature of a given distribution, with higher ↵2 values indicating that the distribution is less Gaussian

and heavier tailed.

1.6.13 Self-Similarity Metrics

Hurst Exponent Estimation

Fractal Brownian motion (fBm) is a more general description of Brownian motion that allows

for interdependence between displacements [96]. fBm is defined as a random Gaussian process

parameterized by H:

BH(t) = BH(0) +
1

�(H + 1

2
)

Z
0

�1
[(t� s)H � 1

2
� (�s)H � 1

2
]dB(s) +

Z
t

0

[(t� s)H � 1

2
]dB(s)

where � is the standard Gamma function, H is the Hurst parameter on the interval [0, 1], t is

time, and s is t+ ⌧ for a given time la g ⌧ . The Hurst parameter describes the self-similarity of

a given fBm process. A classical Brownian motion process with independent displacements has

H = 0.5. H > 0.5 describes a process with positively correlated displacements, while H < 0.5

describes a process with negatively correlated displacements.

The Heteromotility software estimates the Hurst exponent based on Mandelbrot’s Rescaled

Range method, as described [55]. Briefly, for a given time series X of length N , the series is divided

into a set of sub-series length n = N/20, N/21, N/22, ..., N/2↵ where ↵ is the largest power of 2 less

33



than 1

2
N .

For each of these sub-series length n, the cumulative sum series Z is calculated on a mean

adjusted time series Y = Xt � hxi. A range R(n) = max(Z)�min(Z) is calculated, along with the

standard deviation S(n) = stdev(X). The average rescaled range R(n)/S(n) is calculated for each

sub-series length n. The relationship between R(n)/S(n), n, and H can be expressed generally as

E[R(n)/S(n)] = Cn
H where C is a constant coefficient. A simple log-log transformation is used to

estimate H as the slope of a line logR(n)/S(n) = H logCn.

Autocorrelation

Autocorrelation describes the correlation of a given process with itself across an interval of time.

Expressed formally, autocorrelation R as a function of t for a given time lag ⌧ :

R(t) =
E[(Xt � µt)(Xt+⌧ � µt+⌧ )]

�t�t+⌧

We estimate the autocorrelation for a cell’s displacement series X of length T with a given time

lag ⌧ as:

R(⌧) =
1

(T � ⌧)s2

T�⌧X

t=1

(Xt � hXi)(Xt+⌧ � hXi)

where s is the standard deviation of X.

1.6.14 Motion Model Simulations

Simulated data sets analyzed in this study were generated for a range of track lengths T 2

{50, 100, 500} with n = 50000 members per class. Data sets for analysis were resampled from these

populations (with replacement) with sample sizes n 2 {100, 500, 1000, 5000} members per class,

three times each per sample size/track length combination. Results for unsupervised clustering

and supervised classification accuracy are reported as averages across all sampled populations for a

given parameterization (i.e. sample size, track length).

Simulations were initially generated with identical mean displacement magnitudes (dxy = 5)

for each model type to prevent the trivial discrimination of different models. Simulations were
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also generated with varied displacement sizes, and different values of characteristic parameters to

demonstrate robustness, as detailed below. These simulations were analyzed with a path length of

t = 100 and sample size n = 1000.

Random Walks

We model an unbiased random walk is modeled as described [97]. For a walk of length T with

step lengths t, a displacement is made in a random direction on the xy-plane for each time step.

Displacement magnitudes are sampled from a Gaussian distribution with a given mean µ and

variance � = µ/5. The mean displacement size is set to dxy = 5 for initial experiments, and

dxy 2 {10, 20, 50} for experiments with varied parameters. Biased random walks are modeled in the

same manner, but directionality is biased to step in a randomly chosen direction in the xy-plane b%

of the time. The bias parameter is set to b = 0.75 for experiments with differing path lengths, and

is varied to b 2 {0.10, 0.70, 0.90} for experiments with varied parameters.

Levy flight

Levy flights are modeled in the same manner as unbiased random walks, but displacement sizes are

sampled from a Levy-like power law distribution P (li) / l
�µ

j
. We set the parameter µ = 2 for initial

experiments, as this models an optimized random search [49]. Experiments with varied parameters

set µ 2 {0.5, 5}.

Fractal Brownian Motion (fBm)

A random walk is simulated as above with displacement sizes generated by a fractal Brownian

motion process with a given Hurst coefficient H = [0, 1]. This fBm process is simulated by the

Cholesky decomposition method, as outlined [98]. Briefly, a matrix � = (R(ti, tj), i, j) is generated

for i, j = 0...n where R(t, s) = (s2H + t
2H � |t� s|2H)/2. A matrix ⌃ = �

1
2 is computed as the lower

triangle L returned by Cholesky decomposition of �. A vector v of length n containing normally

distributed values is generated. The vector u = v⌃ represents a series of fBm displacements. For the

simulation analysis in this paper, the Hurst parameter was set to H = 0.9 to generate a displacement
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series with long-range memory in initial experiments. Experiments with varied parameters set

H 2 {0.1, 0.5, 0.99}.

1.6.15 Unsupervised Clustering

Hierarchical Clustering

All data were scaled [�1, 1] with unit variance prior to cluster analysis. Ward hierarchical clustering

was performed using the standard R stats library. The appropriate number of clusters k for each

system was determined using a panel of 30 cluster validation indices (implemented by the NbClust

R package [?]), considering the relative performance of different indices [99]. These indices were

determined using the first thirty principal components for each system as features to avoid colinearity

while retaining >=95% of total variation. The biological relevance of cluster phenotypes for each

k was also considered. All clustering partitions utilized demonstrate a positive Silhouette index,

providing evidence of an appropriate cluster structure [63].

Unsupervised clustering accuracy for simulated data was determined as the percentage of samples

that reside in a cluster where that sample’s type (i.e. Random walk, Levy flier) is the majority

sample type for the cluster. For instance, a Random walker simulation that lies in a cluster with a

majority of other Random walker samples is considered an accurate clustering, while a Power flier

that lies in a cluster with majority Random walkers is considered an incorrect clustering.

t-Stochastic Neighbor Embedding

t-Stochastic Neighbor Embedding was performed as described [100] using the Rtsne implementation

[101]. The perplexity parameter of t-SNE was chosen by computing the t-SNE projection at a series

of perplexity values in a range from 5 to 70 and evolving for 5000 iterations, as suggested by the

algorithm’s authors [57]. Between perplexity values of 30 and 70, we find that the global structure

of t-SNE projections is relatively consistent. From this range, we choose the value that provides

the most consistent projections for the data set, as suggested in recent work on the proper use of

t-SNE [102].
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Independent Component Analysis

Independent component analysis was performed as described [103] using the ica R package [104].

1.6.16 Pseudotiming

Pseudotiming was performed using the Monocle package [18] on all myoblast samples and a subset of

1300 randomly selected MuSC cells (MuSC data was subsampled to reduce computational expense).

Monocle’s Discriminative Dimensionality Reduction with Trees algorithm was used for dimensionality

reduction, and the top 20 features loaded into the first principal component were used in place of

“ordering genes.”

1.6.17 Statistical analysis

MANOVAs comparing all feature means between clusters were performed using the first 10 principle

components as measured variables for each cell. t-tests were performed on unscaled feature values,

assuming a two-sided null hypothesis and unequal sample variance. One-way ANOVAs comparing

feature means between clusters were performed on unscaled feature values. The binomial test

was performed on transition matrices to determine if transitions were non-symmetrical using the

H0 : P (success) = 0.5. All tests were performed with R standard library implementations.

1.6.18 Analysis of State Transition Dynamics

Subpath Analysis

To capture motility features at multiple time points for state transition analysis, cell paths are

segmented into various subpaths of length ⌧ and features extracted from each subpath. All state

transition analysis presented here was performed for states of length ⌧ = 20. Heteromotility contains

features to perform this segmentation and analysis of subpaths, accessible via a command line

flag. There is a lower boundary of ⌧ = 20 for subpath size, as multiple features calculated by

Heteromotility require at least 20 time points for analysis.
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State Specific State Transition Quantification

State transitions within each state cluster, as presented in (Fig. 1.4C) are quantified as follows.

Cluster identities are assigned using hierarchical clustering of the full-length motility track, as noted

above. Full length tracks are then transformed into PCA space. Paths are segmented into ⌧ = 20

length subpaths, and Heteromotility features were extracted from each subpath. Subpaths are then

transformed into the PCA space defined for full length tracks, such that the principal components

for full length tracks are the same for subpaths. Transitions for each cell are quantified as the vector

V between each pair sequential subpaths S0 ! S1 along the first two principal components (PCs).

The mean transition vector Vc for a cluster c 2 C, where C is the set of all clusters is defined

then as:

Vc =

P
N

i=1

P
T�1

t=1
Si(t+ 1)� Si(t)

N(T � 1)

where N is the number of cells in cluster c, T is the maximum time interval considered, and

Si(t) is the state position in principal component space of cell i at time interval t.

The mean of all transition vectors for all cells with a given cluster identity is taken as the

mean transition vector for a given cluster. These vectors are plotted atop a PCA projection of the

full-length path state space, with an origin at the cluster centroid. Vectors in plots are presented

with 10X magnitude to enhance visualization. Transition vector magnitudes are calculated as the

magnitude of the mean vector, plus or minus the standard error of the mean (SEM) pooled across

dimensions (SExy =
q

SE2
x + SE2

y).

1.6.19 Coarse-grained Probability Flux Analysis (cgPFA)

coarse-grained probability flux analysis (cgPFA) as presented in (Fig. 5) is implemented per the

definition of Battle et. al. [87]. Briefly, for each system, PCA is performed on the Heteromotility

feature set extracted from subpaths under consideration and the first N principal components are

used to define a motility state ↵. Each principal component is “coarse-grained” by binning into k

subsections of equal length. Combinations of bins between each of the N coarse-grained principal

components define a given state ↵. coarse-grained PFA analysis presented here was performed for a
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set of dimensionality resolutions N , where N 2 {1, 2, 3, 4} and a set of coarse-grained resolutions

k for each dimensionality resolution N , where k 2 {2, 3, 5, 7, 10, 15, 20}. Explicitly, cgPFA was

performed in 1D, 2D, 3D, and 4D, and detailed balance was evaluated with binning schemes using 2,

3, 5, 7, 10, 15, or 20 bins. Code for all our coarse-grained PFA implementations described is available

in the Heteromotility GitHub repository https://github.com/jacobkimmel/heteromotility.

Two-dimensional cgPFA state space representations

To produce 2D state vector plots as presented in (Fig. 1.5), each cell’s state, per the above definition,

is considered for the each subpath ti, and the subsequent subpath ti + 1 for i 2 [1, T � 1]. Each

cell’s state transition is recorded as a two-dimensional vector v = (xPC1, yPC2) representing the

distance in N = 2 dimensions of PC space the cell traveled in that time interval. If the cell did not

travel to a directly neighboring state (a unit vector displacement), the cell’s path is interpolated as

a series of unit vectors between the initial and final state. Each of these interpolated displacements

is recorded in an intermediary bin, representing the assumption that cells traverse state space in a

linear fashion.

For each state ↵, the transition rate from that state is calculated as the vector mean of all

transition vectors originating in that state. Non-transitioning cells (zero magnitude transition

vectors) are not considered in calculating this transition rate. These transition rates are plotted atop

the binned state space as arrows, such that the magnitude of each arrow represents the magnitude

of the transition rate constant, and arrow direction the direction of the transition rate constant in

a given bin. The divergence of this vector field is calculated and presented as a heatmap on the

state space. The divergence at a given state serves as a metric of state stability. Metastable states

display negative divergence (more cells entering than exiting), while unstable states display positive

divergence (more cells exiting than entering).

The mean vector displacement is calculated as the mean magnitude of displacement for all cells

in a population. The magnitude of transition directionality is quantified as the magnitude of the

vector sum of all transition rates in a given state system.
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Detailed Balance assessment by N-dimensional cgPFA

To provide statistical assessment of detailed balance as presented in (Fig. 1.6), a state space is

represented in N dimensions using the first N principal components, and each of these N dimensions

is coarse-grained into k equally sized bins, as described above. A matrix M of dimensionality 2N

is generated with k bins in each dimension is generated, representing all possible state transition

combinations in state space. The first N dimensions of the space represent a cell’s initial state in

the space, and the next N dimensions represent the final or destination state across a time interval.

To record a state transition, the value in the corresponding bin is iterated by 1.

For example, in a N = 3 dimensional space coarse-grained with k = 3, a 6 dimensional matrix

is generated with k = 3 bins per dimension, for a total of kN = 36 bins. A transition from a cell

that begins at location (1, 4, 3) and ends at location (2, 4, 2) in state space would be recorded by

iterating the value of M(1, 4, 3, 2, 4, 2) by 1. This process is repeated for each cell in the population,

and each transition for each cell.

A state space in perfect detailed balance would be expected to have all pairwise transition rates

A ! B = B ! A. In the matrix M , this would manifest as equal values in all pairwise sets of

bins M(a, b, c, d, e, f) = M(d, e, f, a, b, c) (for a N = 6 dimensional case). We test detailed balance

by checking the pairwise balance of all such state transition sets using the binomial test with

H0 : p = 0.5 where p is the probability of cells falling into either bin. If this null hypothesis H0 is

rejected, it indicates that a pairwise transition set is unbalanced, and therefore that detailed balance

is broken in the system. All binomial test p values are corrected using the Holm-Bonferroni method

to account for multiple hypothesis testing.

For each system presented, we test detailed balance breaking in this manner for N 2 {1, 2, 3, 4}

and k 2 {2, 3, 5, 7, 10, 15, 20}. As N > 2 dimensional spaces are challenging to present in their

entirety, we display the top 5 most unbalanced (lowest binomial test p values) as a heatmap, with

the initial state in the left column and the destination state in the right column. We note that

these tests are biased toward Type II error, as linear binning in N dimensions may not accurately

capture true states and binomial tests are underpowered when testing rare state transitions.
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Dwell Time Quantification

Characteristic dwell times for each state were quantified in the N dimensional course-grained PCA

spaces described above. For each dimensional resolution N and course-grained resolution k, each

state Si is considered. States Si with fewer than 10 observed dwells are omitted to avoid inaccurate

time constant approximation. The dwell time in discrete time units for each cell observed in a

state Si during the series was recorded. For instance, if a cell is observed in state Si at time points

t = 1 and t = 2, then leaves the state on t = 3, a dwell time of two time units is recorded. If a

cell has multiple dwells in state Si, separated by a dwell in another state, multiple dwell times of

observed length are recorded. The result of this procedure is a table of observed dwells for each

possible discrete time length t 2 [1, T ] where T is the total length of the observation period in

discrete time units. The dwell time for each state is characterized by two means: mean estimates

and fitting of exponential decay functions to estimate time constants. Dwell times in Markovian

systems are exponentially distributed. Simple arithmatic means are not an appropriate maximum

likelihood estimate (MLE) for exponentially distributed data, and as such alternative MLE methods

and exponential decay curve fitting are employed [105,106]. We apply the latter approach and fit

exponential decay functions to the number of cells that would be observed at each discrete time

point (effectively, the cumulative sum of dwell times, such that all cells are observed at t = 1, cells

dwelling t = 2 units or longer are observed at t = 2, and so on). Curves are of the form

y(t) = a exp(
�t

⌧
)

where ⌧ is the time constant of decay and a is a parameter coefficient, and are fit using a

differential evolution method, similar to that described in [107]. Distribution of discrete dwell time

data was assessed graphically relative to a binned values from a theoretical exponential distribution

with the shape parameter � = X̄, where X̄ is the mean of the sample observation distribution

X [108].
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Hierarchical Clustering PFA

Probability flux analysis was also performed using hierarchical clustering (Fig. 1.18) to define cell

state for a given time interval, in contrast to the use of coarse-grained principal components as above.

To statistically assess if detailed balance is broken using hierarchical cluster-based stated definitions,

we represent state transitions as an N -by-N matrix, where N is the number of hierarchical clusters

in the partitioning scheme. Rows of the matrix represent a given cell’s state at the an initial time

interval t0, while columns represent the cell’s state at the subsequent time interval t1. Values in

each i, j-indexed cell of the matrix represent the number of cells meeting the described state criteria

(state i at t0, state j at t1). As in statistical assessment of one dimensional coarse-grained PFA, a

system in detailed balance would display symmetry about the diagonal, and symmetrical bins about

the diagonal represent pairwise state flux magnitudes. Symmetry breaking is statistically tested

using a binomial test for cells falling above or below the diagonal. The same Type II error caveat

applies, as this approach only tests for raw numbers of cells above and below the diagonal, and does

not test for proper pairwise transition symmetry. Therefore, statistical testing of detailed balance

breaking by hclust-PFA is biased toward false negative conclusions, rather than false positives. This

statistical testing approach is generalizable to any arbitrary state definition scheme. We also test the

equivalency of pairwise transition rates for detailed balance by the binomial test, as described for

N -dimensional coarse-grained PFA above. Code for our hierarchical clustering PFA implementation

is available in the Heteromotility GitHub repository.

1.6.20 Supervised Machine Learning Classification

Machine learning models utilized standard scikit-learn [109] and R implementations. All data were

scaled [�1, 1] with unit variance prior to model training.

Simulated Data Classification

For simulated data, Random Forests were instantiated with n = 100 estimators and R randomForest

default parameters. Random Forest feature importance was determined as the decrease in classifi-

cation accuracy when a feature was removed [110]. Model accuracy was estimated by performing
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five-fold stratified, shuffled cross-validation. Confusion matrices are the mean predictions of a

five-fold stratified split.

MEF Transformation State Classification

Classification of MycRas MEFs vs WT MEFs was performed using a Support Vector Machine.

Support vector machines were chosen as the classification model based on a test of multiple model

types using a simple 5-fold cross-validation scheme, in which SVMs performed best.

Classification was carried out in a “Round Robin” fashion across independent biological exper-

iments. For the Round Robin, we train a classifier on 4 out of 6 independent experiments, and

classify the remaining 2. The accuracy of classifying these 2 “held out” experiments is taken as the

classification accuracy for that split. The process of training on 4 experiments, and classifying the

remaining 2 is repeated for all possible training/testing combinations. The average classification

accuracy across all splits is taken as the Round Robin Classification Accuracy. This Round Robin

analysis represents a form of strong cross-validation, accounting for differences that may arise

between individual biological experiments.

SVM parameters were optimized by a grid search using the Round Robin Classification Ac-

curacy as the objective. Grid Search identified a radial basis function kernel, feature selection

to 65% of features with top ANOVA F-values, and a regularization constant C = 0.5 as the

optimal configuration. All classifier code is available in the Heteromotility Github repository

(http://github.com/jacobkimmel/heteromotility).

1.7 Heteromotility User Guide

For users interested in applying the Heteromotility tool to their own research problems, we have

outlined recommendations for experimental design and parameter selection.

1.7.1 Timelapse Imaging Experimental Design

It is critical that timelapse imaging experiments be designed with sufficient temporal resolution

to capture motility behaviors of interest. For instance, if a user is interested in motility processes
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that occur on the order of minutes, imaging should be performed on a higher sub-minute temporal

resolution. Alternatively, if a user is interested in processes that take place on an hours or days long

timescale, temporal resolution can be decreased to the order of minutes or fractions of hours. In

the latter scenario, the total length of imaging should be designed to capture the whole process of

interest.

1.7.2 Sample Size Determination

Depending on the downstream analysis desired, the number of cells that need to be analyzed varies.

For supervised classification problems, we recommend users perform a multivariate power analysis.

For unsupervised clustering, rigorous analytical tools to determine the necessary sample sizes are

lacking. Due to the Curse of Dimensionality [111] principle, the number of samples necessary

to define clusters increases with the dimensionality of the problem. We find in three distinct

biological systems that 30 principal components are sufficient to capture the overwhelming majority

of variation, and therefore we suggest it is reasonable for users to assume a <= 30 feature dimensions

will be present in their unsupervised clustering problem. As a simple rule of thumb, we recommend

users have at least 5 fold as many samples as features, such that at least 150 cells should be analyzed

as a lower bound for unsupervised clustering. Again, we reiterate that the sample sizes necessary

to elucidate structure through unsupervised clustering cannot be readily predicted a priori, and

therefore we provide this sample size suggestion only as a lower bound for experimental planning.

1.7.3 Supervised Classification

Users interested in supervised classification of motility phenotypes will need to select a data

preprocessing method and a classification model to train. As a starting point, we recommend scaling

raw Heteromotility feature outputs on the range [-1, 1] and reducing dimensionality using principal

component analysis (PCA) prior to training a classification model. We recommend users start

with an ensemble classification method such as Random Forest Classifiers, as they are robust in

a variety of classification problems [112]. For validation of efficacy, we recommend users perform

at least five-fold cross-validation (five independent models, each trained on 80% of the data and
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tested on the remaining 20% in a rotating fashion). If multiple biological experiments are pooled for

analysis, a round-robin analysis training on one set of experiments, and predicting on an independent

set of experiments, is also useful to assess the robustness of the trained classification model. We

recommend users perform a Grid Search to select hyperparameters for a given classifier. A practical

guide to grid search implementation can be found in [113].

1.7.4 Unsupervised Clustering

For unsupervised clustering of motility feature data, we recommend users begin by scaling raw

Heteromotility features [-1, 1]. Dimensionality should be reduced using PCA prior to clustering.

We recommend users retain the smallest number of PCs sufficient to explain ˜90% of variation.

Clustering may be performed using hierarchical clustering. We recommend using Ward’s linkage, as

this yields the most intuitive results in our systems and makes assumptions about cluster shape in

line with biological priors. The number of clusters k to be defined may be optimized using cluster

validity indices. We recommend the R package “NbClust” to compute several of these indices.

While there is no definitive index that dominates others in all contexts, we recommend that users

prioritize optimization of the Silhouette value, Hubert index second derivative, and D index second

derivative, as these metrics are well accepted and provide a graphical interpretation [99].

1.7.5 Feature Dimensionality

For both Supervised and Unsupervised analysis of Heteromotility feature data, the dimensionality of

the feature space is effects the efficacy of analysis. The “Curse of Dimensionality” [114] reduces the

efficacy of supervised learning and unsupervised clustering when many low-information dimensions

are present. To avoid this problem, we recommend users reduce the dimensionality of input spaces

using PCA prior to analysis, as outlined above. Users may wish to further reduce dimensionality

by eliminating features prior to PCA, or using fewer principal components if they believe a Curse

of Dimensionality issue is present. If a user wishes to combine Heteromotility features with other

phenotypic features, the user should be mindful of the Curse of Dimensionality and take steps to

reduce the dimensionality of the feature space where possible. However, the removal of features
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pre-maturely may hinder analysis that relies on a discarded feature for discrimination of two samples.

Therefore, we recommend users attempt analysis with PCs covering a large proportion of the

population variation first, before discarding additional features.

1.7.6 t-SNE non-Linear Dimensionality Reduction Visualization

For presentation of Heteromotility feature space, we recommend the use of t-Stochastic Neighbor

Embedding (t-SNE) [57]. When utilizing t-SNE, it is critical that users understand the limitation

on interpretation of t-SNE visualizations, as recently described in [102]. The critical hyperparameter

in t-SNE analysis is perplexity. As outlined by the algorithms authors [57], appropriate values of

perplexity cannot be determined a priori, and vary depending on the data set. In general, larger

data sets with more data points will benefit from a higher setting of perplexity. We recommend

users generate multiple maps for several settings of perplexity in the range [10, 70], selecting the a

perplexity value that generates qualitatively reproducible representations.

1.7.7 Motility State Transition Quantification

In quantifying motility state transitions, the temporal window hyperparameter for state definition

⌧ must be chosen by the user. This value represents the number of time steps considered in each

temporal window where the motility state of a cell is defined. Several Heteromotility features lose

numerical stability if applied to series shorter than ⌧ = 20 time steps. Therefore, a setting of ⌧ = 20

represents a lower bound for the size of temporal windows for analysis.

1.8 Additional Supplemental Videos

For additional supplemental videos, please visit our lab website at http://cellgeometry.ucsf.

edu/heteromotility.
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Fig 1.6. Analysis of state transition dynamics indicates MuSC motility states break

detailed balance. One-dimensional coarse-grained PFA of (A) Simulated Levy flier transition to
a random walk, (B) simulated random walk. Transition pairs from N -dimensional cgPFA displayed
as heatmaps for (C) WT MEFs (n = 312), (D) Myoblasts (FGF2+) (n = 150), (E) MuSCs (FGF2-)
(n = 1838), and (F) MuSCs (FGF2+) (n = 2500). Heatmaps show the five most unbalanced
transitions in a system, with colors and numerical insets indicating the number of cells that
transitioned from a given state at t0 to a given state at t1. Significantly unbalanced transitions are
outlined in red (p < 0.05, Benjamini-Hochberg corrected binomial test). A system in detailed
balance would display no unbalanced transitions.
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Fig 1.7. Heteromotility software description. (A) Heteromotility workflow diagram and (B)
a table of the complete feature set.
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Fig 1.8. Clustering and visualization of simulated motion models with varied

parameters. (A) Simulated models of motion are segregated by unsupervised hierarchical
clustering, as displayed in representative a heatmap of hierarchically clustered (Ward’s linkage)
simulated motion paths (1000 members/class, length 100 time units) based on Heteromotility
features. Color labels on the left mark a sample’s True Class. Effective separation of the True
Classes indicates effective detection of different phenotypes by unsupervised clustering.
Two-dimensional (B) PCA and (C) ICA visualization of the simulated motion paths to provide an
intuition for the linearity of motility state space and performance of traditional linear
dimensionality reduction techniques. Only high (30) dimensional PCA spaces are used for analysis.
ICA is not used for any downstream analysis. (D) Representative t-SNE visualizations of simulated
motion models with different sample sizes and track lengths, labeled with ground truth classes.
Models occupy distinct regions of state space under all sample size and track length variations. (E)
Representative t-SNE visualizations of simulated motion model groups with the underlying
parameters for each motion model varied. Parameters for each condition shown are displayed above
the t-SNE map. (F) Unsupervised clustering accuracy (Ward’s linkage) as a function of parameter
variations to the underlying simulations. Performance decreases as expected when parameters are
set in a manner that decreases the distinctness of the models. For example, performance is lower
when the bias parameter for biased random walks is set to a low value, close to an unbiased random
walk, or when the fractal Brownian motion index is set to the same index displayed by a random
walker (H = 0.5). Performance is high across other conditions tested.
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Fig 1.9. Comparison of variance dimensionality and local cell density relationships

between cellular systems. (A) Cumulative variance explained for each dimensionality of
principal component space across MuSC, MEF, and Myoblast systems. (B) Strength of
relationships between our Local Cell Density Index and each of the Heteromotility features,
displayed as overlapping histograms of Pearson’s r2 values for linear regression models fit between
the Local Cell Density Index and each feature pairwise. No features in any system display a
relationship with a meaningful effect size (max r

2 ⇡ 0.03).
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Fig 1.10. Round Robin analysis of MEF motility state distribution and classification

performance. (A) Representative t-SNE visualizations, MycRas and wild-type cluster
distributions, and selected cluster feature values for three ”splits” from a Round Robin analysis. In
the Round Robin analysis, analyses were performed on 4 experiments (1 MycRas, 3 wild-type)
leaving 2 experiments out in an iterative fashion for each possible combination of experiments.
MEF cluster distributions and properties are reproducible across all combinations. (B) Aggregate
confusion matrix for SVM classifiers trained in a Round Robin fashion, such that 4 experiments
were used for training and 2 for evaluation for all combinations of 4 experiments. SVMs classify
MycRas and wild-type cells with 70% accuracy and do not demonstrate a prediction bias for one
class over the other. (C) Distribution of Round Robin Classification Accuracies for SVMs trained
on each Round Robin split. (D) Top 10 most important features for Round Robin Classification
Accuracy using SVM classifiers. Features importance is determined as the decrease in classification
accuracy when an SVM is retrained without a given feature as input. The Top 10 features were
selected based on the mean decrease in Round Robin Classification Accuracy across Round Robin
splits. (E) t-SNE visualization of all MEF cells analyzed, labeled with their experimental origin.
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Fig 1.11. MEF analysis with reduced feature sets. (A) Round Robin classification accuracy
is significantly, positively correlated to the proportion of features utilized. Points represent mean
Round Robin Classification Accuracy for a given parameter set of N% of features and a value for
the SVM bias parameter C. Five bias parameter values were tested in a linear distribution in the
range [0.4, 0.6] around the bias parameter C ⇡ 0.5 we found for the optimal SVM by Grid Search.
Reduced feature sets were selected using only the top N% of features based on ANOVA F -scores.
(B) Cluster distributions and cluster feature values for clustering of MEFs with reduced feature sets.
Feature sets were reduced to the top N% based on ANOVA F -scores. Behavioral clusters are still
identifiable and MycRas/wild-type dependent state distribution is preserved with a single feature.
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Fig 1.12. Myoblast clustergram visualizations. Clustergrams of myoblast feature space
using several hierarchical clustering linkages. The assigned cluster label for each linkage map is
displayed in a color coded column on the left hand side of each heatmap. Ward’s linkage was used
for downstream analysis.
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Fig 1.13. MuSCs display multiple motility states, reflecting states of activation. FGF2
does not influence MuSC motility phenotypes, and MuSC motility states reflect progressive states
of activation. (A) t-SNE visualization of MuSC motility space with FGF2 treated and untreated
color labels. (B) Occupancy of MuSC motility states in FGF2 treated and untreated conditions.
(C) Pseudotime analysis displaying a reduced dimensional representation of MuSC and myoblast
motility space (DDRT) with a minimum spanning tree plotted to mark the pseudotime axis.
Pseudotime analysis attempts to find a temporal axis through an ergodic process observed at a
single time point by fitting a minimum spanning tree (MST) to a reduced dimensional
representation of multidimensional data. The longest axis of the MST is assumed to represent the
temporal axis of the ergodic process. MuSC states are clearly ordered in a progressive sequence,
moving toward the myoblast phenotype over pseudotime. (D) Scatterplot of MuSC/Myoblast
transition vectors, demonstrating that transition vectors are primarily along the first principal
component and slightly skewed in the positive direction.
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Fig 1.14. Course-grained probability flux analysis of motility state spaces. (A)
Three-dimensional representation of the MycRas MEF state divergence surface as measured by
cgPFA using tau = 20 and 15 course-grained bins. Course-grained probability flux analysis (cgPFA)
of (B) myoblast (FGF2-), and (C) MuSC (FGF2+) motility states with subpaths of length ⌧ = 20
time points (130 minutes) and 15 course-grained bins per dimension. Each unique combination of
bins between PC1 and PC2 is considered as a unique state. Arrows represent transition rate
vectors, calculated for each state bin as the vector mean of transitions into the neighboring states in
the von Neumann neighborhood. Arrow direction represents the direction of these transition rate
vectors, and arrow length represents transition rate vector magnitude. Underlying colors represent
the vector divergence from that state as a metric of state stability. Positive divergence indicates
cells are more likely to leave a state, while negative divergence indicates cells are more likely to
enter a state. (D-I) State occupancy visualizations of the same course-grained PCA presented for
cgPFA analysis. The number of cells that occupy a given state for at least one time unit is
represented in the third dimension of the landscape and by the heatmap colors.
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Fig 1.15. Course-grained probability flux analysis of motility state spaces on multiple

time scales and binning resolutions. Course-grained PFA analysis as demonstrated in Fig. 1.5
and Fig. 1.15 was performed for all parameter combinations of the temporal window size
tau 2 {20, 25, 30} and binning resolution k 2 {5, 10, 15, 20, 30} across all cellular systems.
Representative visualizations across these parameter ranges are presented. Both (A) MycRas and
(B) wild-type MEFs retain the qualitative metastable ‘basin’ appearance across time scales. As
binning resolution decreases below k = 10, the structure of the state space is obscured. At higher
resolutions of k, more bins little net divergence are present. (C) Myoblast cgPFA state spaces
likewise retain a metastable ‘basin’ appearance across time scales. (D) MuSC state spaces retain a
metastable ‘valley’ surrounded by unstable ridges across time scales. At higher binning resolutions
of k, an unstable ridge within the metastable valley becomes more apparent.56



Fig 1.16. Dwell time analysis of MuSC motility states. MuSC motility state dwell time
analysis reveals rapid transitions, longer dwell times in higher occupancy states, and roughly
exponentially distributed dwell times. Dwell times vs. total number of observed cells for each
occupied state in course-grained PCA space for (A, B) FGF2- MuSCs, (D,E) FGF2+ MuSCs in
two-dimensional PCA space, and (G, H) FGF2- MuSCs and (J, K) FGF2+ MuSCs in PCA spaces
where detailed balance is broken. Dwell time distributions relative to the binned samples from a
fitted exponential distribution for (C) FGF2- MuSCs and (F) FGF2+ MuSCs in two-dimensional
PCA space, and (I) FGF2- MuSCs and (L) FGF2+ MuSCs in PCA space where detailed balance is
broken.
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Fig 1.17. N -dimensional course-grained probability flux analysis across multiple time

scales. ND-cgPFA as presented in Fig. 1.6 was repeated for values of the temporal window size
parameter ⌧ 2 {20, 25, 30}. (A) The results of detailed balance breaking are robust across settings
of this time scale parameter. At each time scale, the MuSC system breaks detailed balance, while
the MEF and myoblast systems do not. Heatmaps display the five most unbalanced transitions for
each defined cgPFA space. tau, course-grained bin, and stride parameters are listed above each
heat map. (B) To demonstrate that detailed balance is present in the MuSC system on short time
scales, we performed ND-cgPFA using the same number of temporal windows size tau = 20, but
overlapped them with a single unit stride of s = 1. In this scheme, each window is only 1 time unit
different than it’s neighbor, such that only 2 time units of difference are present between the initial
and final time window. On this short time scale, MuSC systems do not break detailed balance.
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Fig 1.18. Probability flux analysis between states defined by hierarchical clustering.

Hierarchical clustering based probability flux analysis of (A) a Levy flight simulation transitioning
to a random walk, (B) an invariant random walk simulation, (C) myoblasts (FGF2+), (D)
myoblasts (FGF2-), (E) MycRas MEFs, (F) WT MEFS, (G) MuSCs (FGF2+), and (H) MuSCs
(FGF2-). The matrix displays transitions in state space as values in a matrix. Rows of the matrix
correspond to an initial cell state (t0 state) and columns correspond to a destination state (t1
state). The value of each bin represents the number of times a state transition was observed.
Symmetrical bins about the diagonal represent reciprocal pairwise transitions, with one ‘forward’
transition and one ‘reverse’ in each pair. The identity line represents “self” or non-transitions.
MuSCs show a less balanced distribution than either MEFs or myoblasts by the binomial test for
pairwise transition balance. Pairwise transitions breaking detailed balance are outlined in red.
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Fig 1.19. Resampling analysis of MuSC cluster partitions. (A) Representative random
samples of 80% of MuSCs with a 3 cluster partition (Ward’s linkage) applied. Note cluster
separation along a common axis, robust to resampling. (B) Representative random samples of 80%
of MuSCs with a 4 cluster partition (Ward’s linkage) applied. Note separation of clusters along
multiple axes in some samples, and a single axis in others. The 4 cluster partition is not robust to
resampling.
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Chapter 2

Deep convolutional and recurrent

neural networks for cell motility

discrimination and prediction

2.1 Introduction

Cell motility is an emergent property of living matter that spans the nanomolecular and macroscopic

length scales, involving a complex regulatory network and dynamic reorganization of the cell’s

geometry [34,115]. Cells can display a diverse set of motility behaviors, and these behaviors can

provide a useful window for inference of a cell’s functional state. Neoplastic transformation has long

been appreciated to alter cell motility behaviors, increasing the migration rate of various models in

culture and serving as a mechanism for metastasis [65,116–119]. The motility behaviors of cancer

cells in culture can even be predictive of broader tumor progression [69].

Likewise, the migration of progenitor cells is critical in early development and tissue regeneration

[23]. Skeletal muscle stem cells (MuSCs) provide an accessible platform to study stem cell motility

phenotypes in vitro by timelapse imaging. During embryonic development, MuSC precursors must

migrate from early stage developmental structures (somites) to their adult location along the edge

of muscle fibers in the trunk and limbs [78,120]. In the adult, motility continues to play a critical
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role, as MuSCs migrate along muscle fibers in vivo to sites of injury to initiate tissue repair [71,121].

Motility behaviors are heterogeneous between MuSCs and change during stem cell activation [72,122].

Heterogeneous fitness for regeneration within the MuSC pool is well appreciated [11], and analysis

of heterogeneous motility behaviors may provide an additional lens through which to decompose

different MuSC phenotypes.

Given the biological importance of motility phenotypes, classification of cells based on motility

behaviors has useful applications in research and diagnostics. Similarly, exploration of heterogeneity

within the motility behaviors of a cell population may provide biological insights. However, it is

often difficult to determine which features of motility behavior will be predictive of a phenotype of

interest, or allow for discrimination of heterogeneous behavior. Different phenotype classification

tasks and cell populations may require distinct feature sets to extract valuable biological information.

A method to algorithmically determine relevant features of cell motility for a given classification or

discrimination task is therefore advantageous.

2.1.1 Related Work

To date, a number of tools have been proposed that rely upon a set of handcrafted features to

quantify cell motility behaviors, providing some remarkable results [32,41–43,45]. Neural progenitor

cells were discriminated by morphology and motility behavior alone [32], and genes that affect

motility have been identified solely from timelapse imaging data [43]. We have recently demonstrated

that rates of cell state transitions and the ordered or random nature of these transitions may also

be inferred from motility alone [122]. These dramatic results demonstrate the potential insights

that may be gathered from more extensive analysis of cell motility. However, these methods rely

upon engineering of a hand-crafted feature set, and have thus far focused largely on features of

speed and directional persistence. It is possible that more complex features may allow for improved

discrimination of cell motility phenotypes, but it is difficult to predict what these features may be

in each context.

Convolutional neural networks provide an approach to learn relevant features from data, rather

than handcrafting features based on a “best guess” of which features are relevant. In the field of

computer vision, convolutional neural networks (CNNs) have recently made rapid advancements,
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demonstrating state-of-the-art performance on a variety of image classification tasks [123–126].

CNNs utilize a set of parameterized kernels to extract spatial features, allowing distinct feature

kernels to be learned for a given classification task [127]. In this way, CNNs are able to learn a

“representation” of the problem’s feature space. Feature space representations may also be learned in

an unsupervised manner by training CNN autoencoder architectures to encode and decode [128,129].

This approach may be useful for learning relevant motility features where an explicit classification

task is not present.

While CNNs are most commonly applied to tasks involving analysis in two-dimensional images

at a single time-point, convolution is a natural analytical tool for any input information with

spatial dimensions. CNNs have been successfully applied to a diverse set of non-imaging domains,

including natural language processing [130], bird song segmentation [131], and EEG recordings [132].

Perhaps most clearly mirroring our challenge of motion classification, CNNs have performed well

in the classification of video recordings [133–136]. These successful implementations have simply

extended CNNs to consider three-dimensional images as inputs, where one axis is time. If the spatial

nature of cell motility data is represented explicitly as a 3D image, in the same manner used for

video classification, CNNs may allow for motility phenotype classification and unsupervised feature

learning, without a priori definition of handcrafted features.

Deep neural networks have also been extensively applied to the analysis of sequential inputs,

such as natural language sentences and biological polymer sequences [130,137,138]. While simple

1D CNNs that consider raw sequence inputs can be effective, the introduction of recurrent units

such as long- short-term memory (LSTM) units to learn temporal relationships within the input

sequence can improve performance and effectively learn long-term dependencies [139]. Cell motility

data can be represented as a two-channel, 1D sequence, where each channel contains position values

for an axis in physical space. In this representation, 1D CNN models with recurrent units may also

allow for motility phenotype analysis without handcrafted features.

We investigated whether CNNs could be effectively applied to the problem of cell motility

phenotype classification utilizing either of these two representation schemes. Cell motility is

inherently 3D spatial data, where one dimension is time, such that either explicit representation

of the temporal dimension in an image, or learning the temporal dimension relationships with a
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Fig 2.1. Representative motility traces using different markers of location. (A) Disk
structuring element markers, (B) Gaussian distribution markers.

recurrent unit, may allow for effective analysis.

Here, we present Lanternfish, a tool to represent motility paths explicitly as 3D images or

implicitly as multi-channel time series, classify different motility behaviors, learn motility features

in an unsupervised fashion using deep neural networks, and predict future cell motility from past

behavior. Lanternfish represents cell motility using a set of positional markers in a 3D volume,

with the depth axis representing time, or as a simple multi-channel time series, where time series

values are Cartesian coordinates. We demonstrate that standard CNN architectures are sufficient

to accurately distinguish experimentally observed cell motility phenotypes represented using either

method. Autoencoder architectures based on these models can be trained successfully on motility

representations for use as unsupervised feature extractors. Additionally, we show that our RNN

model can be adapted to predict cell motility in subsequent frames.

2.2 Methods

All implementations for work presented here are available on Github at https://github.com/jacobkimmel/lanternfish.

2.2.1 Explicit Spatial Representations of Motility Paths

Motion data in a two-dimensional plane is inherently three dimensional, with two dimensions in

physical space (x and y) and a single time dimension t. Each of these dimensions has relevant

spatial meaning, and spatial relationships are required to fully represent the motion of an object.

This spatial nature makes motion an ideal candidate for the application of convolutional neural

networks, which specialize in learning representations of spatial data.
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One manner in which motility may be presented for analysis by CNNs is in the form of a static

3D image. Representing time as a spatial axis has allowed for successful time-series analysis by

CNNs in multiple other problem domains [133–136]. Cell motility is typically recorded as the

position of the cell centroid at each time point. To represent this time series of positions as a 3D

image, we first produce a simple 3D representation of an (x, y) path by placing a 1 pixel (px) binary

marker on the location of the object at each time point t in a single slice of a cube with dimensions

(X,Y, T ), leaving all other values at 0, where x 2 X, y 2 Y , and t 2 T . Viewed one plane at a time

along the t dimension, this cube is simply a video of the 2D path representing the object’s location

with a 1 px marker. However, this trivial representation presents a very sparse feature space, and

intuitively may not allow for efficient learning of convolutional kernels.

In expectation of this sparsity problem, we produced tools to build representations that mark an

object’s location in each (X,Y, T ) plane with a binary disk of arbitrary size or Gaussian distribution

of arbitrary variance, instead of a single 1 px point. Gaussian distributions are scaled [0, 1] for

each � value. The resulting representation resembles a “stack of dinner plates” (Fig. 1). These

representations contain information about the objects location at more (x, y) coordinates within a

plane than the 1 px representations, so we reasoned that they may aide learning of 3D convolutional

kernels.

Further information can be encoded by setting the amplitude of the disk or distribution in each

t plane based on some real valued measurement. For instance, instantaneous speed or object size

could be encoded as amplitudes. Compression of motion paths may be necessary due to GPU

memory constraints. For all experiments performed here, motion paths were compressed 4- or 6-fold

in the (x, y) dimensions by simple integer division of (X,Y ) coordinates.

2.2.2 Multi-channel Time Series Representation of Motility Paths

Cell motility is also naturally represented as a two-channel time series, where the values of each

channel are the Cartesian coordinates X and Y . This representation is obviously extensible to

the 3D motion case with the simple addition of a third channel for the Z axis. CNNs may be

applied with 1D convolutional filters to these multi-channel time series. Multiple problem domains

have shown success in applying CNNs to multi-channel time series data in this manner [140,141].
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Fig 2.2. Cell motility classification and autoencoder architecture overview. (A) 3D
CNN classification and (B) autoencoder architectures, where k is the number of parameterized
kernels used by 3D convolutional layers in each block and n is the number of nodes in a
fully-connected layer. (C) 1D recurrent neural network classification and (D) autoencoder
architectures, where k is the number of parameterized kernels used by each 1D convolutional layer
and n is the number of nodes in a fully-connected layer or LSTM unit. Convolutional layers and
paired with a rectified linear unit activation. Pooling and upsampling layers operate with isotropic
kernels of size 2 and stride of 2. Zero padding is performed as needed in autoencoder models to
match input size.

This approach is inherently simpler than the explicit representation described above. However, 1D

representation requires a model to implicitly learn kernels to preserve the relationship between

X and Y dimensions in higher layers. We reasoned that there may be cases where this implicit

representation is inferior to an explicit representation based on this principle.
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2.2.3 3D Classification architecture

For classification of different types of motion represented as 3D images, we apply a standard CNN

architecture utilizing 3D convolutional and max pooling layers, diagrammed in (Fig. 2.2A). 3D

Convolutional layers convolve the 3D motion cube inputs with a set of parameterized kernels, passing

the convolutional outputs to the layers above. The max pooling layers perform a max operation

for voxels in an 3D-window, reducing the input size, and returns the resulting output to the layer

above. This architecture is similar to well known 2D classification architectures [123, 142]. All

convolutional layers are paired with a rectified linear unit (ReLU) activation (max(0, x)) [143],

utilize unit strides s = 1, and convolve with (3, 3, 3) kernels. Convolutional layers pad input images

by 1 px by reflecting edge values to avoid reduction of input size by convolution. Max pooling layers

use kernels of size (2, 2) and a corresponding stride of s = 2.

Fully connected layers are the same as in a traditional neural network, in which each perceptron

unit considers input from all units in the previous layer, and outputs to all units in the next

layer [144]. Dropout layers eliminate a random proportion p of fully connected units from a fully

connected layer during each forward pass, reducing reliance upon individual units and preventing

overfitting [145]. Two fully connected layers with dropout (p = 0.3, where p is the proportion of

neurons dropped per epoch) and ReLU activations are utilized at the bottom of the network. Final

class outputs are returned by a fully connected layer with a number of neurons equal to the number

of classes and a softmax activation (Fig. 2.2A).

3D CNN classification networks were trained using stochastic gradient descent with momentum

(µ = 0.5). Categorical crossentropy was used as a loss function. We find that training is sensitive to

the learning rate ✏, and thus utilize a low initial learning rate ✏0 = 0.005 with a rapid decay function

✏i = ✏0d
i

where i 2 [0, N ] is the training epoch, ✏0 is the initial learning rate, and d is a decay coefficient,

set to d = 0.8 for our experiments.
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2.2.4 1D Recurrent Classification Architecture

Recurrent classification networks follow a similar standard architecture, utilizing 1D convolutional

layers with size 3 kernels at the base followed by a max pooling layer with kernel size 2 and stride

s = 2. The center of the network contains an LSTM layer with n = 256 units. Following the LSTM

layer are two fully-connected layers with Dropout (as above) and a final softmax classification layer

(Fig. 2.2C).

2.2.5 3D Autoencoder Architecture

The 3D CNN autoencoder architecture is similar to the classification network, employing stacked

3D convolutional and max pooling layers at the bottom of the network to encode the input,

followed by fully-connected layers to reduce dimensionality and subsequent stacked 3D convolutions

and upsampling layers to decode the input (Fig. 2.2B). As in the classification architecture, all

convolutional layers are paired with a ReLU activation. 3D CNN autoencoder networks were trained

with the Adadelta optimization algorithm [146], utilizing crossentropy or mean-squared error as

the loss function for binary and Gaussian representations respectively. This architecture resembles

others in the literature [127,128].

2.2.6 1D Recurrent Autoencoder Architecture

As with the 3D CNN autoencoders, our RNN autoencoder architecture resembles the corresponding

classification network. Following the fully-connected layers in the classification architecture, the

RNN autoencoder appends a 1D upsampling layer and mirror 1D convolutional layers to return the

input back to the original size (Fig. 2.2D). Mean-squared error (MSE) against the input sequence

was utilized as a loss function for training. RNN autoencoders were trained with the Adam optimizer

with a learning rate of ✏ = 0.001.

2.2.7 1D Recurrent Motility Prediction Architecture

We adapt our RNN autoencoder architecture to a prediction architecture by removing the max

pooling, fully-connected, and dropout layers. Sequences are convolved by four 1D convolutional
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layers, as in the autoencoder, before being passed to a linearized LSTM and convolved by four more

1D convolutional layers. The final convolutional layer uses a linear activation function rather than

a ReLU. Input sequences length ⌧in are provided in the same multi-channel time series format as

our other RNN architectures, and output sequences are multi-channel time series of length ⌧out.

The number of LSTM units is adjusted to n = 2⌧out depending on the length of desired output

sequences. Mean squared error between the predicted path and the ground truth path was used as

the loss function and the Adam optimizer was used with learning rate ✏ = 0.001 (Fig. 2.6C).

2.2.8 Baseline Motility Classification

As a baseline motility classifier, a heuristic feature extractor is paired with a Random Forest (RF)

classifier [59]. The feature extractor calculates four parameters of motion: (1) mean displacement,

(2) displacement variance, (3) total distance traveled, and (4) net distance traveled. These four

heuristics are commonly employed in the quantitative cell motility literature [26,32,47]. The RF

classifier utilizes 10 estimators and scikit-learn default parameter settings. Code for the baseline

classifier is available on Github.

2.2.9 Baseline Kinematic Motion Prediction

A linear kinematic model is used for baseline motility predictions. The kinematic model calculates

the mean velocity

~v =
1

⌧

⌧X

i=1

~dvi

across the last ⌧ time steps in the preceding track and projects the object by ~v for each predicted

time step. The temporal window ⌧ is optimized by parameter search.

2.2.10 Cell Culture

Mouse embryonic fibroblasts, muscle stem cells, and myoblasts were cultured as previously described

[122]. Neoplastic MEFs were generated as described and generously donated by the authors of [61].
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2.2.11 Timelapse Cell Imaging

Timelapse cell imaging, cell segmentation, and cell tracking was performed as described [122]. Briefly,

cells were imaged for 10 hours in DIC at 6.5 minute intervals using a stage-top incubator at 37oC and

5% CO2. Images were segmented using common heuristic techniques and tracking was performed

using a modified version of uTrack [147]. Cell tracking data is available on the “Heteromotility”

Github repository https://github.com/cellgeometry/heteromotility.

2.3 Experimental Results

2.3.1 Motility Simulations

To determine if CNNs could discriminate between different types of motion under ideal conditions, we

trained both 3D CNN and RNN classification networks on simulated data from 3 distinct, biologically

relevant models of motion, namely random walking, Levy flights, and fractional Brownian motion.

Random walking is motion with normally distributed random step sizes and directionality. Random

walking is observed in freely diffusing biomolecules [97]. Levy flights similarly display random

directionality, but step sizes are instead chosen from a long-tailed Levy distribution. Levy flights

are observed in multiple biological systems and optimize path finding [49–51,148]. Fractal Brownian

motion models a random walk with long term dependence, similarly relevant as a representation of

regulated motion in biology [96, 149]. By starting with simulated data we can optimize parameters

using large sample sizes that would be difficult to obtain with living cells.

Random walks, Levy flights, and fractal Brownian motion were simulated for classification, each

with a mean displacement of 5 (x, y) units per time step. Simulations were carried out for 100

time steps and restricted to a (2048, 2048) pixel plane, representing the field-of-view that might be

expected using a standard 4 megapixel microscopy camera.

For 3D CNN classification with explicit representations, 4-fold compression and cropping were

performed to meet GPU memory constraints. Compressed tracks traveling more than 156 px from

the origin in any direction were removed from analysis, to prevent dilution of the representation

space by a few outlier tracks. Remaining tracks were represented in (156, 156, 101) vx cubes. Nvidia
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Fig 2.3. 3D CNN and RNN classifiers effectively distinguish simulated models of

motion. (A) 3D CNN classifier performance using different marker sizes. (B) 3D CNN classifier
training progress with different binary marker sizes. (C) RNN and 3D CNN (binary marker, 25 px)
classifier performance.

GTX 1080 (Pascal) and Titan Xp GPUs were used for all experiments.

2.3.2 CNNs accurately classify simulated motility behaviors using both repre-

sentations

Experiments to classify explicit 3D representations were performed using binary disks of three

diameters d 2 {1, 5, 25} and broad Gaussian distributions of different variance � 2 {3, 10, 20} as

place markers. 12,000 samples per class were used for training, 1,500 for stopping criteria, and

1,500 for final validation. Early stopping was performed in all models after the testing loss failed to

improve for 3 consecutive epochs [150]. Models were evaluated based on the prediction accuracy on

the validation set.

The largest binary disk representations achieved ˜95% validation accuracy after 30 epochs, and

the largest Gaussian representations of the same data yielded ˜81% validation after 30 epochs of

training (Fig. 2.3A). Using binary distributions, accuracy increased as the marker sized increased.

At all marker sizes, binary markers perform better than Gaussian markers. Both binary and

Gaussian representations appear to overfit in later epochs, as evidenced by the divergence of the

training performance from validation performance (Fig. 2.3B). A baseline random forest (RF)

classifier model utilizing heuristic motility features (see Methods) reached ˜54% (mean of 5 random

samplings). The 3D CNN approach therefore represents a 75% improvement over the heuristic RF

baseline.

These results suggest that 3D CNNs are sufficient to distinguish different classes of motion
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represented as 3D images, that multiple representation schemes can be effective, and that 3D CNNs

can beat baseline heuristic classification methods by a wide margin. Large binary representation

schemes appear to be the most effective representation scheme we tested. Therefore, we utilize large

binary representations for all further 3D CNN experiments with live cell data.

Experiments to classify 1D multi-channel time series representations were performed using the

same train, test, validation data split described above for 3D CNN experiments. Convolutional

recurrent neural network (RNN) models train two orders of magnitude more rapidly than comparable

3D CNN models, and the reduced memory requirements allow for much larger batch sizes than in

the 3D case. RNN classifiers achieve ˜99% validation accuracy, demonstrating superior performance

to the 3D CNN models on simulated data. These results indicate that RNN models are sufficient

to distinguish different models of motion represented as multi-channel time series, and that this

classification scheme is superior to both a baseline heuristic approach and the 3D CNN approach

for this task.

2.3.3 CNNs accurately discriminate cell types by motility behavior

After validating that CNNs were sufficient to distinguish simulated classes of motion, we applied the

same classification networks to distinguish different types of experimentally measured cell motility.

Cell motility was tracked in three different cell types by timelapse imaging for 10 hours, followed

by segmentation and tracking by standard methods. Mouse embryonic fibroblasts (MEFs) are

commonly used for in vitro cell culture assays, and neoplastic transformation of these cells has been

demonstrated to alter their motility behaviors [122]. We tracked both wild-type and neoplastic

(c-Myc overexpression, HRas-V12 ) MEFs to compare their motility behaviors. Muscle stem cells

(MuSCs) are the obligate stem cell of the skeletal muscle, and their motility is known to be effected

by their activation state [72]. Activated MuSCs commit to become myoblasts, a transit amplifying

myogenic progenitor cell. We tracked both MuSCs and myoblasts to compare motility between

these states of myogenic commitment (see Methods for culture details).

To determine if 3D CNNs could distinguish cell types based on experimentally measured motility,

we trained a 3D CNN to discriminate between MEF and MuSC motility, represented using large

binary disks (diameter = 25 px) in 3D space as described above. RNN models were trained
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Fig 2.4. CNNs can discriminate between different cell types and cell states based on

motility. (A) Validation prediction accuracy for 3D CNN and RNN models on cell type
classification, MEF neoplastic state classification, and myogenic activation state classification with
either simulated or “mimetic” pretraining. (B) Representative training progress for 3D CNN
classifiers pretrained with either generic simulation classification weights or mimetic simulation
classification weights. (C) Representative images of different cell types, from left to right: MuSC,
myoblast, neoplastic MEF, and wild-type MEF. Colored markers indicate the cell’s path along the
substrate over time.

as on simulated models of motion above. Both networks were initialized with weights from the

corresponding trained simulation classifier.

The 3D CNN classification network was trained for 30 epochs and RNN classifiers for 1000

epochs. Early stopping as above was performed with a 3 epoch and 100 epoch patience period for

3D CNNs and RNNs, respectively. Training was performed on MuSC motility traces and MEF

motility traces (n = 405 per class). Testing and validation were each performed with n = 50 samples

per class.

Each network type was trained five separate times to account for variability in stochastic

optimization. Mean validation accuracy on this cell type classification task was ˜91.2% for 3D CNN

models and ˜92.6% for RNN models (Fig. 2.4A). Mean validation accuracy for our heuristic RF

baseline model was ˜88.8%. These results indicate that even with a small data set such as this,

both 3D CNNs and RNNs can be effectively trained to discriminate different types of cell motility

(Fig. 2.4A).
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2.3.4 CNNs provide discriminative power between stem cell activation states

To determine if CNNs can distinguish between more nuanced differences in cell state, both 3D CNN

and RNN classifiers were trained to discriminate between myogenic activation states. Training

was performed on n = 200 MuSCs and myoblasts per class, with testing on n = 50 samples and

validation on n = 27 samples. Dynamic data augmentation was utilized in the 3D CNNs due to

the small available sample size. Motion cubes were horizontally and vertically flipped to increase

training set diversity without perturbing the representation of motility. No augmentation was used

for RNN models.

As above, five independent training experiments were performed for each network. Transfer

learning was employed, taking advantage of weights learned from simulated data classification.

Mean validation accuracy reached ˜90.7% for 3D CNN classifiers, ˜90.4% for RNN classifiers, and

˜87.7% for our heuristic baseline (Fig. 2.4A). These results demonstrate that both 3D CNN and

RNN models can discriminate between stem cell activation states based on motility alone, even with

small data sets.

Classifiers were also trained in the same manner to discriminate between wild-type and neoplastic

MEFs with transfer learning from the simulated motion classifier. Training was performed on n = 160

samples per class, with testing and validation on n = 30 samples per class. Classification failed to

achieve validation accuracy >64% for either 3D CNN or RNN models (Fig. 2.4A). The baseline

heuristic model performed at 60% validation accuracy. The more nuanced phenotypic difference

between wild-type and neoplastic MEFs may be an inherently more challenging classification problem.

The small available sample size likely compounds this difficulty and exacerbates the classifiers’ poor

performance.

2.3.5 Cell mimetic pretraining

Given the success of pre-training by classification of simulated models of motion, we next attempted

to generate simulated data that more accurately reflected real cell motility to enhance pre-training

efficacy. For a set of real cell motility data, we measure the displacements and turning behavior

of each cell. Displacements are measured simply as the Euclidean distance between each set of
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sequential timepoints. The turning direction at a point ti is determined as the angle between the

vectors that connect points ti�1 to ti and ti to ti+1.

Cells are decomposed into a set of k clusters by k-means clustering on a set of parameters

measured from these displacement and turn angle distributions. The number of clusters k = 5 was

chosen empirically to capture the diversity of the cell phenotypes while still leaving non-trivial

numbers of cells in each cluster. For each cluster, a bounded Johnson distribution is fit to the

aggregate distribution of displacements and the aggregate distribution of turn angles. Simulated

samples are generated by randomly sampling displacement magnitudes and turn angles from the

fitted Johnson distributions for T time steps. To represent a population of cells, the proportion

of simulations generated from each cluster is equivalent to the cluster’s prevalence in the original

cell data. This approach may be conceptually likened to the bag-of-words model [151], in which

k -means clustering is used to decompose features into a representative “vocabulary.” By sampling

from each of k clusters proportionally, we aim to capture and simulate heterogeneous phenotypes

within a cell population, rather than simply reproducing a single averaged phenotype that may not

be representative of any true cell phenotype.

We generated “cell mimetic” simulations for MuSCs and myoblasts by the above method, with

n = 15, 000 simulated samples for each of the two activation states. 3D CNN and RNN classifiers were

pretrained by classifying between the two simulated data sets, reaching ˜97% validation accuracy for

the 3D CNN classifier and ˜99% for the RNN classifier. The weights from this pretrained network

were used to initialize classifiers for the myogenic activation task outlined above.

Training speed appeared to increase for 3D CNNs and remain unchanged for RNN classifiers

(Fig. 2.4B). Mean validation accuracies were effectively unchanged at ˜91.1% for 3D CNN classifiers

and ˜88.8% for RNN classifiers. These results indicate that “mimetic” pretraining may aide training

speed for 3D CNN motility classification networks, and has little effect on final classification

accuracy.
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Fig 2.5. CNN autoencoders can learn representations of motion feature space in an

unsupervised manner. (A) Sample 3D CNN autoencoder input and (B) output. (C)
Classification accuracies of Random Forest classifiers trained on 3D CNN or RNN autoencoder
features. (D) RNN autoencoder sample input and output. (E) Training comparison of de novo
trained simulated motility classifiers to classifiers with autoencoder transfer learning.

2.3.6 Autoencoders allow unsupervised learning of representations in motion

feature space

Results up to this point indicate that supervised classification of different cell motility phenotypes

using both 3D CNN and RNN models is effective. However, in the analysis of motility data,

supervised classification data is not always available. For instance, to explore the heterogeneity

of types in a given population, there is no obvious method to generate supervised classification

data that may be used to learn relevant feature kernels by optimization of a standard classification

loss function. This would also be an issue in the identification of heterogeneous motility behaviors

in patient biopsy samples, in which the distinguishing features are not known a priori. Training

CNNs as autoencoders in an unsupervised fashion has been used in other contexts to learn relevant

feature kernels where no obvious classification problem is present [128,129]. We next attempted to

train autoencoders on our 3D representations of cell motility and multi-channel time series to learn
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relevant feature kernels in the absence of a supervised classification problem.

A 3D CNN autoencoder architecture was formulated using stacked convolutions, followed by

fully-connected layers, upsampling, and stacked convolutional layers (Fig. 2.2B). Similarly, an

RNN autoencoder was formulated by appending upsampling and convolutional layers following the

fully-connected layers in our classification architecture (Fig. 2.2D).

Both autoencoders were trained on n = 12, 000 samples of each class for three types of simulated

motion (random walk, Levy flight, fractal Brownian motion), with training and validation each on

n = 1, 500 samples per class. Large binary disk representations were used for 3D CNN autoencoder

experiments. Binary crossentropy was used as a loss function with 3D CNN models, while mean

squared error was used to as a loss function for RNN models. All autoencoders successfully reduced

loss over several training epochs. When visually inspected, 3D CNN autoencoder outputs appear to

accurately reflect input motility representations (Fig. 2.5A, B). However, RNN autoencoder outputs

consistently fail to capture the full extent of a cell’s motility, though some degree of path shape is

preserved (Fig. 2.5D).

To determine if 3D CNN or RNN autoencoders trained on motility representations could be

employed as feature extractors, we utilized the output of the autoencoders’ central layer (the encoded

representation) as features. To quantify the amount of class information preserved by the encoded

representations, we trained a Random Forest classifier to distinguish the simulation classes using

either 3D CNN autoencoder features or RNN autoencoder features. Random Forests trained on

3D CNN autoencoder features achieved ˜62.3% and RNN autoencoder features achieved ˜58.2%

accuracy on this 3 class problem. Both Random Forests trained on autoencoder features are notably

more effective than our heuristic RF baseline, which achieved ˜54.4% accuracy on the same task.

These results indicate that both 3D CNN and RNN autoencoders are able to learn meaningful

motility features in an unsupervised manner. In this context, 3D CNN autoencoder features appear

to be marginally more predictive than RNN autoencoder counterparts.

Autoencoders are often used for unsupervised pre-training prior to a classification problem. To

determine if autoencoder features could effectively aide motility classification by transfer learning,

we initialized and 3D CNN and RNN models with autoencoder weights and trained these classifiers

to distinguish the simulated motion models. Transfer learning with autoencoder features appears
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Fig 2.6. RNN models predict MuSC motility more effectively than linear kinematics.

(A) Representative samples of MuSC tracks used for prediction with predicted track endings and
true track endings. (B) Performance of the RNN motion prediction model relative to a linear
kinematic baseline model, determined as the mean squared error between ground truth and
predicted track endings. (**t-test p < 0.001) (C) RNN motility prediction architecture, where k is
the number of kernels in each 1D convolutional layer and n is the number of units in the LSTM. All
convolutional layers except the final layer are paired with a ReLU activation.

to increase RNN training speed, but decrease 3D CNN training speed (Fig. 2.5E). This result

indicates that autoencoding motility data may be effective pretraining for our RNN classification

architectures, but not their 3D CNN counterparts.

2.3.7 RNNs predict muscle stem cell motility

Tracking individual cells in timelapse microscopy experiments is a difficult multi-object tracking

problem [152]. Popular tracking methods utilize a motion model to predict cell motility in advance

of the next frame to improve tracking performance [153]. This motion prediction is especially useful

in the event of “missed detections,” where a cell is not detected or segmented for a given set of

frames but is detected later on. The most common motion models employed are based on linear

kinematics, with Kalman filters serving as a popular choice [147]. However, cell motion does not

adhere to kinematic assumptions in all cell types, with myogenic cells being an excellent example of

such a system. A motion model specifically tailored to the cell type of interest may therefore be

useful to improve tracking performance, but such specific tailoring would require a prior knowledge
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of the very motion features that the live cell experiment is designed to analyze. Some way to tailor

prediction models on the fly could help solve this problem.

Recurrent neural networks have been effectively utilized for sequence prediction in multiple

fields [154–157]. We adapted the convolutional RNN autoencoder model to a sequence prediction

model by removing the pooling layers and fully-connected layers and altering the number of nodes

in the central LSTM layer (Fig. 2.6C). As a prediction task, we trained the RNN prediction model

on ⌧in = 20 time steps of motion and predicted ⌧out = 10 time steps into the future. As a data set,

we split MuSC motion paths into subpaths of length ⌧total = 30 for a total of n = 8, 676 paths. A

validation set of 10% of all tracks was held out, and the remaining tracks were split with 80% used

for training and 20% used for testing.

As a baseline for comparison, we performed a simple kinematic prediction of MuSC paths that

assumes persistence of the velocity from preceding time points. The velocity for prediction was

obtained by averaging instantaneous velocity for ⌧ = 15 time points prior to the track terminus,

where ⌧ was optimized by parameter search. This baseline model leads to an average mean squared

error (MSE) (30 train/test splits) of ˜220. The RNN prediction model by comparison produces a

significantly lower MSE of ˜192 (t-test p < 0.001), indicating that the RNN model is a superior

motion predictor in the MuSC context (Fig. 2.6B). Representative track endings (length ⌧out = 10)

produced by the RNN prediction model are displayed alongside the preceding track beginnings

(length ⌧in = 20) and the ground truth track endings (Fig. 2.6A). In most cases the motion

prediction reasonably approximates the cell’s ground truth direction, but does not closely mirror

the exact path (Fig. 2.6A, inset i and ii). In some events, the RNN model fails to predict even the

correct direction of motion (Fig. 2.6A, inset iii). We performed the same experiment with mimetic

myoblast simulations using n = 105 total samples, holding n = 5000 samples for validation. Similar

to the MuSC results, RNN motion predictors achieved a markedly lower MSE of ˜1195, relative to

the baseline kinematic model MSE of ˜9797 (t-test p < 0.001).

These results indicate that convolutional RNN models can be effective cell motility prediction

models and are superior to simple linear kinematic approaches in some real world circumstances.

RNN motility prediction models may therefore offer a scalable way to fit a uniquely tailored motion

model to specific cell biology contexts. These cell-context specific RNN motility predictors may be
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useful to improve multi-cell tracking performance, as outlined above.

2.4 Conclusion

Convolutional neural networks enable representation learning, or learning of features relevant for

the description of a feature space. By representing cell motility as a 3D image, we show that

3D CNNs may be applied as an effective analytical tool. Using RNNs, motility may also be

analyzed in the native multi-channel time series representation. Our results demonstrate that

both approaches are capable of discriminating between simulated models of motion and multiple

types of experimentally measured cell motility behaviors and are superior to a baseline heuristic

model in some circumstances. In our experimentally measured cell motility data, we find that both

CNN models effectively discriminate between different cell types, and different states of myogenic

progenitor activation. We also find that CNN autoencoders can be trained effectively on either

motion representation in an unsupervised fashion. Adapting the convolutional RNN autoencoder for

motility prediction, we find that the RNN model is more effective at predicting MuSC motility than

a kinematic model. Such prediction models may be useful for cell tracking. While we apply the

methods described here to cell biology, there is no conceptual limitation that prevents application to

other fields where discrimination based on motion recordings is desired. In the field of cell biology,

analysis of motility with CNNs may allow for useful insights to be gathered in contexts where

relevant features are non-obvious or laborious to construct.
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