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Atomic layer deposition (ALD) and plasma enhanced atomic layer deposition (PEALD) are

the most widely utilized deposition techniques in the semiconductor industry due to their superior

ability to produce highly conformal films and to deposit materials into high aspect-ratio geometric

structures. Additionally, plasma enhanced ALD is able to further speed up the deposition

process and to reduce the temperature requirement through the utilization of high energy particles.

However, ALD and PEALD experiments remain expensive and time-consuming, and the existing

first-principles based models have not yet been able to provide solutions to key process outputs that

are computationally efficient, which is necessary for on-line optimization and real-time control.

Motivated by the above considerations, this dissertation focuses on addressing these issues for

both ALD and PEALD. First, for ALD, the development of key components of a comprehensive

simulation framework is presented. The simulation framework integrates first-principles-based

microscopic modeling, input/output modeling and optimal operation of thermal atomic layer

deposition (ALD) of SiO2 thin-films using bis(tertiary-butylamino)silane (BTBAS) and ozone as

precursors. Specifically, we initially utilize Density Functional Theory (DFT)-based calculations

for the computation of the key thermodynamic and kinetic parameters, which are then used in
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the microscopic modeling of the ALD process. Subsequently, a detailed microscopic model

is constructed, accounting for the microscopic lattice structure and atomic interactions, as

well as multiple microscopic film growth processes including physisorption, abstraction and

competing chemical reaction pathways. Kinetic Monte-Carlo (kMC) algorithms are utilized to

obtain computationally efficient microscopic model solutions while preserving model fidelity.

The obtained kMC simulation results are used to train Artificial Neural Network (ANN)-based

data-driven models that capture the relationship between operating process parameters and time

to ALD cycle completion. Specifically, a two-hidden-layer feed-forward ANN is constructed

to find a feasible range of ALD operating conditions accounting for industrial considerations,

and a Bayesian Regularized ANN is constructed to implement the cycle-to-cycle optimization

of ALD cycle time. Extensive simulation results demonstrate the effectiveness of the proposed

approaches. The kMC models successfully achieves a growth per cycle (GPC) of 1.8 Å per

cycle, which is in the range of reported experimental values. The ANN models accurately predict

deposition time to steady-state from the given operating condition input, and the cycle time

optimization using BRANN model reduces the conventional BTBAS cycle time by 60%. After

developing an efficient simulation framework, a more detailed study on the optimal operation

policy is performed using a multiscale data-driven model. The multiscale data-driven model

captures the macroscopic process domain dynamics with a linear parameter varying model, and

characterizes the microscopic domain film growth dynamics with a feed-forward artificial neural

network (ANN) model. The multiscale data-driven model predicts the transient deposition rate

from the following four key process operating parameters that can be manipulated, measured or

estimated by process engineers: precursor feed flow rate, operating pressure, surface heating,

and transient film coverage. Our results demonstrate that the multiscale data-driven model can

efficiently characterize the transient input-output relationship for the SiO2 thermal ALD process

using Bis(tertiary-butylamino)silane (BTBAS) as the Si precursor. The multiscale data-driven

model successfully reduces the computational time from 0.6 - 1.2 hr for each time step, which

is required for the first-principles based multiscale computational fluid dynamics (CFD) model,
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to less than 0.1 s, making its real-time usage feasible. The developed data-driven modeling

methodology can be further generalized and used for other thermal ALD or similar deposition

systems, which will greatly enhance the feasibility of industrial manufacturing processes.

For PEALD, a similar methodology is adopted. First, an accurate, yet efficient

kinetic Monte Carlo (kMC) model and an associated machine learning (ML) analysis are

proposed to capture the surface deposition mechanism of the HfO2 thin-film PEALD using

Tetrakis-dimethylamino-Hafnium (TDMAHf) and oxygen plasma. Density Functional Theory

(DFT) calculations are performed to obtain the key kinetic parameters and the structural details.

After the model is validated by experimental data, a database is generated to explore a variety

of precursor partial pressure and substrate temperature combinations using the kMC algorithm.

A feed-forward Bayesian regularized artificial neural network (BRANN) is then constructed to

characterize the input-output relationship and to investigate the optimal operating condition. Next,

based on an associated work on a comprehensive 3D multiscale computational fluid dynamics

(CFD) model for the PEALD process, a 2D axisymmetric reduction of the previous 3D model

of PEALD reactors with and without the showerhead design has been adopted to enhance the

computational efficiency. Using the derived 2D CFD model, a data-driven model is constructed

based on a recurrent neural network (RNN) for process characterization. The developed integrated

data-driven model is demonstrated to accurately characterize the key aspects of the deposition

process as well as the gas-phase transport profile while maintaining computational efficiency. The

derived data-driven model is further validated with the results from a full 3D multiscale CFD model

to evaluate model discrepancy. Using the data-driven model, an operational strategy database is

generated, from which the optimal operating conditions can be determined for the deposition of

HfO2 thin-film based on an elementary cost analysis.
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Chapter 1

Introduction

1.1 Motivation

The thin-film deposition is one of the most important building blocks in the semiconductor

industry. Various deposition techniques, such as epitaxy, chemical vapor deposition (CVD),

and physical vapor deposition (PVD), have been developed to deposit high quality thin-films of

various materials, e.g., Al2O3, Hf2O3, RuO2, SiO2, etc. [2]. However, the requirements in the

production of advanced memory devices have become more and more demanding. For example,

the dimensions of new high-k gate dielectrics are under transition to sub-10-nm scale and the

associated film thickness is required to be under 30 Å [3, 4]. Also, new transistor designs often

involve complex three-dimensional structures rather than two-dimensional planar surfaces, along

with the demand for conformal films with a stringent criterion on uniformity and defects. Thus,

the atomic layer deposition (ALD) process has been widely adopted by industry to meet the

requirements of major design breakthroughs [5]. ALD is a thin-film deposition method originally

derived from CVD. The ALD method enables a layer-by-layer film growth with film uniformity at

the atomic level, which is more precise and controllable than the traditional CVD approach [6–9].

Therefore, in the field of microelectronics 3D integration, where ultra-thin and highly-conformal

films are needed, ALD has gained significant popularity.
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Currently, there is a wealth of ALD research on both laboratory and industrial scales [5]. This

significant research activity on ALD has led to the discovery of novel precursors and mechanisms

which make high throughput film processing possible while allowing various substrate lay-outs

[10]. However, experimental and industrial works on ALD remain expensive and time-consuming

due to the cost of precursors and ALD-specific equipment, as well as due to the limited throughput

[8]. Additionally, the real-time in-situ monitoring of film growth is not possible because the

molecular structure can only be understood through methods like scanning electron microscopy

(SEM) and scanning tunneling microscope (STM), which are accurate but destructive to the

deposited film [11]. Thus, a model for ALD that provides insights on the details of real-time

film profile and the overall growth rate can be beneficial to both industrial and research work.

In addition to traditional thermal ALD, there has been a growing number of PEALD works

on both laboratory and industrial scales to investigate new types of thin-film materials, novel

precursors, and their respective reaction mechanisms which enable improved PEALD operation.

High-k dielectric thin-film materials like HfO2 [12], TiO2 [13] and ZrO2 [14] are typically

investigated due to their good band alignment to silicon gate, the high thermal stability, and

the capability of offering high mobility for charge carriers. A variety of precursor species have

been investigated for both the neutral heavy particle pulse and the plasma pulse for the deposition

of the aforementioned high-k thin films. Taking HfO2 as an example, metal-organic precursors

are extensively used because of the low activation energy from the H–N hydrogen bonds. There

has been a variety of research works for popular Hf-based metal-organic precursors including

tetrakis(ethylmethylamino) hafnium (TEMAH) [13], tetrakis(dimethylamino) hafnium (TDMAH)

[15], tetrakis(diethylamino) hafnium (TDEAH) [16], and others. For the plasma half-cycle,

common oxide precursors involve H2O plasma [17], O2 [18] plasma, and O3 plasma [18]. Despite

the various advantages associated with the PEALD process, the experimental studies still face

obstacles in operating costs to explore a substantial amount of experimental conditions and in

acquiring clear first-principles-based understandings. In the reaction mechanisms domain, the

surface precursor and plasma reactions are crucial to the deposition profile, but the detailed
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mechanisms remain partially unknown [19]. Facing similar issues as ALD, there has yet to be

a satisfying real-time monitoring technique for PEALD to observe the film quality. Therefore, the

development of an accurate microscopic surface deposition model is critical to help understand the

PEALD process and is the first fundamental step to construct an all-inclusive model to characterize

the entire PEALD process. Molecular Dynamics (MD) has traditionally been utilized where

an ab initio model tracks the movement of all particles. Nevertheless, such simulations are too

computationally expensive for an industrial-scale system [20].

Therefore, for both ALD and PEALD, the development of an efficient simulation framework

would be highly valuable and it could greatly reduce the cost to perform operating policy

exploration and process condition optimization. Moreover, such a model can be used to configure

a process controller to enable both real-time online control and run-to-run control, which makes

the process even more robust.

1.2 Background

Both ALD and PEALD use the alternating purge scheme. In an ALD process, a substrate surface is

exposed to alternating gas-phase precursor streams such that only one type of reactant is in contact

with the substrate surface at each half-cycle. Once in contact, the precursor undergoes self-limiting

surface reactions that allow a nearly complete and conformal surface coverage given sufficient

exposure time and appropriate reactor conditions. In between the alternating precursor cycles, the

reactor is purged with inert gas, ensuring all previously-entered precursors are removed from the

chamber prior to the exposure of the film to the next precursor, avoiding undesirable reactions and

a decrease in film purity [21]. Similar to ALD, precursors are introduced into the reactor through

an alternating purge manner in the PEALD process. However, instead of regular chemical species,

high-energy radicals and electromagnetically activated species are used in PEALD to facilitate the

reactions.

Because the majority of reactions and dynamics occur on the substrate surface, it is important
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to characterize the surface reactions accurately and efficiently. In particular, Molecular Dynamics

(MD), and more recently, kinetic Monte-Carlo (kMC) are among the most popular simulation

methods [22–24]. An ab initio MD model keeps track of all the particle movements and requires

an overwhelming amount of computational resources, making it impossible to perform a simulation

on an industrial scale process [20]. However, the kMC method has a crucial advantage in

computational efficiency as it tracks a single event at a time in a predefined lattice space. Despite

this simplification, the kMC method has been used in deposition models to successfully reproduce

realistic profiles [24–26]. Recently, [24] proposed a novel multiscale computational fluid dynamics

(CFD) simulation that used a surface microscopic n-fold hybrid kMC model and demonstrated its

validity with a PECVD system. Moreover, many groups have shown the validity of using kMC

in ALD simulation. For instance, [27] used raw probabilities of reaction and recombination to

construct a kMC model for general plasma-enhanced ALD. [8] modeled a small scale Al2O3 ALD

deposition using kMC based on first-principles analysis.

Still, there are some disadvantages associated with the general kMC models. In particular,

the kMC model may be computationally expensive to be implemented in real-time manufacturing

edge analytics. Also, the algorithm does not have a closed-form solution, which makes it hard

to be incorporated in the model-based optimization and control. In order to deal with those

problems, computationally efficient data-driven approaches can be utilized for the deposition

processes. For example, [28] used a linear parameter varying model to characterize and optimize

a thermal ALD reactor. Nevertheless, traditional statistical and machine learning methods like

the ordinary least square regression (OLSR) often fail to reach good enough accuracy because

of the complex non-linear input-output relationship in chemical engineering processes. As a

result, with the enlightenment of the neural structures and the increasing computational power in

recent decades, neural networks (NN) have been extensively researched in the domain of machine

learning. A neural network utilizes an interconnected group of artificial neurons, each handling

a simple mathematical relationship for the overall complex information processing based on a

connectionist approach. Depending on the external and internal information that flows through the
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network, the NN structure can be adapted to perform classification or regression on complicated

information processing. [29] adopted the NN-assisted model to apply PI and batch-to-batch control

in order to deal with the disturbances in the furnace ALD manufacturing. [30] and [31] adopted

various advanced neural network algorithms for the thin-film deposition process and incorporated

corresponding model-based controls. These previous works have demonstrated the enormous

potential of the possible development of sophisticated online optimizations and advanced control

schemes for deposition processes [32].

As a result, this dissertation strives to integrate and take advantage of both kMC-based

microscopic modeling and machine learning-based data-driven approach to construct a

general-purpose simulation framework that accurately and efficiently characterizes the ALD and

PEALD process.

1.3 Dissertation Objectives and Structure

This dissertation presents the approaches to formulate a kinetic Monte-Carlo based microscopic

model for both the ALD and PEALD process as well as the construction of a data-driven model

for efficient optimal operating condition determination.

Specifically, the objectives of this dissertation are summarized as follows:

1. To develop a microscopic surface model to characterize the ALD of SiO2 and the PEALD

of HfO2 by using the kinetic Monte-Carlo method and perform a preliminary study on the optimal

operation of ALD by taking advantage of the feed-forward artificial neural network.

2. To develop a machine learning-based data-driven model construction approach by using

developed multiscale computational fluid dynamics models, and to perform a thorough operating

policy exploration using the data-driven model.

3. To present a framework for integrating the aforementioned components into a general

methodology for the ALD and PEALD applications.

The dissertation is organized as follows. Chapters 2 and 3 discuss the work on traditional
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thermal ALD. Specifically, Chapter 2 discusses the formulation of the microscopic surface model

of SiO2 ALD, including the computation of kinetic parameters using density functional theory

(DFT), the selection of precursor, the process chemistry, the formulation of kinetic Monte-Carlo

(kMC) based simulation method, and the simulation result. Chapter 2 also covers a preliminary

study of the optimal operating region using only information from the surface model, where the

feasible and unfeasible operating regions are determined using an artificial neural network trained

by the microscopic simulation result. On the other hand, in Chapter 3, a dedicated study on

exploring the operating domain using machine learning-based model reduction is presented. First,

a multiscale computational fluid dynamics (CFD) model is used to collect a database of surface

deposition profiles and gas chamber profiles under a large range of simulation conditions. Then, the

gas-phase chamber profile is characterized with a linear parameter varying (LPV) model, and the

microscopic model is characterized with an artificial neural network (ANN) model. By integrating

the LPV model and the ANN model, a data-driven model for the ALD deposition is derived,

and it is used to perform process optimization by systematically identifying the optimal operating

condition.

Next, Chapters 4 and 5 cover the discussion on the PEALD process. Specifically, Chapter

4 goes over the surface modeling procedures. Similar to ALD, the modeling of the PEALD

microscopic domain includes the process chemistry and the details of the kMC method. The

simulation results on the PEALD of HfO2 are also presented and an elementary study on the

optimal operating region similar to Chapter 2 is also discussed for PEALD. In Chapter 5, the

derivation of an RNN-based integrated multiscale data-driven model is described. Compared to

the multiscale data-driven approach adopted in Chapter 3, the integrated data-driven model uses

the macroscopic and microscopic data collected from the multiscale CFD model simultaneously to

train a recurrent neural network (RNN). The adoption of RNN greatly reduces the required dataset

size and enables better performance. Finally, using the RNN-based integrated data-driven model,

the efficient exploration of the operating regime is presented.

Finally, Chapter 6 covers a summary of the main results of the dissertation.
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Chapter 2

Microscopic Modeling and Optimal

Operation of Atomic Layer Deposition

2.1 Introduction

In this chapter, we propose a kMC model to simulate the atomic layer deposition of SiO2 thin-film

on a 3D lattice. Bis(tertiary-butylamino)silane (BTBAS) and ozone are chosen as the precursors,

and density functional theory (DFT) is used to obtain thermodynamic and kinetic parameters

of the precursors that were not previously reported. Those DFT-calculated parameters such as

the intermediate complex activation energies and pre-exponential coefficients crucially affect the

microscopic kMC model event selection to reproduce realistic growth rates and structure. This

model is also an extension of the previous 2D-lattice kMC models proposed, for example in [24].

Although there are many advantages in using a 2D simplification, including easy setup and

computational efficiency, a 3D lattice is required to simulate ALD due to the importance of spatial

influence between species. Moreover, the modeling of deposition onto high-aspect ratio (AR)

features requires the analysis of edges and corners which is not possible with a 2D geometry [11].

Therefore, adpting a 3D microscopic lattice structure also enables simulating ALD with high

AR design in the future. To further improve model performance, we develop a 3D triangular

7



lattice approximation of real crystal lattice while maintaining important structural characristics.

After building the kMC simulation and validating its performance with experimental results, we

derive a data-driven model via machine learning techniques to predict the steady-state film growth

behavior for cycle-to-cycle optimization. Although kMC simulation can provide information about

film growth in real-time, it is computationally expensive to be implemented in a control scheme

for a large-scale system such as an entire wafer. Therefore, it is useful to derive a data-driven

model that can provide a closed-form solution and can capture key film growth characteristics.

Due to the stochastic nature of kMC and the non-linearity involved in the reaction mechanisms,

non-linear regression models are applied to capture the input-output relationship. Traditional

algebraic input-output models such as the least-squares method are subjected to prediction error

and over-fitting error. Therefore, Artificial Neural Networks (ANNs), a more robust and more

systematic way of parameter determination for non-linear problem, can be readily tailored to

perform such tasks [33]. Specifically, a dense two-hidden-layer feed-forward ANN and a Bayesian

Regularized ANN are implemented to find the feasible range of ALD operating conditions and

to optimize ALD throughput cycle-to-cycle, respectively. The proposed kMC-model achieves a

growth per cycle (GPC) rate of 1.8 Å, which lies in the experimentally reported range of 1.4 Å � 2.1

Å per cycle. Extensive simulation results demonstrate the validity of the proposed ANN approach

in calculating optimal deposition times with respect to the operating parameters. The resulting

model is demonstrated to reduce the industrial conventional cycle time by 60%. Furthermore, the

modeling approach developed in this work can serve as a general guideline and be extended to the

ALD of other thin-film materials using different precursors and operating conditions.

2.2 ALD Process Description and Modeling

This section focuses on developing a microscopic model that describes the deposition of SiO2

thin-film via thermal ALD, which captures the structural details, the reaction mechanisms and

the growth rate of SiO2 thin-films. In this section, the approximation of the 3D SiO2 lattice is
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introduced and validated. Then, precursor selection is discussed based on experimental results

and thermodynamic data. Subsequently, the reaction mechanism and associated kinetics are

discussed in detail, including the DFT calculations of kinetic rate parameters and activation

energies by Gaussian09/Gaussview software package [34]. Next, a hybrid n-fold model-specific

kMC algorithm is developed to simulate the ALD process. Finally, we present the machine learning

algorithms involved with the data-driven analysis on the relationship between operating conditions

and cycle completion time.

2.2.1 Structural Assumptions of Deposited SiO2

Our microscopic model aims to simulate the deposition of a -Quartz SiO2, which crystallizes in the

trigonal crystal system of space group P3121 and has a local SiO4 structure similar to tetrahedron.

Although it may be tempting to use a true a -Quartz lattice structure, such a lattice structure would

not be suitable for kMC implementation. The chemical nature of SiO2 ALD process requires the

consideration of multiple reaction pathways, structural geometry and defect generations. A true

a -Quartz lattice kMC model would be conceptually complex and computationally challenging

[8]. Thus, instead of a fully realistic 3D lattice, a 2D triangular model (i.e., each monolayer is

off-shifted from the monolayer below it) adopted in our previous work by [24] is extended to 3D

as an approximation of the actual a -Quartz crystal structure. In our model, a bond angle of 90� is

assumed for the connectivity between Si and O atom instead of 109:5� . As shown in Figure 5.4 and

Figure 2.2, the top view of the simulated lattice closely resembles that of the real lattice, with some

angle distortion. This assumption leads to a lattice repetition every four cycles instead of five cycles

as appears in the a -Quartz SiO2. For any silicon atom in the approximated lattice, another silicon

atom appears directly above it every four cycles, whereas in a realistic lattice, such pattern repeats

every five cycles. However, this simplification does not influence the connectivity of the individual

lattice cell or the validity of the model. We will also later demonstrate that our simulation captures

accurately the growth rate and defect generation pattern of a -Quartz SiO2 deposition reported by

experimental results. Thus, this 3D triangular model is a valid simplification of the true structure.
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A lattice size of 1200� 1200 sites per layer is used, which is large enough for the simulation to

be size-independent but still computationally efficient as demonstrated by [35, 36], and the height

depends on the number of cycles simulated.

Figure 2.1: (a) Top view of the hydroxylated SiO2(001) surface. (b) Side view of the hydroxylated
SiO2(001) surface, where O1 is the more electronegative oxygen. The double bonds are due to
Gaussian display format, which does not influence the validity of the structure.

2.2.2 Precursor Selection

Surface reactions in the ALD process govern the growth rate and the structural pattern

of SiO2 films. Therefore, the selection of oxygen and silicon precursors is an important

topic. In the past, many silicon precursors have been selected and studied to improve

the uniformity and the growth rate of SiO2 deposition. In recent years, aminosilane-based

precursors have gained significant popularity because of the low activation energy of the

sequential dissociative chemisorption mechanism caused by the H-N hydrogen bonds formed

during the adsorption stage. These characteristics lead to high reaction rate and greatly

improve the efficiency of SiO2 deposition [37]. Among those aminosilane precursors,

the most popular ones are: bis(tertiary-butylamino)silane (BTBAS), bis(diethylamino)silane

(BDEAS), bis(dimethylamino)-silane (BDMAS), tris(dimethylamino)silane (TDMAS) and

di(sec-butylamino)silane (DSBAS) [1,38–42]. In order to pick the most favorable precursor for our
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Figure 2.2: Top view of a 5-layer 12� 12-site miniature demonstration of the full kinetic
Monte-Carlo simulation lattice. The five layers and the species on the lattice are shown using
different colors and symbols, respectively. The first (bottom) layer, labeled red, contains the base
Si atoms. The second layer, labeled black, contains oxygen atoms or hydrogenated oxygens.
The third layer, labeled yellow, contains the species from the first silicon half-cycle: Si is the
neighbour-binding silicon, Si! is the self-binding silicon, and PsP and CsP are the physisorbed
and chemisorbed precursors, respectively. The fourth layer, labeled green, contains the species
from the first oxygen half-cycle: O and OH are the oxygen atoms and hydrogenated oxygens. The
fifth (top) layer, labeled blue, contains physisorbed ozones (PO1 and PO2), which remain to be
oxidized.
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simulation, we account for the following factors: the existence of experimental data (e.g., growth

per cycle (GPC) and precursor exposure time), the existence of theoretical data (e.g., reaction

mechanism and associated kinetic parameters), and the availability of additional information such

as film quality, sticking coefficient and steric hindrance studies. Based on the above considerations,

BTBAS is chosen as the Si precursor due to its fast reported growth rate (1.4 Å � 2.1 Å per

cycle), adequate experimental and theoretical data, and a detailed mechanism available to model

the process [37, 43]. With respect to the oxygen precursor, ozone (O3) is chosen among the

common candidates for thermal ALD of oxide films, because ozone is chemically reactive and

does not introduce hydrogen-involved side products in the thermal ALD process. Furthermore,

ozone is extensively used in the industry and is widely studied in experiments, which makes its

major chemical properties and reaction mechanisms readily accessible [43–45].

2.2.3 Reaction Mechanism

A full deposition cycle in the ALD process consists of two half-cycles, each using a specific

precursor species to introduce the desired element onto the film. As mentioned above, we choose

BTBAS and ozone as the precursors for SiO2 deposition simulation. The reaction mechanism

using these two precursors was reported by [43] and is explained in detail below.

The first half-cycle is referred to as the Si-Cycle, which contains physisorption, abstraction and

a two-step dissociative chemisorption. In our model, we picked a fully hydroxylated SiO2(001)

surface as our starting point, shown in Figure 5.4. The silicon precursor, BTBAS, is first

physisorbed onto the substrate surface under specific temperature and pressure. According to [43],

the two oxygen atoms in a SiO2 cell have different electronegativities. The more electronegative

oxygen atom, denoted as O1, is more reactive and is therefore more likely to be electrophilicly

attacked by precursor particles than the less electronegative oxygen atom, denoted as O2.

Therefore, as shown in Figure 5.5 (a), the precursor particle is first physisorbed onto the O1-type

hydroxyl group through a strong H-bond to form the reactant. Then, the physisorbed precursor

goes through the first dissociative chemisorption step, forming a monoamine intermediate and
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Figure 2.3: (a) First dissociative chemisorption step of BTBAS. (b) Second dissociative
chemisorption step of BTBAS under self-binding and neighbour-binding mechanisms. (c)
Oxidation of self-binding and neighbour-binding SiH2 with ozone.

releasing one of the two aminoethyl groups. Next, the remaining aminoethyl group electrophilicly

attacks an adjacent O2-type hydroxyl group, which can be either from the neighbour Si atom, i.e.,

neighbour-binding route, or from the same substrate Si atom, i.e., self-binding route, as shown in

Figure 5.5 (b). The former reaction pathway retains the original surface orientation, resulting in

a thermodynamically favorable structure, whereas the latter, which is more kinetically favorable

as shown in Table 2.1, causes a deviation from the (001) surface orientation and leads to defect

formation. After the electrophilic attack, the other aminoethyl group is released from the surface

structure and another O-Si bond is formed. The remaining two H atoms from the Si atom then

become the new substrate surface. The competition of kinetic and thermodynamic favorability
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is crucial in explaining the structural non-uniformity of SiO2. Therefore, both reaction pathways

and their reverse reactions are incorporated in our kMC model, and the reaction kinetics will be

explained in more details in the next section.

The second half-cycle is referred to as the O-Cycle, which contains the ozone physisorption,

abstraction and surface oxidation. The oxidation steps of self-binding and neighbour-binding

H-Si groups are shown in Figure 5.5 (c). Once the surface is partially/fully chemisorbed, both

terminating H atoms will be oxidized by ozone to hydroxyl group (-OH), which are utilized in the

next Si-cycle.

2.2.4 Relative Rate Determination

In order to apply the kMC algorithm, we need to compute the kinetic rates of reactions discussed

in the previous section. The physisorption of precursor particles onto the substrate surface is a

gas-surface reaction. For such athermal or barrierless processes, the Collision Theory, as expressed

in the equation below, is generally used to determine the rate constant:

rphs=
pi

RT

r
8kbT
pmi

sc;iNas (2.1)

where rphs is the physisorption reaction rate, pi is the partial pressure of the species i, R is the ideal

gas constant, T is the temperature, kb is the Boltzmann constant, mi is the molecular weight of

species i, sc;i is the sticking coefficient of the species i at given temperature, Na is the Avogadro

number, and s is the average area per surface site. Although the sticking coefficient of BTBAS is

not reported in previous works, we obtain its value through an analogy with the sticking coefficient

of BDEAS because of structural and electronic similarity [46].

On the contrary, chemisorption, abstraction and oxidation are thermodynamically activated

kinetic reactions, which are generally described by the Transition State Theory (TST) [47].

Assuming quasi-equilibrium is achieved between the complex and the reactant, the reaction rate

can be estimated using the thermodynamic properties of the transition state complexes, which
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are computed using DFT. Thus, the reaction rate equation can be formulated with standard

Arrhenius-type rate law as follows:

rrxn;i = Aiexp
� � Ea;i

kbT

�
(2.2)

where, rrxn;i is the reaction rate of the ith thermodynamically activated reaction, Ea;i is its activation

energy for the transition state complex, and Ai is its pre-exponential factor, which is determined as

follows:

Ai = f TST
i

� kb

T

�
(2.3)

where kb is the Boltzmann constant, T is the temperature, and f TST
i is the ratio of the vibrational

partition function between the transition state complex and the reactant, calculated with DFT.

In this work, all DFT calculations are performed using the Gaussian09 software, which will be

illustrated in more details below. The resulting parameters are summarized in Table 2.1 and

the associated nomenclature is explained in Section 4.2.4. Since the desorption reactions lead to

gas-phase products, the DFT-calculated vibrational partition function ratios of those reactions are

small than one, which match the results reported in literature. On the contrary, the other reactions

are entirely surface reactions. Therefore, their vibrational partition function ratios all equal to

one [47].

Reaction
Activation Energy

(kcal/mole)
Vibrational Partition

Function Ratio
rsi,chem 8.9 1
rsi,neigh,f 20.1 1
rsi,neigh,r 33.6 1
rsi,self,f 16.1 1
rsi,self,r 14.4 1
rsi,des 17.5 9.56e-8
roa,f 17.7 1
rob,f 15.4 1
ro,des 9.224 1e-4

Table 2.1: Activation energies and partition function ratios of reactions.
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2.2.5 Kinetic Monte-Carlo Algorithm

As mentioned in the Introduction, a first-principles Molecular Dynamic simulation is too

computationally demanding to be feasible for the scale of system discussed in this work [20,25,26].

Thus, we adopt an n-fold hybrid kMC algorithm in the framework proposed by earlier works

[24, 48, 49]. kMC is a stochastic algorithm that uses the kinetic rate information and uniformly

distributed random numbers to determine event execution and system time evolution. Specifically,

we define an event set as a collection of all events that have comparable rates. A total rate, rtotal, is

defined as:

rtotal =
N

å
i= 1

r i (2.4)

where r i represents the respective rate of each event within an event set, which consists of total N

events. Then, each rate is normalized with respect to the associated total rate to derive its relative

probability. The normalized indicator of the ith event, l i 2 (0;1], can be interpreted as the sum of

the normalized probabilities of the first i events:

l i =
å

i
j= 1 r j

rtotal
; i = 1; :::;N (2.5)

This indicator is then used for event selection via a uniformly distributed random number

selection, g1 2 (0;1]. If g1 falls in the interval of normalized indicators l i� 1 to l i , the ith event

will be selected for execution.

The transient behavior of the model is characterized by the time evolution scheme proposed by

the kMC algorithm, where the amount of time for each event is governed by using another random

number, g2 2 (0;1]. Starting from a given time, the simulation time clock is advanced by Dt for the

chosen event, where Dt is given by the following equation:

Dt =
� lng2

rtotal
(2.6)
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Therefore, the total rate for O-Cycle is computed as follows:

ro;total = ro;phs+ ro;des+ roa; f + rob; f (2.7)

where ro;phs is the rate of ozone physisorption, ro;des is the rate of ozone desorption, and

roa; f together with rob; f are the oxidation rates of the chemisorbed species attached to a

neighbour-binding silicon. The oxidation rate of the chemisorbed species attached to a self-binding

silicon is orders of magnitude higher than that of a neighbour-binding silicon. Therefore, it

is considered instantaneous and deterministic, and thus, omitted in the O-Cycle kMC selection.

Similarly, the total rate for Si-Cycle is:

rsi;total = rbtbas;phs+ rbtbas;des+ rneigh; f + rneigh;r + rsel f; f + rsel f;r (2.8)

where rbtbas;phs and rbtbas;des are the physisorption and desorption rates of the silicon precursor,

respectively, BTBAS, rneigh; f and rneigh;r are the forward and reverse rates of the neighbour-binding

dissociative chemisorption, respectively, and rsel f; f and rsel f;r are the forward and reverse rates of

the self-binding dissociative chemisorption, respectively. The reaction rate of first chemisorption

step rsi;chem is orders of magnitude higher than those of other events. Therefore, it is considered

instantaneous and deterministic, and thus, omitted in the Si-Cycle kMC selection.

For the O-Cycle, the rates of all considered reactions are comparable and can be modeled

with the standard n-fold kMC algorithm. However, for the Si-Cycle, in order to simulate the

realistic behavior of reaction kinetics, we need to consider surface reaction events separately from

physisorption events for the following two reasons: First, surface reaction events are formulated

and compared differently from physisorption events since surface species concentrations need

to be considered to correctly describe the competition between the thermodynamic and kinetic

favorability of competing pathways. Second, physisorption rates are an order of magnitude lower

than surface reaction rates according to the DFT calculation, which means that the model will be

saturated by surface reactions events if the events are not allocated properly. Thus, a decoupled
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kMC kinetic scheme is proposed to partition the entire Si-Cycle events into two event sets:

adsorption events containing only physisorption events, and surface reaction events containing

the remaining events. The partitioned total rates, rsi;ads and rsi;rxn, are then defined as follows:

rsi;rxn = rneigh; f + rneigh;r + rsel f; f + rsel f;r + rbtbas;des (2.9)

rsi;ads= rbtbas;phs (2.10)

Additionally, in order to apply the decoupling scheme, we first compute a ratio, Jsi;ads as the

ratio of the adsorption rate versus the total rate, which is derived as follows:

Jsi;ads=
rsi;ads

rsi;total
= 1 � Jsi;rxn (2.11)

Therefore, for a total assigned duration, ttotal, adsorption events are pre-allocated with a

duration of ttotal � Jsi;ads, and the remaining time is assigned to surface reaction events. Next,

during the allocated time period for surface reactions, the normalized event indicator under

the competition of reaction pathways and directions is calculated by the concentration-weighted

reaction rates as follows:

lsi;i =
å

i
j= 1 rrxn; jRj

å
N
k= 1 rrxn;kRk

; i = 1; :::;N (2.12)

where lsi;i 2 (0;1] represents the normalized indicator of the ith event in the surface reaction event

set, rrxn; j is the un-weighted chemical reaction rate for the jth event calculated from Eq. 5.3, Rj

is the number of reactants for each surface reaction, and N is the total number of events in the

Si-Cycle surface reaction event set. The normalized indicators are then used to execute the event

selection following the same approach performed in the standard kMC algorithm. In Section 4.3.3,

it is demonstrated that this decoupling scheme achieves desired accuracy.
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2.2.6 DFT and Thermodynamic Calculations

Although the reaction activation energies and mechanisms have already been analyzed for BTBAS

by [43] as discussed in Section 4.2.2, many fundamental thermodynamic and kinetic properties

of BTBAS have yet to be investigated, including its entropy, enthalpy, vibrational partition and

others. Since the above properties are difficult to measure experimentally yet essential to the

accurate microscopic simulation of ALD behavior, in this work, we utilize Density Functional

Theory (DFT) with Gaussian09 package to compute them [34].

In the Si-Cycle, to calculate properties of BTBAS and its reaction kinetics with SiO2 lattice, we

first need to investigate the configuration of the hydroxylated surface lattice and the structure of the

physisorbed BTBAS transition state complex. Specifically, to construct an optimal surface lattice,

a generic bulk a -quartz SiO2 unit cell is modified to generate a desired hydroxylated surface layer.

The bulk unit cell is first imported into VESTA 3, which is a 3D visualization program widely

adopted to construct crystalline structures [50]. The uppermost layer of Si atoms is removed,

leaving two single bonded oxygen atoms per unit cell. Each oxygen atom is terminated with one

hydrogen atom, and the new O-H bond is assumed to have the typical bond angle and bond length

of 0.98 Å [51]. Then, the hydroxylated unit cell is imported to the Gaussview molecule builder

tool. A 3 � 3 � 1 SiO2 lattice is constructed using the hydroxylated SiO2 unit cell with Gaussian

Periodic Boundary Condition (PBC) cell symmetry replication [34, 52]. A series of optimization

steps is carried out, with all atoms other than the surface hydrogen and oxygen atoms fixed during

structure optimization [43]. The lattice structure is first optimized using Hartree-Fock (HF) method

with basis set 3-21G to obtain an initial guess of the structure. Next, the B3LYP method, a hybrid

function Becke0s three-parameter exchange functional (B3) with Lee-Yang-Parr gradient correction

functional (LYP) and triple valence plus polarization, is applied to optimize the structure to an

acceptable energy minimum with basis set 6-31G+dp accuracy level [53, 54]. Subsequently, an

initial guess of the TS complex is obtained by structuring together an optimized BTBAS molecule

and a 3 � 3 � 1 SiO2 surface lattice. Then, the TS2 method in Gaussian09 is used to calculate

an optimized TS complex structure that is most energetically favorable. The calculation is carried
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out with the same level basis set accuracy as surface lattice structure optimization, plus modified

coordinate definition and force constant calculation of every atomic position. The resulting TS

structure has one negative vibrational frequency as expected [34]. Similarly, for the O-Cycle

reaction, the thermodynamic and kinetic properties of gas-phase ozone molecule, H-Si surface

lattice and physisorbed ozone are investigated. The same calculation procedures as Si-Cycle are

carried out for the O-Cycle, respectively.

Finally, in order to perform a precise vibrational frequency calculation, Gaussian-4 (G4)

theory is adopted. G4 theory is a complex computation method for accurate calculation of

molecular energy based on ab initio molecular-orbital theory. It provides thermodynamic results

for compounds containing second row (Li-F) and third row (Na-Cl) elements, which is applicable

to our reacting molecules. Parallel computational work with Linda worker from Gaussian09

package is carried out to find out all the vibrational frequencies to calculate the ratio f TST [34].

The final vibrational partition function along with other important thermodynamic properties are

summarized in Table 2.1.

2.2.7 Artificial Neural Network Model and Non-linear Regression

The half-cycle time plays an important role in both industrial production and experimental studies

of ALD, yet the actual time needed for each half-cycle for various experimental conditions of

temperature and pressure remains unknown. Specifically, according to kMC simulation results

and experimental analysis in SiO2 thin-film ALD, Si-Cycles require longer time than O-Cycles

at high temperature around 600 K, which impacts film coverage and quality [43]. Therefore, it

is important to develop a model that can estimate the required Si-Cycle time, given operating

temperature and pressure. Although the kMC model can be used to simulate the transient behavior

of ALD and provide a reference to cycle time, it is computationally demanding to be applied for

multiple-cycle film production in real-time. Moreover, kMC model is not a closed-form model, and

thus, cannot be directly utilized for optimization and control. Therefore, instead of using the kMC

model to perform real-time optimization, we take advantage of the data-driven modeling approach
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and build Artificial Neural Network (ANN) models that correlate the Si-Cycle completion time

with operating inlet temperature and pressure, using kMC-generated databases. Compared with

traditional input-output models such as the least-squares method, the ANN approach is chosen

for its advantages to lowering prediction error and its robustness against over-fitting error. Since

it takes a long time to generate a database from the kMC model solutions, especially at low

temperature and pressure, two ANN-based models are developed to serve different levels of

precision. The first database covers a wider but sparse range of operating conditions, aiming

to predict the suitable boundary for operating conditions and to provide a general reference of

cycle completion time with acceptable accuracy. However, a higher accuracy is necessary for the

real-time control and cycle-time optimization. Therefore, the second database is developed, which

focuses on a smaller range with higher resolution. Due to the difference in data ranges, we adopt

two levels of regularization to accurately train our neural networks: (1) The standard un-regularzied

feed-forward neural network for the feasible range, and (2) The Bayesian Regularized Artificial

Neural Network (BRANN) for the optimal range.

For the first database, we develop a feed-forward neural network with regular back propagation

method for the nonlinear regression. Specifically, the input layer consists of two neurons,

representing the inlet temperature and pressure, respectively. Two hidden layers are constructed,

where the first and second layer contain 35 and 30 neurons, respectively. The output layer contains

one single neuron, representing half-cycle completion time required to reach steady-state and, if

possible, full coverage. For each hidden layer, the Rectified Linear Unit (ReLU) function is used

as the non-linear activation function for better gradient propagation and efficient calculation:

ReLu(x) = x+ = max(0;x) (2.13)

Additionally, all layers are densely connected, and the structure of the ANN is optimized

via a grid search [55]. The general structure of a feed-forward two-input-single-output neural

network with two hidden layers is given in Figure 3.5, where Ni j are the input neurons, Hi j are
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the hidden layer neurons, and No is the output neuron. The above ANN structure is constructed

with Tensorflow’s keras module, a high-level application programming interface (API) designed to

build and train a deep-learning ANN model which is widely used in deep learning applications.

Figure 2.4: Feed-forward Artificial Neural Network with two inputs, two hidden layers, and one
output.

The ANN is then trained using the above structure, and the mean square error (MSE) function,

S(w), which is typical for regression application, is chosen to be the cost function as follows:

S(w) =
1

ND

ND

å
i= 1

[yi � ( f (xi ;w))]2 (2.14)

where ND is the number of data samples in the training dataset, yi is the desired output value, w is

the weight vector for all hidden layers, and f (xi ;w) is the predicted value dependent on input xi and

weight w. The proper weight vector is obtained by solving an optimization problem to minimize

the cost function S(w) using standard back-propagation. Batch normalization is applied after each

hidden layer to avoid saturation and high variance activation, thereby facilitating convergence

speed and learning rate [56]. Dropout regularization layers with a rate coefficient of 0.5, which

is the typical value for hidden layers, is used to perform model averaging with bagging method,
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which enhances the generality of the network and reduces over-fitting. The RMSProp optimizer is

adopted for model training, which utilizes normalized gradient from recent iterations by keeping a

moving average of the squared gradient for each weight using the following equation:

E[g2]t = gE[g2]t� 1 + ( 1 � g)g2
t (2.15)

wt+ 1 = wt � hp
E[g2]t + e

gt (2.16)

where wt and gt are the weight parameter and its gradient at iteration t respectively, E[g2]t denotes

the running average of g2 at iteration t, E[g2]t� 1 denotes the running average of g2 at iteration t � 1,

and e is a smoothing term that avoids division by zero. A learning rate h = 0:01 and a momentum

factor g = 0:9 are used, which are the recommended values for RMSprop method [57].

For the second database, our objective is to identify an ANN model that captures the

precise input-output relationship over a smaller operating range for real-time cycle-to-cycle

optimization. However, the traditional RMSprop mechanism faces a dilemma between model

accuracy and over-fitting. Thus BRANN is introduced as an alternative solution, by adding

Bayesian regularization to the standard ANN. BRANN is more robust than standard neural

networks for precise regression because the Bayesian regularization algorithm converts complex

non-linear regression into a rigid regression, which is a well-posed statistical problem. By

efficiently turning off the weights that are not relevant in the training process and incorporating

Occam’s razor principle, BRANN avoids the over-fitting and over-training problems by optimally

penalizing excessive complexities in models [58]. In our model, BRANN for the second database

is constructed, trained, and implemented using MATLAB machine learning package. Specifically,

the input layer and the output layer of the BRANN are constructed using the same approach as the

standard ANN above. For the inner structure of the BRANN, one hidden layer with 25 neurons

is constructed. The hyperbolic tangent sigmoid function (tansig) is used as the activation function

for the BRANN.
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tansig(x) =
2

1+ e� 2x � 1 (2.17)

Additionally, the hyperparametersa andb are added to the standard cost function as follows,

which are chosen from a uniform random distribution:

S(w) = b
ND

å
i= 1

[yi � ( f (xi ;w))]2 + a
Nw

å
j= 1

w2
j (2.18)

whereND is the number of data samples in the training dataset,w is the weight vector for all

hidden layers, which is assumed to have a Gaussian distribution,Nw is the number of weight

parameters,w j is the jth entry in the weight vector,yi is the desired output value, andf (xi ;w)

is the predicted value dependent onw and the inputxi . To compute the optimal weight vectorw

and the continuously updated hyperparemetersa andb, a sequence of optimization problems are

solved using the Levenberg-Marquardt algorithm [59]. The Bayesian inference calculation and the

construction of the optimization problems are discussed in detail by [60] and [58].

Finally, both databases are generated based on the kMC model using the UCLA Hoffman2

Distributed Cluster. The two ranges of operating conditions are: (1) T = 550 K� 700 K (DT = 5

K) with P = 80 Pa� 160 Pa (DP = 2 Pa), and (2) T = 590 K� 610 K (DT = 0.5 K) with P = 120

Pa� 150 Pa (DP = 1 Pa). The �rst set of simulation results is divided into training, validation and

test data under the ratio of 8:1:1, and the second set of simulation results is divided into training,

validation and test data under the ratio of 7:1.5:1.5. The training dataset is used to determine the

model parameters. The validation dataset is used in the training process to validate and improve

the training. The testing dataset is randomly chosen from the entire dataset in advance to evaluate

the �nal result and is not used in the training process.
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2.3 Simulation Results

The results section is divided into three subsections. First, the kMC model is validated by

comparing the simulation results with �lm growth behavior observed in literature. Then, the neural

network models are demonstrated to be successfully developed to capture the relationship between

cycle steady-state time and the operating conditions for the two databases covering feasible and

optimal ranges. Speci�cally, the results of the �rst database cover a wider range of temperature

and pressure conditions (feasible operating range), thereby providing a general guideline for the

suitable conditions to carry out thermal SiO2 ALD process, whereas the second database focuses on

the range around T = 600 K and P = 133 Pa, typically employed in industry, with a higher resolution

and is used for cycle time optimization as discussed in the previous subsection. Finally, the

simulation of the multi-layer SiO2 deposition demonstrates that the average ALD deposition time

can be reduced utilizing the BRANN results, potentially allowing a higher industrial throughput.

2.3.1 Validation of Microscopic kMC Model with Experimental Data

The kMC model is validated by observing its behavior under varying temperature for a total

of ten ALD cycles. Speci�cally, the precursor partial pressure is kept constant at 133 Pa, and

the operating temperature is varied from 555 K to 625 K with an increment of 20 K for each

simulation run. Each half-cycle is assigned 2 seconds, which is suf�cient for the cycle to reach

steady-state as observed. The same amount of cycle time is reported in experimental work by [37],

although the speci�c value may vary since it also accounted for the time of gas-phase development.

The precursor partial pressure on the substrate surface is important in determining physiosorption

reaction rate. Therefore, the coupled effect of the gas-phase mass and momentum transfer in the

reactor has a signi�cant contribution to the cycle time and �lm quality, which we will discuss

in our future work on the investigation of multi-scale computational �uid dynamics modeling of

thermal ALD. Additionally, as mentioned in Section 2.2.7, since the O-Cycle time is much faster

than Si-Cycle, we will focus on the Si-Cycle results only.
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During the Si-Cycle, the competition between neighbour-binding and self-binding pathways

is observed. As discussed in Section 4.2.2, self-binding events are kinetically favorable, while

neighbour-binding events are thermodynamically favorable. The designed kinetics in our model is

able to capture this behavior, as shown in Figure 2.5. At the beginning of each cycle, self-binding

events dominate. As the simulation time goes on, self-binding silicons undergo reverse reaction

and decrease, as shown by the solid lines, and neighbour-binding silicons start to form, as shown

by the dashed lines. If a cycle is given enough time to develop, the fraction of neighbour-binding

silicons will approach unity, while the fraction of self-binding silicons approaches zero. Since

the neighbour-binding dominance is thermodynamically driven, as temperature decreases, more

self-binding silicons appear in the initial deposition stages and a longer time is required for the

lattice to develop into the desirable neighbour-binding-dominant pro�le, shown by the direction of

the dashed arrow in Figure 2.5. This observation is consistent with the calculation and experimental

analysis reported in [43].

ALD growth rate is also successfully simulated by the kMC model, which is characterized by

the average growth of �lm thickness per cycle (GPC). Although the kMC model does not report

the GPC directly as in experimental approaches, we could use the �nal coverage information to

compute the GPC based on the literature values of SiO2 unit cell lattice constants: a=5.5407	A,

b=c=4.918	A [61]. An atom-to-atom measurement is performed in Gaussview to �nd the relative

distance between Si and O atom within a SiO2 cell, and the ideal layer thickness is calculated using

the lattice constants and the atomic radii of oxygen and silicon atoms, which are 0.65	A and 1.18

	A, respectively [61]. Then, the GPC is inferred through the simulated surface coverage and the

ideal layer thickness. The simulated GPC at standard industrial operating condition of 600 K and

133 Pa is shown in Figure 2.6. The GPC varies little with increasing cycle numbers but does show

a slightly decreasing pattern as reported in experimental works [3]. The average growth rate over

10 cycles is 1.8	A per cycle, which is in the range of the SiO2 GPC of 1.4-2.1	A per cycle reported

by [37].

Although the temperature does not impact GPC when suf�cient time is given for each cycle
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Figure 2.5: Competition between self-binding and neighbour-binding silicons with respect to the
normalized cycle time. The dashed lines represent the ratio of neighbour-binding silicons versus
total built silicons, and the solid lines represent the ratio of self-binding silicons versus total built
silicons. The dashed arrows represent the direction of decreasing temperature.

to reach steady-state and achieve full coverage, it is a crucial factor for the transient deposition

rate within each cycle. Figure 2.7 demonstrates that the transient deposition rate increases as

temperature increases, and the rate increment is approximately proportional to the temperature

increment. This effect is observed in experimental results from the work by [1], where the

deposition rate is demonstrated to increase with temperature for unsaturated surfaces. Moreover, it

is noteworthy that not all temperatures allow the surface to reach full coverage at steady-state. The

selection of an appropriate temperature region will be introduced in the next section.

27



Figure 2.6: Steady-state GPC for the �rst ten cycles at 600 K and 133 Pa, where the dashed lines
represent the upper and lower GPC limits reported in the literature [1].

Figure 2.7: Comparison of initial transient deposition pro�les for different temperatures at 133 Pa.

2.3.2 ANN Results for Si-Cycle

2.3.2.1 Feasible Operating Regime

In this section, a set of kMC simulations covering a wide range of operating conditions is

carried out under �xed temperature and pressure throughout each simulation. The simulation is28



terminated either when steady-state is achieved under the given conditions, or when the simulation

time exceeds 5 seconds, which is too long to be considered industrially relevant [62]. Due to

the stochastic nature of the kMC algorithm, the lattice surface con�guration keeps changing at

steady-state. However, the overall coverage at steady-state, which is one of the most crucial

attributes of ALD processes, will be maintained at a certain value, with �uctuation under 0.5%.

Then, the ANN model is developed to capture the relationship between the time to achieve 98% of

the �nal coverage and the operating temperature and pressure. It is noted that, in the ANN model,

the time for the system to reach 98% of the �nal coverage is used instead of the time to reach the

�nal coverage to reduce the noise and inaccuracy involved in the steady-state �uctuations.

Figure 2.8: Dependence of the time to reach steady-state on the operating conditions, where
black markers (dots) represent the training data and the surface represents the �tting result: (a)
Large-range operating condition �tting. (b) Small-range operating condition �tting.

Two hidden layers are used for the ANN model and the numbers of neurons are determined

to be 35 and 30 for the �rst and second hidden layer respectively, based on a grid search.

A single-hidden-layer feed-forward ANN does not yield a good solution, and the performance

cannot be improved by simply adding more neurons since over-�tting error is observed.

Therefore, a two-hidden-layer structure is chosen, which is conventionally adopted to capture the

exponential-like behaviour in our model. A mean absolute error on the test dataset is reported to be

8.00� 10-3 s. As shown in Figure 2.8 (a,b), the ANN model achieves desired performance on the

test dataset. In Figure 2.9 (a), the error distribution histogram shows a nearly normal distribution
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