
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Toward Realistic Classifier for Long-Tail Distributions

Permalink
https://escholarship.org/uc/item/64w7858r

Author
Wu, Tz-Ying

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/64w7858r
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Toward Realistic Classifier for Long-Tail Distributions

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Electrical Engineering (Signal and Image Processing)

by

Tz-Ying Wu

Committee in charge:

Professor Nuno Vasconcelos, Chair
Professor Sonia Martinez
Professor Truong Nguyen
Professor Bhaskar Rao
Professor Xiaolong Wang

2024

Copyright

Tz-Ying Wu, 2024

All rights reserved.

The Dissertation of Tz-Ying Wu is approved, and it is acceptable in quality and

form for publication on microfilm and electronically.

University of California San Diego

2024

iii

DEDICATION

To my family.

iv

EPIGRAPH

Stay hungry. Stay foolish.

-Steve Jobs

v

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . viii

List of Tables . x

Acknowledgements . xi

Vita . xiv

Abstract of the Dissertation . xv

Chapter 1 Introduction . 1
1.1 Long-tail Recognition . 3

1.1.1 Definition . 3
1.1.2 Challenges of long-tail recognition . 3
1.1.3 Existing methods . 5

1.2 Contributions of the Thesis . 6
1.2.1 Learning of Visual Relations: The Devil is in the Tails 6
1.2.2 Deep Realistic Taxonomic Classifier for Long-tail Recognition 7
1.2.3 Taxonomic Open Set Classification . 8

1.3 Organization of the Thesis . 8

Chapter 2 Learning of Visual Relations: The Devil is in the Tails 10
2.1 Introduction . 11
2.2 Related work . 13

2.2.1 Scene graph generation . 13
2.2.2 Long-tailed recognition . 14

2.3 Formulation and data statistics . 15
2.3.1 Definitions . 15
2.3.2 Long-tailed visual relations . 16

2.4 Method . 18
2.4.1 Notations . 18
2.4.2 Model architecture . 19
2.4.3 Training . 21
2.4.4 Sampling strategies . 21
2.4.5 Sampling for visual relationships . 22

vi

2.5 Experiments . 24
2.5.1 Dataset . 25
2.5.2 Comparison to SOTA . 25
2.5.3 Ablations on sampling strategies . 28
2.5.4 Qualitative results . 29

2.6 Conclusions . 29

Chapter 3 Solving Long-tailed Recognition with Deep Realistic Taxonomic Classifier 31
3.1 Introduction . 32
3.2 Related Work . 34
3.3 Long-tailed recognition and RTC . 37
3.4 Taxonomic probability calibration . 40
3.5 Experiments . 45

3.5.1 Experimental Setup . 45
3.5.2 Ablations . 46
3.5.3 Comparisons to hierarchical classifiers . 48
3.5.4 Comparisons to long-tail recognizers . 50
3.5.5 Comparisons to learning with rejection . 50

3.6 Conclusion . 51

Chapter 4 ProTeCt: Prompt Tuning for Taxonomic Open Set Classification 52
4.1 Introduction . 53
4.2 Related Work . 57
4.3 Preliminaries . 58
4.4 Taxonomic Open Set Classification . 60
4.5 Prompt Tuning for Hierarchical Consistency . 63
4.6 Experiments . 66

4.6.1 TOS Classification Performance . 69
4.6.2 Domain Generalization of TOS Classification . 70
4.6.3 Ablation Study and Visualization . 70

4.7 Conclusion . 72

Chapter 5 Discussion and Conclusion . 74

Bibliography . 76

vii

LIST OF FIGURES

Figure 1.1. The performance degradation problem in long-tail recognition. 3

Figure 2.1. The devil is in the tails: Architecture design and learning process of visual
relations need to consider the long-tailed nature of both entity and predicate
class distributions. 11

Figure 2.2. Object classes (left) and predicate classes (right) are both long-tailed dis-
tributed in Visual Genome (VG150). 16

Figure 2.3. The model architecture of DT2 is composed of an entity encoder F (right)
and a predicate classifier H. 18

Figure 2.4. ACBS captures the interplay between the long-tailed distributions of en-
tities and relations by implementing the knowledge distillation between
P-step and E-step. 23

Figure 2.5. Comparisons of per class Recall@100 on SGCls. Classes are sorted in
decreasing order of the number of samples. 26

Figure 2.6. Qualitative results of PredCls (left) and SGCls (right). 27

Figure 3.1. Real-world datasets have class imbalance and long tails (left). Humans deal
with these problems by combining class taxonomies and self-awareness
(right). 32

Figure 3.2. Parameter sharing based on the tree hierarchy are implemented through
the codeword matrices Q. 38

Figure 3.3. Left: Deep-RTC ; Right: Rejecting samples at certain level during inference
time. 40

Figure 3.4. Prediction of Deep-RTC (yellow) and flat classifer (gray) on two iNaturalist-
sub images (orange: ground truth). 48

Figure 4.1. (Top) An example of class hierarchy, where CLIP predicts the tiger image
as “person” at the internal hierarchy level. 54

Figure 4.2. (Left) Multiple possible label sets are available in a class hierarchy. 63

Figure 4.3. Relative gain/loss after adding ProTeCt. (Left) HCA ; (Right) Acclea f 67

Figure 4.4. Ablation of (a) tree dropout rate β , (b) NCL strength λ and (c) CLIP ViT
B32 architecture. 67

viii

Figure 4.5. ProTeCt correctly predicts examples from ImageNet (a,b) and its variants
(c,d) at all levels. [GT, Prediction] shows the groundtruth and incorrect
prediction by vanilla prompt tuning. 68

ix

LIST OF TABLES

Table 2.1. The result (mRecall@K) of SGG tasks (PredCls, SGCls, SGDet) compared
to SOTA in scene graphs. 25

Table 2.2. mR@100 on SGG tasks for head, middle, tail classes. † denotes our repro-
duced models with ResNet101-FPN backbone. 25

Table 2.3. Ablations on different sampling strategies for SGCls. 28

Table 3.1. Ablations on iNaturalist-sub. 47

Table 3.2. Comparisons to hierarchical classifiers. 47

Table 3.3. Results on iNaturalist. Classes are discussed with popularity classes (many,
medium and few- shot). 49

Table 3.4. Results on ImageNet-LT. 49

Table 3.5. Comparisons to learning with rejection under different rejection rates (CPB). 49

Table 4.1. TOS classification performance of CLIP-based classifiers. 55

Table 4.2. TOS performance with/without ProTeCt on Cifar100 (λ = 0.5), SUN
(λ =0.5) and ImageNet (λ =1) dataset. β =0.1 for all datasets. 67

Table 4.3. The gain of hierarchical consistency after adding ProTeCt generalizes across
datasets in unseen domains. All methods are fine-tuned on ImageNet and
evaluated on its 4 variants. 68

Table 4.4. Comparison of CoOp with/without ProTeCt on FGVC Aircraft [83] dataset. 70

Table 4.5. CoOp ablation on Cifar100 dataset. Both DTL and NCL loss improve the
hierarchical consistency. 71

Table 4.6. Improving other adapter-based tuning methods, including CLIP-Adapter
and CLIP+LORA with ProTeCt on Cifar100. 72

x

ACKNOWLEDGEMENTS

My Ph.D. journey at UCSD has been an incredible chapter in my life. It would not have

been possible without the unwavering support and guidance of many people. I am profoundly

grateful to those who have walked beside me, enabling me to achieve this significant milestone.

First, I would like to express my deepest appreciation to my Ph.D. advisor, Professor

Nuno Vasconcelos. His advisement has been pivotal in my growth and development. Through

his guidance, I have not only broadened my knowledge but also refined my critical thinking

skills, encouraging me to delve deeper into the essence of problems. He consistently challenges

me to explore fundamental questions without becoming mired in established approaches. His

insights into crafting compelling paper structures and presentations have enhanced my ability to

convey my research’s significance effectively. I am also immensely thankful to Professors Sonia

Martinez, Truong Nguyen, Bhaskar Rao, and Xiaolong Wang for their invaluable mentorship and

constructive feedback as committee members. This thesis owes its completion to their guidance

and support.

In addition, I am grateful to all my mentors and collaborators over the years. Prof. Min

Sun was my Master’s advisor at National Tsing Hua University (NTHU). I sincerely thank him

for his patience and dedication in establishing the foundation for my research endeavors. He

ignited my passion for Computer Vision, inspiring me to pursue a Ph.D after completing my

Master’s degree. I also appreciate Prof. Mi-Chang Chang at NTHU and Prof. Juan Carlos

Niebles at Stanford for supporting my Ph.D. applications, and Prof. Jing-Jia Liou at NTHU for

introducing research to me for the first time as my undergraduate project advisor. I could not be

here without them. Outside of academics, I am thankful to all my industrial collaborators during

my graduate studies. I would like to thank Gurumurthy Swaminathan, Zhizhong Li, Avinash

Ravichandran, Rahul Bhotika, and Stefano Soatto for their energetic mentoring and constructive

guidance during my internship at Amazon AI. I also cherished the time interning at Intel AI

Lab, where I worked with Subarna Tripathi, Kyle Min, Hector Valdez, Sainan Liu, and Somdeb

Majumdar. Thank them for providing invaluable guidance and thoughtful critiques. A shout-out

xi

to Subarna for being so dedicated and supportive during the long-term collaborations. I was also

fortunate to learn from Boqing Gong from Google and Patrick Liu from Xpeng Motors, who

provided insightful perspectives as industrial professionals.

I am also grateful to have wonderful lab mates and student collaborators at SVCL, Chih-

Hui Ho, Pedro Morgado, Pei Wang, Yunsheng Li, Alakh Desai, Yi Li, Jiacheng Cheng, Jia

Wan, Zhiyuan Hu, Jiteng Mu, Brandon Leung, Bo Liu, Zhaowei Cai, Deepak Sridhar, Shaopeng

Guo, Xudong Wang, Yiran Xu, Xiaoyin Yang, Lihang Gong, Hsuan-Chu Lin, Zhihang Ren,

Amir Persekian, Jiawen Zeng, Yuze Song, Parth Kumar, and Ashish Farande. It was a pleasure

discussing research ideas and sharing school life at UCSD with them. I also thank Tarun Kalluri

and Prof. Manmohan Chandraker for the inter-research-topic discussion. In addition, I want to

thank my English conversation leaders from the UCSD EIA program, Chelsea Young, Eileen

Mehrabian, and Yuvadee Srijongsirikul. They helped me overcome the language barrier and

build confidence. I would also like to thank Professors Nuno Vasconcelos, Manuela Vasconcelos,

Sonia Martinez, and Yuanyuan Shi for providing TA opportunities to me. I gained a lot of

teaching and communication skills from these experience.

Last but not least, I would like to express my deepest gratitude to my family for their

unconditional support throughout my studies. While I grew up in the countryside, my parents

greatly valued education and always encouraged me to acquire knowledge and explore new

things. I would like to thank them for their endless love and support, allowing me to pursue

my dream overseas. I am also lucky to have my brother and sister accompanying me during my

growth. They made the family full of happiness. A unique acknowledgment goes to my husband,

whose unwavering support and companionship have been a constant source of joy in my life,

helping me go through all the ups and downs of this journey. I am also thankful to my extended

family for their warm support of my study.

Chapter 2 is, in full, based on the material as it appears in the publications of “Learning

of Visual Relations: The Devil is in the Tails”, Tz-Ying Wu*, Alakh Desai*, Subarna Tripathi,

and Nuno Vasconcelos, in Proceedings of IEEE International Conference on Computer Vision

xii

(ICCV), 2021. The dissertation author was the primary investigator and author of this paper.

Chapter 3 is, in full, based on the material as it appears in the publications of “Solving

Long-tailed Recognition with Deep Realistic Taxonomic Classifier”, Tz-Ying Wu, Pedro Mor-

gado, Pei Wang, Chih-Hui Ho, and Nuno Vasconcelos, in Proceedings of European Conference

on Computer Vision (ECCV), 2020. The dissertation author was the primary investigator and

author of this paper.

Chapter 4 is, in full, based on the material as it appears in the publications of “ProTeCt:

Prompt Tuning for Taxonomic Open Set Classification”, Tz-Ying Wu*, Chih-Hui Ho*, and Nuno

Vasconcelos, in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2024. The dissertation author was the primary investigator and author of this paper.

xiii

VITA

2016 B.S. in Electrical Engineering, National Tsing Hua University, Taiwan

2018 M.S. in Electrical Engineering, National Tsing Hua University, Taiwan

2024 Ph. D. in Electrical Engineering (Signal and Image Processing), University of
California San Diego, United States

PUBLICATIONS

Tz-Ying Wu, Kyle Min, Subarna Tripathi, and Nuno Vasconcelos, “Ego-VPA: Egocentric Video
Understanding with Parameter-efficient Adaptation”. Under submission, 2024.

Tz-Ying Wu*, Chih-Hui Ho*, and Nuno Vasconcelos, “ProTeCt: Prompt Tuning for Taxonomic
Open Set Classification”. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2024.

Alakh Desai, Tz-Ying Wu, Subarna Tripathi, and Nuno Vasconcelos, “Single-Stage Visual Rela-
tionship Learning using Conditional Queries”. In Conference on Neural Information Processing
Systems (NeurIPS), 2022.

Tz-Ying Wu, Gurumurthy Swaminathan, Zhizhong Li, Avinash Ravichandran, Nuno Vascon-
celos, Rahul Bhotika and Stefano Soatto,“ Class-Incremental Learning with Strong Pre-trained
Models”. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

Tz-Ying Wu*, Alakh Desai*, Subarna Tripathi, and Nuno Vasconcelos, “Learning of Visual
Relations: The Devil is in the Tails”. In IEEE International Conference on Computer Vision
(ICCV), 2021.

Tz-Ying Wu, Pedro Morgado, Pei Wang, Chih-Hui Ho, and Nuno Vasconcelos, “Solving Long-
tailed Recognition with Deep Realistic Taxonomic Classifier”. In European Conference On
Computer Vision (ECCV), 2020.

Yiran Xu, Xiaoyin Yang, Lihang Gong, Hsuan-Chu Lin, Tz-Ying Wu, Yunsheng Li, and Nuno
Vasconcelos, “Explainable Object-induced Action Decision for Autonomous Vehicles”. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

Chih-Hui Ho, Bo Liu, Tz-Ying Wu, and Nuno Vasconcelos, “Exploit Clues from Views: Self-
Supervised and Regularized Learning for Multiview Object Recognition”. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2020.

xiv

ABSTRACT OF THE DISSERTATION

Toward Realistic Classifier for Long-Tail Distributions

by

Tz-Ying Wu

Doctor of Philosophy in Electrical Engineering (Signal and Image Processing)

University of California San Diego, 2024

Professor Nuno Vasconcelos, Chair

Machine learning models, despite their widespread use in everyday applications, often

suffer from unreliable performance due to the distribution shifts between training and infer-

ence. Distribution shifts are ubiquitous, occurring in both low-level features and high-level

semantics, exacerbated by the non-uniformity of real-world data, particularly in long-tailed

distributions where some classes appear much more frequently than others. This imbalance

results in non-uniform model performance across classes, posing risks for applications requiring

precise information. In contrast, humans are adept at adapting to such challenges. Inspired by

this, we focus on addressing the distribution shifts in vision tasks caused by long-tail distributions

to make machine learning classifiers more realistic like humans.

xv

In this thesis, we aim to redefine long-tail recognition more broadly and concentrate on

crafting a classifier that mirrors human adaptability to distribution shifts, a crucial aspect lacking

in modern classifiers that is essential for constructing reliable AI systems. Expanding beyond

the traditional framework, we extend long-tail recognition to encompass combinatorial label

spaces. Furthermore, we explore a hierarchical label space within a single long-tail distribution,

offering adaptable control for user-defined systems based on the model’s competent level or the

desired label space of the user. By delving into the core of the long-tail concept, we demonstrate

that significant performance enhancements are attainable through appropriate data sampling

techniques, even with straightforward architectures. We also identify hierarchical consistency

as a key factor for building a model aligned with human cognition.

xvi

Chapter 1

Introduction

1

Machine learning models have been widely adopted in many daily applications, e.g.,

unlocking a door with facial recognition, classifying plants with a mobile app, and self-checkout

at grocery stores. While showing promising results, these models are not always reliable since

they typically rely on two impractical assumptions: i) consistent data distributions between

training and inference and ii) balanced data distributions. In practice, these assumptions are

frequently violated, and model performance can degrade significantly.

In fact, the distribution shift between training and inference is ubiquitous and can occur

in both low-level features and high-level semantics. The former distribution shift occurs when

the training data and testing data are sampled from different visual domains (i.e. web-collected

images vs image sketches). The latter distribution shift results from the data collection pipeline,

especially for those collected on the Internet, where the object classes and their class names that

appeared during training do not align with that during inference. This is referred to as the label

space distribution shift between training and testing.

These challenges are compounded by the non-uniformity of real-world data, which is

naturally long-tailed distributed, where data from different classes may appear at significantly

different frequencies. For example, while classes like “car” are very frequent on the road,

classes like “Formosan black bear” rarely appear. This imbalance will result in non-uniform

model performance across classes, leading to unreliable predictions, particularly for rare classes.

A more critical issue is that these models may provide incorrect information unconsciously,

which is dangerous for applications that require precise information, such as security systems,

autonomous driving, and medical purposes.

Humans, however, are realistic and less affected by these issues since they are apt at

adapting to environmental change and react smartly when facing challenging questions. Moti-

vated by this, this thesis focuses on addressing the distribution shifts in vision tasks incurred by

long-tail distributions, aiming to make machine learning models realistic like humans.

2

Figure 1.1. Real-world data are long-tailed distributed by nature. Model performance (orange) degrades
with class frequency.

1.1 Long-tail Recognition

1.1.1 Definition

A long-tail distribution is an extreme case of an imbalanced distribution. The class

frequency differs significantly, where the head classes have many samples while the number of

samples in the tail classes is very limited. To quantize the skewness of the data distribution, prior

work [20] defines the imbalance factor as the ratio of the number of samples in the most popu-

lated class over the rarest class. The lower the imbalance factor typically means the classification

problem is harder, as the training distribution is more skewed. Training deep learning classifiers

with such a data unbalance is non-trivial, and the model performance per class degrades notably

from the head classes to the tail classes [80], as illustrated in Figure 1.1. The long-tail recognition

research aims to solve this performance degradation problem.

1.1.2 Challenges of long-tail recognition

The modern classifier design typically involves a feature extractor h(;Φ) ∈ Rk with

parameter Φ and a softmax classifier σ(;W) with a linear layer parameterized by a weight matrix

W=[w1,w2,...,wC]∈Rk×C, i.e. f (x)=σ(WT h(x;Φ)), which maps an input sample to the label

space Y , where C= |Y | denotes the number of possible labels, and h(;Φ) can be implemented

as a Convolutional Neural Network (CNN) [95, 44] or Transformers [105, 26]. The model

3

assigns the class posterior probability of class j as

f (x) j=
PX ,Y (x, j)

∑
C
l=1PX ,Y (x,l)

=
PX |Y (x| j)PY (j)

∑
C
l=1PX |Y (x|l)PY (l)

=
exp
(

wT
j h(x;Φ)

)
∑

C
l=1exp

(
wT

l h(x;Φ)
) , (1.1)

where the network parameters W,Φ are optimized with a classification loss on the training data

D tr={(xtr
i ,y

tr
i)}Ntr

i=1, and the model is then evaluated on the testing data D te={(xte
i ,y

te
i)}Nte

i=1. In

the following, we discuss the challenges of long-tail distributions for modern classifiers from

various perspectives.

Distribution shift: The learning framework above is effective under the assumption that the

training and testing distributions are well aligned, i.e. PX tr,Y tr(x,y)=PX te,Y te(x,y). However, this

is commonly violated as long as either PX tr|Y tr(x|y)=PX te|Y te(x|y) or PY tr(y)=PY te(y) does not

comply. The former corresponds to the shift of the data distribution typically results from the

difference in the data collection pipelines, imaging devices, or the change in lighting conditions

or viewpoints, studied as the domain adaptation/generalization problem [33, 138]. The latter is

associated with the label distribution shift, which is inevitable since training data are naturally

long-tailed distributed while the label distribution at testing is usually uniform [53]. In addition,

there can even be a compounded problem where both conditions are violated, and so is the

assumption, which makes it even more difficult to learn a reliable machine learning classifier.

This thesis concentrates on the problem of label distribution shift.

Unequal training: When the training distribution is long-tailed, a randomly sampled mini-batch

B∼D tr from the dataset will be dominated by the samples from the head classes. Since the

typical training objective for the classifier of (1.1) is to minimize the cross-entropy loss of a

mini-batch B, i.e.

− 1
|B| ∑

(xi,yi)∈B

[
wT

yi
h(xi;Φ)−log

(
C

∑
l=1

exp
(
wT

l h(xi;Φ)
))]

, (1.2)

4

which usually causes the classifier weight w j of popular classes to have larger norms [61] and

increases the tendency to predict the head classes [121]. On the other hand, even when the

weights are normalized, the model still performs poorly in tail classes because the samples from

the tail classes are sparsely sampled, introducing weak supervision to these classes.

Data scarcity: While data resampling or class-aware optimization objectives can alleviate

unequal training, data scarcity is still a key essence of the long-tail problem that cannot be ignored.

If a tail class only has a few training samples, it is unlikely that the model can learn generalized

features for that class when training from scratch. While fine-tuning from a large-scale pretrained

model can lead to some improvements, there is still a risk of overfitting on those tail samples.

1.1.3 Existing methods

Several strategies have been developed for addressing the performance degradation

problem in long-tail recognition. An intuitive method for reducing the class bias is to create a

mini-batch that is balanced across the classes. This can be achieved by down-sampling the head

classes and up-sampling the tail classes, either in the data space or in the feature space [94, 6].

While the number of samples in the rare classes is very limited, the data re-sampling can be

integrated with pseudo sample synthesis [16, 107] and mix-up operations [136], where the main

idea is to generate pseudo tail samples with the help of the head samples. The knowledge transfer

across the class popularities is also explored with meta-learning techniques [112, 80]. Another

way to re-balance the training is to design class-specific optimization objectives to compensate

for the bias in the loss, treating tail classes as hard samples [24] and making the training objec-

tive adaptive to the class frequency [20, 8]. While the re-balancing techniques are effective in

creating more balanced decision boundaries, they may not be optimal for feature learning in an

end-to-end manner. As a result, later works adapted these ideas to model ensembling [118, 137]

and multi-stage (decoupled) training [61, 136] to boost the performance.

5

1.2 Contributions of the Thesis

In this thesis, we seek a more general definition of long-tail recognition and focus on

developing a classifier that is more realistic like humans, which is robust and adaptive to the

distribution shift. This is what modern classifiers are lacking and is critical for building reliable

AI systems that can work in the wild.

Beyond the conventional setting introduced in section 1.1, we first explore a factorial

long-tail problem with visual relation learning. We verify that the devil is in the tails. By looking

into the long-tail essence, we show that significant improvement in performance can be achieved

with appropriate data sampling, even with compact architectures. However, this is not yet aligned

with human cognition because humans adopt class taxonomies when making predictions.

To study this direction, we consider a hierarchical label space for an image recognition

problem with a single long-tail distribution. We combine realism with taxonomic classification,

letting the model decide at which hierarchical level to provide the predictions according to its

competent level. This is shown to be a more effective solution for long-tail recognition since

the model performance can be improved across different class popularities.

With the recent paradigm shift on large foundation models, the classification problem

has been changed. Unlike traditional classifiers that can only support a fixed label set, large

visual-language models (VLMs) like CLIP [89] support inference with any label set. While

these VLMs are trained with image captions generated by humans, which still suffer from the

long-tail problem [103, 134], we hypothesize that CLIP predictions may have some hierarchical

consistency issues because some concepts (class names) appear more frequently than others in

captions. We verify this hypothesis and propose a plug-and-play solution to fix this inconsistency.

1.2.1 Learning of Visual Relations: The Devil is in the Tails

Significant effort has been recently devoted to modeling visual relations. This has mostly

addressed the design of architectures, typically by adding parameters and increasing model com-

6

plexity. However, visual relation learning is a long-tailed problem, due to the combinatorial nature

of joint reasoning about groups of objects. Increasing model complexity is, in general, ill-suited

for long-tailed problems due to their tendency to overfit. In this paper, we explore an alternative

hypothesis, denoted the Devil is in the Tails. Under this hypothesis, better performance is achieved

by keeping the model simple but improving its ability to cope with long-tailed distributions. To

test this hypothesis, we devise a new approach for training visual relationship models, which is

inspired by state-of-the-art long-tailed recognition literature. This is based on an iterative decou-

pled training scheme, denoted Decoupled Training for Devil in the Tails (DT2). DT2 employs a

novel sampling approach, Alternating Class-Balanced Sampling (ACBS), to capture the interplay

between the long-tailed entity and predicate distributions of visual relations. Results show that,

with an extremely simple architecture, DT2-ACBS significantly outperforms much more complex

state-of-the-art methods on scene graph generation tasks. This suggests that the development of

sophisticated models must be considered in tandem with the long-tailed nature of the problem.

1.2.2 Deep Realistic Taxonomic Classifier for Long-tail Recognition

Long-tail recognition tackles the naturally non-uniform distributions in real-world sce-

narios. While modern classifiers perform well on populated classes, their performance degrades

significantly on tail classes. Humans, however, are less affected by this since, when confronted

with uncertain examples, they simply opt to provide coarser predictions. Motivated by this, a

deep realistic taxonomic classifier (Deep-RTC) is proposed as a new solution to the long-tail

problem, combining realism with hierarchical predictions. The model has the option to reject

classifying samples at different levels of the taxonomy, once it cannot guarantee the desired

performance. Deep-RTC is implemented with a stochastic tree sampling during training to

simulate all possible classification conditions at finer or coarser levels and a rejection mechanism

at inference time. Experiments on the long-tailed version of four datasets, CIFAR100, AWA2,

Imagenet, and iNaturalist, demonstrate that the proposed approach preserves more information

on all classes with different popularity levels. Deep-RTC also outperforms the state-of-the-art

7

methods in long-tail recognition, hierarchical classification, and learning with rejection literature

using the proposed correctly predicted bits (CPB) metric.

1.2.3 Taxonomic Open Set Classification

Visual-language foundation models, like CLIP, learn generalized representations with

large-scale, web-crawled, image-caption pairs that enable zero-shot open-set classification. Since

web-crawled data are long-tail distributed by nature, the model does not fare well in the taxo-

nomic open set (TOS) setting, where the classifier is asked to make a prediction from a label set

across different levels of semantic granularity. Frequently, they infer incorrect labels at coarser

taxonomic class levels, even when the inference at the leaf level (original class labels) is correct.

To address this problem, we propose a prompt tuning technique that calibrates the hierarchical

consistency of model predictions. A set of metrics of hierarchical consistency, the Hierarchical

Consistent Accuracy (HCA) and the Mean Treecut Accuracy (MTA), are first proposed to eval-

uate TOS model performance. A new Prompt Tuning for Hierarchical Consistency (ProTeCt)

technique is then proposed to calibrate classification across label set granularities. Results show

that ProTeCt can be combined with existing prompt tuning methods to significantly improve

TOS classification without degrading the leaf-level classification performance.

1.3 Organization of the Thesis

The rest of the thesis is structured as follows. Chapter 2 explores the combinatorial

long-tail distributions under the scenario of visual relation predictions, where relation triplet

subject - predicate - object is a combination of a predicate and two entities (i.e. subject, object),

which are both long-tailed distributed. We show that performance can be largely improved by

looking into the long-tail essence, even with a compact architecture. In Chapter 3, we study a

hierarchical label space for an image classification task that involved single long-tail distribution.

We propose a taxonomic classifier for realistic recognition of long-tail datasets. The approach

learns a hierarchical label set to guide the classifier to make predictions at a competent level,

8

generating coarse-grained but accurate information for uncertain samples. This strategy can

improve the prediction accuracy across the class popularity without compromising the head class

performance. In Chapter 4, we study the long-tail label space distribution in the large visual-

language foundation models. These models are trained with large image-caption pairs, where

different concepts may appear more frequently than others. User-defined label space, however,

can be very different and across different granularities. We introduce the taxonomic open set

(TOS) setting to study this problem and propose ProTeCt to improve the model’s robustness on

the label space shift within the class hierarchy. Chapter 5, we summarize and conclude the thesis.

9

Chapter 2

Learning of Visual Relations: The Devil is
in the Tails

10

BallRobot
Kicking

Visual Relations

Model

Knowledge Knowledge

Knowledge

Figure 2.1. The devil is in the tails: Architecture design and learning process of visual relations need to
consider the long-tailed nature of both entity and predicate class distributions.

2.1 Introduction

Scene graphs provide a compact structured description of complex scenes and the seman-

tic relationships between objects/entities. Modeling and learning such visual relations benefit

several high-level Vision-and-Language tasks such as caption generation [126, 125], visual ques-

tion answering [51], image retrieval [57, 109], image generation [58, 72, 102] and robotic manip-

ulation planning [87]. Scene graph generation requires the understanding of the locations and the

class associated with the entity as well as the relationship between a pair of entities. The relation-

ship between a pair of entities is usually formulated as a <sub ject−predicate−ob ject> tuple,

where subject and object are two entities. Scene graph generation (SGG) faces the challenges

from both the long-tailed entity recognition problem and visual relation recognition problem.

While long-tailed entity recognition has been addressed in the literature [80, 8, 20, 61],

the imbalance becomes more prevalent for the SGG tasks, owing to the severe long-tailed nature

of the predicate distribution. Take Figure 2.1 for example. While the class of the subject (“ball”)

is popular, the class of the object (“robot”) and the predicate (“kicking”) can be infrequent,

leading to the rare occurrence of the tuple “robot-kicking-ball”. This shows that even when the

11

entity class distribution is balanced, the imbalanced predicate class distribution can lead to a

more imbalanced tuple distribution. Of course, such imbalance issues can be exacerbated if

both entity classes and predicate classes are skewed (e.g. “tripod-mounted-on-donkey”). The

combination of long-tailed entity and predicate classes makes SGG a more challenging problem.

While the long-tailed problem poses a great challenge to SGG tasks, it has not been well

addressed in the SGG literature. Existing works [130, 124, 10, 101, 131] instead focused on

designing more complex models, primarily by adding architectural enhancements that increase

model size. While this has enabled encouraging performance under the Recall@k (R@k) metric,

this metric is biased toward the highly populated classes. This suggests that prior works may

be overfitting on popular predicate classes (e.g. on/has), but their performances could degrade

on the less frequent classes (e.g. eating/riding). Such a bias towards the populated classes is

problematic, because predicates lying in the tails often provide more informative depictions of

scene content. The failure to predict tail classes could lead to a less informative scene graph ,

limiting the effectiveness of scene graphs for intended applications. In this paper, we explore the

hypothesis that the Devil is in the tails. Under this hypothesis, visual relation learning is better

addressed by a simple model of improved ability to cope with long-tailed distributions.

To investigate this hypothesis, we first analyze the distribution of entity and predicate

classes in the Visual Genome dataset. As shown in Figure 2.2, both distributions are heavily

skewed, but with different magnitude. The imbalance in the predicate distribution is more

severe than that in the entity distribution. To the best of our knowledge, none of the existing

SGG methods considered the jointly long-tailed distributions of entity and predicate classes.

To address this, we propose a new approach to visual relationship learning, based on a simpler

architecture than those in the literature but a more sophisticated training procedure, denoted

Decoupled Training for Devil in the Tails (DT2).

DT2 is a generalization of the decoupled training procedures that have recently become

popular for long-tailed recognition [61]. It consists of an alternative sampling scheme that

produces distributions balanced for entities and predicates. This is accompanied by a novel

12

sampling scheme, Alternating Class-Balanced Sampling (ACBS), which captures the interplay

between the two different long-tailed distributions through an implementation of learning without

forgetting [74] based on a mechanism that introduces memory between the sampling iterations,

using knowledge distillation. With DT2, we show that a simple architecture with 10× fewer

parameters significantly outperforms prior, and more sophisticated, architectures designed for

SGG, under the mRecall@K metric, which is suited for measuring the performance of a long-

tailed dataset. Ablation studies of different sampling schemes as well as analysis of performance

on classes of different popularity further validate our hypothesis.

Overall, the paper makes three contributions. 1) We devise a simple model architecture

with the decoupled training scheme, namely DT2, suited for the long-tailed SGG tasks. 2) We

propose a novel sampling strategy, Alternating Class-Balanced Sampling (ACBS), to capture

the interplay between different long-tailed distributions of entities and relations. 3) The combined

DT2-ACBS significantly outperforms state-of-the-art methods of more complex architectures on

all SGG tasks on the Visual Genome benchmark. The code is available on the project website1.

2.2 Related work

2.2.1 Scene graph generation

Several works have addressed the generation of scene graphs for images [128, 122,

129, 47, 116, 120, 130, 124, 73, 39, 10, 101, 52, 131, 25]. Most approaches focus on either

sophisticated architecture design or contextual feature fusion strategies, such as message passing

and recurrent neural networks [130, 101], to optimize SGG performance on the Visual Genome

dataset [64] under the Recall@K metric. While these approaches achieved gains for highly

populated classes, underrepresented classes tend to have much poorer performance. Recently,

[10, 100, 122, 115, 70] started to address the learning bias induced by the dataset statistics,

by using a more suitable evaluation metric, mRecall@K, which averages recall values across

1http://www.svcl.ucsd.edu/projects/DT2-ACBS

13

http://www.svcl.ucsd.edu/projects/DT2-ACBS

classes. To address the dataset bias, TDE [100] employed causal inference in the prediction

stage , whereas [115] used a pseudo-siamese network to extract balanced visual features, and

PCPL [122] harnessed implicit correlations among predicate classes and used a complex graph

encoding module consisting of a number of stacked encoders and attention heads. A concurrent

work [70] introduces confidence-based gating with bi-level data resampling to mitigate the

training bias. These methods considered, at most, the long-tailed distribution of either predicates

or entities and do not disentangle the gains of sampling from those of complex architectures.

For example, [122] proposed a contextual feature generator via graph encoding with 6 stacked

encoders, each with 12 attention heads and a feed-forward network. We argue that long-tailed

distributions should be considered for both entities and predicates and show that, when this is

done, better results can be achieved with a much simpler architecture.

2.2.2 Long-tailed recognition

Prior work addresses the long-tailed issue in 3 directions: data re-sampling, cost-sensitive

loss and transfer learning.

Data resampling [43, 41, 142, 42, 28, 9] is a popular strategy to oversample tail (un-

derrepresented) classes and undersample head (populated) classes. Oversampling is achieved

either by duplicating samples or by synthesizing data [41, 142, 9]. While producing a more

uniform training distribution, recent works [61, 137] argue that this strategy is unsuitable for deep

representation learning like CNN. [61] decouples the representation learning from the classifier

learning, adopting different sampling strategies in the two stages, whereas [137] proposes a

two-stream model with a mixed sampling strategy. The proposed method lies in this direction,

since we consider different distributions of entity and predicate classes, and adopt different

sampling strategies for training different model components.

Cost-sensitive losses [24, 20, 8, 75] assign different costs to the incorrect prediction of

different samples, according to class frequency [20, 8] or difficulty [24, 75]. This is implemented

by assigning higher weights or enforcing larger margins for classes with fewer samples. Weights

14

can be proportional to inverse class frequency or effective number [20] and can be estimated by

meta-learning [53]. This re-weighting strategy was recently applied to the scene graph literature

[122] to overcome long-tailed distributions.

Transfer learning methods transfer information from head to tail classes. [112, 113]

learns to predict few-shot model parameters from many-shot model parameters, and [80] pro-

poses a meta-memory for knowledge sharing. [117] leverages a hierarchical classifier to share

knowledge among classes. [118] learn an expert model for each class popularity, and combine

them by knowledge distillation.

2.3 Formulation and data statistics

In this section, we review the problem of learning visual relations and discuss its long-

tailed nature.

2.3.1 Definitions

The inference of the visual relationships in a scene is usually formulated as a three stage

process. The objects/entities in the scene are detected, classified, and the relationships between

each pair of entities, in the form of predicates, are finally inferred. [57] formulated these stages

with a Scene Graph. Let C and P be the set of entity and predicate classes, respectively. Each

entity e=(eb,ec)∈E is composed by a bounding box eb∈R4 and a class label ec∈C. A relation

r=(s,p,o) is a three-tuple, connecting a subject s and an object o identities (s,o∈E), through

a predicate p∈P. For example, person-riding-bike. The scene graph G=(E,R) of an image I

contains a set of entities E={ei}m
i=1 and a set of relations R={r j}n

j=1 extracted from the image.

This can be further decomposed into a set of bounding boxes B={eb
i }m

i=1, a set of class labels

Y ={ec
i }m

i=1, and a set of relations R.

The generation of a scene graph G from an image I is naturally mapped into the prob-

15

Figure 2.2. Object classes (left) and predicate classes (right) are both long-tailed distributed in Visual
Genome (VG150).

abilistic model

Pr(G|I)=Pr(B|I)Pr(Y |B,I)Pr(R|B,Y,I), (2.1)

where Pr(B|I) is a bounding box prediction model, Pr(Y |B, I) an entity class model and

Pr(R|B,Y,I) is a predicate class model. Joint inference of the three tasks is referred to as Scene

Graph Detection (SGDet). However, because bounding box prediction has been widely studied

in object detection [91], it is possible to simply adopt an off-the-shelf detector. This motivates two

other tasks: Predicate classification (PredCls), where both bounding boxes and entity classes

are given, and Scene Graph Classification (SGCls), where only bounding boxes are known.

2.3.2 Long-tailed visual relations

Long-tailed distributions are a staple of the natural world, where different classes occur

with very different frequencies. For example, while some entity classes (e.g. chair) occur very

frequently, others (e.g donkey) are much less frequent. Long tails are problematic because, under

standard loss functions and evaluation metrics, they encourage machine learning systems to over-

fit on a few head classes and ignore a large number of tail classes. Recent works [80, 20, 137, 61]

have shown that sampling techniques which de-emphasize popular classes, giving more weight

to rare ones, can induce very large recognition gains when distributions are long-tailed. However,

the issue has not been thoroughly considered in the visual relations literature.

16

This is somewhat surprising, given the combinatorial dependence of visual relationships

on entities and predicates. Since entities are long-tailed, relationships between pairs of entities

have even more skewed distributions. For example, because the entity classes “donkey” and

“cliff” are less frequent than “chair” and “leg”, the relation “donkey-on-cliff” is much less fre-

quent than “chair-has-leg”. This, however, is not the only source of skew, since predicates can

be rare even when associated entity classes are popular, e.g. playing is much less popular than

has. Finally, relationships can be rare even when involving frequent entities and predicates, e.g.

the relation “car-has-wheel” is much more likely than “car-has-camera”. For all these reasons,

very long tails are unavoidable for visual relations. This is quite visible in the widely used Visual

Genome [64] dataset. As shown in Figure 2.2, both the distribution of entity and predicate classes

are long-tailed. For entities, the most populated class is 35× larger than the least populated. For

predicates, the former is 12,000× larger than the latter (5,000× if the least frequent predicate

class is discarded). Note that this is much larger than the square of the ratio between entity

classes (1,225) suggested by the factorial nature of relationships.

The long-tailed problem is exacerbated by the evaluation protocol, based on the Re-

call@K (R@K) measure, adopted in most of the scene graphs literature. This measures the

average percentage of ground truth relation triplets that appear in the top K predictions and, like

any average, is dominated by the most frequent relationship classes. Hence, it does not penalize

solutions that simply ignore infrequent relationship classes. Since most works, e.g. [101, 25, 10],

focus on designing ever more complex network architectures to optimize R@K performance,

it is unclear whether all that is being accomplished is stronger overfitting to a few dominant

classes (e.g. “on”). This is undesirable for two reasons. First, the number of infrequent relations

is much larger than that of dominant relationships. Second, while dominant relations include

many obvious contextual relationships (e.g.“car-has-wheels”), infrequent ones are potentially

more informative (e.g. “monkey-playing-ball”) of the scene content. In summary, the focus on

optimizing R@K could lead to systems that are only capable of detecting a few relationships

of relatively low information content.

17

𝑠𝑏

𝑜𝑏

𝐼𝑠

𝐼𝑜

Entity Encoder 𝐹

Entity Encoder 𝐹
Predicate

Classifier 𝐻

𝑓𝑠
𝑎,𝑠

𝑓𝑜
𝑎,𝑠

𝑓𝑠,𝑜
𝑎,𝑠,𝑏

Ƹ𝑝

concatenation

EmbƸ𝑒𝑐
𝐼𝑒

𝑓𝑒

Entity Encoder 𝐹

𝐹𝑠

𝑓𝑒
𝑠

𝐹𝑎
𝑓𝑒
𝑎 𝑓𝑒

𝑎,𝑠

Figure 2.3. The model architecture of DT2 is composed of an entity encoder F (right) and a predicate
classifier H.

This problem has been recognized in the recent literature, where some works [10, 100]

have started to adopt the mRecall@K (mR@K) metric, which first averages the recall of triplets

within the same predicate class and then averages the class recalls over all the predicate classes.

While this is a step in the right direction, it is not sufficient to account for class imbalance only

at the evaluation stage. Instead, the learning algorithm should explicitly address this imbalance.

This leads to an alternative hypothesis that we explore in this work: Is the devil in the tails?

Or, in other words, can a simple model designed explicitly to cope with the long-tailed nature

of visual relations outperform existing models, which are much more complex but ignore this

property? To investigate this hypothesis, we introduce a solution that uses a model much simpler

than recently proposed architectures, but is much more sophisticated in its use of sampling

techniques that target the long-tailed nature of visual relationship.

2.4 Method

In this section, we introduce the proposed network architecture, losses, and the training

procedure.

2.4.1 Notations

For a relation tuple r j = (s j,p j,o j) in image I, p j is the ground truth predicate class,

while s j =(sb
j ,s

c
j) and o j =(ob

j ,o
c
j) are the subject and object entities, composed of its associ-

ated bounding box coordinates (e.g. sb
j) and ground truth entity class (e.g. sc

j). The bounding

boxes of an entity can be either the ground truth coordinates or the predictions from a detection

18

model, depending on the task of interest (i.e. SGCls or SGDet). With the bounding boxes, the

corresponding image patch Is
j and Io

j for the subject and object can be cropped from the image I.

In addition, we define ρ as a probability vector at the output of the softmax function with

temperature τ , and its ith entry is formulated as

ρi(f ,W,τ)=
exp(wT

i f/τ)

∑kexp(wT
k f/τ)

, (2.2)

where f ∈Rd is a feature vector, W∈Rd×k is the matrix of k weight parameters wk∈Rd .

2.4.2 Model architecture

Figure 2.3 summarizes the architecture of the Decoupled Training for Devil in the Tails

(DT2) model. This combines an entity encoder F , as shown in the right part of Figure 2.3, and a

predicate classifier H. DT2 takes the bounding box coordinates sb
j , ob

j [12] and the corresponding

cropped image patches Is
j and Io

j as input. The entity encoder F is then applied to both Is
j and Io

j ,

to extract a pair of subject-object feature vectors f {a,s}s , f {a,s}o that represent both the appearance

and semantics of entities s j and o j. These are then concatenated with an embedding of the

bounding box coordinates sb
j and ob

j , and fed to a predicate classifier H. Implementation details

of the entity encoder and the predicate classifier are elaborated below.

Entity encoder F first maps image patch Ie of entity e through a feature extractor, imple-

mented with the first three convolutional blocks of a pretrained ResNet101 [44]. We use a faster

R-CNN pre-trained for object detection on Visual Genome under regular sampling (all images

are sampled uniformly). The resulting feature vector fe is then mapped to two feature vectors,

f s
e and f a

e , that encode semantics and appearance information respectively, through two different

branches sharing identical architecture. The semantic branch Fs(·;θ) of parameter θ is imple-

mented with a stack of convolution layers (the last convolutional block of ResNet101). Its output

19

is then fed to a softmax layer that predicts the probability ēc∈ [0,1]C of the class of the entity e, i.e.

ēc=ρ(Fs(fe;θ),We,τ =1) , (2.3)

where We is the matrix of the entity classifier weights and τ of ρ in (2.2) is set to 1. The one-hot

encoding êc can be generated by taking the argmax of ēc, which is then mapped into a semantic

feature vector f s
e ∈R128 with a single fully connected layer.

While the semantic branch would be, in principle, sufficient to convey the entity identity

to the remainder of the network, this does not suffice to infer visual relationships. For example,

the detection of the “people” and “bike” entities in Figure 2.3 is not enough to infer whether the

relationship is “person-standing by-bike” or “person-riding-bike”. This problem is addressed

by introducing the appearance branch Fa(·;φ) of parameter φ , which outputs a feature vector

f a
e ∈R128 with no pre-defined semantics, simply encoding entity appearance. Finally, the feature

vectors f a
e and f s

e are concatenated into a vector f {a,s}e ∈R256 that represents both the appearance

and semantics of entity e.

Predicate classifier takes the subject f {a,s}s and object f {a,s}o feature vectors as input.

These vectors are then concatenated with an embedding of subject sb and object ob bounding

boxes produced by a fully-connected layer, to create a joint encoding f {a,s,b}{s,o} ∈R520 of the seman-

tics, appearance, and location of the subject-object patches Is and Io. The predicate classifier H is

implemented with a small feature extractor H(.,ψ), consisting of three layers that perform dimen-

sion reduction. The input f {a,s,b}{s,o} ∈R520 is first transformed into a 256-dimension vector with a

fully connected layer, followed by a batch normalization and a ReLU layer, the output of which is

finally passed through a fully connected layer with a tanh non-linearity, to produce a final feature

vector fs,o∈R128. This is fed to a softmax layer to produce the probability of the predicate class

p̄=ρ(fs,o,Wp,τ =1) (2.4)

20

where Wp is the weight matrix of the predicate classifier.

2.4.3 Training

DT2 is trained with standard cross-entropy losses targeted on entity and predicate clas-

sification. The former is defined as

Lent =
1
n

n

∑
i=1

1
|Ei| ∑

ek∈Ei

Lce(ec
k,ē

c
k) (2.5)

where Lce denotes the cross-entropy loss, ēc
k is the output probability prediction of (2.3) and ec

k is

the ground truth one-hot code of the kth entity in the set Ei from image Ii. This is complemented

by a predicate classification loss

Lpred =
1
n

n

∑
i=1

1
|Ri| ∑

rk=(sk,pk,ok)∈Ri

Lce(pk,p̄k) (2.6)

where p̄k is the output probability of (2.4) and pk the ground truth one-hot code for the kth

predicate in the set Ri of visual relations in image Ii. Both (2.5) and (2.6) are important to

guarantee that the network can learn from both entities and predicate relationships.

2.4.4 Sampling strategies

While encapsulating both semantics and appearance information, the proposed training

loss in Sec. 2.4.3 requires a complementary sampling strategy tailored for long-tailed data. This

long-tailed problem has been studied mostly in the object recognition literature, where an image

patch is fed to a feature extractor with the parameter ϕ and the softmax layer ρ of (2.2) with

weight matrix W. A popular training strategy is to use different sampling strategies to train the

two network components [61]. The intuition is that, because the bulk of the network parameters

are in the feature extractor (ϕ), this should be learned with the largest possible amount of data.

Hence, the entire network is first trained with Standard Random Sampling (SRS), which

samples images uniformly, independent of their class labels.

21

While this produces a good feature extractor, the resulting classifier usually overfits to

the head classes, which are represented by many more images and have a larger weight on the

cost function. The problem is addressed by fine-tuning the network on a balanced distribution,

obtained with Class Balanced Sampling (CBS). This consists of sampling uniformly over

classes, rather than images, and guarantees that all classes are represented with equal frequencies.

However, because images from tail classes are resampled more frequently than those of head

classes, it carries some risk of overfitting to the former. To avoid overfitting, the fine-tuning

is restricted to the weights W of the softmax layer. In summary, the network is trained in two

stages. First, the parameters ϕ and W are jointly learned with SRS. Second, the feature extractor

(ϕ) is fixed and the softmax layer parameters W are relearned with CBS.

2.4.5 Sampling for visual relationships

Similar to long-tailed object recognition, it is sensible to train a model for visual rela-

tions in two stages. In the first stage, the goal is to learn the parameters θ ,φ ,ψ of the feature

extractors (see Sec. 2.4.2), which are the overwhelming majority of the network parameters. As

in object recognition, the network should be trained with SRS. In the second stage, the goal is

to fine-tune the softmax parameters We and Wp to avoid overfitting to head classes. However,

unlike long-tailed object recognition, Figure 2.2 shows that predicates and entities can have

very different distributions, which makes the learning of long-tailed visual relations a distinct

problem. This indicates that two class-balanced sampling strategies are required to accommodate

the distribution difference between predicate and entity classes.

A straightforward solution is to introduce a 2-step iterative training procedure, namely

entity-optimization step (E-step) and predicate-optimization step (P-step), to optimize the weight

of We and Wp respectively. In E-step, images are sampled from a distribution Pe that is uniform

with respect to entity classes, which is denoted as Entity-CBS. While in P-step, they are sampled

from a distribution Pp uniform with respect to predicate classes, denoted as Predicate-CBS.

However, since the uniform sampling of Pp is not class-balanced for entity classes, P-step would

22

Teacher

Student

𝐖𝑒

𝐖𝑡

𝜃

P-step

E-step

CBS

CBS

𝜃

𝒫𝑝

𝒫𝑒

𝑳𝒆𝒏𝒕
𝒔𝒕𝒖

𝑳𝒌𝒅

𝑳𝒆𝒏𝒕
𝒕𝒆𝒂

Figure 2.4. ACBS captures the interplay between the long-tailed distributions of entities and relations by
implementing the knowledge distillation between P-step and E-step.

lead to the overfitting of the entity classification parameters We.

To address this problem, we propose a novel sampling strategy, Alternating CBS (ACBS),

tailored for long-tailed visual relations. ACBS contains a memory mechanism to maintain the

entity predictions of the P-step, making sure that what was learned is not forgotten in the E-step.

It is implemented with distillation [48] between the P-step and E-step and an auxiliary teacher

entity classifier of weight matrix Wt . The teacher entity classifier is inserted in parallel with

the entity classifier of weight matrix We in (2.3), which is its student, and produces a second

set of entity prediction probabilities as

ēt =ρ(Fs(fe;θ),Wt ,τ =1). (2.7)

With the introduction of the teacher entity classifier, we rewrite (2.5) into Lstu
ent and Ltea

ent , where

the former operates on ēc of (2.3) and the latter operates on ēt . Furthermore, to distill knowledge

23

Algorithm 1. Training procedure of ACBS
Input: Training dataset D , predicate distribution Pp, entity distribution Pe, ACBS
hyperparameters (α,β ,τs), and model parameters (θ ,φ ,ψ).
Output: Model parameters (Wp, We).
while Not convergence do

// P-Step
Dp← BalancedSample(D , Pp) while batch in Dp do

Ltotal←Lpred (2.6)+βLtea
ent (2.5)

Minimize Ltotal with respect to (Wp,Wt)
end
// E-Step
De← BalancedSample(D , Pe) while batch in De do

Ltotal←Lstu
ent (2.5)+αLkd (2.8)

Minimize Ltotal with respect to We

end
end

from the teacher entity classifier, a Kullback-Leibler divergence (KL) loss (Lkd) is defined as

KL(ρ(Fs(fe;θ),We,τ =τs)||ρ(Fs(fe;θ),Wt ,τ =τs)), (2.8)

where the two inputs to Lkd are the smooth version of (2.3) and (2.7) with temperature τs.

In summary, the P-step updates parameters Wp of the predicate classifier and Wt of the

teacher with (2.6) and Ltea
ent respectively, while the student parameters We are kept fixed. In the

E-step, Wp and Wt (teacher) are kept fixed, and We (student) is optimized with Lstu
ent and (2.8).

This implements learning without forgetting [74] between the two steps, encouraging the student

classifier to mimic the predictions of the teacher classifier, and enabling the network to learn

the new parameters for one distribution, e.g. We, without forgetting the one, e.g. Wt , previously

learned for the other. The training procedure is detailed in Algorithm 1.

2.5 Experiments

In this section, several experiments are performed to validate the effectiveness of DT2-

ACBS.

24

Table 2.1. The result (mRecall@K) of SGG tasks (PredCls, SGCls, SGDet) compared to SOTA in scene
graphs. Results for other methods are reported from the corresponding paper in general. † denotes our
reproduced model with ResNet101-FPN backbone.

Predicate Classification Scene Graph Classification Scene Graph Detection
Method mR@20 mR@50 mR@100 mR@20 mR@50 mR@100 mR@20 mR@50 mR@100
IMP+ [120] - 9.8 10.5 - 5.8 6.0 - 3.8 4.4
FREQ [130] 8.3 13.0 16.0 5.1 7.2 8.5 4.5 6.1 7.1
MOTIFS [130] 10.8 14.0 15.3 6.3 7.7 8.2 4.2 5.7 6.6
MOTIFS [130]† 13.2 16.3 17.5 7.1 8.8 9.3 4.9 6.7 8.2
KERN [10] - 17.7 19.2 - 9.4 10.0 - 6.4 7.3
VCTree [101] 14.0 17.9 19.4 8.2 10.1 10.8 5.2 6.9 8.0
GBNet [128] - 22.1 24.0 - 12.7 13.4 - 7.1 8.5
TDE-MOTIFS-SUM [100] 18.5 25.5 29.1 9.8 13.1 14.9 5.8 8.2 9.8
TDE-MOTIFS-SUM [100]† 17.9 24.8 28.6 9.6 13.0 14.7 5.6 7.7 9.1
TDE-VCTree-SUM [100] 18.4 25.4 28.7 8.9 12.2 14.0 6.9 9.3 11.1
TDE-VCTree-GATE [100] 17.2 23.3 26.6 8.9 11.8 13.4 6.3 8.6 10.3
PCPL [122] - 35.2 37.8 - 18.6 19.6 - 9.5 11.7
DT2-ACBS (ours) 27.4 35.9 39.7 18.7 24.8 27.5 16.7 22.0 24.4

Table 2.2. mR@100 on SGG tasks for head, middle, tail classes. † denotes our reproduced models with
ResNet101-FPN backbone.

Predicate Classification Scene Graph Classification Scene Graph Detection
Method Head (16) Middle (17) Tail (17) Head (16) Middle (17) Tail (17) Head (16) Middle (17) Tail (17)
MOTIFS [130]† 42.3 9.8 0.6 24.6 4.0 0.1 20.2 4.6 0.4
TDE-MOTIFS-SUM [100]† 44.9 35.8 6.1 25.6 15.8 3.3 22.2 5.6 0.1
DT2-ACBS (ours) 35.1 45.2 38.6 24.6 29.1 28.6 22.3 26.7 24.0

2.5.1 Dataset

Visual Genome (VG) [64] is composed of 108k images across 75k object categories and

37k predicate categories, but 92% of the predicates have less than 10 instances. Following prior

works, we use the original splits of the popular subset (i.e. VG150) for training and evaluation. It

contains the most frequent 150 object classes and 50 predicate classes. The distribution remains

highly long-tailed. To perform balanced sampling during training, predicate classes with less

than 5 instances, e.g. “flying in,” are ignored.

2.5.2 Comparison to SOTA

To validate our hypothesis, we compare DT2-ACBS with the state-of-the-art meth-

ods on PredCls, SGCls and SGDet task on the popular subset VG150 of VG [64], under the

mRecall@K metric. As shown in Table 2.1, compared baselines include 1) simple frequency-

based method [130], 2) sophisticated architecture design for contextual representation learn-

25

Figure 2.5. Comparisons of per class Recall@100 on SGCls. Classes are sorted in decreasing order of the
number of samples.

ing [120, 10, 101, 128] and 3) recent works that tackle the long-tailed bias of predicate

classes [100, 122]. Several observations can be made. First, DT2-ACBS outperforms all

baselines in the first two groups by a large margin (mR@100 gain larger than 15.7%) on the

PredCls task, where entity bounding boxes and categories are given. The baselines in the third

group [100, 122], which address the long-tailed bias of the predicate distribution, are similar in

spirit to DT2-ACBS. However, the latter relies on a simpler model design and a more sophis-

ticated decoupled training scheme to overcome overfitting. This enables a 1.9% improvement on

mR@100 (5% relative improvement), showing the efficacy of the proposed sampling mechanism

for tackling the long-tailed problem in predicates distribution.

Next, when predicting both predicate and entity class given the ground truth bounding

boxes (SGCls task), DT2-ACBS outperforms all existing methods by a larger mR@100 margin

(1.9% on PredCls vs 7.9% on SGCls, equivalently relative improvement of 5% in PredCls vs 40%

in SGCls). This significant improvement in SGCls performance can be ascribed to the decoupled

training of ACBS, which better captures the interplay between the different distributions of

26

building-has-window
woman-wearing-jacket

woman-walking on-sidewalk

boy-wearing-sneaker
fence-behind-boy
bag-against-fence
boy-wearing-shirt

Figure 2.6. Qualitative results of PredCls (left) and SGCls (right). In each sub-figure, colors of
bounding boxes in the image (left) are corresponding to the entities in the triplets (upper-right) with the
background color green/orange for correct/incorrect predicate predictions. In the generated graphs (lower-
right), correct/incorrect predictions of entities and predicates are shown in purple/blue and green/orange
respectively, with the ground truth noted in the bracket (best viewed in color). More examples are shown
in the supplemental.

entities and predicates.

Finally, we also ran DT2-ACBS on proposal boxes generated by a pre-trained Faster-

RCNN for the SGDet task.Table 2.1 shows that DT2-ACBS outperforms existing methods by

a significantly larger mR@100 margin of 12.7% (>100% relative improvement) on the SGDet

task.

Class-wise performance analysis: To study the performance of classes with different popularity,

we sort the 50 relation classes by their frequencies and divide them into 3 equal parts, head (16),

middle (17) and tail (17). Table 2.2 presents the mR@100 performance on these partitions for

each SGG task. As observed in prior long-tailed recognition work [80, 61], a performance drop

in head classes is hard to avoid while improving tail class performance. The goal, instead, is

to achieve the best balance among all the classes, which DT2-ACBS clearly does with notable

improvements in the middle and tail classes. It should also be noted that the drop in head per-

formance can be deceiving, due to dataset construction problems like “wearing” and “wears” ap-

pearing as two different relationship classes. Most importantly, many VG150 tail categories (e.g.

“standing on”, “sitting on”) are fine-grained versions of a head category (“on”). Some of the degra-

dation in head class performance is just due to the predicates being pushed to the fine-grained

classes, which is more informative. We notice that one of the high-frequency predicate classes

On has a low recall value (Figure 2.5) and observe that DT2-ACBS often instead predicts its fine-

27

Table 2.3. Ablations on different sampling strategies for SGCls.
Method mR@20 mR@50 mR@100
Single Stage-SRS 6.4 9.6 11.2
Single Stage-Indep. CBS 8.5 11.2 12.4
DT2-Predicate-CBS 10.0 13.0 14.3
DT2-Indep. CBS 17.3 23.9 26.7
DT2-ACBS (ours) 18.7 24.8 27.5

grained sub-categories, such as standing on, sitting on, mounted on. In particular, there are 41,620

ground truth instances of On predicate in the test set, and DT2-ACBS predicts On-subcategories

14,317 times on PredCls, which constitutes 34% incorrect predictions as per the metric. Overall,

DT2-ACBS performs significantly better in middle and tail classes on SGG tasks, and performs

comparably on head classes for SGCls and SGDet, reaching the best balance across all the classes.

2.5.3 Ablations on sampling strategies

SGCls performance is affected by the intertwined entity and predicate distributions. In

this section, we conduct ablation studies in Table 2.3 on 1) single-stage vs two-stage training and

2) different sampling schemes. The first half of the table shows the performances of single-stage

training, where the representation and the classifier are learned together. This clearly under-

performs the two-stage training, which is listed in the second half of the table, where we compare

different sampling strategies in the second stage of DT2. For the predicate classifier, it can be

trained based on either SRS or class-balanced sampling for predicates (Predicate-CBS). Since

each relation comes with a subject and an object, it is possible to train the entity classifier with

respect to Predicate-CBS, indicating the entity classifier can be trained based on SRS, Predicate-

CBS or class-balanced sampling for entities (Entity-CBS). Note that the predicate classifier

can not be trained with Entity-CBS, since an entity does not always belong to a visual relation

tuple. From the second half of the table, we find that considering the distribution differences

in predicates and entities is important, because DT2-Predicate CBS (i.e. Predicate-CBS for both

entity and predicate classifier) does not perform as well as DT2-Indep. CBS (i.e. Entity-CBS

28

for the entity classifier and Predicate-CBS for the predicate classifier). The observation that

DT2-Indep. CBS already performs better than existing methods (Table 2.1) supports our claim

that visual relations can be effectively modeled with a simple architecture if the long-tailed

aspect of the problem is considered. Nevertheless, the proposed ACBS further improves the

SGCls performance by distilling the knowledge between P-step and E-step (see Algorithm 1).

2.5.4 Qualitative results

Figure 2.6 presents qualitative results of DT2-ACBS. In PredCls task, DT2-ACBS can

correctly predict populated predicate classes (has & wearing) as well as non-populated predicate

classes (walking on). Not only robust to long-tailed predicate classes, DT2-ACBS is also able

to classify entities ranging from more populated classes (boy) to tail classes (sneaker). We can

observe that while the predicted predicates can be different from the ground truth, the relation

can still be reasonable (e.g. a subclass or a synonym of the ground truth). For example, the

predicted predicate “walking on” is actually a subclass of the ground truth predicate “on”. These

examples show that DT2-ACBS is able to predict more fine-grained predicates in tail classes

and provide more exciting descriptions of the scene.

2.6 Conclusions

Learning visual relations is inherently a long-tailed problem. Existing approaches have

mostly proposed complex models to learn visual relations. However, complex models are ill-

suited for long-tailed problems, due to their tendency to overfit. In this paper, we consider

the uniqueness of visual relations, where entities and relations have skewed distributions. We

propose a simple model, namely DT2, along with an alternating sampling strategy (ACBS) to

tackle the long-tailed visual relation problem. Extensive experiments on the benchmark VG150

dataset show that DT2-ACBS significantly outperforms the state-of-the-art methods of more

complex architectures.

Chapter 2 is, in full, based on the material as it appears in the publication of “Learning

29

of Visual Relations: The Devil is in the Tails”, Tz-Ying Wu*, Alakh Desai*, Subarna Tripathi,

and Nuno Vasconcelos, In Proceedings of International Conference on Computer Vision (ICCV),

2021. The dissertation author was the primary investigator and author of this paper.

30

Chapter 3

Solving Long-tailed Recognition with Deep
Realistic Taxonomic Classifier

31

Mammal

Animal

Mexican Hairless Dog

Dog

Mammal for sure

Should be
a dog

Breed ? I only
know it is a dog

Class Taxonomy

Ground Truth Path
Other Paths

Figure 3.1. Real-world datasets have class imbalance and long tails (left). Humans deal with these
problems by combining class taxonomies and self-awareness (right). When faced with rare objects, like a
“Mexican Hairless Dog”, they push the decision to a coarser taxonomic level, e.g., simply recognizing a
“Dog”, of which they feel confident. This is denoted as realistic taxonomic classification to guarantee that
all samples are processed with a high level of confidence.

3.1 Introduction

Recent advances in computer vision can be attributed to large datasets [22] and deep con-

volutional neural networks (CNN) [67, 95, 44]. While these models have achieved great success

on balanced datasets, with approximately the same number of images per class, real world data

tends to be highly imbalanced, with a very long-tailed class distribution. In this case, classes

are frequently split into many-shot, medium-shot and few-shot, based on the number of exam-

ples [80]. Since deep CNNs tend to overfit in the small data regime, they frequently underperform

for medium and few-shot classes. Popular attempts to overcome this limitation include data

resampling [42, 6, 28, 9], cost-sensitive losses [20], knowledge transfer from high to low pop-

ulation classes [80, 113], normalization [61], or margin-based methods [8]. All these approaches

seek to improve the classification performance of the standard softmax CNN architecture.

There is, however, little evidence that this architecture is optimally suited to deal with

long-tailed recognition. For example, humans do not use this model. Rather than striving for

discrimination between all objects in the world, they adopt class taxonomies [99, 59, 5, 60, 4],

32

where classes are organized hierarchically at different levels of granularity, e.g. ranging from

coarse domains to fine-grained ‘species’ or ‘breeds,’ as shown in Figure 3.1. Classification with

taxonomies is broadly denoted as hierarchical. The standard softmax, also known as the flat,

classifier is a hierarchical classifier of a single taxonomic level. The use of deeper taxonomies has

been shown advantageous for classification by allowing feature sharing [123, 38, 141, 77, 2, 63]

and information transfer across classes [84, 135, 21, 92, 93]. While most previous works on either

flat or hierarchical classification attempt to classify all images at the leaves of the taxonomic tree,

independently of how difficult this is, the introduction of a taxonomy enables alternate strategies.

In this work, we explore a strategy inspired by human cognition and suited for long-tailed

recognition. When humans feel insufficiently trained to answer a question at a certain level of

granularity, they simply provide an answer to a coarser level, for which they feel confident. For

example, most people do not recognize the animal of Figure 3.1 as a “Mexican Hairless Dog”.

Instead, they change the problem from classifying dog breeds into classifying mammals and

simply say it is a “Dog”. Hence, a long-tailed recognition strategy more consistent with human

cognition is to adopt hierarchical classification and allow decisions at intermediate tree levels, to

achieve two goals: 1) classify all examples with high confidence, and 2) classify each example

as deep in the tree as possible without violating the first goal. Since examples from low-shot

classes are harder to classify confidently than those of popular classes, they tend to be classified

at earlier tree levels. This can be seen as a soft version of realistic classification [19, 108] where

a classifier refuses to process examples of low-classification confidence and is denoted realistic

taxonomic classification (RTC). The taxonomic extension enables multiple “exit levels” for the

classification, at different taxonomic levels.

RTC recognizes that, while classification at the leaves uncovers full label information,

partial label information can still be recovered when this is not feasible, by performing the classi-

fication at intermediate taxonomic stages. The goal is then to maximize the average information

recovered per sample, favoring correct decisions of intermediate level over incorrect decisions

at the leaves. We introduce a new measure of classifier performance, denoted correctly predicted

33

bits (CPB), to capture this average information and propose it as a new performance measure for

long-tailed recognition. Rather than simply optimizing classification accuracy at the leaves, high

CPB scores require learning algorithms that produce calibrated estimates of class probabilities

at all tree levels. This is critical to enable accurate determination of when examples should

leave the tree. For long-tailed recognition, where different images can be classified at different

taxonomic levels, this calibration is particularly challenging.

We address this problem with two new contributions to the training of deep CNNs for

RTC. The first is a new regularization procedure based on stochastic tree sampling, (STS) which

allows the consideration of all possible cuts of the taxonomic tree during training. RTC is then

trained with a procedure similar to dropout [98], which considers the CNNs consistent with all

these cuts. The second contribution addresses the challenge that RTC requires a dynamic CNN,

capable of generating predictions at different taxonomic levels for each input example. This is

addressed with a novel dynamic predictor synthesis procedure inspired by parameter inheritance,

a regularization strategy commonly used in hierarchical classification [92, 93]. To the best of

our knowledge, these contributions enable the first implementation of RTC with deep CNNs and

dynamic predictors. This is denoted as Deep-RTC, which achieves leaf classification accuracy

comparable to state of the art long-tail recognition methods, but recovers much more average

label information per sample.

Overall, the paper makes three contributions. 1) we propose RTC as a new solution to

the long-tailed problem. 2) the Deep-RTC architecture, which implements a combination of

stochastic taxonomic regularization and dynamic taxonomic prediction, for implementation of

RTC with deep CNNs. 3) an alternative setup for the evaluation of long-tailed recognition, based

on CPB scores, that accounts for the amount of information in class predictions.

3.2 Related Work

This work is related to several previously explored topics.

34

Long-Tailed Recognition: Several strategies have been proposed to address class un-

balance in recognition. One possibility is to perform data resampling [43], by undersampling

head and oversampling tail classes [42, 6, 28, 9]. Sample synthesis [41, 142] has also been

proposed to increase the population of tail classes. Unlike Deep-RTC, these methods do not seek

improved classification architectures for long-tailed recognition. An alternative is to transfer

knowledge from head to tail classes. Inspired by meta-learning [111, 112], these methods learn

how to leverage knowledge from head classes to improve the generalization of tail classes [113].

[80] introduces memory features that encapsulate knowledge from head classes and uses an

attention mechanism to discriminate between head and tail classes. This has some similarity with

Deep-RTC, which also transfers knowledge from head to tail classes, but does so by leveraging

hierarchical relations between them. Long-tailed recognition has also been addressed with

cost-sensitive losses, which assign different weights to different samples. A typical approach

is to weight classes by their frequency [50, 82] or treat tail classes as hard examples [24]. [20]

proposed a class balanced loss that can be directly applied to a softmax layer and focal loss [75].

These approaches can underperform for very low-frequency classes. [8] addressed this problem

by enforcing large margins for few-shot classes, where the margin is inversely proportional to

the number of class samples. While effective losses for long-tailed recognition are a goal of this

work, we seek losses for calibration of taxonomic classifiers, which cost-sensitive losses do not

address. Finally, inspired by the correlation between the weight norm of a class and its number

of samples, [61] proposed to adjust the former after classifier training. All these approaches use

the flat softmax classifier architecture and do not address the design of RTC.

Hierarchical Classification: Hierarchical classification has received substantial attention

in computer vision. For example, sharing information across classes has been used for object

recognition on large and unbalanced datasets [84, 135, 21], and defining a common hierarchical

semantic space across classes has been explored for zero-shot learning [86, 3]. Some of the ideas

used in this work, e.g. parameter inheritance, are from this literature [92, 93, 23]. However,

most of them precede deep learning and cannot be directly applied to modern CNNs. More

35

recently, the ideas of sharing parameters or features hierarchically have inspired the design of

CNN architectures [123, 38, 141, 77, 2, 63]. Some of these do not support class taxonomies, e.g.

learning hierarchical feature structures for flat classification [86, 63]. Others are only applicable

to a somewhat rigid two-level hierarchy [2, 123]. Closer to this work are architectures that

complement a flat classifier with convolutional branches that regularize its features to enforce

hierarchical structure [38, 141, 77]. These branches can be based on hierarchies of feature

pooling operators [38], or classification layers [141, 77] supervised with labels from intermediate

taxonomic levels. However, the use of additional layers makes the comparison to flat classifier

unfair, which would undermine an important goal of the paper: to investigate the benefit of

hierarchical (over flat) classification for long-tailed recognition. Hence, we avoid hierarchical

architectures that add parameters to the backbone network. These methods also fail to address a

central challenge of RTC, namely the need for simultaneous optimization with respect to many

label sets, associated with the different levels of the class taxonomy. This requires a dynamic

network, whose architecture can change on-the-fly to enable 1) the use of different label sets to

classify different samples, and 2) optimization with respect to many label sets.

Learning with Rejection The idea of learning with rejection dates back to at least [14].

Subsequent works derive theoretical results on the error-rejection trade-off [15, 30], and explore

alternative rejection criteria that avoid computation of class posterior probabilities [31, 18, 19].

Since the introduction of deep learning has made the estimation of the posterior distribution

central to classification, most recent rejection functions consist of thresholding posteriors or

derived quantities, such as the posterior entropy [35, 36, 108]. Alternative rejection methods have

also been proposed, including the use of relative distances between samples [55], Monte-Carlo

dropout [32], or classification model with a routing or rejection network [108, 36, 17]. We

adopt the simple threshold based rejection rule of [35, 36, 108] in our implementation of RTC.

However, rejection is applied to each level of a hierarchical classifier, instead of once for a flat

classifier. This resembles the hedge your bets strategy of [23, 56], in that it aims to maximize

the average label information recovered per sample. However, while [23, 56] accumulate the

36

class probabilities of a flat classifier, our Deep-RTC addresses the calibration of probabilities

throughout the tree. Our experiments show that this significantly outperforms the accumulation

of flat classifier probabilities. [56] further calibrates class probabilities before rejection, but

calibration is only conducted a posteriori (at test time). Instead, we propose STS for training

hierarchical classifiers whose predictions are inherently calibrated at all taxonomic levels.

3.3 Long-tailed recognition and RTC

This section motivates the need for RTC as a solution to long-tailed recognition.

Long-tailed Recognition Existing approaches formulate long-tailed recognition as flat

classification, solved by some variant of the softmax classifier. This combines a feature extractor

h(xxx;ΦΦΦ)∈Rk, implemented by a CNN of parameters ΦΦΦ, and a softmax regression layer composed

by a linear transformation WWW and a softmax function σ(·)

f (xxx;WWW ,ΦΦΦ)=σ(z(xxx;WWW ,ΦΦΦ)) z(xxx;WWW ,ΦΦΦ)=WWW T h(xxx;ΦΦΦ). (3.1)

These networks are trained to minimize classification errors. Since samples are limited for mid

and low-shot classes, performance can be weak. Long-tailed recognition approaches address

the problem with example resampling, cost-sensitive losses, parameter sharing across classes,

or post-processing. These strategies are not free of drawbacks. For example, cost-sensitive

or resampling methods face a “whack-a-mole” dilemma, where performance improvements

in low-shot classes (e.g. by giving them more weight) imply decreased performance in more

populated ones (less weight). They are also very different from the recognition strategies of

human cognition, which relies extensively on class taxonomies.

Many cognitive science studies have attempted to determine taxonomic levels at which

humans categorize objects [99, 59, 5, 60, 4]. This has shown that most object classes have a

default level, which is used by most humans to label the object (e.g. “dog” or “cat”). However,

this so-called basic level is known to vary from person to person, depending on the person’s

37

Tree Hierarchy

𝒚𝟏

𝜽𝟏 𝜽𝟐
𝜽𝟑

𝜽𝟒 𝜽𝟓

𝒚𝟐

𝒚𝟑 𝒚𝟒

𝒏𝟎

𝒏𝟏 𝒏𝟐 𝒏𝟑

𝒏𝟒 𝒏𝟓

𝟏

𝟎

𝟎

𝟏

𝟎

𝒒𝒚𝟏

𝟏

𝟎

𝟎

𝟎

𝟏

𝒒𝒚𝟐

𝟎

𝟏

𝟎

𝟎

𝟎

𝒒𝒚𝟑

𝟎

𝟎

𝟏

𝟎

𝟎

𝒒𝒚𝟒

𝜽𝟏
𝑻𝒉

𝜽𝟐
𝑻𝒉

𝜽𝟑
𝑻𝒉

𝜽𝟒
𝑻𝒉

𝜽𝟓
𝑻𝒉

𝟏

𝟎

𝟎

𝟎

𝟎

𝒒𝒏𝟏

𝟎

𝟏

𝟎

𝟎

𝟎

𝒒𝒚𝟑

𝟎

𝟎

𝟏

𝟎

𝟎

𝒒𝒚𝟒

𝟎

𝟎

𝟎

𝟏

𝟎

𝒒𝒚𝟏

𝟎

𝟎

𝟎

𝟎

𝟏

𝒒𝒚𝟐

𝑸𝒏𝟎
𝑸𝒏𝟏𝑸𝒚𝒇𝒈

(𝜽𝟏+𝜽𝟒)
𝑻𝒉

(𝜽𝟏+𝜽𝟓)
𝑻𝒉

𝜽𝟐
𝑻𝒉

𝜽𝟑
𝑻𝒉

𝜽𝟏
𝑻𝒉

𝜽𝟐
𝑻𝒉

𝜽𝟑
𝑻𝒉

𝜽𝟒
𝑻𝒉

𝜽𝟓
𝑻𝒉

× × ×

𝚯𝑻𝒉

Global regularization

Internal Nodes
Classes (Leaves)

× Inner product

Local regularization

Figure 3.2. Parameter sharing based on the tree hierarchy are implemented through the codeword matrices
Q. The training is regularized globally from the stochastically selected label set and locally from the
node-conditional consistency loss.

training, also known as expertise, on the object class [99, 60, 4]. For example, a dog owner

naturally refers to his/her pet as a “labrador” instead of as “dog.” This suggests that even humans

are not great long-tail recognizers. Unless they are experts (i.e. have been extensively trained

in a class), they instead perform the classification at a higher taxonomic level. From a machine

learning point of view, this is sensible in two ways. First, by moving up the taxonomic tree, it

is always possible to find a node with sufficient training examples for accurate classification.

Second, while not providing full label information for all examples, this is likely to produce

a higher average label information per sample than the all-or-nothing strategy of the flat clas-

sifier [23, 56]. In summary, when faced with low-shot classes, humans trade-off classification

granularity for class popularity, choosing a classification level where their training has enough

examples to guarantee accurate recognition. This does not mean that they cannot do fine-grained

recognition, only that this is reserved for classes where they are experts. For example, because

all humans are extensively trained on face recognition, they excel in this very fine-grained task.

These observations motivate the RTC approach to long-tailed recognition.

Realistic Taxonomic Classification A taxonomic classifier maps images xxx∈X into a set

of C classes y∈Y ∈{1,...,C}, organized into a taxonomic structure where classes are recursively

grouped into parent nodes according to a tree-type hierarchy T . It is defined by a set of

38

classification nodes N ={n1,···,nN} and a set of taxonomic relations A ={A (n1),···,A (nN)},

where A (n) is the set of ancestor nodes of n. The finest-grained classification decisions admitted

by the taxonomy occur at the leaves. We denote this set of fine-grained classes Y f g=Leaves(T).

Figure 3.2 gives an example for a classification problem with |Y f g|= 4, |N |= 5, A (n4) =

A (n5)={n1} and A (ni)= /0,i∈{1,2,3}. Classes y1,y2 belong to parent class n1 and the root n0

is a dummy node containing all classes. Note that we use n to represent nodes and y to represent

leaf labels.In RTC, different samples can be classified at different hierarchy levels. For example,

a sample of class y2 can be rejected at the root, classified at node n1, or classified into one of

the leaf classes. These options assign successively finer-grained labels to the sample. Samples

rejected at the root can belong to any of the four classes, while those classified at node n1 belong

to classes y1 or y2. Classification at the leaves assigns the sample to a single class. Hence,

RTC can predict any sub-class in the taxonomy T . Given a training set D = {(xxxi,yi)}M
i=1 of

images and class labels, and a class taxonomy T , the goal is to learn a pair of classifier f (x)

and rejection function g(x) that work together to assign each input image xxx to the finest grained

class ŷ possible, while guaranteeing certain confidence in this assignment.

The depth at which the class prediction ŷ is made depends on the sample difficulty and

the competence-level γ of the classification. This is a lower bound for the confidence with

which xxx can be classified. A confidence score s(f (x)) is defined for f (x), which is declared

competent (at the γ level) for classification of xxx, if s(f (x))≥γ . RTC has competence level γ if

all its intermediate node decisions have this competence level. While this may be impossible to

guarantee for classification with the leaf label set Y f g, it can always be guaranteed by rejecting

samples at intermediate nodes of the hierarchy, i.e. defining

gv(xxx;γ)=1[s(fv(xxx))≥γ] (3.2)

per classification node v, where 1[.] is the Kroneker delta. This prunes the hierarchy T dy-

namically per sample x, producing a customized cut Tp for which the hierarchical classifier is

39

Node Cut

Generator

Random Cut

Generator

Full Tree 𝑻

Training

Pruned Tree 𝑻𝒄

𝒛𝟏

𝒛 𝒩|

𝒇𝟏

𝒇𝒩

𝒇𝒚

𝓛𝒏

𝓛𝒔𝒕𝒔

𝒛𝒚

⊗

⊗

⊗

𝐱 FE
ℎ(𝐱;𝚽)

Random Cut Generator

𝑷𝟐 = 𝟎

𝑷𝟑, 𝑷𝟒 = 𝟎 𝑷𝟑 = 𝟎

𝑷𝟏
𝑷𝟐 𝑷𝟑
𝑷𝟒

𝐈𝐧𝐩𝐮𝐭

Testing

𝒈𝟏
𝒈𝟐 𝒈𝟑
𝒈𝟒

Competence level 𝜸

𝒈𝟑 < 𝜸

Construct
Classification

Matrix 𝑾𝒚

Construct
Classification
Matrix 𝑾 𝓝

Construct
Classification

Matrix 𝑾𝟏

Figure 3.3. Left: Deep-RTC is composed of a feature extractor, a node cut generator producing Yn=C (n)
for all internal nodes and a random cut generator producing a potential label sets Yc from Tc. Classification
matrix WWWYc is constructed for each label set and loss of (3.12) is imposed. Right: Rejecting samples at
certain level during inference time.

competent at a competence level γ . This pruning is illustrated on the right of Figure 3.3. Samples

that are hard to classify, e.g. from few-shot classes, induce low confidence scores and are rejected

earlier in the hierarchy. Samples that match the classifier expertise, e.g. from highly populated

classes, progress until the leaves. This is a generalization of flat realistic classifiers [108], which

simply accept or reject samples. RTC mimics human behavior in that, while xxx may not be

classified at the finest-grained level, confident predictions can usually be made at intermediate or

coarse levels. The competence level γ offers a guarantee for the quality of these decisions. Since

larger values of γ require decisions of higher confidence, they encourage sample classification

early in the hierarchy, avoiding the harder decisions that are more error-prone. The trade-off

between accuracy and fine-grained labeling is controlled by adjusting γ . The confidence score

s(·) can be implemented in various ways [108, 36, 17]. While RTC is compatible with any of

these, we adopt the popular maximum posterior probability criterion, i.e. s(f (x))=maxi f i(x),

where f i(·) is the ith entry of f (.). In our experience, the calibration of the node predictors fv(x)

is more important than the particular implementation of the confidence score function.

3.4 Taxonomic probability calibration

In this section, we introduce the architecture of Deep-RTC.

40

Taxonomic calibration Since RTC requires decisions at all levels of the taxonomic tree,

samples can be classified into any potential label set Y containing leaf nodes of any cut of T .

For example, the taxonomy of Figure 3.2 admits two label sets, namely, Y f g = {y1,y2,y3,y4}

containing all classes and Y = {n1,y3,y4} obtained by pruning the children of node n1. For

long-tailed recognition, where different images can be classified at very different taxonomic

levels, it is important to calibrate the posterior probability distributions of all these label sets.

We address this problem by optimizing the ensemble of all classifiers implementable with the

hierarchy, i.e., minimize the loss

Lens=
1
|Ω|∑Y ∈ΩLY , (3.3)

where Ω is the set of all target label sets Y that can be derived from T by pruning the tree and

LY is a loss function associated with label set Y . While feasible for small taxonomies, this

approach does not scale with taxonomy size, since the set Ω increases exponentially with |T |.

Instead, we introduce a mechanism, inspired by dropout [98], for stochastic tree sampling (STS)

during training. At each training iteration, a random cut Tc of the taxonomy T is sampled, and

the predictor fYc(xxx;WWWYc,ΦΦΦ) associated with the corresponding label set Yc is optimized. For this,

random cuts are generated by sampling a Bernoulli random variable Pv∼Bernoulli(p) for each

internal node v with a given dropout rate p. The subtree rooted at v is pruned if Pv=0. Examples

of these taxonomy cuts are shown in Figure 3.3. The predictor fYc of (3.1) consistent with the

target label set Yc associated with the cut Tc is then synthesized, and the loss computed as

Lsts=
1
M ∑

M
i=1LYc(xxxi,yi). (3.4)

By considering different cuts at different iterations, the learning algorithm forces the hierarchical

classifier to produce well calibrated decisions for all label sets.

41

Parameter sharing The procedure above requires on-the-fly synthesis of predictors fYc

for all possible label sets Yc that can be derived from taxonomy T . This implies a dynamic

CNN architecture, where (3.1) changes with the sample xxx. Deep-RTC is one such architecture,

inspired by the fact that, for long-tailed recognition, the predictors fYc should share parameters,

so as to enable information transfer from head to tail classes [113, 80]. This is implemented

with a combination of two parameter sharing mechanisms. First, the backbone feature extractor

h(xxx;ΦΦΦ) is shared across all label sets. Since this enables the implementation of Deep-RTC with a

single network and no additional parameters, it is also critical for fair comparisons with the flat

classifier. More complex hierarchical network architectures [38, 141, 77] would compromise

these comparisons and are not investigated. Second, the predictor of (3.1) should reflect the

hierarchical structure of each label set Yc. A popular implementation of this constraint, denoted

parameter inheritance (PI), reuses parameters of ancestors nodes A (n) in the predictor of node

n. The column vector wn of WY is then defined as

wn=θn+∑p∈A (n)θp , ∀n∈Y (3.5)

where θn are non-hierarchical node parameters. This compositional structure has two advantages.

First, it leverages the parameters of parent nodes (more training data) to regularize the parameters

of their low-level descendants (less training data). Second, the parameter vector θn of node n

only needs to model the residuals between n and its parent, in order to be discriminative of its

siblings. In summary, low-level decisions are simultaneously simplified and robustified.

Dynamic predictor synthesis Deep-RTC is a novel architecture to enable the dynamic

synthesis of predictors fYc that comply with (3.5). This is achieved by introducing a codeword

vector qn∈{0,1}|N | per node n, containing binary flags that identify the ancestors A (n) of n

qqqn(v)=1[v∈A (n)∪{n}]. (3.6)

42

For example, in the taxonomy of Figure 3.2, qn1 =(1,0,0,0,0) since A (n1)=∅, and qn4 =

(1,0,0,1,0) since A (n4)= {n1}. Codeword qn encodes which nodes of T contribute to the

prediction of node n under the PI strategy, thus providing a recipe for composing predictors for

any label set Y . A matrix of node-specific parameters ΘΘΘ=[θ1,...,θ|N |] where θn∈Rk for all

n∈N is then introduced, and wn can be reformulated as

wn=ΘΘΘqn. (3.7)

The codeword vectors of all nodes n∈Y are then written into the columns of a codeword matrix

QY ∈{0,1}|N |×|Y |, to define a predictor as in (3.1),

fY (xxx;ΘΘΘ,ΦΦΦ)=σ(zY (xxx;ΘΘΘ,ΦΦΦ)) zY (xxx;ΘΘΘ,ΦΦΦ)=WWW T
Y h(x;), (3.8)

where WWWY =ΘΘΘQY . This enables the classification of sample xxx with respect to any label set Yc

by simply making QQQY a dynamic matrix QQQY (xxx)=QQQYc , as illustrated in Figure 3.3.

Loss function Deep-RTC is trained with a cross-entropy loss

LY (xxxi,yi)=−yyyT
i log fY (xxx;ΘΘΘ,ΦΦΦ) , (3.9)

where yyyi is the one-hot encoding of yi ∈Y . When this is used in (3.4), the CNN is globally

optimized with respect to the label set Yc associated with taxonomic cut Tc. The regularization

of the many classifiers associated with different cuts of T is a global regularization, guaranteeing

that all classifiers are well calibrated. Beyond this, it is also possible to calibrate the internal node-

conditional decisions. Given that a sample xxx has been assigned to node n, the node-conditional

decisions are local and determine which of the children C (n) the sample should be assigned to.

They consider only the target label set Yn=C (n) defined by the children of n. For these label

sets, all nodes v∈C (n) share the same ancestor set Av and thus the second term of (3.5). Hence,

after softmax normalization, (3.5) is equivalent to wv =θv and the node-conditional classifier

43

fn(·) reduces to

fn(xxx;ΘΘΘ,ΦΦΦ)=σ(QQQT
n ΘΘΘ

T h(xxx;ΦΦΦ)), (3.10)

where, as illustrated in Figure 3.2, the codeword matrix QQQn contains zeros for all ancestor nodes.

Internal node decisions can thus be calibrated by noting that sample xi provides supervision for

all node-conditional classifiers in its ground-truth ancestor path A (yi). This allows the definition

of a node-conditional consistency loss per node n of the form

Ln=
1
M ∑

M
i=1

1
|A (yi)|∑n∈A (yi)LYn(xxxi,yn,i) (3.11)

where LYn is the loss of (3.9) for the label set Yn and yn,i the label of xi for the decision at node n.

Deep-RTC is trained by minimizing a combination of these local node-conditional consistency

losses and the global ensemble loss of (3.4)

Lcls=Ln+λLsts, (3.12)

where λ weights the contribution of the two terms.

Performance Evaluation Due to the universal adoption of the flat classifier, previous

long-tailed recognition works equate performance to recognition accuracy. Under the taxonomic

setting, this is identical to measuring leaf node accuracy E{1[ŷi=yi]} and fails to reward trade-offs

between classification granularity and accuracy. In the example of Figure 3.1, it only rewards the

“Mexican Hairless Dog” label, making no distinction between the labels “Dog” or “Tarantula,”

which are both considered errors. A taxonomic alternative is to rely on hierarchical accuracy

E{1[ŷi∈A (yi)]} [23]. This has the limitation of rewarding “Dog” and “Mexican Hairless Dog”

equally, i.e. does not encourage finer-grained decisions. In this work, we propose that a better

performance measure should capture the amount of class label information captured by the

classification. While a correct classification at the leaves captures all the information, a rejection

44

at an intermediate node can only capture partial information. To measure this, we propose to use

the number of correctly predicted bits (CPB) by the classifier, under the assumption that each

class at the leaves of the taxonomy contributes one bit of information. This is defined as

CPB= 1
M ∑

M
i=11[ŷi∈A (yi)]

(
1−|Leaves(Tŷi)|
|Leaves(T)|

)
(3.13)

where Tŷi is the sub-tree rooted at ŷi. This assigns a score of 1 to correct classification at the

leaves, and smaller scores to correct classification at higher tree levels. Note that any correct

prediction of intermediate level is preferred to an incorrect prediction at the leaves, but scores less

than a correct prediction of finer-grain. Finally, for flat classifiers, CPB is equal to classification

accuracy.

3.5 Experiments

This section presents the long-tailed recognition performance of Deep-RTC.

3.5.1 Experimental Setup

Datasets. We consider 4 datasets. CIFAR100-LT[20] is a long-tailed version of [66]

with “imbalance factor” 0.01 (i.e. most populated class 100× larger than rarest class). AWA2-LT

is a long-tailed version, curated by ourselves, of [65]. It contains 30475 images from 50 animal

classes and hierarchical relations extracted from WordNet [85], leading to a 7-level imbalanced

tree. The training set has an imbalance factor of 0.01, the testing set is balanced. ImageNet-

LT[80] is a long-tailed version of [22], with 1000 classes of more than 5 and less than 1280

images per class, and a balanced test set. iNaturalist (2018) [49, 1] is a large-scale dataset

of 8142 classes with the class imbalance factor of 0.001, and a balanced test set. While the

full iNaturalist dataset is used for comparisons to previous work, a more manageable subset,

iNaturalist-sub, containing 55929 images for training and 8142 for testing, is used for ablation

studies. Please refer to supplementary material for more details.

45

Data partitions for long-tail evaluation The evaluation protocol of [80] is adopted by splitting

the classes into many-shot, medium-shot, and few-shot. The splitting rule of [80] is used on

iNaturalist. On CIFAR100-LT and AWA2-LT, the top and bottom 1/3 populated classes belong

to many-shot and few-shot respectively, and the remaining to medium-shot.

Backbone architectures CIFAR100-LT and iNaturalist use the setup of [20], where ResNet32

[44] and ImageNet pre-trained ResNet50 are used respectively. For ImageNet-LT, ResNet10 is

chosen as in [80]. For AWA2-LT, we use ResNet18.

Competence level Unless otherwise noted, the value of γ is cross-validated, i.e. the value of

best performance on the validation set is applied to the test set.

3.5.2 Ablations

We started by evaluating how the different components of Deep-RTC - parameter inher-

itance (PI) regularization of (3.5), node-consistency loss (NCL) of (3.11), and stochastic tree

sampling (STS) of (3.9) - affect the performance. Two baselines were used in this experiment.

The first is a flat classifier, implemented with the standard softmax architecture, and trained

to optimize classification accuracy. This is a representative baseline for the architectures used

in the long-tailed recognition literature. The second is a hierarchical classifier derived from

this flat classifier, by recursively adding class probabilities as dictated by the class taxonomy.

This is denoted as the recursive hierarchical classifier (RHC). We refer to this computation of

probabilities as bottom-up (BU) inference. This is opposite to the top-down (TD) inference used

by most hierarchical approaches, where probabilities are sequentially computed from the root

(top) to leaves (bottom) of the tree. The performance of the different classifiers was measured

in multiple ways. CPB is the metric of (3.13). Leaf acc. is the classification accuracy at the

leaves of the taxonomy. For a flat classifier, this is the standard performance measure. For a

hierarchical classifier, it is the accuracy when intermediate rejections are not allowed. Hier acc.

is the accuracy of a classifier that supports rejections, measured at the point where the decision is

taken. In the example of Figure 3.1 a decision of “dog” is considered accurate under this metric.

46

Table 3.1. Ablations on iNaturalist-sub.
Method leaf acc. depth hier. acc. CPB inference
Flat classifier .163 1 .163 .163 -
RHC .163 .58 .754 .537 BU
PI+STS .174 .46 .913 .601 TD
PI+NCL .185 .48 .904 .563 TD
PI+STS+NCL (Deep-RTC) .181 .50 .899 .619 TD

Table 3.2. Comparisons to hierarchical classifiers.
Method CIFAR100-LT AWA2-LT ImageNet-LT inference
CNN-RNN [40] .379 .882 .514 TD
B-CNN [141] .366 .805 .511 TD/BU
HND [68] .374 - - TD
NofE [2] .373 .770 .463 BU
Deep-RTC .397 .894 .529 TD

Finally, depth is the average depth at which images are rejected, normalized by tree depth (e.g.

1 when no intermediate rejections are allowed).

CPB Performance: Table 3.1 shows that the flat classifier has very poor CPB performance

because prediction at leaves requires the classifier to make decisions on tail classes where it

is poorly trained. The result is a very large number of errors, i.e. images for which no label

information is preserved. RHC, its bottom-up hierarchical extension, is a much better solution

to long-tailed recognition. While most images are not classified at the leaves, both hierarchical

accuracy and CPB increases dramatically. Nevertheless, RHC has weaker CPB performance

than the combination of the PI architecture of Figure 3.2 with either STS or NCL. Among these,

the global regularization of STS is more effective than the local regularization of Ln. However,

by combining two regularizations, they lead to the classifier (Deep-RTC) that preserves most

information about the class label.

Performance measures: The long-tailed recognition literature has focused on maximizing

the accuracy of flat classifiers. Table 3.1 shows some limitations of this approach. First, all

classifiers have very poor performance under this metric, with leaf acc. between 16% and 18%.

Furthermore, as shown in Figure 3.4, the labels can be totally uninformative of the object class.

47

Animal

Limoniumsea star

Plant Plant

Tricholoma terreumStarflower

Fungi

Figure 3.4. Prediction of Deep-RTC (yellow) and flat classifer (gray) on two iNaturalist-sub images
(orange: ground truth).

In the example, the flat classifier assigns the label of “sea star” (“star flower”) to the image of

the plant (mushroom) shown on the top (at the bottom). We are aware of no application that

would find such labels useful. Second, all classifiers perform dramatically better in terms of

hier. acc. For the practitioner, this means that they are accurate classifiers. Not expert enough

to always carry the decision to the bottom of the tree, but reliable in their decisions. In the same

example, Deep-RTC instead correctly assigns the images to the broader classes of “Plant” (left)

and “Fungi” (right). Furthermore, Deep-RTC classifies 90% of the images correctly at this level!

This could make it useful for many applications. For example, it could be used to automatically

route the images to experts in these particular classes, for further labeling. Third, among TD

classifiers, Deep-RTC pushes decisions furthest down the tree (e.g. 4% deeper than PI+STS).

This makes it a better expert on iNaturalist-sub than its two variants, a fact captured by the

proposed CPB measure. Given all this, we believe that CPB optimality is much more meaningful

than leaf acc. as a performance measure for long-tailed recognition.

3.5.3 Comparisons to hierarchical classifiers

We next performed a comparison to prior works in hierarchical classification with CPB

in Table 3.2. These experiments show that prior methods have similar performance, without

discernible advantage for TD or BU inference; however, they all underperform Deep-RTC. This

is particularly interesting because these methods use networks more complex than Deep-RTC,

adding branches (and parameters) to the backbone in order to regularize features according to the

taxonomy. Deep-RTC simply implements a dynamic softmax classifier with the label encoding

48

Table 3.3. Results on iNaturalist. Classes are discussed with popularity classes (many, medium and few-
shot).

Method metric Many Medium Few All
Softmax CPB 0.76 0.67 0.62 0.66
CBLoss [20] 0.61 0.62 0.61 0.61
LDAM-SGD [8] - - - 0.65
LDAM-DRW [8] - - - 0.68
NCM [61] 0.61 0.64 0.63 0.63
cRT [61] 0.73 0.69 0.66 0.68
τ-norm [61] 0.71 0.69 0.69 0.69

Deep-RTC

CPB 0.84 0.79 0.75 0.78
hier. acc. 0.92 0.91 0.89 0.90
leaf freq. 0.71 0.56 0.48 0.54
leaf acc. 0.76 0.67 0.60 0.64

Table 3.4. Results on ImageNet-LT.
Method CPB
FSLwF [37] 0.28
Focal Loss [75] 0.31
Range Loss [133] 0.31
Lifted Loss [97] 0.31
OLTR [80] 0.36
Softmax 0.35
NCM [61] 0.36
cRT [61] 0.42
τ-norm [61] 0.41
Deep-RTC 0.53

Table 3.5. Comparisons to learning with rejection under different rejection rates (CPB).
CIFAR100-LT AWA2-LT

Rej. Rate Method Many Medium Few All Many Medium Few All

5%
RP [108] .779 .722 .306 .404 .977 .963 .887 .914

Deep-RTC .773 .719 .335 .416 .975 .978 .907 .931

10%
RP [108] .793 .734 .315 .416 .980 .966 .900 .924

Deep-RTC .789 .7314 .344 .439 .975 .984 .929 .947

20%
RP [108] .816 .751 .328 .433 .985 .970 .916 .939

Deep-RTC .833 .770 .393 .491 .969 .975 .943 .954

of Figure 3.2. Instead, it leverages its dynamic ability and stochastic sampling to simultaneously

optimize decisions for many tree cuts. The results suggest that this optimization over label sets

49

is more important than shaping the network architecture according to the taxonomy. This is

sensible since, under the Deep-RTC strategy, feature regularization is learned end-to-end, instead

of hard-coded. Details of the compared methods are in the supplementary material.

3.5.4 Comparisons to long-tail recognizers

A comparison to the state of the art methods from the long-tailed recognition is presented

in Tables 3.3-3.4 for iNaturalist and ImageNet-LT respectively. More comparisons for other

datasets are provided in the supplementary material. In all cases, Deep-RTC predicts more bits

correctly (i.e. higher CPB), which beats the state of the art flat classifier by 9% on iNaturalist

and 11% on ImageNet-LT. For iNaturalist, we also discuss other metrics by class popularity,

where leaf freq. represents the frequency that samples are classified to leaves. A comparison

to the standard softmax classifier shows that prior long-tailed methods improve performance

CPB on few-shot classes but degrade for popular classes. Deep-RTC is the only method to

consistently improve CPB performance for all levels of class popularity. It is also noted that,

unlike the state of the art flat classifier, Deep-RTC does not have to sacrifice leaf acc. for the

many-shot classes in order to accommodate few-shot classes where its performance will not

be great anyway. Instead, it exits early for about half of the images of the few-shot classes and

guarantees highly accurate answers for all classes (around 90% hier. acc.). This is similar to how

humans treat the long-tail recognition problem.

3.5.5 Comparisons to learning with rejection

While the classifiers of the previous sections were allowed to reject examples at interme-

diate nodes, whenever feasible, they were not explicitly optimized for such rejection. Table 3.5

shows a comparison to a state-of-the-art flat realistic predictor (RP) [108], on CIFAR100-LT

and AWA2-LT. In these comparisons, the percentage of rejected examples (rejection rate) is

kept the same. The rejection rate of Deep-RTC is the percent of examples rejected at the root

node. Deep-RTC achieves the best performance for all rejection rates on both datasets, because

50

it has the option of soft-rejecting, i.e. letting examples propagate until some intermediate tree

node. This is not possible for the flat RP, which always faces an all or nothing decision. In

terms of class popularity, Deep-RTC always has higher CPB for few-shot classes, and frequently

considerable gains. For many and medium-shot classes, the two methods have the comparable

performance on CIFAR100-LT. On AWA2-LT, RP has an advantage for many and Deep-RTC

for medium-shot classes. This shows that the gains of Deep-RTC are mostly due to its ability

to push images of low-shot classes as far down the tree as possible without forcing decisions

for which the classifier is poorly trained.

3.6 Conclusion

In this work, a realistic taxonomic classifier (RTC) is proposed to address the long-tail

recognition problem. Instead of seeking the finest-grained classification for each sample, we

propose to classify each sample up to the level that the classifier is competent. Deep-RTC

architecture is then introduced for implementing RTC with deep CNN and is able to 1) share

knowledge between head and tail classes 2) align data hierarchy with model design in order to

predict at all levels in the taxonomy, and 3) guarantee high prediction performance by opting

to provide coarser predictions when samples are too hard. Extensive experiments validate the

effectiveness of the proposed method on 4 long-tailed datasets using the proposed tree metric.

This indicates that RTC is well suited for solving long-tail problem. We believe this opens up

a new direction for long-tailed literature.

Chapter 3 is, in full, based on the material as it appears in the publication of “Solving

Long-tailed Recognition with Deep Realistic Taxonomic Classifier”, Tz-Ying Wu, Pedro Mor-

gado, Pei Wang, Chih-Hui Ho, and Nuno Vasconcelos, In Proceedings of European Conference

on Computer Vision (ECCV), 2020. The dissertation author was the primary investigator and

author of this paper.

51

Chapter 4

ProTeCt: Prompt Tuning for Taxonomic
Open Set Classification

52

4.1 Introduction

Vision-language foundation models (FMs) have opened up new possibilities for image

classification. They are large models, trained on large corpora, to learn aligned representations

of images and text. For example, CLIP [89] combines text and image encoders trained with

400M image-text pairs in an open vocabulary fashion, using a contrastive loss [11, 13, 96, 104].

Zero-shot classification can then proceed by leveraging the alignment of image and text features.

Each class name is first converted to a text prompt, e.g., “a photo of [CLASS],” which is fed to the

text encoder. The resulting text feature is then used as the parameter vector of a softmax classifier

of image feature vectors. Since the training does not emphasize any particular classes, CLIP

supports open set classification. Several works [140, 139, 62, 127] have shown that classification

accuracy can be enhanced by fine-tuning the FM on the few-shot setting (i.e. few examples per

class). To adapt the model and maintain the alignment between text and images, these works

augment the FM with a few learnable prompts [140, 139, 127, 62]. The model parameters are

then frozen and only the prompts are optimized. This process is known as prompt tuning and

can achieve significant improvement over the zero-shot performance, on the dataset of interest.

While prompting enables classifiers to be designed for virtually any classes with minimal

dataset curation effort, it should not compromise the open set nature and generality of the

FM representation. In this work, we consider the setting where ”open set” means the ability

to refer to concepts at different levels of granularity. Consider, for example, an educational

application in biology. While at grade school level it will teach students to classify animals into

(”cat”,”dog”,”lizard”), at the high-school level the exact same images should be classified into

much more detailed classes, e.g. (“iguana”,“anole”, “komodo”, etc.) for lizards. A classifier

that classifies an image as a ”komodo” lizard for high schoolers but ”dog” for gradeschoolers

is not useful and trustworthy. Advanced biology students should even learn about the taxonomic

relations between the different species. This requires a representation that supports hierarchical

classification [123, 117, 68, 84], where the classifier understands the relations between the

53

A photo of
<CLASS>

Text
Encoder
Φ𝑡𝑒𝑥𝑡 𝐰<CLASS>

Visual
Encoder
Φ𝑣𝑖𝑠 𝐯

physical entity
abstraction

object

person matter

tiger

ground truth
prediction
other nodes

mammal

marsupial

w/o ProTeCt
L=3 natural object
L=4 bath towel
𝑙𝑒𝑎𝑓 washing machine

w/ ProTeCt
L=3 artifact
L=4 consumer goods
𝑙𝑒𝑎𝑓 washing machine

w/o ProTeCt
L=5 bird
L=6 koala
𝑙𝑒𝑎𝑓 fox squirrel

w/ ProTeCt
L=5 mammal
L=6 placental
𝑙𝑒𝑎𝑓 fox squirrel

Figure 4.1. (Top) An example of class hierarchy, where CLIP predicts the tiger image as “person” at the
internal hierarchy level. (Bottom) Correct/incorrect model predictions (green/red) of CoOp w/ and w/o
ProTeCt, respectively. L denotes the tree level.

superclasses and subclasses that compose a class hierarchy, and provide correct predictions

across hierarchy levels.

Fig. 4.1 shows an example of a class hierarchy built from ImageNet [22] classes, accord-

ing to the WordNet [85]. When faced with the image of a tiger, the classifier should provide a

correct prediction under the label sets Y1=(“dog”, “cat”, “tiger”), Y2= (“person”, “animal”, “

insect”) or Y3=(“physical entity”, “abstraction”), where the correct prediction is shown in bold.

Note that, given a classifier with this property, teachers have the ability to define many differ-

ent classification problems, for many levels of granularity, tailoring the same app to different

uses. We refer to this setting as taxonomic open set (TOS) classification. In many real-world

applications, support for this restricted form of open set classification is much more important

than support for unbounded open set classification. In the example above, biology teachers do

not really care if the classifier can still discriminate between cars and trucks, or soda cans and

wine bottles. Hence, these classes are irrelevant for the app developer.

54

Table 4.1. TOS classification performance of CLIP-based classifiers.
Method Acclea f HCA MTA
CLIP [89] 68.36 3.32 48.21
CoOp [140] 71.23 2.99 46.98
MaPLe [62] 70.70 4.15 48.29

In principle, TOS should be trivially supported by FMs. Even at zero-shot level, it should

suffice to specify [CLASS] names at the desired levels of granularity. However, our experiments

show that this does not work because the representation of most FMs fails to capture taxonmic

relations. This is illustrated for CLIP in Fig. 2.1. While the model knows that the object is a

tiger, it fails to know that it is “a physical entity” and not an “abstraction” or that it is a “placental

mammal” and not a “marsupial,” indicating that it only understands class relations locally. It

can perform well for the leaf class label set Y1 , but cannot reason across abstraction levels, and

can thus not support TOS classification. To enable TOS, we introduce the notion of hierarchical

consistency, and a new hierarchical consistency accuracy (HCA) metric, where classification

is defined with respect to a taxonomic tree and its success requires the correct prediction of all

superclasses (e.g., mammal, object and physical entity) of each ground truth leave class (e.g.,

tiger). This is complemented by the notion of TOS classification, where classifiers can have

any set of nodes in the class hierarchy as the label set, and a new mean treecut accuracy (MTA)

metric, which estimates classification accuracy in this setting.

Our experiments show that neither CLIP nor existing prompt tuning methods [140, 139,

62] perform well under the HCA and MTA metrics of the TOS setting. Fig. 2.1 illustrates

the problem and the inconsistent CLIP class predictions (orange dots) across hierarchy levels.

Table 4.1 compares the standard (leaf) accuracy of the model with HCA/MTA, under both

the zero-shot and two prompt-tuning settings. While the leaf accuracy is quite reasonable,

hierarchical consistency is very poor. To address this problem, we propose a novel prompt-tuning

procedure, denoted Prompt Tuning for Hierarchical Consistency (ProTeCt), that explicitly targets

the TOS setting. Given a dataset of interest, a class hierarchy is extracted from the associated

metadata, a generic public taxonomy (e.g. WordNet [85]), or a special purpose taxonomy

55

related to the application (e.g. scientific taxonomies). Since FMs support classification with open

vocabulary, any node in the hierarchy can be used in the label set of the classifier. Prompts are then

learned with the help of two new regularization losses that encourage hierarchical consistency.

A dynamic treecut loss (DTL) encourages correct classification at all tree levels by sampling

random tree cuts during training. A node-centric loss (NCL) contributes additional supervision to

each internal tree node to increase classification robustness for all granularities of the hierarchy.

Experiments show that ProTeCt significantly improves the performance of prompt tuning

methods, like CoOp [140] and MaPLe [62], under TOS setting. Fig. 2.1 shows the predictions

of CoOp at different hierarchy levels before/after adding ProTeCt. Under the HCA/MTA metrics,

the improvement can be more than 15/25 points on Cifar100, SUN and ImageNet datasets.

Following [140, 139, 62], we show that these gains hold for zero-shot domain generalization to

several variants of ImageNet [90, 106, 46, 45], showing that hierarchical consistency transfers

across datasets. Furthermore, ablations show that ProTeCt can be used with different CLIP

architectures, parameter tuning methods and taxonomies.

Overall, this work makes four contributions. First, we introduce the TOS setting, includ-

ing two novel metrics (HCA and MTA) that evaluate the consistency of hierarchical classification.

Second, we show that neither zero-shot CLIP nor existing prompting methods fare well in this

setting. Third, we propose a novel prompt-tuning method for the TOS setting, ProTeCt, which

improves hierarchical consistency by combining DTL and NCL losses. The former relies on a

dynamic stochastic sampling of label sets involving multiple levels of the hierarchy, while the

latter regularizes the classification of every node in the hierarchy. Finally, ProTeCt is shown to

outperform vanilla prompt tuning methods on three datasets with different hierarchies. Extensive

ablations demonstrate that ProTeCt is applicable to different parameter tuning methods, CLIP

architectures, taxonomies and the learned hierarchical consistency transfers to unseen datasets

from different image domains.

56

4.2 Related Work
Prompt Tuning of Vision-Language Models: Many large vision-language FMs have been

proposed in recent years [132, 29, 110]. Despite their promising zero-shot performance, several

works [139, 140, 54, 62] have shown that their few-shot finetuning with a dataset from the

target application can further improve performance. Unlike conventional finetuning methods

that optimize the entire model, these methods are designed to (a) be parameter efficient and (b)

maintain the general purpose feature representation of the FM. Several such tuning methods

have been proposed for CLIP [89]. Inspired by prompt tuning techniques from the language liter-

ature [69, 71, 76], CoOp [140] inserts learnable prompts at the CLIP text input. CoCoOp [139]

further learns a meta-network to generate an image-conditioned prompt. The idea of connecting

image and text prompts is further extended by UPT [127] and MaPLe [62]. The former learns a

unified transformer for generating an image and text prompt, the latter learns a coupling function

to generate image prompts from text prompts. LASP [7] proposed a text-to-text cross-entropy

loss to regularize the distribution shift when different prompts are used. Unlike these works, we

investigate the TOS problem, where labels can be drawn from any level in a class taxonomy, and

propose prompting techniques to improve hierarchical classification consistency. This is shown

to be compatible with several of the above prompt-tuning methods without degrading their leaf

classification accuracy.

Hierachical Classifiers: Hierarchical classification aims to predict labels at different levels of a

class hierarchy. Early works [84, 135, 21, 92, 93, 23] date back to the era before deep learning and

are not directly applicable to deep learning-based models. Several works [123, 38, 141, 77, 2, 63]

propose hierarchical classifiers for CNN-based deep models. For example, [38, 141, 77] use

additional convolutional modules to learn a hierarchical feature space. It is unclear how these

approaches generalize to the recent transformer-based architectures [26, 79, 78]. Furthermore,

prior works [123, 38, 141, 77, 2, 117] finetune the entire model, which requires substantial data

and computation, especially at the FM scale. In this work, we study the problem of hierarchical

57

consistency for foundational vision-language models (e.g., CLIP). While CLIP-based classi-

fiers [89, 139, 140] have outstanding zero/few-shot performance, we show that they produce

inconsistent predictions for label sets of different granularity and cannot be used in the TOS

setting. We propose an efficient prompt tuning method to address this.

4.3 Preliminaries
Foundation Models (FMs): Visual-language FMs are composed by a text Φtext and a visual

Φvis encoder, which extract features from text and images, respectively. The two encoders

are optimized by contrastive training [104, 96, 13, 11] to create a joint representation for

the two modalities. Since the encoders are learned from a large-scale corpus of image-text

pairs, the features are general and support various downstream tasks, e.g., image classifica-

tion [140, 139, 62, 127] and segmentation [114, 81]. While in this work we use the CLIP [89],

ProTeCt should generalize to other FMs.

Image Classification with FMs: Given a label set Y ={ty}Cy=1, a zero-shot classifier can be

designed in the FM representation space by introducing a weight vector wy per class y. These

weight vectors are obtained by simply using the class name ty (e.g., “dog”) as a text encoder

prompt, i.e., wy=Φtext(Embt(ty))∈Rk, where Embt(·) is a word embedding. Given these weight

vectors, an image classifier of label set Y can be implemented by computing class posterior

probabilities with

p(ty|x;Y)=
exp(cos(wy,v)/τ)

∑t j∈Y exp(cos(w j,v)/τ)
, (4.1)

where p(ty|x;Y) is the probability of class label ty given image x, v=Φvis(Embv(x))∈Rk the

visual feature vector, Embv(·) an image embedding, cos(·,·) the cosine similarity metric, and τ

a temperature hyperparameter. Classification performance can usually be improved by inferring

the classifier parameters wy from multiple text prompts, e.g. by including context words such as a

prompt prefix p=“a photo of”, or p=“a drawing of”, computing wy=Φtext(Embt({p,ty})), and

58

ensembling the vectors wy obtained from multiple prompts [89, 140]. This, however, requires

multiple forward passes through Φtext during inference and can be undesirable for downstream

applications.

More efficient inference can be achieved with prompt tuning [140, 139, 62, 127], which

leverages a set of learnable parameters {ct
m}M

m=1 as context features. These are prepended to

each class name embedding Embt(ty) as text prompts, to produce the weight vectors wy =

Φtext({ct
1,...c

t
M,Embt(ty)}). Note that each ct

i has the same dimension as the word embedding.

Given a training dataset D={(xi,yi)}N
i=1, context features can be end-to-end optimized with the

cross-entropy loss

LY (Ct)=
1
N

N

∑
i=1

∑
t j∈Y
−1(t j= tyi)logp(t j|xi;Y ,Ct) (4.2)

for the classifier of (4.1), where 1(·) is the indicator function, and Ct the matrix of con-

text features. Similarly, learnable prompts cv
i can be inserted into the image branch, i.e.

v = Φvis({cv
1, ... ,c

v
M,Embv(x)}), for better visual adaptation [54, 127, 62]. To prevent com-

promising the generalization of the FM embeddings, the parameters of the two encoders (i.e.,

Φtext ,Φvis) are frozen in the few-shot setting. In this paper, we consider two prompt tuning

variants, CoOp [140] and MaPLe [62], the former using learnable prompts in the text branch,

and the latter on both branches.

Class Taxonomy: A class taxonomy Y tax organizes classes into a tree where classes of similar

semantics are recursively assembled into superclasses, at each graph node (e.g. “dog” is a

superclass of “Chihuahua” and “Corgi”). For a tree hierarchy, T , each node n∈N has a single

parent and multiple child nodes Chd(n), where N is the set of tree nodes. Given a set of classes

{ty}Cy=1, a tree hierarchy T can be built by treating {ty}Cy=1 as leaf nodes (where Chd(ty)= /0),

i.e., Lea f (T)={ty}Cy=1, and recursively grouping classes in a bottom-up manner until a single

root node is created, according to the similarity relationships defined by the taxonomy Y tax.

For example, ImageNet [22] classes are organized into a tree of 1,000 leaf nodes derived from

59

the WordNet [85] taxonomy. Nodes that are not at the leaves are denoted as internal nodes

N int =N \Lea f (T).

4.4 Taxonomic Open Set Classification
Definition: A significant advantage of FMs for practical applications is their support for open

set classification. Since the classifier of (4.1) can be implemented with any class names ty, and

the FM is trained with an open vocabulary, it is possible to perform classification for virtually

any classes. Prompting methods improve the classification of the classes defined by the label set

Y , but attempt to maintain this generality. However, for most applications “open set” does not

mean the ability to recognize “any possible word.” On the contrary, the whole point of prompt

tuning is to enhance the FM performance for a given application context. This context defines

what “open set” truly means for the application. In practice, it frequently means “all the possible

ways” to refer the classes in Y .

One important component of this requirement is the ability to describe classes at different

levels of granularity. For example, while user A (a car mechanic) may need to know if an

image depicts a “Fan Clutch Wrench” or a “Box-Ended Wrench,” user B (a retail store worker)

may need to know if the exact same image depicts a “a mechanic’s tool” or a “plumber’s tool.”

A FM-based classification app should be deployable in both the car garage or the retail store.

However, because the app is a tool classification app, the prompted model does not need to be

good at recognizing “lollipops,” which are beyond the context of the app. On the other hand, it is

undesirable to have to prompt-tune the app for every specific use or user group. Ideally, it should

be possible to prompt tune the FM once, with respect to the entire class taxonomy Y tax of tools.

The app can then be deployed to each user base without any retraining, by simply drawing the

most suitable class names ty from Y tax. We refer to this problem as Taxonomic Open Set (TOS)

classification and introduce a formal definition in the remainder of this section.

Datasets: Most existing classification dataset can be used to study the TOS problem, since the

very nature of taxonomies is to group objects or concepts into semantic classes of different levels

60

of granularity. Hence, most vision datasets are already labeled taxonomically or adopt classes

defined by a public taxonomy, usually WordNet [85]. We consider three popular datasets: Ci-

far100 [66], SUN [119] and ImageNet [22]. ImageNet is complemented by the ImageNetv2 [90],

ImageNet-S [106], ImageNet-A [46] and ImageNet-R [45] to enable the study of generalization

across image domains. For each dataset, the K-shot setting is considered, where K images per

class are sampled for training. We consider K={1,2,4,8,16}.

Label sets: Given a dataset D and class hierarchy Y tax a label set Y is defined at each level

of granularity, according the latter. The leaf label set Ylea f is defined as the set of classes of D

and the class hierarchy T is build recursively, denoting by Yn=Chd(n) the set of class labels

for the children of node n. In our experiments, we adopt the default hierarchy of the SUN dataset

and use WordNet [85] to build the hierarchy for Cifar100 and ImageNet. The resulting class

hierarchies are as follows. Cifar100 [66] contains 100 leaf nodes and 48 internal nodes. SUN

contains 324 leaf nodes and 19 internal nodes (after pruning 73 leaf classes that have confusing

superclasses). ImageNet [22], ImageNetv2 [90] and ImageNet-S [106] share a class hierarchy

of 1,000 leaf nodes and 368 internal nodes. ImageNet-A [46] and ImageNet-R [45] only contain

200 subclasses and the corresponding internal nodes from the ImageNet hierarchy.

Metrics: Given a classifier

ŷ(x;Y)=argmax
ty∈Y

p(ty|x;Y) (4.3)

using a label set Y , several metrics are proposed to evaluate TOS performance.

Leaf Accuracy is defined as

Acclea f =
1
N

N

∑
i=1
1[ŷ(xi;Ylea f)= tyi] (4.4)

and measures the classification accuracy at the leaves of the taxonomic tree. These are usually

defined as the “dataset classes”. This metric enables comparison of hierarchical classifiers to

61

standard, or flat, classifiers which only consider the leaf classes.

Hierarchical Consistent Accuracy (HCA) is defined as

HCA=
1
N

N

∑
i=1

(1[ŷ(xi;Ylea f)= tyi]

∏
n∈A (tyi)

1[ŷ(xi;Yn)∈A (tyi)∪{tyi}]), (4.5)

where A (n) denotes all the ancestors of node n, and tyi is the leaf node corresponding to class

label yi. While Acclea f considers successful any correct classification at the leaf level of the tree,

the HCA is stricter. It declares a success only when all the ancestors of the leaf node are correctly

classified. In other words, each sample needs to be classified correctly at each tree level to be

viewed as correctly classified under the HCA. Acclea f is an upper bound for the HCA.

Mean Treecut Accuracy (MTA) estimates the expected accuracy under the TOS clas-

sification setting. It computes the average accuracy over a set of treecuts Tc∈Ω,

MTA=
1
|Ω| ∑

Tc∈Ω

1
N

N

∑
i=1
1[ŷ(xi;YTc)= tyi] , (4.6)

where YTc =Lea f (Tc). However, as shown by the following lemma the set of all possible tree

cuts in the hierarchy T is usually very large.

Lemma 4.4.1. For a balanced M-ary tree with depth L (root node is excluded and is at depth

0), the number of all valid treecut is L+∑
L
l=2∑

N−1
k=1

N!
k!(N−k)! |N=Ml−1 .

For example, a tree with M = 2 and L= 6 has more than 4 billion treecuts. For a dataset like

ImageNet (L=15) this number is monumental. Thus, we randomly sampled |Ω|=25 treecuts

from T in all experiments. Our preliminary experiments have shown that the MTA is already

fairly stable for this sample size.

State-of-the-art: To test TOS performance of the CLIP model with existing prompting tech-

niques, we performed an experiment on ImageNet. Table 4.1 summarizes the performance of the

62

Class
Hierarchy

𝓣

𝒕𝟏

𝒏𝟎

𝒏𝟏

𝒏𝟑

𝒕𝟐

𝒏𝟐

𝒏𝟒
𝒕𝟑

𝒕𝟒

Possible label sets

𝑻𝒓𝒆𝒆𝒄𝒖𝒕𝑺𝒂𝒎𝒑𝒍𝒆𝒓 ෤𝑝𝑛1 = 0

𝒏𝟔

𝒏𝟓

෤𝑝𝑛2 = 0

Internal node
Leaf node
Pruned node
Blocked

Figure 4.2. (Left) Multiple possible label sets are available in a class hierarchy. The label set can cover
nodes at same level or across different hierarchy levels. (Right) Predefined matrices for efficient treecut
sampling used in Algorithm 2.

different methods under the three metrics. Two conclusions are possible. First, the sharp drop

from Acclea f to HCA shows that none of the methods make consistent predictions across the

class hierarchy. Second, the low MTAs show that the expected accuracy of TOS classification

is dramatically smaller than that of flat classification (leaf classes).

4.5 Prompt Tuning for Hierarchical Consistency

To enhance TOS performance of FMs, we propose Prompt Tuning for Hierarchical

Consistency (ProTeCt). ProTeCt can be implemented with many existing prompt tuning methods

(e.g., CoOp, MaPLe). These methods optimize context prompts using the cross-entropy loss

of (4.2) with leaf label set Ylea f . While this optimizes leaf accuracy Acclea f , it is not robust to

label set changes, even for label sets comprised of superclasses of Ylea f . A simple generalization

would be to replace (4.2) with L (Ct)=∑Yp∈T LYp(C
t), i.e., to consider all the partial label sets

Yp of the tree T . However, for sizeable taxonomies, this involves a very large number of label

sets and is not feasible. ProTeCt avoids the problem by dynamically sampling label sets from

T during training, with a combination of two learning objectives, a node-centric loss (NCL)

and a dynamic tree-cut loss (DTL).

63

Node-Centric Loss (NCL): NCL is the aggregate cross-entropy loss of (4.2) over all node-

centric label sets Yn=Chd(n) defined by each internal node n∈N int of the hierarchy, i.e.,

LNCL(Ct)=
1

|N int | ∑
n∈N int

LYn(C
t) . (4.7)

NCL optimization encourages prompts that robustify the classification at the different granu-

larities. For example, “Corgi” should be classified as “mammal” within the animal label set

Yn1 ={mammal, reptile, bird}, as a “dog” within the mammal label set Yn2 ={dog, cat, elephant,

tiger}, and so forth.

Dynamic Treecut Loss (DTL): While NCL calibrates node classification, guaranteeing consis-

tency within each node, the label sets of TOS classification can also span different sub-trees of the

hierarchy, including nodes at different levels, e.g., Y ={dog, cat, elephant, tiger, reptile, bird}.

DTL seeks to calibrate such label sets, by aggregating the cross-entropy loss of (4.2) dynamically,

i.e., on an example basis, over randomly sampled label sets YTc =Lea f (Tc) comprised of the

leaves of the tree cuts Tc (sub-trees) of T . At each training iteration, a random tree cut Tc is

sampled with the TreeCutSampler procedure of Algorithm 2, as illustrated on the middle of

Fig. 4.2, to define the loss

LDT L(Ct)=LYTc
(Ct) Tc∼TreecutSampler(T ,β), (4.8)

where β ∈ [0,1] is a rate of tree dropout. For this, a Bernoulli random variable Pn∼Bernoulli(β)

of dropout rate β is defined for each internal node n∈N int\n0. The algorithm descends the tree

T , sampling a binary drop-out variable pn at each node. If pn=1, node n is kept in the pruned

tree Tc. Otherwise, the sub-tree of T rooted with n is dropped from Tc. The parameter β controls

the degree of pruning. Larger β induces the pruning of more tree nodes, while β =0 guarantess

that YTc =Ylea f . The root node n0 is excluded, as pn0 =0 would imply discarding the whole T .

The TreeCutSampler algorithm is an efficient procedure to sample tree cuts Tc from

64

Algorithm 2. Treecut Sampler
Input: The tree hierarchy T of the dataset, tree dropout rate β

Output: The treecut label set YTc

// sampling p for internal nodes; prune the sub-tree rooted at
n if pn=0

pn0←1 ; // always keep the root node
for n∈N int\n0 do

pn←Bernoulli(β)
end
p←(pnint

1
,...,pnint

K
)

// correct p based on the dependency between internal nodes
p̃←p⊗1[Dp=D1]
// obtain blocked labels with predefined masks and the sampled

p̃
b←min(B,0)T p̃+B̄T (1−p̃)
// gather available (unblocked) labels as the sampled label set
YTc←{n j :n j∈N \n0,b j=0}
return YTc

T . It starts by sampling a vector p=(pnint
1
,...,pnint

K
), where nint

i denotes the i-th internal node

and K= |N int |, containing pruning flags pn for all internal nodes n∈N int . The next step is to

enforce consistency between these flags, according to the tree structure. If any node in A (n)

is pruned, then node n should be pruned even if pn =1. This is efficiently enforced across all

the flags by defining a dependency matrix D∈{0,1}K×K where Di j =1[nint
j ∈A (nint

i)∪{nint
i }]

indicates whether the i-th internal node nint
i is a child of the j-th internal node nint

j . An example

is provided on the right of Fig. 4.2 for the tree on the left. The sampled flags are then corrected

by computing p̃=p⊗1[Dp=D1], where 1 is the vector of K ones and ⊗ the Hadamard product.

Note that both D and D1 are pre-computed, making the complexity of this step roughly that of

one matrix-vector multiplication.

To identify the leaves of the sampled treecut (YTc =Lea f (Tc)) efficiently, a mask B∈

{0,1,−1}K×|N \{n0}| is defined, where each row corresponds to an internal node, and the columns

contain all possible labels in T , i.e., all nodes except the root n0. Entry Bi j flags that n j cannot

65

appear in the sampled label set, given that ni∈N int has not been pruned (i.e., p̃nint
i
=1), as follows

Bi j=


1, if n j∈A (nint

i)∪{nint
i } (n j is an ancestor of nint

i)

0, if nint
i ∈A (n j) (n j is a descendant of nint

i)

−1, otherwise (n j is outside of the sub-tree rooted at nint
i)

. (4.9)

Similarly, a matrix B̄, of entries B̄i j = 1−|Bi j|, is defined to flag that n j cannot appear in the

label set, given that ni∈N int has been pruned, i.e. p̃nint
i
=0. A mask of the nodes unavailable

to the label set is then computed by accumulating the masks corresponding to the values of p̃,

b=min(B,0)T p̃+B̄T (1−p̃) , (4.10)

where the mask in min(B,0) is selected if p̃n=1, and that in B̄ if p̃n=0. Note that min(B,0) clips

Bi j=−1 to 0. The mask b can then be used to obtain YTc =Lea f (Tc)={n j :n j∈N \n0,b j=0}.

Fig. 4.2 gives an example. When p̃=(p̃n0, p̃n1, p̃n2)=(1,0,0), then b=min(B1,0)+B̄2+B̄3 =

(0,1,1,2,2,0), signaling that only n1 and n6 are available to the label set (as b1,b6=0), resulting

in YTc ={n1,n6}.

Optimization: The overall loss used for prompt tuning is a combination of the two losses

L (Ct)=LDT L(Ct)+λLNCL(Ct) (4.11)

where λ is a hyperparameter. Note that, like previous prompting approaches, ProTeCt optimizes

the learnable prompts {cm}M
m=1 while keeping the parameters of Φtext , Φvis frozen.

4.6 Experiments

In this section, we discuss experiments for evaluating the effectiveness of ProTeCt. To

demonstrate that ProTeCt is a plug-an-play method, it was applied to two SOTA prompt tuning

66

Table 4.2. TOS performance with/without ProTeCt on Cifar100 (λ =0.5), SUN (λ =0.5) and ImageNet
(λ =1) dataset. β =0.1 for all datasets.

Method
K- w/ Cifar100 SUN ImageNet

Shot ProTeCt Acclea f HCA MTA (25) MTA (100) Acclea f HCA MTA (25) Acclea f HCA MTA (25)

CoOp

16 72.88 10.04 50.64 51.14 73.82 38.28 52.99 71.23 2.99 46.98
16 ✓ 72.94 56.85 87.69 87.30 74.59 62.94 83.51 69.92 37.74 88.61

(+0.06) (+46.81) (+37.05) (+36.16) (+0.77) (+24.66) (+30.52) (-1.31) (+34.75) (+41.63)
1 65.03 7.81 41.78 44.17 63.65 33.36 51.20 63.67 1.59 40.52
1 ✓ 66.88 41.01 81.64 81.01 63.79 49.62 76.25 66.11 25.79 86.14

(+1.85) (+33.2) (+39.86) (+36.84) (+0.14) (+16.26) (+25.05) (+2.44) (+24.2) (+45.62)

MaPLe

16 75.01 17.54 52.21 50.82 71.86 33.25 54.29 70.70 4.15 48.29
16 ✓ 75.34 61.15 88.04 88.33 72.17 59.71 82.27 69.52 31.24 87.87

(+0.33) (+43.61) (+35.83) (+37.51) (+0.31) (+26.46) (+27.98) (-1.18) (+27.09) (+39.58)
1 68.75 4.65 50.60 54.99 63.98 25.15 50.31 68.91 2.97 48.16
1 ✓ 69.33 48.10 83.36 83.78 64.29 50.45 76.73 66.16 20.44 85.18

(+0.58) (+43.45) (+32.76) (+28.79) (+0.31) (+25.30) (+26.42) (-2.75) (+17.47) (+37.02)

16 8 4 2 1
Shots

0

5

10

15

20

25

30

Re
la

tiv
e

Ga
in

/L
os

s

24.7 24.2
26.3

15.0
16.3

26.5
28.2 28.9

23.3
25.3

CoOp.
MaPLe

16 8 4 2 1
Shots

0.0

0.5

1.0

1.5

2.0

Re
la

tiv
e

Ga
in

/L
os

s

0.8

-0.2

0.5

1.0

0.1
0.3

2.1

1.4

1.0

0.3

CoOp.
MaPLe

Figure 4.3. Relative gain/loss after adding ProTeCt. (Left) HCA ; (Right) Acclea f .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Beta ()

45

50

55

60

65

70

75

80

Ac
cu

ra
cy

70.9
73.3 72.5 71.5 70.2 69.2 68.3

66.6 66.6 66.8

54.4

58.0 59.3 58.8 57.9 56.7
53.8 53.3

50.7 49.8Leaf Acc.
HCA

0 0.1 0.3 0.5 0.7 1
Lambda ()

20

30

40

50

60

70

Ac
cu

ra
cy

64.8 66.2 67.1 66.9 66.5
63.8

32.9

39.4 40.8 41.0 40.4 40.0

Leaf Acc.
HCA

16 8 4 2 1
Shots

0

10

20

30

40

Re
la

tiv
e

Ga
in

/L
os

s

0.9 1.4 1.9
-0.8

2.1

46.6
42.8

33.0

27.8
32.1

Leaf Acc.
HCA

(a) (b) (c)

Figure 4.4. Ablation of (a) tree dropout rate β , (b) NCL strength λ and (c) CLIP ViT B32 architecture.

methods: CoOp [140] and MaPLe [62]. All experiments were conducted on a single Nvidia A10

GPU, using Pytorch [88]. ProTeCt code builds on the publicly available codebases for CoOp

and MaPLe and will be released upon publication.

Metrics: Acclea f of (4.4), HCA of (4.5) and MTA of (4.6) are considered. MTA uses 5 tree

dropout rates (β ∈{0.1,0.3,0.5,0.7,0.9}) to sample treecuts of various granularities. For each

67

Table 4.3. The gain of hierarchical consistency after adding ProTeCt generalizes across datasets in unseen
domains. All methods are fine-tuned on ImageNet and evaluated on its 4 variants.

Method
K- w/ ImageNetv2 [90] ImageNet-S [106] ImageNet-A [46] ImageNet-R [45]

Shot ProTeCt Acclea f HCA MTA (25) Acclea f HCA MTA (25) Acclea f HCA MTA (25) Acclea f HCA MTA (25)

CoOp

16 64.01 2.31 43.74 47.82 1.39 38.58 50.28 2.97 52.56 75.83 18.49 64.13
16 ✓ 62.60 32.84 86.66 46.80 20.73 82.60 49.08 22.45 78.21 74.94 31.18 75.59

(-1.41) (+30.53) (+42.92) (-1.02) (+19.34) (+44.02) (-1.20) (+19.48) (+25.65) (-0.89) (+12.69) (+11.40)
1 56.43 1.51 38.27 41.38 1.11 33.61 45.92 1.76 47.54 69.84 11.74 55.31
1 ✓ 60.16 22.95 84.38 44.75 13.88 80.64 48.95 20.52 76.95 74.26 27.46 76.48

(+3.73) (+21.44) (+46.11) (+3.37) (+12.77) (+47.03) (3.03) (+18.76) (+29.41) (+4.42) (+15.72) (+21.17)

MaPLe

16 64.15 1.97 45.93 48.97 1.58 43.37 50.61 2.31 54.88 76.61 20.67 63.06
16 ✓ 62.77 27.86 86.14 47.47 17.77 82.52 47.41 19.75 77.46 75.70 32.58 77.99

(-1.38) (+25.89) (+40.21) (-1.50) (+16.19) (+39.15) (-3.20) (+17.44) (+22.58) (-0.91) (+11.91) (+14.93)
1 61.78 2.18 45.50 46.79 1.70 45.26 47.55 3.52 55.48 74.55 18.85 62.48
1 ✓ 59.14 17.89 83.27 44.92 11.24 79.94 47.15 16.03 76.81 74.60 25.20 75.72

(-2.64) (+15.71) (+37.77) (-1.87) (+9.54) (+34.68) (-0.40) (+12.51) (+21.33) (+0.05) (+6.35) (+13.24)

(a): [Boxer, Person] (b): [Trolleybus, Animal] (c):[Lion, Koala] (d): [Cheeseburger, Ice cream]

Figure 4.5. ProTeCt correctly predicts examples from ImageNet (a,b) and its variants (c,d) at all levels.
[GT, Prediction] shows the groundtruth and incorrect prediction by vanilla prompt tuning.

β , T treecuts are sampled without repetition to obtain a total of 5T treecuts. MTA(5T) indicates

the result is averaged over these 5T treecuts. We ablate T =5 and T =20 on Cifar100 and use

T =5 for all datasets by default.

Training Details: All vanilla prompt tuning and their ProTeCt counterparts are trained under

the same setting. The following configuration is used unless noted. All experiments use SGD

optimizer and the learning rate is set to 0.02 with a cosine learning rate scheduler. By default,

a pretrained ViT-B/16 CLIP model is used as initialization. For Cifar100 and SUN, we train both

CoOp and MaPLe prompts for 200 epochs, using a batch size of 128 and 32, respectively. For

ImageNet, CoOp is trained for 30 epochs with a batch size of 8, while MaPLe is trained for 10

epochs with a batch size of 2. Note that the setting is slightly different from the original paper

due to our GPU availability.

68

4.6.1 TOS Classification Performance

Table 4.2 shows that vanilla CoOp and MaPLe have reasonable leaf accuracy for both

1-shot and 16-shot classification on Cifar100, SUN, and ImageNet. However, their very low HCA

shows that their predictions are not consistent over the class hierarchy. As a result, their TOS

classification performance (MTA) is much weaker than their leaf accuracy. For example, 16-shot

classification with CoOp on ImageNet has a leaf accuracy of 71.23, but expected TOS accuracy

of 46.98. This is explained by the very low HCA of 2.99. Similar observations hold for different

few-shot configurations. In all cases, ProTeCt (results on rows with a checkmark) significantly

improves HCA and MTA(25). For example, it boosts the HCA of 16-shot classification with

CoOp on ImageNet by 34.75 (2.99 vs 37.74), leading to an increase of MTA(25) of 41.63 (46.98

to 88.61).

Note that, in all cases, MTA(25) after ProTeCt training is higher than leaf accuracy.

This is expected for a well-calibrated classifier, since decisions at intermediate levels of the

tree are coarser-grained than those at the leaves, which can require very fine class distinctions.

These results show that ProTeCt robustifies the model for use in the TOS classification setting.

The table also shows that ProTeCt maintains leaf accuracies comparable to those of the vanilla

methods. Furthermore, the MTA results when 25 and 100 treecuts are sampled (corresponding

to T =5 and T =20), are compared on Cifar100. It can be seen that the performances are similar,

showing that sampling 25 treecuts is sufficient to achieve good estimation. Fig. 4.3 compares the

relative gains in HCA and leaf accuracy of training with ProTeCt, as compared to vanilla prompt

tuning. These gains are shown for both CoOp and MaPLe, under several few shot configurations,

on SUN dataset. In all cases, ProTeCt increases HCA by more than 15 points, while maintaining

a leaf accuracy comparable to that of vanilla CoOp/MaPLe.

69

Table 4.4. Comparison of CoOp with/without ProTeCt on FGVC Aircraft [83] dataset.
K-shot w/ ProTeCt Acclea f HCA MTA (25)

16 41.88 17.82 21.11
16 ✓ 42.00 29.94 32.95

(+0.12) (+12.12) (+11.84)
1 23.61 11.55 16.77
1 ✓ 27.30 16.47 24.67

(+3.69) (+4.92) (+7.90)

4.6.2 Domain Generalization of TOS Classification

Following the domain generalization setting of [140, 139, 62, 127], we investigate

whether TOS classification performance generalizes across datasets. The CLIP model with

ProTeCt prompts trained on ImageNet (source) is applied to 4 ImageNet variants (target) with

domain shift: ImageNetv2 [90], ImageNet-Sketch [106], ImageNet-A [46] and ImageNet-R [45].

Table 4.3 summarizes the three metrics on these datasets for CoOp and MaPLe. Similarly to

Table 4.2, ProTeCt enables significant gains in HCA and MTA(25) over the baselines for all

datasets. Note that since ImageNet-A and ImageNet-R only contain 200 ImageNet subclasses,

their hierarchy is different from that of ImageNet. These results demonstrate the flexibility

and robustness of ProTeCt, even when transferring the model to a target domain whose class

hierarchy is different from that of the source domain.

4.6.3 Ablation Study and Visualization

In this section, we discuss ablations of ProTeCt components and visualize the predictions

of different models.

Tree Dropout Rate β : Fig. 4.4 (a) plots Cifar100 Acclea f and HCA as a function of the drop-out

rate β , for 16-shot CoOp + ProTeCt training (λ =1). Larger values of β reduce the likelihood of

sampling the leaf nodes of the tree, resulting in shorter trees and weaker regularization. Hence,

both leaf accuracy and HCA degrade for large β . However, always using the full tree (β =0)

also achieves sub-optimal results. The two metrics peak at β = 0.1 and β = 0.2, respectively.

β =0.1 is selected for all experiments.

70

Table 4.5. CoOp ablation on Cifar100 dataset. Both DTL and NCL loss improve the hierarchical
consistency.

DTL NCL
16-shot 1-shot

AccLea f HCA MTA (25) AccLea f HCA MTA (25)
72.88 10.04 50.64 65.03 7.81 41.78

✓ 72.81 47.97 87.32 64.77 32.93 81.38
✓ 64.20 51.69 79.44 61.22 38.02 62.16

✓ ✓ 72.94 56.85 87.69 66.88 41.01 81.64

NCL strength λ : Fig. 4.4(b) summarizes the Cifar100 performance of 1-shot classification

with CoOp and β =0.1, as a function of the hyperparameter λ that balances the two losses of

(4.11). The introduction of NCL improves leaf accuracy/HCA from 64.8/32.9 (λ =0) to 66.9/41

(λ = 0.5). We adopt λ = 0.5 for CIFAR100 and SUN. For ImageNet, λ = 0.5 and λ = 1 have

comparable performance.

Architecture: Fig. 4.4 (c) shows the plug-and-play properties of ProTeCt, by showing that the

gains obtained for CoOp+ProTeCt in Fig. 4.3 with CLIP ViT B16 also hold for ViT B32 features.

Taxonomies: To investigate the robustness of ProTeCt across hierachies, we consider the FGVC

Aircraft [83] dataset. This has its built-in hierarchy, which beyond differing from those of

SUN [119] and WordNet [85], is a technical hierarchy of fine-grained aircraft classes. Table 4.4

summarizes the CoOp results for these experiments, showing that ProTeCt improves performance

under all metrics. This illustrates its taxonomy robustness.

Loss: Table 4.5 ablates the model performance with/without NCL and DTL loss, for two few-

shot settings, using CoOp on Cifar100. Both losses improve TOS performance individually and

there is a significant additional gain when they are combined. Using NCL alone can degrade

leaf performance, due to the lack of regularization across different levels of the hierarchy. The

combination of the two losses overcomes this problem.

Adapter-based tuning methods: To investigate how ProTeCt affect the TOS performance of

adapter-based tuning method on FM, we use the ProTeCt losses to train the CLIP adapter of [34]

and the CLIP+LORA method of [27]. Table 4.6 shows that this again produces large consistency

gains, indicating that ProTeCt losses generalize to both prompt-based and adapter-based methods.

71

Table 4.6. Improving other adapter-based tuning methods, including CLIP-Adapter and CLIP+LORA
with ProTeCt on Cifar100.

K- w/ CLIP-Adapter [34] CLIP+LORA [27]
Shot ProTeCt Acclea f HCA MTA (25) Acclea f HCA MTA (25)
16 71.96 5.59 42.93 70.45 4.57 47.19
16 ✓ 72.47 57.15 87.67 70.64 51.06 77.29

(+0.51) (+51.56) (+44.83) (+0.19) (+46.49) (+30.10)
1 65.35 8.35 48.25 63.57 2.89 38.63
1 ✓ 67.29 36.21 78.49 63.62 24.66 56.42

(+1.94) (+27.86) (+30.24) (+0.05) (+21.8) (+17.79)

Visualization: Fig. 4.5 shows examples from ImageNet (a,b), ImageNet-A (c) and ImageNet-R

(d). While ProTeCt can correctly classify these examples at all hierarchy levels, vanilla prompt

tuning fails at certain levels.

4.7 Conclusion

In this work, we formulated the TOS classification setting, including datasets, perfor-

mance metrics, and experiments. For a given dataset, a class hierarchy is built by assigning

the dataset classes to leaf nodes and superclasses to internal nodes. The TOS classifier is then

expected to support classification with label sets drawn throughout the taxonomy. We have

shown that existing prompting methods fail to address this setting and proposed ProTeCt training

for enhancing the TOS performance of FMs, like CLIP, with existing prompt tuning methods.

ProTeCt includes two losses. A dynamic treecut loss, based on an efficient treecut sampler,

dynamically regularizes labels of varying granularity. A node-centric loss encourages correct

predictions at all hierarchy levels. Experiments show that ProTeCt enhances the TOS perfor-

mance of existing prompt tuning techniques, both in the adaptation datasets and across unseen

domains. Finally, it was shown that ProTeCt is successful for various architectures, hierarchies

and parameter tuning methods.

Chapter 4 is, in full, based on the material as it appears in the publication of “ProTeCt:

Prompt Tuning for Taxonomic Open Set Classification”, Tz-Ying Wu*, Chih-Hui Ho*, and Nuno

72

Vasconcelos, In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition

xiii (CVPR), 2024. The dissertation author was the primary investigator and author of this paper.

73

Chapter 5

Discussion and Conclusion

74

In this thesis, we expand upon the scheme of the current long-tail research and delve into

the nuanced challenges posed by long-tail distributions in real-world settings.

We started by exploring the long-tailed distributions with visual relation learning, which

is a combinatorial long-tail problem. Through an iterative decoupled training scheme, we deftly

navigate the interplay between multiple long-tail distributions, avoiding overfitting while main-

taining model compactness. This demonstrates the sensibility of using compact structures to

solve the complex long-tail problem.

Moreover, inspired by the adaptability of human decision-making, we pioneered the

development of a taxonomic classifier tailored for realistic recognition of long-tail datasets. This

is a long-tail recognition strategy more aligned with human cognition. This innovative approach,

leveraging hierarchical label sets, enables reliable predictions across various levels of class

popularity and improves the model performance for all the class popularities.

Furthermore, our exploration into the dynamics of label space distribution shift, par-

ticularly in the context of Visual-Language Models (VLMs), illuminates the inadequacies of

existing methodologies in handling taxonomic open-set classification scenarios. By introducing

novel metrics for hierarchical consistency evaluation and pioneering the Prompt Tuning for

Hierarchical Consistency (ProTeCt) technique, we not only identify the shortcomings but also

provide tangible pathways for improvement. This significantly enhances the VLM performance

across varying levels of semantic granularity and underscores our contributions in advancing

the capabilities of modern machine learning systems.

In summary, these works show that the long-tail distributions pose significant challenges

to modern classifiers and the network design should delve into this problem, as model perfor-

mance can be substantially improved with proper data sampling and model regularization. We

also demonstrate the importance of bridging the gap between machine learning models and

human-like adaptability through the provision of practical solutions and insightful analyses.

75

Bibliography

[1] inaturalist 2018 competition. https://github.com/visipedia/inat comp.

[2] Karim Ahmed, Mohammad Haris Baig, and Lorenzo Torresani. Network of experts for
large-scale image categorization. In European Conference on Computer Vision (ECCV),
2016.

[3] Zeynep Akata, Scott Reed, Daniel Walter, Honglak Lee, and Bernt Schiele. Evaluation
of output embeddings for fine-grained image classification. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2015.

[4] D Anaki and S Bentin. Familiarity effects on categorization levels of faces and objects.
Cognition, 2009.

[5] J Anderson. The adaptive nature of human categorization. Psychological Review, 1991.

[6] Mateusz Buda, Atsuto Maki, and Maciej Mazurowski. A systematic study of the class
imbalance problem in convolutional neural networks. Neural Networks, 106, 10 2017.

[7] Adrian Bulat and Georgios Tzimiropoulos. Lasp: Text-to-text optimization for language-
aware soft prompting of vision & language models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 23232–23241, 2023.

[8] Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning
imbalanced datasets with label-distribution-aware margin loss. In Advances in Neural
Information Processing Systems (NIPS), 2019.

[9] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. Smote:
Synthetic minority over-sampling technique. J. Artif. Int. Res., 16(1):321–357, June 2002.

[10] Tianshui Chen, Weihao Yu, Riquan Chen, and Liang Lin. Knowledge-embedded routing
network for scene graph generation. In Conference on Computer Vision and Pattern
Recognition, 2019.

[11] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple
framework for contrastive learning of visual representations. In Proceedings of the 37th
International Conference on Machine Learning, ICML’20. JMLR.org, 2020.

76

https://github.com/visipedia/inat_comp

[12] Vincent S. Chen, Paroma Varma, Ranjay Krishna, Michael Bernstein, Christopher Re,
and Li Fei-Fei. Scene graph prediction with limited labels. In The IEEE International
Conference on Computer Vision (ICCV), October 2019.

[13] Xinlei Chen, Haoqi Fan, Ross B. Girshick, and Kaiming He. Improved baselines with
momentum contrastive learning. ArXiv, abs/2003.04297, 2020.

[14] C. K. Chow. An optimum character recognition system using decision functions. IRE
Transactions on Electronic Computers, EC-6:247 – 254, 12 1957.

[15] C. K. Chow. On optimum recognition error and reject tradeoff. IEEE Transactions on
Information Theory, 16:41–46, 1 1970.

[16] Peng Chu, Xiao Bian, Shaopeng Liu, and Haibin Ling. Feature space augmentation for
long-tailed data. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XXIX 16, pages 694–710. Springer, 2020.

[17] Charles Corbière, Nicolas Thome, Avner Bar-Hen, Matthieu Cord, and Patrick Pérez.
Addressing failure prediction by learning model confidence. Advances in Neural
Information Processing Systems, 32, 2019.

[18] Corinna Cortes, Giulia DeSalvo, and Mehryar Mohri. Boosting with abstention. In
Advances in Neural Information Processing Systems (NIPS), 2016.

[19] Corinna Cortes, Giulia DeSalvo, and Mehryar Mohri. Learning with rejection. In
International Conference on Algorithmic Learning Theory (ALT), 2016.

[20] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced
loss based on effective number of samples. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2019.

[21] Jia Deng, Nan Ding, Yangqing Jia, Andrea Frome, Kevin Murphy, Samy Bengio, Yuan Li,
Hartmut Neven, and Hartwig Adam. Large-scale object classification using label relation
graphs. In European Conference on Computer Vision (ECCV), 2014.

[22] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision
and Pattern Recognition, pages 248–255, 2009.

[23] Jia Deng, Jonathan Krause, Alexander C. Berg, and Li Fei-Fei. Hedging your bets:
Optimizing accuracy-specificity trade-offs in large scale visual recognition. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2012.

[24] Qi Dong, Shaogang Gong, and Xiatian Zhu. Class rectification hard mining for imbalanced
deep learning. In International Conference on Computer Vision (ICCV), 10 2017.

[25] Apoorva Dornadula, Austin Narcomey, Ranjay Krishna, Michael Bernstein, and
Li Fei-Fei. Visual relationships as functions: Enabling few-shot scene graph prediction.
CoRR, abs/1906.04876, 2019.

77

[26] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale. In International Conference on Learning
Representations, 2021.

[27] Sivan Doveh, Assaf Arbelle, Sivan Harary, Rameswar Panda, Roei Herzig, Eli Schwartz,
Donghyun Kim, Raja Giryes, Rogério Schmidt Feris, Shimon Ullman, and Leonid
Karlinsky. Teaching structured vision & language concepts to vision & language models.
2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
2657–2668, 2022.

[28] Chris Drummond and Robert Holte. C4.5, class imbalance, and cost sensitivity: Why
under-sampling beats oversampling. Proceedings of the ICML’03 Workshop on Learning
from Imbalanced Datasets, 01 2003.

[29] Yifan Du, Zikang Liu, Junyi Li, and Wayne Xin Zhao. A survey of vision-language
pre-trained models. In International Joint Conference on Artificial Intelligence, 2022.

[30] Ran El-Yaniv and Yair Wiener. On the foundations of noise-free selective classification.
Journal of Machine Learning Research, 11:1605–1641, 5 2010.

[31] Giorgio Fumera and Fabio Roli. Support vector machines with embedded reject option.
Pattern recognition with support vector machines, 2388:68–82, 7 2002.

[32] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In International Conference on Machine Learning
(ICML), 2016.

[33] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle,
François Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training
of neural networks. Journal of machine learning research, 17(59):1–35, 2016.

[34] Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang, Yongfeng Zhang,
Hongsheng Li, and Yu Jiao Qiao. Clip-adapter: Better vision-language models with
feature adapters. ArXiv, abs/2110.04544, 2021.

[35] Yonatan Geifman and Ran El-Yaniv. Selective classification for deep neural networks.
In Advances in Neural Information Processing Systems (NIPS), 2017.

[36] Yonatan Geifman and Ran El-Yaniv. Selectivenet: A deep neural network with an
integrated reject option. In International Conference on Machine Learning (ICML), 2019.

[37] Spyros Gidaris and Nikos Komodakis. Dynamic few-shot visual learning without forget-
ting. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 06 2018.

78

[38] Wonjoon Goo, Juyong Kim, Gunhee Kim, and Sung Ju Hwang. Taxonomy-regularized
semantic deep convolutional neural networks. In European Conference on Computer
Vision (ECCV), 2016.

[39] Jiuxiang Gu, Handong Zhao, Zhe Lin, Sheng Li, Jianfei Cai, and Mingyang Ling. Scene
graph generation with external knowledge and image reconstruction. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

[40] Yanming Guo, Yu Liu, Erwin M. Bakker, Yuanhao Guo, and Michael S. Lew. Cnn-rnn:
a large-scale hierarchical image classification framework. Multimedia Tools and
Applications, 77:10251–10271, 2018.

[41] Haibo He, Yang Bai, E. A. Garcia, and Shutao Li. Adasyn: Adaptive synthetic sampling
approach for imbalanced learning. In 2008 IEEE International Joint Conference on Neural
Networks (IEEE World Congress on Computational Intelligence), pages 1322–1328, 2008.

[42] Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. Borderline-smote: A new over-
sampling method in imbalanced data sets learning. Advances in Intelligent Computing,
3644:878–887, 09 2005.

[43] H. He and E. A. Garcia. Learning from imbalanced data. IEEE Transactions on
Knowledge and Data Engineering, 21(9):1263–1284, Sep. 2009.

[44] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[45] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan
Dorundo, Rahul Desai, Tyler Lixuan Zhu, Samyak Parajuli, Mike Guo, Dawn Xiaodong
Song, Jacob Steinhardt, and Justin Gilmer. The many faces of robustness: A critical
analysis of out-of-distribution generalization. 2021 IEEE/CVF International Conference
on Computer Vision (ICCV), pages 8320–8329, 2020.

[46] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural
adversarial examples. CVPR, 2021.

[47] Roei Herzig, Moshiko Raboh, Gal Chechik, Jonathan Berant, and Amir Globerson.
Mapping images to scene graphs with permutation-invariant structured prediction. CoRR,
abs/1802.05451, 2018.

[48] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2015.

[49] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard,
Hartwig Adam abd Pietro Perona, and Serge Belongie. The inaturalist species
classification and detection dataset. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

79

[50] Chen Huang, Yining Li, Chen Change Loy, and Xiaoou Tang. Learning deep represen-
tation for imbalanced classification. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[51] Drew A. Hudson and Christopher D. Manning. GQA: A new dataset for real-world visual
reasoning and compositional question answering. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

[52] Zih-Siou Hung, Arun Mallya, and Svetlana Lazebnik. Union visual translation embedding
for visual relationship detection and scene graph generation. CoRR, abs/1905.11624, 2019.

[53] Muhammad Abdullah Jamal, Matthew Brown, Ming-Hsuan Yang, Liqiang Wang, and
Boqing Gong. Rethinking class-balanced methods for long-tailed visual recognition
from a domain adaptation perspective. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2020.

[54] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath
Hariharan, and Ser-Nam Lim. Visual prompt tuning. In European Conference on
Computer Vision (ECCV), 2022.

[55] Heinrich Jiang, Been Kim, Melody Guan, and Maya Gupta. To trust or not to trust a
classifier. Advances in neural information processing systems, 31, 2018.

[56] Davis Jim, Liang Tong, Enouen James, and Ilin Roman. Hierarchical semantic labeling
with adaptive confidence. In International Symposium on Visual Computing, 2019.

[57] J. Johnson, R. Krishna, M. Stark, L. Li, D. A. Shamma, M. S. Bernstein, and L. Fei-Fei.
Image retrieval using scene graphs. In 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), volume 00, pages 3668–3678, June 2015.

[58] Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image generation from scene graphs.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

[59] K Johnson. Impact of varying levels of expertise on decisions of category typicality.
Memory & Cognition, 2001.

[60] K Johnson and C Mervis. Effects of varying levels of expertise on the basic level of
categorization. J Experimental Psychology: General, 1997.

[61] Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi
Feng, and Yannis Kalantidis. Decoupling representation and classifier for long-tailed
recognition. In International Conference on Learning Representations (ICLR), 2020.

[62] Muhammad Uzair khattak, Hanoona Rasheed, Muhammad Maaz, Salman Khan, and
Fahad Shahbaz Khan. Maple: Multi-modal prompt learning. In The IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2023.

80

[63] Hyo Jin Kim and Jan-Michael Frahm. Hierarchy of alternating specialists for scene
recognition. In European Conference on Computer Vision (ECCV), 2018.

[64] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz,
Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A. Shamma, Michael S. Bernstein,
and Fei-Fei Li. Visual genome: Connecting language and vision using crowdsourced
dense image annotations. CoRR, abs/1602.07332, 2016.

[65] Alex Krizhevsky and Geoffrey Hinton. Zero-shot learning—a comprehensive evaluation
of the good, the bad and the ugly. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 41:2251 – 2265, 9 2019.

[66] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

[67] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in Neural Information Processing
Systems (NIPS), 2012.

[68] Kibok Lee, Kimin Lee, Kyle Min, Yuting Zhang, Jinwoo Shin, and Honglak Lee.
Hierarchical novelty detection for visual object recognition. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

[69] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-
efficient prompt tuning. In Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 3045–3059, Online and Punta Cana, Dominican
Republic, November 2021. Association for Computational Linguistics.

[70] Rongjie Li, Songyang Zhang, Bo Wan, and Xuming He. Bipartite graph network with
adaptive message passing for unbiased scene graph generation. In CVPR, 2021.

[71] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts
for generation. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pages 4582–4597, Online, August 2021.
Association for Computational Linguistics.

[72] Yikang Li, Tao Ma, Yeqi Bai, Nan Duan, Sining Wei, and Xiaogang Wang. Pastegan:
A semi-parametric method to generate image from scene graph. In Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, 8-14, December 2019, Vancouver, BC, Canada,
pages 3950–3960, 2019.

[73] Yikang Li, Wanli Ouyang, Bolei Zhou, Jianping Shi, Chao Zhang, and Xiaogang Wang.
Factorizable net: An efficient subgraph-based framework for scene graph generation. In
The European Conference on Computer Vision (ECCV), September 2018.

81

[74] Z. Li and D. Hoiem. Learning without forgetting. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 40(12):2935–2947, 2018.

[75] Tsung-Yi Lin, Priyal Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Focal loss for
dense object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,
PP:1–1, 07 2018.

[76] Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang.
P-tuning: Prompt tuning can be comparable to fine-tuning across scales and tasks. In
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 61–68, Dublin, Ireland, May 2022. Association for
Computational Linguistics.

[77] Yuntao Liu, Yong Dou, Ruochun Jin, and Peng Qiao. Visual tree convolutional neural
network in image classification. In International Conference on Pattern Recognition
(ICPR), 2018.

[78] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao,
Zheng Zhang, Li Dong, Furu Wei, and Baining Guo. Swin transformer v2: Scaling up
capacity and resolution. In International Conference on Computer Vision and Pattern
Recognition (CVPR), 2022.

[79] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and
Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

[80] Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and Stella X. Yu.
Large-scale long-tailed recognition in an open world. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

[81] Timo Lüddecke and Alexander Ecker. Image segmentation using text and image prompts.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 7086–7096, June 2022.

[82] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri,
Yixuan Li, Ashwin Bharambe, and Laurens van der Maaten. Exploring the limits of weakly
supervised pretraining. In European Conference on Computer Vision (ECCV), 2018.

[83] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew B. Blaschko, and Andrea Vedaldi.
Fine-grained visual classification of aircraft. ArXiv, abs/1306.5151, 2013.

[84] Marcin Marszałek and Cordelia Schmid. Semantic hierarchies for visual object recog-
nition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2007.

[85] George A Miller. Wordnet: a lexical database for english. Communications of the ACM,
38(11):39–41, 1995.

82

[86] Pedro Morgado and Nuno Vasconcelos. Semantically consistent regularization for
zero-shot recognition. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

[87] Son T. Nguyen, Ozgur S. Oguz, Valentin N. Hartmann, and Marc Toussaint. Self-
supervised learning of scene-graph representations for robotic sequential manipulation
planning. In 4rd Annual Conference on Robot Learning, CoRL 2020, Proceedings,
Proceedings of Machine Learning Research. PMLR, 2020.

[88] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[89] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervision. In International conference
on machine learning, pages 8748–8763. PMLR, 2021.

[90] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet
classifiers generalize to imagenet? In International Conference on Machine Learning,
2019.

[91] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 28, pages 91–99. Curran Associates, Inc., 2015.

[92] Ruslan Salakhutdinov, Antonio Torralba, and Josh Tenenbaum. Learning to share visual
appearance for multiclass object detection. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2011.

[93] Babak Shahbaba and Radford M. Neal. Improving classification when a class hierarchy
is available using a hierarchy-based prior. Bayesian Analysis, 2(1):221–238, 2007.

[94] Li Shen, Zhouchen Lin, and Qingming Huang. Relay backpropagation for effective
learning of deep convolutional neural networks. In Computer Vision–ECCV 2016: 14th
European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings,
Part VII 14, pages 467–482. Springer, 2016.

[95] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. CoRR, abs/1409.1556, 2014.

83

[96] Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. In
NIPS, 2016.

[97] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep metric learning via
lifted structured feature embedding. In IEEE Computer Vision and Pattern Recognition
(CVPR), 2016.

[98] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15(56):1929–1958, 2014.

[99] J Tanaka and M Taylor. Object categories and expertise: Is the basic level in the eye of
the beholder. Cognitive Psychology, 1991.

[100] Kaihua Tang, Yulei Niu, Jianqiang Huang, Jiaxin Shi, and Hanwang Zhang. Unbiased
scene graph generation from biased training. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages
3713–3722. IEEE, 2020.

[101] Kaihua Tang, Hanwang Zhang, Baoyuan Wu, Wenhan Luo, and Wei Liu. Learning
to compose dynamic tree structures for visual contexts. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2019.

[102] Hung-Yu Tseng, Hsin ying Lee, Lu Jiang, Ming-Hsuan Yang, and Weilong Yang.
RetrieveGAN: Image synthesis via differentiable patch retrieval. In ECCV, 2020.

[103] Vishaal Udandarao, Ameya Prabhu, Adhiraj Ghosh, Yash Sharma, Philip HS Torr, Adel
Bibi, Samuel Albanie, and Matthias Bethge. No” zero-shot” without exponential data:
Pretraining concept frequency determines multimodal model performance. arXiv preprint
arXiv:2404.04125, 2024.

[104] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with
contrastive predictive coding. ArXiv, abs/1807.03748, 2018.

[105] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

[106] Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global
representations by penalizing local predictive power. In Advances in Neural Information
Processing Systems, pages 10506–10518, 2019.

[107] Jianfeng Wang, Thomas Lukasiewicz, Xiaolin Hu, Jianfei Cai, and Zhenghua Xu. Rsg:
A simple but effective module for learning imbalanced datasets. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3784–3793,
2021.

84

[108] Pei Wang and Nuno Vasconcelos. Towards realistic predictors. In European Conference
on Computer Vision (ECCV), 2018.

[109] Sijin Wang, Ruiping Wang, Ziwei Yao, Shiguang Shan, and Xilin Chen. Cross-modal
scene graph matching for relationship-aware image-text retrieval. In IEEE Winter
Conference on Applications of Computer Vision, WACV 2020, Snowmass Village, CO,
USA, March 1-5, 2020, pages 1497–1506. IEEE, 2020.

[110] Xiao Wang, Guangyao Chen, Guangwu Qian, Pengcheng Gao, Xiaoyong Wei, Yaowei
Wang, Yonghong Tian, and Wen Gao. Large-scale multi-modal pre-trained models: A
comprehensive survey. ArXiv, abs/2302.10035, 2023.

[111] Yu-Xiong Wang and Martial Hebert. Learning from small sample sets by combining
unsupervised meta-training with cnns. In Advances in Neural Information Processing
Systems (NIPS), 2016.

[112] Yu-Xiong Wang and Martial Hebert. Learning to learn: Model regression networks for
easy small sample learning. In European Conference on Computer Vision (ECCV), 2016.

[113] Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. Learning to model the tail. In
Advances in Neural Information Processing Systems (NIPS), 2017.

[114] Zhaoqing Wang, Yu Lu, Qiang Li, Xunqiang Tao, Yandong Guo, Mingming Gong, and
Tongliang Liu. Cris: Clip-driven referring image segmentation. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2022.

[115] Bin Wen, Jie Luo, Xianglong Liu, and Lei Huang. Unbiased scene graph generation via
rich and fair semantic extraction, 2020.

[116] Sanghyun Woo, Dahun Kim, Donghyeon Cho, and In So Kweon. Linknet: Relational
embedding for scene graph. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing
Systems 31, pages 560–570. Curran Associates, Inc., 2018.

[117] Tz-Ying Wu, Pedro Morgado, Pei Wang, Chih-Hui Ho, and Nuno Vasconcelos. Solving
long-tailed recognition with deep realistic taxonomic classifier. In European Conference
on Computer Vision (ECCV), 2020.

[118] Liuyu Xiang and G. Ding. Learning from multiple experts: Self-paced knowledge
distillation for long-tailed classification. In European Conference on Computer Vision
(ECCV), 2020.

[119] Jianxiong Xiao, James Hays, Krista A. Ehinger, Aude Oliva, and Antonio Torralba. Sun
database: Large-scale scene recognition from abbey to zoo. In 2010 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pages 3485–3492, 2010.

[120] Danfei Xu, Yuke Zhu, Christopher Choy, and Li Fei-Fei. Scene graph generation by
iterative message passing. In Computer Vision and Pattern Recognition (CVPR), 2017.

85

[121] Yue Xu, Yong-Lu Li, Jiefeng Li, and Cewu Lu. Constructing balance from imbalance
for long-tailed image recognition. In European Conference on Computer Vision, pages
38–56. Springer, 2022.

[122] Shaotian Yan, Chen Shen, Zhongming Jin, Jianqiang Huang, Rongxin Jiang, Yaowu Chen,
and Xian-Sheng Hua. PCPL: predicate-correlation perception learning for unbiased scene
graph generation. In MM ’20: The 28th ACM International Conference on Multimedia,
Virtual Event / Seattle, WA, USA, October 12-16, 2020, pages 265–273, 2020.

[123] Zhicheng Yan, Hao Zhang, Robinson Piramuthu, Vignesh Jagadeesh, Dennis DeCoste,
Wei Di, and Yizhou Yu. Hd-cnn: Hierarchical deep convolutional neural networks for large
scale visual recognition. In International Conference on Computer Vision (ICCV), 2015.

[124] Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, and Devi Parikh. Graph r-cnn for
scene graph generation. In The European Conference on Computer Vision (ECCV),
September 2018.

[125] Xu Yang, Kaihua Tang, Hanwang Zhang, and Jianfei Cai. Auto-encoding scene graphs for
image captioning. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019.

[126] Ting Yao, Yingwei Pan, Yehao Li, and Tao Mei. Exploring visual relationship for image
captioning. In The European Conference on Computer Vision (ECCV), September 2018.

[127] Yuhang Zang, Wei Li, Kaiyang Zhou, Chen Huang, and Chen Change Loy. Unified vision
and language prompt learning. ArXiv, abs/2210.07225, 2022.

[128] Alireza Zareian, Svebor Karaman, and Shih-Fu Chang. Bridging knowledge graphs to
generate scene graphs. In Proceedings of the European conference on computer vision
(ECCV), August 2020.

[129] Alireza Zareian, Svebor Karaman, and Shih-Fu Chang. Weakly supervised visual
semantic parsing. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020.

[130] Rowan Zellers, Mark Yatskar, Sam Thomson, and Yejin Choi. Neural motifs: Scene
graph parsing with global context. CoRR, abs/1711.06640, 2017.

[131] Ji Zhang, Kevin J. Shih, Ahmed Elgammal, Andrew Tao, and Bryan Catanzaro. Graphical
contrastive losses for scene graph generation. CoRR, abs/1903.02728, 2019.

[132] Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu. Vision-language models for
vision tasks: A survey. ArXiv, abs/2304.00685, 2023.

[133] Xiao Zhang, Zhiyuan Fang, Yandong Wen, Zhifeng Li, and Yu Qiao. Range loss for deep
face recognition with long-tailed training data. In International Conference on Computer
Vision (ICCV), 2017.

86

[134] Yuhui Zhang, Alyssa Unell, Xiaohan Wang, Dhruba Ghosh, Yuchang Su, Ludwig
Schmidt, and Serena Yeung-Levy. Why are visually-grounded language models bad at
image classification? arXiv preprint arXiv:2405.18415, 2024.

[135] Bin Zhao, Li Fei-Fei, and Eric P. Xing. Large-scale category structure aware image
categorization. In Advances in Neural Information Processing Systems (NIPS), 2011.

[136] Zhisheng Zhong, Jiequan Cui, Shu Liu, and Jiaya Jia. Improving calibration for
long-tailed recognition. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 16489–16498, 2021.

[137] Boyan Zhou, Quan Cui, Xiu-Shen Wei, and Zhao-Min Chen. BBN: Bilateral-branch
network with cumulative learning for long-tailed visual recognition. In CVPR, pages
1–8, 2020.

[138] Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. Domain
generalization: A survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(4):4396–4415, 2022.

[139] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt
learning for vision-language models. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2022.

[140] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt
for vision-language models. International Journal of Computer Vision (IJCV), 2022.

[141] Xinqi Zhu and Michael Bain. B-cnn: Branch convolutional neural network for hierarchical
classification. CoRR, abs/1709.09890, 2017.

[142] Yang Zou, Zhiding Yu, B.V.K. Vijaya Kumar, and Jinsong Wang. Unsupervised domain
adaptation for semantic segmentation via class-balanced self-training. In European
Conference on Computer Vision (ECCV), 2018.

87

	Dissertation Approval Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Long-tail Recognition
	Definition
	Challenges of long-tail recognition
	Existing methods

	Contributions of the Thesis
	Learning of Visual Relations: The Devil is in the Tails
	Deep Realistic Taxonomic Classifier for Long-tail Recognition
	Taxonomic Open Set Classification

	Organization of the Thesis

	Learning of Visual Relations: The Devil is in the Tails
	Introduction
	Related work
	Scene graph generation
	Long-tailed recognition

	Formulation and data statistics
	Definitions
	Long-tailed visual relations

	Method
	Notations
	Model architecture
	Training
	Sampling strategies
	Sampling for visual relationships

	Experiments
	Dataset
	Comparison to SOTA
	Ablations on sampling strategies
	Qualitative results

	Conclusions

	Solving Long-tailed Recognition with Deep Realistic Taxonomic Classifier
	Introduction
	Related Work
	Long-tailed recognition and RTC
	Taxonomic probability calibration
	Experiments
	Experimental Setup
	Ablations
	Comparisons to hierarchical classifiers
	Comparisons to long-tail recognizers
	Comparisons to learning with rejection

	Conclusion

	ProTeCt: Prompt Tuning for Taxonomic Open Set Classification
	Introduction
	Related Work
	Preliminaries
	Taxonomic Open Set Classification
	Prompt Tuning for Hierarchical Consistency
	Experiments
	TOS Classification Performance
	Domain Generalization of TOS Classification
	Ablation Study and Visualization

	Conclusion

	Discussion and Conclusion
	Bibliography

